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Interactions between the glycosylated Gag protein of MuLV and murine APOBEC3: 

Novel insight into how MuLVs counteract restriction factors 

 

Chairperson: Leonard Evans, Ph.D. 

 

   APOBEC proteins have evolved in mice and humans as potent innate defences against 

retroviral infections. APOBEC3G (hA3G) in humans and mouse APOBEC3 (mA3) 

deaminate cytidine in single-stranded DNA which ultimately results in hypermutation of 

newly synthesized proviral DNA. Other deaminase-independent mechanisms of 

inhibition have been identified, such as directly inhibiting reverse transcription.  Both 

HIV and murine leukemia viruses (MuLVs) have evolved mechanisms to evade the action 

of the APOBEC proteins.  HIV encodes the Vif protein which binds to hA3G and 

facilitates its rapid degradation through the proteasome. The mechanism(s) by which 

exogenous MuLVs evade mA3 inhibitory activity is unknown.  

 

   Exogenous MuLVs encode a glycosylated gag protein (gGag) originating from an 

alternate CUG start site upstream of the AUG start site of the Gag structural polyproteins.  

gGag is synthesized to similar amounts as the structural Gag polyprotein in MuLV 

infected cells but is glycosylated in the endoplasmic reticulum and undergoes distinct 

proteolytic processing.  The function(s) of gGag remain unclear, but eliminating its 

synthesis through mutation markedly impedes in vivo replication of the virus with very 

little affect on in vitro replication. Endogenous retroviruses have not been found to 

express gGag and are tightly controlled by mA3. APOBEC3 proteins are expressed in 

many tissues in the mouse but are not expressed in most in vitro cell lines. These 

observations are consistent with a link between gGag expression and the evasion of mA3 

by MuLVs.   

 

  Studies described herein demonstrate that gGag is protective against both cellular and 

virion-associated mA3 in vitro and is protective against mA3 in vivo. While there was no 

direct interaction between mA3 and gGag in an infected cell, gGag and mA3 are 

localized in the same compartment in the virion and are able to be coprecipitated together 

from lysed virions. G-to-A hypermutation is not a mechanism used by mA3 to inhibit 

gGag-negative MuLV replication.  Through an affect on reverse transcription, cellular 

and virion-associated mA3 reduce viral transcripts in MuLV infected cells in a gGag-

dependent manner. 
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Chapter 1- Introduction 

1.1 Retroviruses 

 Retroviruses are RNA viruses that replicate through DNA intermediates and 

ultimately are incorporated into the genome of the target cell.  If this occurs in a germline 

cell the retrovirus becomes a permanent component of the host genome that is passed 

down to subsequent generations
177

. Over the course of evolution, the human genome has 

been infected approximately 40,000 times such that about 10% of the genome consists of 

retroviral sequences
177

. The majority of these sequences are no longer full length and do 

not encode a functional retrovirus.  However, several endogenous retroviral elements 

function in important physiological roles such as transcriptional regulation of host 

genes
11,41,46,106

 and the induction of placenta-trophoblast fusion during 

embryogenesis
45,61,160

.   

 Retroviruses are positive sense (+) single stranded (ss) RNA viruses that replicate 

through DNA intermediates generated by the viral polymerase which is termed reverse 

transcriptase
177

.  The viral RNA is comprised of two identical RNA genomes that are 

incorporated into the virion and resemble a large polycistronic messenger RNA
98

. 

Reverse transcription of the viral RNA results in the generation of DNA transcripts which 

are ultimately integrated into the target cell genome as a provirus
177

. Once integrated, the 

provirus can use the cell's transcriptional machinery to transcribe its genome into 

messenger RNA
177

. From this RNA, the retroviral proteins are translated. The translated 

proteins are assembled to create new retroviruses that are subsequently released from the 

cell through budding, allowing for an infection of a new cell. 

1.2 Murine Leukemia viruses 
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 Murine leukemia viruses (MuLVs) are classified in the Baltimore classification of 

viruses as Type IV (+) ssRNA, DNA intermediate retroviruses that are part of the 

Retroviridae family and the gammaretroviral genus
98

. MuLV virions are also classified as 

type C
10

, with a centrally located spherical inner core composed of the nucleocapsid (NC) 

and capsid (CA) proteins
10,98

. The genetic structure of a typical MuLV RNA genome and 

the location within a virion of the gene products it encodes is schematically depicted 

below (Figure 1.1).   Within the core are: the RNA genome, reverse transcriptase (RT), 

integrase (IN), protease (PR), and the tRNA
Pro

 primer
98

. The inner core is surrounded by 

an outer envelope composed of a lipid bilayer that contains the transmembrane (TM) and 

surface (SU) subunits of the envelope (Env) glycoprotein
98

. In contrast to other types of 

retroviruses, type C particles appear to be  assembled largely at the plasma membrane 

during budding
10

. The approximate diameter of a mature MuLV particle is 120nm
10

. 

MuLVs can be either endogenous (integrated into the host genome) or exogenous (passed 

from one host to another)
98

. Further classification of MuLVs has been based on host 

specificity or tropism. Ecotropic
115

 MuLVs infect only mice, and utilize the mCAT-1 

receptor. Amphotropic
81

 MuLVs infect mice and cells of many other species using the 

Pit-2 receptor. Xenotropic
115

 MuLVs, although endogenous to mice, can infect cells of 

many species but do not infect mouse cells, and utilize the Xpr-1 receptor. Polytropic
82

 

viruses can infect many species including mice and humans and also use Xpr-1 as a 

receptor.  Interestingly, the Xpr-1 receptor in most mouse strains is functional for 

polytropic viruses but not for xenotropic MuLVs
102

.  All of the receptors thus far 

identified are multiple membrane spanning proteins
102

. 

 Murine leukemia viruses (MuLVs) were originally identified and named for their 
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ability to cause leukemias in mice
1,47,62,70,75,97,156

.    The term has since been adopted to 

represent a large group of mouse gammaretroviruses. Some MuLVs that cause 

proliferative diseases in mice are named after their discoverers: Gross MuLV by Dr. 

Ludwig Gross (1951)
75

 (lymphocytic leukemia); Graffi MuLV by Dr. Arnold Graffi 

(1955)
70

 (erythroleukemia);  Friend MuLV (F-MuLV) by Dr. Charlotte Friend (1957)
62

 

(erythroleukemia); Moloney (M-MuLV) by Dr. John B. Moloney (1960)
47

 (lymphocytic 

leukemia); Rauscher MuLV (R-MuLV) by Dr. Frank J. Rauscher (1962)
156

 

(erythroleukemia); Kirsten MuLV (Ki-MuLV)  by Dr. Warner H. Kirsten (1967)
97

 

(lymphocytic leukemia); and  Abelson MuLV (A-MuLV) by Dr. Herbert T. Abelson 

(1970)
1
 (B-cell leukemia).  

Figure 1.1. Structure of a MuLV virion. The most inner part of a virion is known as 

the core, which contains the RNA genome, NC, IN and PR surrounded by the CA. The 

CA is surrounded by the MA protein, which helps anchor the lipid membrane of the 

virus which contains the envelope proteins TM and SU. Figure credit: Dr. Leonard 

Evans. 
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1.3 The RNA genome  

MuLV virions include a dimeric RNA genome
125,198

 which is contained within an inner 

core
98,135

. The structure and organization the MuLV genome is depicted (Figure 1.2). The 

viral RNA resembles a large mRNA (~8.3 kb) containing a 5' cap
158

 and is 

polyadenylated at the 3' end
73

.  The RNA genome begins with a 5‟ short terminal repeat, 

R
84,167

, followed by a short region which is termed U5
83

.  Immediately downstream of the  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1.2. MuLV genomic structure and organization. The proviral DNA is flanked by 

two LTRs, both of which contain a U3, R and U5 region. Following the 5' LTR are signals 

that function in primer binding (PBS), splicing (SD), dimerization of the RNA genome 

(DLS), and packaging (psi). Next are the genes that code for internal structural components 

(Gag), replication (Pol) and receptor recognition (Env). These are followed by a sequence 

required for DNA synthesis (PPT) and an LTR which contains transcriptional regulatory 

sequences. Transcription of proviral DNA into RNA ( ) leads to two major species, the 

full-length genome, and the spliced mRNA that encodes the envelope polyprotein. 

Translation of the full-length RNA yields the polyproteins ( ) gGag, Gag and Gag-Pol.  

Translation of the spliced mRNA yields the Env polyprotein.   These polyproteins are further 

processed by the viral protease ( ) to yield their mature forms (see text). 
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U5 is the primer binding site (PBS), which is complementary to the cellular tRNA
Pro

 
80

 

and is the start site for reverse transcription
80

. The splice donor (SD)
170

 site is after the 

PBS but before the packaging signal (psi)
119

 and thereby avoids virion incorporation of 

spliced env gene mRNA. The psi region provides the packaging signal for the virion 

RNA and also contains the dimer linkage site (DLS) that is required for RNA 

dimerization
131,161

. The next portion of the genome consists of the gag gene
6
 so named 

because the major gene product was initially identified as a group specific antigen.  This 

gene, which partially overlaps with psi, encodes a polyprotein that is proteolytically 

cleaved to yield the structural proteins: matrix (MA, hydrophobic p15
gag

)
7
, 

phosphorylated protein (acidic pp12)
143

, capsid (CA, p30)
142

, and nucleocapsid (NC, 

basic p10)
60

. Upstream of the  gag methionine start site is an alternative leucine start site  

that encodes another polyprotein, termed glycosylated gag (gGag, gp80
gag

)
54

.  gGag  is 

translated in the same reading frame as gag but contains an additional eighty-eight amino 

acids on its N-terminus and appears to undergo distinct post-translational processing 

compared to the Gag polyprotein
54

. The gag gene is followed by the pol gene
6
 which 

encodes the viral protease (PR, p14)
146

 reverse transcriptase (RT, p80)
5
, and integrase 

(IN, p46)
72

. After the pol gene is the splice acceptor (SA) which, with the SD, generates 

the spliced env gene mRNA. The env gene  encodes the surface glycoprotein (SU, 

gp80
env

)
93

, and transmembrane protein (TM, p15
env

)
87

. Following the env gene is the 

polypurine tract (PPT)
178

 which is the initiation site for positive strand DNA synthesis. 

After the PPT is the 3' (U3)
31

 region which contains the transcriptional regulatory 

elements of the virus.  The U3 is followed by the 3‟ short terminal repeat (R)
84,167

. The 

U3 region and U5 region are so named because they are unique 3‟ and 5‟ sequences that 
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Figure 1.3. Replication cycle of MuLV. (1) Binding of viral envelope to cell 

surface receptor. (2) Fusion and entry into the cell. (3) Uncoating of virion (4) 

Reverse transcription yielding proviral DNA. (5) Preintegration complex enters 

nucleus, integrates proviral DNA into host genome. (6) Transcription of provirus. (7) 

Translation of virion components. (8) Assembly at the cell membrane. (9) Budding 

of the virion. (10) Maturation and release of the virion. Figure credit: Jennifer 

Kolokithas. 

are incorporated along with the R region into the long terminal repeat (LTR) found in 

proviral DNA.   

1.4 Replication Cycle 

1.4.1 Binding and entry 

The outer subunit (SU, gp70) of the MuLV envelope protein is responsible for 

recognition of cellular receptors
85

 and the initiation of infection.  The viruses are 

classified into four groups originally based on the infectious host range of the MuLVs and 

later shown to correspond to the utilization of distinct cell-surface receptors
81,82,114

.  After 

SU/receptor binding, the virus enters the cell through a pH-dependent endocytic  
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pathway
92

 and fuses with the membrane, a process that is dependent on the insertion of a 

fusion peptide from the transmembrane (TM, p15
Env

) portion of the viral envelope into 

the cellular membrane
86

. Upon fusion, the virus uncoats (viral core components separate 

from outer membrane of the virion) and reverse transcription of the RNA genome 

proceeds in the cytoplasm
98,135

.  

1.4.2 Reverse transcription 

The RNA genome serves as the template for the synthesis of the DNA provirus mediated 

by the viral RNA-dependent DNA polymerase (RT). As illustrated in Figure 1.2, the RNA 

genome which contains a 5' cap and is polyadenylated at the 3' end, consists of the R, U5 

and PBS at the 5' end of the molecule, followed by the gag, pol and env genes, with the 

PPT, U3 and R on the 3' end. The steps of reverse transcription are depicted 

(Intermolecular model, Figure 1.4). First, the tRNA
pro

 binds to the PBS of the genome
84

. 

From the PBS, using the tRNA
Pro

 as a primer, RT transcribes minus (-) strand DNA in the 

3' to 5' direction ending at the R region
5,84

. The RNase H activity degrades the RNA 

portion of the RNA/DNA hybrid
71

. The newly synthesized DNA (called the minus strand 

strong stop DNA) coupled to the  tRNA primer dissociates from the 5' end of the RNA 

genome and hybridizes to the complementary 3' R region of the genome
32,33

.  Minus 

strand DNA synthesis continues to the PBS at the 5' end of the molecule while the RNase 

H activity of RT degrades the RNA genome, except for the PPT region
44,178

. RT uses the 

PPT RNA as a primer to synthesize (in the 5' to 3' direction) the plus (+) strand of DNA 

to the PBS carried by the strong stop (-) DNA, using the minus strand as a  
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Figure 1.4. Reverse transcription of the viral genome. 1). The tRNA
Pro

 binds to the 

PBS of the RNA genome ( ) and RT transcribes minus (-) strand DNA ( ) in 

the 3' to 5' direction ending at the R region. 2). RT's RNase H activity ( ) 

degrades the RNA portion of the RNA/DNA hybrid. 3). The newly synthesized DNA 

and tRNA primer dissociates from the 5' end of the RNA genome and hybridizes to the 3' 

R region of the genome.  Minus strand DNA synthesis continues to the PBS at the 5' end 

of the molecule while the 4). RNase H activity of RT degrades the RNA genome, except 

for the PPT region. 5). RT uses the PPT RNA as a primer to 6). synthesize (in the 5' to 3' 

direction) the plus (+) strand of DNA to the PBS contained within the strong stop (-) 

DNA, using the minus strand as a template. The resultant strand is called strong stop 

plus (+) strand DNA. 7). The tRNA
Pro

 primer, PPT RNA and all remaining RNA is 

removed. 8). The PBS of the (+) strand can anneal to the PBS of the minus strand and 

RT can further synthesize DNA 9). resulting in a double stranded proviral DNA genome.  
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Figure 1.5. Integration of proviral DNA. 1). The proviral cDNA becomes part of the pre-

integration complex (PIC). 2). The 3' ends of the DNA are nicked by IN to produce 3' 

hydroxyl ends. 3). The PIC is then shuttled into the nucleus, which in the case of MuLVs 

only occurs in actively dividing cells during dissolution of the nuclear membrane. 4). The IN 

produces a 4-6 bp staggered cut in the host genome which acts as a target for the proviral 

genomes free hydroxyl groups to integrate into. 5). The gaps left behind and the non-

complementary ends of the proviral genome are 6). repaired and removed, respectively. 

IN IN

-OH

-OH

-OH

-OH

-OH

-OH

-PO4
-

-PO4
-

1

2

3

4

5

6

template
178

. The resultant strand is called strong stop plus (+) strand DNA. The tRNA
Pro

 

primer, PPT RNA and all remaining RNA is removed, leaving complementary PBS single 

stranded DNA at the ends of the newly formed DNA genome 
104,195

. The PBS of the (+) 

strand anneals to the PBS of the minus strand and serves as a primer for RT to further 

synthesize DNA producing the proviral DNA genome flanked by two long terminal 

repeats (LTRs) consisting of the U3, R, and U5 regions
104,195

. 

1.4.3 Integration 

The proviral cDNA is incorporated in a nucleoprotein complex termed the pre-integration 

complex (PIC).  The PIC contains the viral proteins IN, CA and pp12
15,72

. The function of 

the CA and pp12 are unclear, however the IN plays a direct role in integration.  The  
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process of integration is depicted (Figure 1.5). At the ends of the MuLV proviral DNA are 

conserved sequences: 5'-AATG and CATT-3'
16,66

. The 3' ends of the CA are nicked by IN 

to produce 3' hydroxyl ends
16,66

. The PIC is then shuttled into the nucleus where the IN 

produces a 6 bp staggered cut in the host genome generating free phosphates which act as 

nucleophilic targets for the proviral genome‟s free hydroxyl groups
16,66

. The remaining 

gaps in the host genome are repaired and the overhanging sequences of the proviral DNA 

produced by the IN are removed
16,66

. 

1.4.4 Transcription of the provirus 

The proviral sequence from the host genome is transcribed as a cellular gene by RNA 

polymerase II and mediated by transcriptional control elements contained within the 

proviral LTR
42,76

. The 5' LTR (specifically U3)
39,40

 encodes promoter sequences (TATA 

box) that are recognized by cellular transcription factors leading to the synthesis of the 

RNA viral genome
76

, which is 5' capped and 3' polyadenylated. The start of transcription 

is the first nucleotide of the 5‟ R and the polyadenylation signal is near the end of the 3‟ 

R
76

. Some of the full-length RNA genome is spliced to produce env mRNA
57

. Both the 

spliced and unspliced mRNAs serve as templates for translation of viral proteins. 

Unspliced RNA is also transported to the plasma membrane where it is incorporated into 

budding virions.  

1.4.5 Translation and maturation 

 The full-length unspliced mRNA is translated to the gGag, Gag as well as the 

Gag-Pol polyproteins while the spliced mRNA is translated to the Env polyproteins
57

. 

The Gag polyprotein is targeted to the inner cell membrane by myristoylation of the 

amino terminus of the polyprotein.  The Env polyprotein is targeted to the cell 
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endoplasmic reticulum and ultimately to the cellular membrane through glycosylation.  

The polyproteins are further processed during virion assembly by the viral protease, 

which exists as a zymogen on the Gag-Pol precursor
21

. The protease is activated by 

dimerization of the Gag-Pol precursor and the cleavage of the protease from the Gag-Pol 

precursors occurs in trans.  The Gag polyprotein (NH2-p15-pp12-p30-p10-COOH)
8
  is 

cleaved to produce the 4 major components of the internal structure of the virion.  p15 (or 

MA) has a neutral charge and is the most hydrophobic protein of the virus
7
. It is located 

between the lipid bilayer and the core of the virion and retains the myristoyl group 

acquired before cleavage of the Gag polyprotein.  In the context of the polyprotein MA 

functions to align Gag  at the plasma membrane during maturation
157

. The only 

phosphorylated protein in the virion is the acidic pp12. It is thought to be localized to the 

core, binds with low affinity to the RNA genome and may serve some regulatory role
143

. 

The icosahedral shell of the viral core is composed of the neutral p30 (or CA)
142

 which is 

the major structural protein of the virus. Bound to the genomic RNA is the basic p10 (or 

NC), which is a major component of the ribonuclear protein complex
60

. It has very high 

affinity to the packaging signal and the DLS of the RNA genome
60

. The Pol polyprotein 

is generated by cleavage of the Gag-Pol polyprotein and consists of NH2-p14-p80-p46-

COOH. The protease (p14, PR) is responsible for cleavage of the polyproteins into their 

final, mature forms during budding from the cell
146

. Reverse transcriptase (RT, p80) is 

packaged into the core of the virion and is responsible for reverse transcription of the 

RNA genome upon infection of a target cell
8
. Integrase (IN, p46) is also incorporated in 

the core of the virion and is responsible for integrating the proviral DNA that results from 

reverse transcription of the viral RNA genome into the host DNA
72

. The Env polyprotein 
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is produced from a spliced viral mRNA and is organized as NH2-gp70-p15
Env

-COOH
6
. 

The glycosylated gp70 is the surface subunit (SU) of the envelope protein and is localized 

on the lipid membrane of the virion
93

. It is responsible for the virus's host-range and 

binding to the cellular receptor
93

. The transmembrane (TM) portion of the envelope is 

responsible for anchoring the SU to the virion by disulfide linkage and also contains a 

fusion peptide that is required for the virus to fuse to the membrane of a target cell
87

. The 

viral RNA is packaged as a dimer along with the tRNA
pro 98

. Immature virions start to bud 

from the cell while the protease is continuing to cleave the Gag polyprotein.
146

. 

1.5 Pathology and the 5 prime leader sequence 

 Many retroviruses have been discovered because of their ability to cause disease 

in animals
1,47,62,70,75,97,156

. Various strains of MuLV were discovered because of their 

pathogenicity in vivo
1,47,62,70,75,97,156

. Many studies of these MuLVs using mutational 

analyses or chimeric viruses have been aimed at determining the viral components 

responsible for pathogenesis and in vivo dissemination. Figure 1.6 lists some of the 

functions of the 5' leader sequence discerned from such studies.  Among these are studies 

of chimeric viruses between F-MuLV and M-MuLV.  F-MuLV induces early hemolytic 

anemia followed by erythroleukemia
176

 and M-MuLV causes lymphocytic leukemia
116

. 

Molecular clones between M- and F-MuLV in which the LTRs of F-MuLV and M-MuLV 

were exchanged resulted in an alteration in pathology.  M-MuLV carrying the LTR of F-

MuLV induced erythroleukemia while F-MuLV carrying the LTR of M-MuLV induced 

lymphocytic leukemia
24

. Another study revealed that the 5' U5-Gag-Pol region was 

important for viral dissemination and disease in vivo, but not for replication in vitro
174

. 

Later studies specifically mapped attenuation of disease using mutant F-MuLV 
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constructs. A mutation abrogating the expression of gGag attenuated disease in vivo but 

the mutant was still able to replicate similarly to the wild-type virus in cell culture
36

. It 

was also found that 6-7 weeks after infection the majority of the gGag mutants isolated 

had reverted back to expressing gGag, indicating that the gGag mutations were under 

strong selection in vivo
36

. CasBrE-MuLV is another ecotropic MuLV that was isolated 

from mice and has been extensively studied because it causes a severe neurodegenerative 

disease
63-65,127,150-153

. Constructs replacing the 5' leader (U5-Gag) sequence of CasBrE 

with F-MuLV (CasFrE) showed a rapid acceleration of disease
150

. The sequences 

responsible for this acceleration mapped to the N-terminus of gGag (construct  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. The 5' leader sequence of MuLV. The 5' leader sequence of MuLV has been 

linked to many functions that are essential for retroviral replication and disease induction. 

The boxes (  ) represent the span of the sequence that has been identified to have a 

certain function in the retroviral life cycle. 
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CasFrKP)
153

. A mutant that abrogated the expression of gGag (CasFr-3+4) was unable to 

induce neurodegenerative disease and showed reduced dissemination in vivo
153

. The 

mutant virus also showed revertants after infection, suggesting again a strong selective 

pressure for gGag expression
153

.  It is noteworthy that the revertants did not restore the 

original gGag but rather were second site reversions which introduced new initiation 

codons downstream of the original gGag start site.  Nonetheless, both the replicative and 

pathogenic functions of the mutant viruses were restored.  When mice were inoculated 

with revertants the viruses replicated and induced rapid disease similar to the wild-type 

virus
151

. 

1.5.1 Glycosylated Gag 

 All exogenous MuLVs encode an alternate form of the Gag polyprotein that is 

glycosylated (gGag)
54,112,154

. gGag was first recognized on AKR MuLV-induced tumor 

cells as an antigen
112

.  The glycosylated protein is translated from the same viral mRNA 

as Gag but uses a CUG start codon that is upstream of the AUG start codon for 

Gag
54,65,133

. The coding region of gGag also overlaps with those required for RNA 

packaging, ribosome binding, IRES-dependent translation and pathological determinants. 

The alternative start codon for gGag results in an additional 88 N-terminal amino acids 

on the Gag polyprotein. These additional amino acids contain a signal peptide that targets 

gGag to the rough endoplasmic reticulum for glycosylation where it is then exported to 

the cell membrane
65,147

. The proposed glycosylation sites exist in the p15 and p30 regions 

of the polyprotein. gGag has been reported to be cleaved near the end of the CA region, 

producing two products that migrate between 55kD and 45 kD on an SDS-PAGE gel. 

Some of the C-terminal cleavage product of gGag is secreted while a pool of the N-
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terminal portion adopts a type II integral membrane configuration(Ncyto, Cexo)
65,147

. Some 

gGag is incorporated into the virion, but the specific amount has yet to be determined
63

. 

The levels of Gag and gGag protein expressed in an infected cell are similar
65

. Mutant 

viruses that lack gGag are able to replicate efficiently in vitro, however, in vivo gGag 

mutants are severely limited in their ability to replicate
63,65,121

.  Reversion is strongly 

selected for in vivo suggesting an important replicative role for gGag. The role of the 

gGag protein is unknown in viral replication, though it has been suggested that it is 

required for efficient budding and release in vitro
121

.  

1.6 Restriction Factors 

 All eukaryotes carry mobile genetic elements in their genomes
177

. Retroelements 

are in the family of mobile DNA sequences that use RNA intermediates and reverse 

transcriptase to insert into a new point in the genome. In many species these elements 

make up a large amount of the total amount of genetic content (10% in humans)
177

 and  

represent insertion events into host genomes caused by retroviral infections over the 

course of evolution
177

. In some instances these mobile elements can insert themselves 

into regions of the genome that affect the control of cellular growth
177

 which obviously 

could be detrimental to the survival of the host. Exogenous retroviruses can also infect 

and insert themselves into the genome of their host, in many cases causing proliferative 

diseases
37,38,117,171,194

. Over evolutionary time, many species have evolved mechanisms to 

limit or restrict active retroviral replication
9,69

. In many cases retroviral expression is 

suppressed by methylation of promoter sequences
9,69

, however, there are also distinct 

factors that function to restrict retroviral replication.  These „restriction factors‟ operate 

on many different aspects of the retroviral life cycle ranging from viral receptor blockade 
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to viral RNA degradation
9,69

.   

1.6.1 Fv1 restriction 

 One of the first restriction factors identified was Fv1 (Friend virus susceptibility 

1) in mice
118

. It was found to control susceptibility to F-MuLV disease, but has since been 

shown to affect other MuLVs. There are two different alleles for the Fv1 gene, Fv1
b
 (in 

Balb/c mice) and Fv1
n
 (in NIH/swiss mice).  N-tropic viruses replicate efficiently Fv1

n
 

mice but inefficiently in Fv1
b
 mice.  Conversely, B-tropic viruses replicate efficiently in 

Fv1
b
 mice but not in Fv1

n
 mice.  Crosses between Fv1

n
 and Fv1

b
 mice are resistant to 

infection by N- or B-tropic viruses, while some viruses are NB-tropic and cannot be 

blocked by either Fv1 allele
148

. Viral tropism is determined by one amino acid (residue 

110) in the capsid (CA)
103

. The restriction mechanism of Fv1, which is thought to be 

related to an endogenous retroviral gag protein, is thought to involve prevention of the 

preintegration complex (PIC) from entering the nucleus, however the exact mechanism 

has yet to be fully elucidated
155

. Several human cell lines infected with N-tropic MuLVs 

encapsulated by the vesicular stomatitis virus-G envelope protein are also resistant to 

infection, but do not carry Fv1
b
. Interestingly, the viral tropism in these human cells was 

determined by the same residue in the CA (residue #110) of MuLVs. This resistance was 

initially referred to as Ref1 (Restriction Factor 1; human antiretroviral activity related to 

Fv1)
190,191

 and was observed in cells of many different species. Through cDNA 

expression library screening, the activity of Ref1 was connected to a protein, TRIM5α
184

. 

The mechanism of this restriction is currently under investigation but is thought to be 

similar to that of Fv1.  

1.6.2 Fv4 restriction 
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 After the identification of Fv1, another gene, Fv4, was found to restrict certain 

retroviruses in Japanese wild mice
91,137

. The ecotropic MuLVs (able to infect only mice) 

use the murine cationic amino acid transporter (mCAT) as their cell-surface receptor for 

infection. Mice with mCAT and Fv4, however, are resistant to infection by ecotropic 

MuLVs. Fv4 was found to be a defective envelope (env) gene of a provirus expressed at 

the cell surface
88,89

. The Fv4 gene product is able to bind directly to mCAT, preventing 

ecotropic MuLV infection by  receptor blockade
89

. 

1.6.3 HIV-1, Vif, and the discovery of APOBEC3 

 Human Immunodeficiency virus-1 (HIV-1) has also been shown to be restricted to 

certain cell types. Evidence of this first emerged with the study of an accessary protein of 

HIV-1, virion infectivity factor (Vif). Viruses lacking Vif (HIV-1 ∆Vif) were unable to 

spread in CD4
+
 T cells or macrophages as well as some transformed T-cell lines 

(nonpermissive cells). However, these same viruses were able to spread in other T-cell 

lines (SupT1 and Jurkat) and in permissive, nonhematopoietic cells (COS, HeLa, and 

293T)
180,197

. One important observation made in these experiments was that 

nonpermissive cells were able to produce HIV-1 ∆Vif virions, but progeny viruses from 

these cells were unable to replicate in any target cell line regardless of whether it was 

permissive or nonpermissive.  One possible explanation for this phenomenon was the 

existence of a host factor able to inhibit viral replication in the absence of Vif but 

abrogated when Vif was expressed.  Such a factor was eventually identified by using 

subtractive hybridization techniques with two cell lines: CEM-S (permissive) and CEM-

SS (nonpermissive).  A gene was cloned that could convert permissive into 

nonpermissive cells upon transfection and expression. This clone was CEM15
172

, which 
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was later found to be a member of the apoplipoprotein B mRNA-editing, enzyme-

catalytic, polypeptide-like  family termed human APOBEC3G (hA3G). The expression of 

hA3G correlated with the permissiveness of cell lines.  Furthermore, virions from 

nonpermissive cells infected with Vif-deficient HIV-1 were shown to incorporate hA3G 

accounting for their inability to replicate efficiently in either permissive or non-

permissive target cell lines.   

1.6.4 Human APOBEC3G 

 hA3G is a member of a family of cytidine deaminases that is restricted to certain 

tissues that exhibit both RNA and DNA editing activity
189

. Members of this family 

include activation induced deaminase (AID) and APOBEC1-4, with APOBEC3 having 

several isoforms designated A through H
35

. These enzymes catalyze the deamination of 

the C4 position of the cytidine base. APOBEC1 has  been found to regulate cholesterol 

and lipid metabolism
129

. Another family member, AID, is required for somatic 

hypermutation and class switch recombination in germinal center B cells
130

.  

 A member of the APOBEC3 family, hA3G, has been identified as an inhibitor of 

retroviral replication.  A principal mechanism by which this occurs is through cytidine 

deamination of single stranded (ss) DNA transcripts during reverse transcription. The 

inhibitory activity of hA3G is dependent on two catalytic domains (CDs). CD1 mediates 

RNA
23

 binding and incorporation into the virion and CD2 functions as the deaminase 

active site
134

.  Encapsidation of hA3G requires the nucleocapsid (NC) region of HIV-1 

Gag
186

, and as few as 7 APOBEC molecules incorporated into a HIV-1 ∆Vif virion are 

sufficient to inhibit the virus in the next round of infection
200

. The deamination-dependent 

mechanism for hA3G is depicted (Figure 1.7). In the target cell, virion-associated hA3G 
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Figure 1.7. APOBEC3 and G-to-A hypermutation activity. During assembly at the 

cellular inner membrane, APOBEC3 is incorporated into budding virions. Upon a 

subsequent infection of a target cell, APOBEC3 exerts its deaminase activity during 

reverse transcription. The newly formed transcripts are deaminated. This can lead to 

either integration of the mutated transcripts or recognition of the transcripts by cellular 

enzymes that lead to transcript degradation. Figure credit: Jennifer Kolokithas. 

introduces dC to dU mutations in the minus strand viral DNA formed during reverse 

transcription
185

. These DNA strands may be degraded by apurinic-apyrimidinic 

endonuclease or uracil DNA glycosylase
201

.  Strands that are not degraded and serve as a 

template for plus strand synthesis incorporate A residues rather than G residues at the 

deaminated positions.  Extensive G-to-A mutations render the provirus inactive.   

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, hA3G appears to inhibit viral replication through deaminase-independent 

mechanisms. One mechanism appears to operate through binding RNA via CD1, 

sterically  blocking the tRNA
Lys3

 primer binding during reverse transcription initiation
77

. 

Another mechanism has been reported to be independent of the catalytic domains and is 

mediated by binding of hA3G to the HIV integrase, further inhibiting the virus‟s ability to 

replicate
124

. The promiscuity of the deaminase activity of hA3G requires it to be 
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sequestered to the cytoplasm
199

. Cellular localization, however, is not the only 

mechanism involved in controlling hA3G‟s activity.  It associates with a high molecular 

mass (HMM) ribonucleoprotein (RNP) complex in resting CD4
+
 T cells in the thymus

29
, 

where hA3G bound to RNA is inactive
29

. In contrast, in circulating CD4
+
 T cells hA3G 

associates with a low molecular mass (LMM) RNP complex where it is active.  Mitogens 

control the switch between HMM and LMM  complexes
183

, though HMM complexes can 

be artificially changed to LMM complexes by treatment with RNase A
29

.  LMM hA3G is 

not recognized by Vif, therefore LMM hA3G can restrict entering viruses whether or not 

they encode Vif. The identification of HMM and LMM complexes was the first evidence 

that hA3G can affect HIV-1 replication without being incorporated into the virion
29

 

though the authors claiming this recently retracted their study. Unlike virion-associated 

hA3G, the antiviral activity of LMM hA3G does not involve DNA editing, but rather 

inhibits the production of reverse transcription product (Figure 1.8). Neither LMM- nor 

HMM-associated hA3G is incorporated into virions. Only newly synthesized hA3G is 

 

 

 

 

 

 

 

 

Figure 1.8. Deaminase-independent activity. APOBEC3 proteins have been found 

also to inhibit retroviral replication through deaminase-independent activity, such as 

blocking reverse transcription or integration. Figure credit: Jennifer Kolokithas. 
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Figure 1.9. APOBEC3 and 

Vif. HIV encodes an 

accessory protein known as 

Vif, which can bind to 

APOBEC3 during retroviral 

assembly and lead to its 

proteasome-dependent 

degradation. This allows the 

HIV virions to prevent 

encapsidation and continue 

to replicate. Figure credit: 

Jennifer Kolokithas. 

incorporated into virions, but is enzymatically inactive
179

 because of interactions with the 

HIV RNA genome and Gag proteins, similar to what is observed in HMM complexes
179

. 

As noted above, the binding of hA3G to the genome impairs the initiation of reverse 

transcription
179

.  Once reverse transcription begins, RNase H degradation of the RNA 

releases hA3G allowing cytidine deamination of the minus-strand DNA substrate 

produced from reverse transcription
179

.  

1.6.5 Murine APOBEC3 and Murine Leukemia viruses 

 HIV-1 encodes a gene product, Vif, which counteracts the antiviral effects of 

hA3G. Vif binds to the N-terminus of hA3G and recruits an ubiquitin ligase complex that 

marks hA3G for destruction in the proteasome
34

 (Figure 1.9). Vif has also been shown to 

impair the translation of hA3G mRNA
128

 and prevent encapsidation by binding to  

 

 

 

 

 

 

 

 

 

hA3G
141

. Similar to HIV and hA3G, MuLVs have evolved a mechanism(s) to evade the 

action of mA3 and are largely insensitive to its actions
13,18,43,100,110,145,162

, however, 

MuLVs do not encode a Vif like accessory protein. While there are 7 family members of 
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A3 in humans, mice contain only one
26

. mA3 exhibits a number of differences from 

hA3G.  The deaminase activity of mA3 resides in the CD1 while the RNA binding and 

encapsulation into the virion resides in CD2
78

. As noted above the converse is true of 

hA3G.  Unlike hA3G, two splice variants (delta-exon 2 and delta-exon 5) have been 

identified for mA3
159,164

. Different mouse strains express different amounts of each 

variant as well as the full length protein
159,164

. Different inhibitory effects of these 

variants on the in vivo replication of certain MuLVs have been reported but remain a 

subject of debate
159,164

. Recent studies have identified mA3 as Rfv3
164

; a gene involved in 

the resistance of certain mouse strains to the induction of acute erythroleukemia in adult 

mice by the Friend virus complex of the F-MuLV and a replication-defective pathogenic 

virus termed the spleen focus-forming virus (SFFV)
164

. The mechanism(s) by which mA3 

affects replication of the Friend virus complex remain unclear and warrant further 

investigation.  Deaminase-dependent and -independent mechanisms have both been 

associated with mA3, though the exact nature of these mechanisms remains 

unclear
26,27,164

.   

 It is unknown how exogenous MuLVs largely resist mA3 activity. It is of note that 

APOBEC3 family members from both humans and mice inhibit endogenous LTR 

retrotransposons/retroviruses. This includes Human Endogenous Retroviruses (HERVs), 

murine intracisternal A-particle (IAP), and MusD sequences
12,49,50

. Interestingly, one 

major difference between endogenous and exogenous (MuLVs) retroviruses in the mouse 

is the absence of an alternate initiation sequence in endogenous retroviruses for gGag. 

1.7 Significance 
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 Mice as well as other mammals contain a very large number of endogenous 

retroviruses comprising about 10% of the genome
177

.  Transcripts of these viruses are 

expressed in a very controlled fashion throughout life and likely are involved in a number 

of physiological processes
49,50

.  Endogenous retrovirus replication may lead to insertional 

mutagenesis as well as inappropriate expression of retroviral proteins, thus it is likely that 

the host has developed mechanisms to control such replication. The evolution of several 

restriction factors that act post-transcriptionally, such as the APOBECs, may reflect this 

necessity.  In contrast to replication competent exogenous MuLVs, all of which encode 

gGag, no endogenous proviruses encode this protein and are controlled in part by mA3
49-

51,90,113
. Mutant viruses that lack gGag are able to replicate efficiently in vitro but are 

severely restricted in vivo
63,65,121

. These observations are consistent with the possibility 

that gGag may serve to evade the action of mA3.  Some reports in the literature suggest a 

direct interaction of mA3 with gag encoded proteins
110,123,162,188

, however, a direct 

interaction between mA3 and gGag has not been investigated.   

Elucidation of the mechanism(s) by which MuLVs evade the action of mA3 may 

provide additional insight into the means by which mammals evade the action of 

retroviruses.  Furthermore, it is has recently been reported that exogenous MuLVs that are 

resistant to mA3, pseudotype endogenous viruses and allow their transfer to cells of other 

species
52,53,55,56

.  This may be of  particularly interest in light of recent reports indicating 

cross-species retroviral infections from mouse to humans
120,166,193

.   

 

 

 



 

24 

 

Chapter 2- Experimental rationale and pilot experiments. 

 The effects of hA3G on HIV replication have been tested by many experimental 

methods, each with unique advantages and disadvantages. Many methods to examine the 

effect of mA3 on MuLV replication have been adopted from studies with 

HIV
2,14,18,30,43,90,100,101,110,149,162,203

.  In addition, other approaches examining the effects of 

mA3 and gGag on MuLV replication have been developed.  This chapter discusses the 

rationale for the methods used in experiments presented throughout this dissertation. 

2.1 Selection and generation of cell types   

 At the onset of these studies nearly all reports dealing with the effects of mA3 on 

MuLV replication examined the effects of transfection of MuLV and mA3 expression 

vectors in the 293T human embryonic kidney stem cell line transformed with the SV40 

large T antigen
2,18,43,110,162,188,203

.  There are a number of potential difficulties with this 

approach.  First, it is unclear if protein processing in this human cell line parallels that 

observed in mouse cells
202

.  Further, because of variation in transfection efficiency, the 

expression of these vectors may vary from cell to cell and from experiment to 

experiment.  In addition, this approach is limited to examining virion-associated mA3 

rather than the effect of cellular mA3 on virus infection.  In this regard, primary bone 

marrow-derived dendritic cells from mA3 knockout (KO) mice are more susceptible to 

infection by MuLVs than their mA3-expressing wild-type (wt) counterparts
123

 .  To 

circumvent some of these difficulties stable mouse cell lines expressing mA3 were 

developed.  The lines chosen were NIH3T3 (3T3) and Mus dunni cells which do not 

constitutively express mA3 as determined by quantitative PCR (qPCR) analyses (data not 

shown).    



 

25 

 

 To generate stable cell lines expressing mA3, a pcDNA3 plasmid encoding the 

full length mA3 derived from the Balb/c mouse strain and tagged at the C-terminus with 

hemagglutinin (HA)
18

 was used to transfect the cell lines which were subsequently 

selected in geneticin (G418).  As no suitable antibody to mA3 was available, experiments 

involving immunoblotting and immunoprecipitation required the use of a tagged version 

of mA3.    

2.2 Selection of MuLVs 

 To study the affects of gGag on viral replication in mA3 expressing cells, the 

CasFrKP and CasFr-3+4 MuLVs were chosen. CasFrKP (gGag
+
) is a MuLV derived from 

the wild mouse ecotropic virus CasBrE and contains a short sequence of the F-MuLV, 

FB29, which includes the initiation site of the gGag protein
152

.  CasFr-3+4 (gGag
-
) is a 

derivative of CasFrKP in which two mutations have been introduced to disrupt the 

initiation site of gGag at the -3 and +4 positions of the Kozak consensus sequence
153

. 

These MuLVs have been studied extensively to determine the role of gGag in 

pathogenesis as well as in in vivo and in vitro replication
30,58,63-65,151,153

.  It has been 

established using gGag-specific peptide antibodies that gGag is expressed in infected 

cells and that an N-terminal cleavage product of gGag is incorporated into the virion
63

. 

2.3 In vitro infectivity assays 

 Most studies that have examined the effects of human APOBEC3G (hA3G) on 

replication have focused on the action of virion-associated hA3G upon infection of naïve 

target cells
17,20,22,23,34,77,96,100,124,126,128,132,179

.  However, the results of one study suggest 

that cellular hA3g can inhibit infection by HIV virions early after entry
29

.  It was of 

interest to study the effects of both cellular mA3 and virion-associated mA3 on MuLV 
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replication and determine if either exerted its effect in a gGag-dependent manner.  In 

order to examine the effects of cellular mA3 on viral replication, gGag
+
 or gGag

-
 viruses 

harvested from cell cultures that did not express mA3 were used to infect both cells that 

express and cells that do not express mA3.  Infectivity was quantified using either a focal 

immunofluorescence assay (FIA) or assays in which a reporter gene was expressed.  To 

analyze the effects of virion-associated mA3 on replication, gGag
+
 or gGag

-
 viruses were 

harvested from cell cultures expressing mA3.  The mA3-containing viruses were 

compared to viruses harvested from cells that did not express mA3 by their infectivity of 

Mus dunni cells.  Infectivity was quantified using either the FIA or reporter assays and 

the data was normalized by RT activity of the virions in the supernatant as well as p30 

quantification in order to deduce the specific infectivities of the viruses.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. In vitro assay system. To test the effect of cellular mA3 on MuLV 

replication, gGag
+
 or gGag- MuLVs were used to infect cells expressing or not 

expressing mA3 (Initial infection). To test the effect of virion-associated mA3 on 

MuLV replication, gGag
+
 or gGag- MuLVs produced from cells expressing or not 

expressing mA3 (Initial infection) were used to infect Mus dunni cells (subsequent 

infection). 
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2.3.1 Focal immunofluorescence assay  

 This assay
175

 exploits the display of virally encoded proteins on the surface of 

infected cells.  Using antibodies specifically reactive to the viral proteins, infected cells 

decorated with the antibody can be detected either by direct conjugation of a fluorescent 

dye to the antibody or, more commonly, by detection using a fluorescently conjugated 

second antibody directed at immunoglobulin (Ig).  Sparsely seeded cells are exposed to 

the virus and allowed to grow to confluence.  An infectious event can be quantified by 

counting focal areas of infected cells that arise either from virus spread or by replication 

of an initially infected cell.     

 

 

 

 

 

 

 

  

  

 

 

  

 

Figure 2.2. Focal immunofluorescence assay. The FIA methodology takes advantage of late 

stages in the viral replication cycle. During assembly of virions at the cell surface, infected 

cells can be detected by labeling viral specific antigens with antibodies. This can be done 

with directly conjugated antibodies specific for viral antigens or with labeled secondary 

antibodies specific to the Ig that was used to bind to the viral antigen. Inset: A focus of 

infected cells. Figure adapted from http://www.nimr.mrc.ac.uk/research/kate-bishop  by Kate 

Bishop, used with permission. 
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 Initial studies using the FIA examined the effects of cellular mA3 on infectivity of 

MuLVs and on cell-free passage of viruses on cell lines.   The effects of cellular mA3 

were performed by comparing virus titers in normal cell lines and in cell lines expressing 

mA3.  Both 3T3 cells and Mus dunni cells were examined and in both cells lines a 

significant reduction in infectivity was observed with the gGag-deficient virus in cells 

expressing mA3 (Figure 2.3).      

   

 

 

 

 

 

 

 

 

2.3.2 Passaging of viruses on mA3 cells 

 In vivo studies of CasFr-3+4 as well as other gGag-negative MuLVs revealed a 

marked selection for second site revertants that expressed gGag
121,151

. Considering that 

the initial experiments suggested that gGag facilitates replication in the presence of mA3, 

it is possible that mA3 is an important component of the in vivo selection for gGag and 

that similar revertants might be generated in the in vitro system.   If revertants were 

generated in vitro, one might expect them to persist in the mA3-expressing lines after 

Figure 2.3. Cellular mA3 and infectivity. A). 3T3 or 3T3/mA3 cells were infected 

with gGag
+
 or gGag-.  When the cells reached confluence (~4 days), infectivity was 

quantified using the FIA with mAb 667 (envelope specific) and a fluorescently 

labeled secondary antibody. B). Mus dunni or Mus dunni/mA3 cells were infected 

with gGag
+
 or gGag- MuLVs and assayed as described in A). 
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extended passage.  To examine this possibility, serial cell-free passages of the gGag
+
 and 

gGag
-
 viruses were performed on normal and on mA3-expressing cell lines.      

 

 

 

 

 

 

 

 

 

 

 

 

 The passage experiments revealed no evidence of selection for effective 

replication in mA3 expressing cells.  Indeed, in cells expressing mA3 the gGag
-
 MuLV 

was virtually undetectable by passage four. In contrast, in passage experiments using cells 

not expressing mA3, the gGag
-
 virus persisted albeit at somewhat lower levels than the 

wild-type virus.    

2.3.3 Reporter assays 

 The FIA requires amplification of the initially infected cells, either by virus 

spread or cell replication, for efficient detection of focal infections
175

. The foci of the 

gGag
-
 virus on mA3 cells were smaller and more difficult to quantify than those observed 

Figure 2.4. Cell free serial passage of gGag
+
 and gGag

-
 on mA3 -/- and mA3 +/+ 

cells.   A). 3T3 and 3T3/mA3 cells were infected with each virus. 56 hours post 

infection the supernatants were transferred onto uninfected 3T3 and 3T3/mA3 cells. 

At the time of each transfer (pass) the supernatants were also transferred to Mus 

Dunni cells and assayed for infectivity. B). Mus dunni (Dunni) Mus dunni/mA3 

(Dunni mA3) cells were infected with each virus. 56 hours post infection the 

supernatants were transferred onto uninfected Mus Dunni and Mus dunni/mA3 cells. 

At the time of each transfer (pass) the supernatants were also transferred to Mus 

dunni cells and assayed for infectivity. Each experiment was repeated twice with 

three replicates. 
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on cells devoid of mA3.   Thus the difference in the number of foci scored in the FIA may 

have been due to differences in the initial infection of the cells or, alternatively, inhibition 

of virus spread occurring subsequent to infection. Infectivities of retroviruses are 

frequently quantified using retroviral vectors encoding a gene, such as alkaline 

phosphatase or β-galactosidase, whose expression is detectable in the infected target cells 

(reporter vectors).  Reporter vectors generally include retroviral LTRs, promoters, and a 

retroviral packaging signal in addition to the reporter gene.  They resemble a viral 

genome but do not encode viral structural proteins, thus infection by virions containing a 

reporter vector does not result in a productive infection capable of spread subsequent to 

the initial infection.  Foci scored using these viruses are developed by cell division and 

reflect the number of initial infectious events.   

 There are a number of procedures to generate retroviruses that have packaged 

reporter vectors.  The viruses can be generated by co-transfection of plasmids encoding 

virus structural proteins with plasmids encoding a reporter vector.  Alternatively, cell 

lines harboring a reporter genome can be infected with a MuLV resulting in the release of 

virions which have incorporated the reporter genome as well as the wild-type viral 

genome.  Two reporter genomes were utilized in these studies: LAPSN (Clontech 

Laboratories, Inc.) which encodes alkaline phosphatase and is expressed in the cytoplasm 

of infected cells and G1nβgSVNa
92

 which encodes β-galactosidase expressed in the cell 

nucleus.  Assays using either of these vectors yielded results similar to the FIA 

experiments suggesting inhibition of infectivity by cellular mA3 in a gGag-dependent 

manner.   

 



 

31 

 

 

 

  

 

 

  

 

 

 

  

 

  

 

  

 The quantification of infectivity of different viruses in single cycle reporter assays 

can be further refined by mixing viruses with different reporter genomes together and 

using the mixture to infect cells. This allows for a comparison of two viruses in precisely 

the same infection and effectively eliminates variables inherent in assays utilizing parallel 

cell cultures.  In these experiments mixtures of gGag
+
 and gGag

-
 virus stocks carrying 

distinct retroviral reporter genes were adjusted to give equal focus forming units (FFUs) 

and used to simultaneously assess both viruses in the same infection on 3T3 cells or 

3T3/mA3 cells. The results of these experiments corroborated the earlier findings 

regarding inhibition by cellular mA3 and are described in Chapter 3.     

Figure 2.5. Reporter gene assay. The reporter gene assay allows for the detection of 

infected cells through a non productive infection. The reporter genome is transcribed and 

integrated into the host genome, but does not encode viral structural proteins, and 

therefore expresses only the reporter enzymes. In the case of the LAPSN reporter 

genome, alkaline phosphatase is expressed and activity is detected in the cytoplasm. 

G1nβgSVNa encodes β-galactosidase that is expressed in the cell nucleus. Inset: Top: A 

focus of cells infected with MuLVs harboring the LAPSN reporter genome. Bottom: A 

focus of cells infected with MuLVs harboring the G1nβgSVNa reporter genome. Figure 

adapted from http://www.nimr.mrc.ac.uk/research/kate-bishop by Kate Bishop, used 

with permission. 
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2.4 Determination of virion-specific infectivity 

 Many studies have shown that hA3g is incorporated into HIV-1 ΔVif 

virions
23,100,126,128,141,173,179,182

. Some studies have also shown that mA3 is incorporated 

into the virions of MuLVs
100,100,188,188,203,203

. Incorporated A3 proteins affect the 

infectivity of the virions on target cells irrespective of whether they express mA3 or 

not
23,100,126,128,141,173,179,182

. Inhibition of infectivity by virion-associated mA3 would be 

reflected in a decrease in the specific infectivity of the virions.  In order to measure the 

affect of virion-associated mA3 on MuLV infectivity, virions were produced from mA3 

expressing cells as well as from cells not expressing mA3 and normalized to the number 

of virion particles by the quantification of reverse transcriptase (RT) activity.  This has 

been done in other studies
100,123,192,204

 using the enzymatic activity of the virion RT.  It is 

possible, however that the presence of mA3 in the virion may affect the RT activity 

rendering it an unreliable measure of virion quantity.  For this reason, the level of the 

major structural protein, p30, was estimated through immunoblotting procedures to 

provide an independent measure.  In all of the virus stocks generated in these studies, the 

RT activity reflected the level of p30.      

 The virions used for these studies were produced from mA3 expressing cells 

transduced with the LAPSN reporter genome and subsequently infected with the gGag
+
 

or gGag
-
 virus.  Stocks collected from these cells consist of virions that have packaged 

the reporter LAPSN genome or alternatively, the MuLV genome, enabling the assay of 

released viruses by either the reporter assay or the FIA.  Released virions were assayed 

for infectivity on Mus dunni cells.  The choice of Mus dunni cells was based on their 

permissiveness to infection with high efficiency by MuLVs.   In these experiments, the 
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titers of the viruses measured by the FIA were similar to titers measured by the alkaline 

phosphatase assay and the data from the two assays were combined. These experiments, 

described in chapter 3, indicated that virion-associated mA3 affected MuLV specific 

infectivity in a gGag-dependent manner.   

2.5 Determination of in vivo replication 

 Both cellular and virion-associated mA3 were shown to restrict infectivity of 

MuLVs in a gGag-dependent manner
101

. It was unknown, however, if mA3 exerted a 

similar effect in vivo. In order to determine if there was a gGag-dependent effect of mA3 

on MuLV replication in vivo, knock-out mouse strains in which the mA3 gene had been 

inactivated (mA3
-
/
-
) and their wild-type counterparts (mA3

+
/
+
) were utilized

164
.  Two 

mouse strains were examined in these studies. The 129/Ola strain predominately 

expresses the full-length mA3
164

 similar to the isoform utilized in the in vitro studies 

while the C57BL/6 strain predominantly expresses the delta exon 5 splice variant
164

. The 

C57BL/6 strains were included in the study because of the ease with which mouse 

colonies could be maintained compared to the 129/Ola strains.   Furthermore, analyses in 

C57BL/6 mice provide an assessment of the in vivo activity of a distinct mA3 isoform.  

 The absence of an antibody specifically reactive with mA3 makes the assessment 

of in vivo levels of the protein difficult.  mRNA measurements suggest that the 

expression of the protein increases during development and that mA3 expression is 

largely tissue-specific
159,164

.  With these considerations, the assessment of MuLV 

replication was accomplished at various times after infection by measuring viremia in the 

mice.  Viremia was measured with the expectation that it would more closely reflect total 

virus production in the animal than assays of particular tissues.  Viremia data for the 
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knock out and wild-type mouse strains supporting an in vivo effect of gGag on the action 

of mA3 is presented in Chapter 3.  

2.6 Protein analysis of infected cells and virions 

To determine expression of mA3 and viral proteins in the cell and virions, 

immunoblots of proteins resolved by electrophoresis on polyacrylamide gels (PAGE) 

were utilized. The rabbit gGag-antibody was initially provided in the form of antiserum
63

. 

Use of the antiserum presented background problems in the immunoblot procedure that 

was not corrected by increased incubation times in blocking reagents or by extensive 

washing. Further, the antiserum reacted poorly with HRP conjugated anti-rabbit 

antibodies tested. In attempts to alleviate these problems, IgG from the antiserum was 

purified using protein G and the IgG fraction directly conjugated with HRP. This 

procedure coupled with the addition of 5% rabbit serum to the standard blocking buffer 

markedly reduced the background seen with the anti-gGag antiserum.  Other antibodies 

used in these studies were also directly conjugated to HRP, which significantly reduced 

background.   

Immunoprecipitation of mA3 and viral proteins from lysates of cells or virions for 

immunoblot analysis was achieved with purified, unconjugated antibodies. In order to 

eliminate non-specific absorption of proteins to the protein G Dynal beads used in the 

immunoprecipitation experiments, beads were first bound to the antibody under 

saturating conditions. The bead/antibody complexes were then incubated in the presence 

of 10% BSA to minimize non-specific protein binding.  In addition, the lysates were pre-

absorbed with unconjugated protein G Dynal beads to reduce the level of non-specific 
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binding proteins. Immunoprecipitated complexes subjected to PAGE were analyzed by 

immunoblot procedures.    

The localization of mA3 and gGag in infected cells was determined by confocal 

microscopy.  During the course of these analyses it was found that sequential incubation 

of antibodies specific for HA-mA3 (rat) and gGag (rabbit) with the cells rather than 

incubation with a mixture of the antibodies yielded far superior images.  These primary 

antibodies were then detected by fluorescent goat anti-rat or anti-rabbit antibodies.  These 

analyses are presented in chapter 4.   

2.7 Localization of virion-incorporated mA3 and gGag  

 For determination of the localization of mA3 and gGag in the virion, virions 

purified by isopycnic centrifugation
54

 on sucrose gradients were applied to a 10-30% 

sucrose step gradient, with the 10% layer containing detergent to separate the outer 

membrane of the virion from the virion core. This procedure was adapted from 

previously reported methods to differentiate membrane components from the core 

components of various retroviruses including human, avian and murine 

retroviruses
3,136,140,162

.  The level of detergent was adjusted to eliminate the outer 

envelope protein from the sedimented core.  It is important to note that these conditions 

also resulted in the loss of substantial levels of the major structural core protein, in 

agreement with previously reported studies
3,136,140,162

.  These experiments revealed the 

presence of both gGag and mA3 in the virion core and are presented in chapter 4.   

2.8 Determination of G-to-A hypermutation 

 mA3 and hA3G both exhibit cytidine deaminase activity at the level of the single 

stranded transcripts produced during reverse transcription.  This process which results in 
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G-to-A mutations is thought to be a primary mechanism for retrovirus restriction
4,12,13

.  It 

was of interest to determine if this mechanism is operative in the restriction of MuLVs 

and if it is affected by the presence of gGag. To determine the rate of G-to-A mutation in 

the presence of cellular mA3, cells expressing or not expressing mA3 were infected with 

either the gGag
+
 or gGag

-
 MuLV.  A 24 hour time point after infection was chosen to 

avoid additional replicative cycles which would complicate the mutational analyses.  

After 24 hours, total DNA was harvested from the cell and the proviral DNA was 

amplified by PCR, cloned and sequenced to detect point mutations.   A similar 

methodology was used to determine the effects of virion-associated mA3.  In these 

determinations, virions produced from cells expressing or not expressing mA3 were used 

to infect Mus dunni cells. It is known that cells have evolved mechanisms to degrade 

uracil-containing DNA
18

.  It is possible that mutated transcripts might be eliminated by 

such a mechanism, yielding an underestimate of the actual incidence of mutations.  This 

possibility was addressed by determining the mutations in transcripts produced by viruses 

isolated from cells expressing or not expressing mA3. Transcripts were produced in cell-

free RT reactions with lysed virions, amplified by PCR, cloned and sequenced.  This 

procedure eliminated any possible effect of transcript elimination by cellular machinery; 

however, the analysis was limited to the action of virion-associated mA3.  In contrast to 

many other reported studies, the viral genome, rather than an artificial 

transcript
18,99,110,145

, was used to determine the mutation rate. To make sequence analysis 

comparable among all experiments, sequences of the PCR amplicons were trimmed to 

755 bp to minimize ambiguous sequence data and to ensure uniformity.  Although steps, 

such as biological cloning of the viruses, were taken to minimize pre-existing sequence 
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heterogeneity this is difficult to achieve with retroviruses due to the unedited replication 

of RNA viral genomes, Furthermore, amplification of a limited number of proviral 

transcripts could result in multiple clones of the same transcript which would contain the 

same mutations.  The probability of a base change occurring randomly in multiple clones 

at the same position is quite small.  Therefore, only those mutations found to be unique 

were considered in these analyses.  Mutation rates were calculated as the number of 

mutations per nucleotide sequenced and are presented in chapter 4. 

2.9 Determination of transcript levels 

 While deamination seems to be the main mechanism of action used by APOBEC3 

proteins to inhibit retroviral replication, other mechanisms have been observed. In HIV 

infection, cellular hA3G was shown to inhibit replication by inhibiting the initiation of 

reverse transcription
29

.  Similarly, no deamination activity was observed following 

infection by M-MuLV, however, the small inhibition of replication associated with mA3 

was attributed to a reduction of viral transcripts in the cell
18

.  As described in chapter 4, 

there was no significant difference in cytidine deaminase activity in the presence or 

absence of mA3 or gGag.  It is possible that mA3 affects viral replication by restricting 

the level of proviral synthesis in infected cells in a gGag-dependent manner.  To examine 

this possibility viral transcript levels in cells infected by either gGag
+
 or gGag

-
 MuLVs 

were quantified at 8 and 24 hours after infection by PCR.  Primers were employed that 

would specifically amplify the infecting viral sequences rather than endogenous retroviral 

sequences present in the mouse genome.  The results of these analyses indicate a gGag-

dependent reduction in viral transcript levels in the contexts of both cellular and virion-

associated mA3, and are described in chapter 4.  
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Chapter 3- The glycosylated Gag protein of a murine leukemia virus inhibits the 

anti-retroviral function of APOBEC3 

3.1 Abstract 

APOBEC proteins have evolved in both humans and mice as innate defenses 

against retroviral infections. To counteract the effects of human APOBEC3G, HIV has 

evolved the Vif protein.  Murine leukemia viruses (MuLVs) that infect and replicate in 

mice do not encode a Vif homologue and it has not been understood how they evade 

mouse APOBEC3 (mA3). We report here a MuLV that utilizes a glycosylated form of its 

gag protein (gGag) to counteract mA3.  gGag is critical for infection of mA3-expressing 

cell lines and for the infectivity of  released viruses which have encapsulated mA3.   

Finally, a gGag-deficient virus that is restricted for replication in wild-type mice 

replicates efficiently in mA3 knockout mice implying a novel role of gGag in 

circumventing the action of mA3 in vivo. 

 

Studies described in this chapter were published in Virology: 

Kolokithas, A., K. Rosenke, F. Malik, D. Hendrick, L. Swanson, M. L. Santiago, J. 

L. Portis, K. J. Hasenkrug, and L. H. Evans. 2010. The glycosylated Gag 

protein of a murine leukemia virus inhibits the antiretroviral function of 

APOBEC3. J Virol 84:10933-10936. 

3.2 Introduction 

APOBEC3G (hA3G) in humans and its mouse ortholog, APOBEC3 (mA3), act as 

potent innate defenses against retroviral infection.  Both proteins deaminate cytidine in 

single-stranded DNA ultimately resulting in hypermutation of newly synthesized proviral 
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DNA
28,110

, although additional deaminase-independent mechanisms of inhibition have 

been identified
4
.  Infectious exogenous retroviruses, including HIV and murine leukemia 

viruses (MuLVs), have evolved mechanisms to circumvent the action of the APOBEC 

proteins
12,28

.  HIV encodes the Vif protein which facilitates the rapid proteolysis of 

hA3G, while the mechanism by which exogenous MuLVs evade the action of mA3 is 

unknown
28

.  

Exogenous MuLVs, as well as some other gamma retroviruses, encode a 

glycosylated gag protein (gGag) originating from an alternate translation start site 

upstream of the methionine start site of the gag structural polyproteins
54,112,154

.  gGag is 

synthesized at similar rates and levels as the structural gag polyprotein in MuLV infected 

cells but is glycosylated and undergoes distinct proteolytic processing
65,133

.  A carboxyl 

fragment of gGag is released from the cell while an amino fragment is incorporated into 

the plasma membrane as a type 2 transmembrane protein
65,147

.  The functions of gGag 

remain unclear, but mutations that eliminate its synthesis severely impede in vivo 

replication of the virus with little, if any, effect on replication in fibroblastic cell 

lines
36,121,153

.     APOBEC3 proteins are expressed in many tissues in vivo but are poorly 

expressed in many in vitro cell lines
28

 suggesting a possible link between gGag 

expression and the evasion of mA3 by MuLVs.  These studies were undertaken to 

determine if the expression of the gGag protein facilitated MuLV replication in the 

presence of mA3 in vitro and in vivo.  

3.3 Materials and methods 

3.3.1 Plasmids, cells and viruses.   The plasmid encoding the full length mA3 

derived from the BALB/c mouse strain was a kind gift from Dan Littman
18

. It was 
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provided in the pcDNA3 vector and was tagged at the C-termini with hemagglutinin 

(HA)
18

.  NIH3T3 (3T3) and Mus dunni cells were maintained in Dulbecco‟s modified 

Eagle medium with 10% bovine serum and penicillin/streptomycin.  Quantitative RT 

PCR assays using the forward primer (ACCTGAGCCTGGACATCTTCA), the reverse 

primer (TGCAAAGATTCTGCTGGTTTTC) and the FAM-TAMRA probe 

(TCCCGCCTCTACAACATACGGGACC)  revealed that mA3 RNA was below the level 

of detection in both 3T3 and Mus dunni cells (data not shown).  Plasmid DNA was 

transfected into 3T3 or Mus dunni cells using lipofectamine (Life Technologies) 

according to the manufacturer‟s instructions and selected in media containing 1 mg/ml 

G418.  Single colonies of cells were transferred to new dishes and tested for their ability 

to stably express the C-terminal HA-tagged mA3 construct after ten passages. 3T3 and 

Mus dunni cells stably expressing the C-Terminal HA-tagged mA3 construct (3T3/mA3 

and Mus dunni/mA3 cells, respectively) were maintained in selection media.  CasFr
KP 

(gGag
+
) is an MuLV derived from the wild mouse ecotropic virus CasBrE and contains a 

short sequence of the F-MuLV, FB29, which includes the initiation site of the gGag 

protein 
152

.  CasFr--3+4 (gGag
-
) is a derivative of CasFr

KP
 in which mutations have been 

introduced to disrupt the expression of gGag
153

.  Mice were infected by intraperitoneal 

injection with approximately 2 x 10
5
 infectious units of virus within hours of birth.   

3.3.2 Virus isolation.  Virus was harvested from 3T3/mA3 cells  infected with 

either gGag
+
 or gGag

-
 viruses and purified by isopycnic gradient centrifugation as 

previously described
54

.   Briefly, supernatants were collected from infected cells and 

cleared of cellular debris by low speed centrifugation. Cleared supernatants were 

subjected to ultracentrifugation to pellet the virions. Pellets were resuspended in buffer 
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and placed on a 20 to 60% linear sucrose gradient for further ultracentrifugation. The 

fraction of the gradient containing virions was pelleted by ultracentrifugation, 

resuspended in a storage buffer and kept at -20C until used in further experimentation. 

3.3.3 Mice. The derivation of 129P2/OlaHsd mA3
-/- 

and C57BL/6 mA3
-/-

 mice 

has been previously described
164

.  C57BL/6 and 129P2/OlaHsd mice were obtained from 

Jackson Laboratories and Harlan Laboratories, respectively.  In the interest of brevity, 

129P2/OlaHsd will be referred to as 129/Ola mice throughout this article.  Mice were 

treated in accordance with the regulations and guidelines of the Animal Care and Use 

Committee of the National Institutes of Health.  

3.3.4 Assays of viral infectivity.  The quantification of viruses in single cycle 

infectivity assays was accomplished using the retroviral vectors LAPSN (Clontech 

Laboratories, Inc.) and G1nβgSVNa
92

.  Briefly, cells were plated in 60 mm tissue culture 

dishes, the cells infected the next day with virus and allowed to grow to confluence (3-4 

days).  Foci of cells expressing alkaline phosphatase or β-galactosidase were detected as 

previously described
92

 and counted as focus-forming units (FFU).   For mixed virus 

assays, vectors pseudotyped within gGag
+
 or gGag

-
 virions were harvested from 3T3 

cells that had been transduced with LAPSN or G1nβgSVNa.   Mixtures of gGag
+
 and 

gGag
-
 virus stocks carrying distinct retroviral vectors were adjusted to give equal FFUs 

and used to simultaneously assess both viruses in the same infection on 3T3 cells or 

3T3/mA3 cells.  For assays of progeny viruses released from 3T3 cells or 3T3/mA3 cells, 

the cell lines were transduced with the LAPSN vector and subsequently infected with a 

gGag
+
 or gGag

-
 MuLV.  The levels of progeny virus were assessed on Mus dunni cells 

and were normalized for reverse transcriptase activity using a colormetric reverse 
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transcriptase kit (Roche) according to the manufacturer‟s instructions. Reverse 

transcriptase activity was expressed as the absorbance at 405nm per ml.  The infectivity 

of progeny virus released from 3T3 or 3T3/mA3 cells was also quantified using a 

monoclonal antibody (mAb) specifically reactive to the envelope protein of the viruses, 

mAb 667
127

, in focal immunofluorescence assays
175

.   

3.3.5 Immunoblotting.  After virus isolation, samples were lysed in Protein 

Extraction reagent Type 4 (Sigma) and incubated for 10 minutes at room temperature.   

For cell lysate samples, monolayers were lysed by addition of lysis buffer (0.01M 

NaH2PO4 [pH 7.6], 0.001M EDTA, 1% Triton X-100, 0.1 % SDS).  Cell lysates harvested 

from the plates were centrifuged at 13,000 x g for 10 minutes to separate the soluble and 

insoluble fractions. The soluble protein fraction was used to measure total protein 

concentration in the sample using a Bradford assay (Pierce) according to the 

manufacturer‟s protocol. Samples were normalized according to their protein 

concentrations and were adjusted to 1X Laemmli sample buffer containing 5% β-

mercaptoethanol and boiled for 10 minutes. The samples were then subjected to SDS-

PAGE (10% acrylamide, Life Technologies), followed by transfer onto PVDF 

membranes. Western Blot analysis was performed by probing with monoclonal anti-HA 

horseradish peroxidase (HRP)-conjugated antibody (Roche), polyclonal rabbit anti-gGag 

HRP-conjugated antibody or an HRP-conjugated monoclonal anti-p30 antibody (mAb 

18-7)
25

.  Membranes were stripped using 62.5 mM Tris-HCl, pH 6.8, 100 mM β-

mercaptoethanol, 2% SDS for 30 minutes at 55
o
 C on a rotary shaker. The anti-gGag 

antibody and the monoclonal anti-p30 antibody were purified using a HiTrap protein G 

HP affinity column (GE Healthcare) according to the manufacturer‟s instructions. 
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Figure 3.1.  Effect of cellular mA3 on infection by gGag
+
 or gGag

-
 MuLVs.    

3T3 and 3T3/mA3 cells were infected with mixtures of gGag
+
 and gGag

-
 viruses, each 

carrying a distinct retroviral vector encoding either alkaline phosphatase (LAPSN) or β-

galactosidase (G1nβgSvNa) and assayed by scoring FFU of cells expressing the 

respective enzymes.  The mixtures were adjusted to give equivalent titers of alkaline 

phosphatase and β-galactosidase on 3T3 cells. Statistical analysis was performed using 

the unpaired Student's
 
t test. 

Antibodies were conjugated to HRP using a Lightning-Link HRP conjugation kit (Innova 

Biosciences) according to the manufacturer‟s instructions.   

3.4 Results 

3.4.1 Efficient infection of mA3-expressing cells is dependent on gGag.  

Several reports of the effects of mA3 proteins on virus replication have examined the 

infectivity of virions released from cells transfected with cloned proviral DNA in the 

presence or absence of mA3
51,110,162

.   Such analyses do not test effects of mA3 present in 

the cytoplasm of the cells on the infectivity of MuLVs that have not been previously 

exposed to mA3.  To address this issue we developed a 3T3 cell line that expressed an 

HA-tagged mA3 protein  (3T3/mA3).  The infectivity of the gGag
+
 and gGag

-
 MuLVs 

was compared on 3T3 and 3T3/mA3 cells using mixtures of the viruses, each carrying a 

distinct retroviral vector encoding either alkaline phosphatase (LAPSN) or B-

galactosidase (G1nBgSvNa).  Utilizing mixtures of viruses with different readouts  

 

 

 

 

 

 

 

 



 

44 

 

for infectivity enabled the assessment of the effects of cellular mA3 on both viruses in 

precisely the same infection.  

Experiments were performed using both MuLV/vector combinations (i.e., 

LAPSN(gGag
+
 MuLV) plus G1nβgSvNa(gGag

-
 MuLV) or alternatively, 

G1nβgSvNa(gGag
+
 MuLV) plus LAPSN(gGag

-
 MuLV)).  These analyses indicated that 

cellular mA3 exerted a marked inhibitory effect on the infectivity of gGag
-
 virus but not 

on the gGag
+
 virus (Figure 3.1).  

3.4.2 Both gGag
+ 

and gGag
-
 MuLVs incorporate mA3 into progeny virions.  A 

number of studies have reported partial inhibition of ecotropic MuLVs as a result of 

incorporation of mA3 into progeny virions
110,123,162,188

.  Indeed, it has been suggested that 

MuLVs may evade the action of mA3 by exclusion of the protein from virions, although 

there are conflicting accounts regarding this matter
18,43,100,110,145,162

.  To determine if the 

presence of  gGag influenced the incorporation of mA3, virions were isolated from mA3 

cells infected with gGag
+
 or  gGag

-
 MuLVs and examined by immunoblot analyses.  mA3 

was readily detected in both virus preparations with no discernible differences in the 

levels of virion incorporation in  gGag
+
 or  gGag

-
 MuLVs (Figure 3. 2A).  This result is in 

agreement with other reports that have shown incorporation of mA3 into virions 

18,100,145,162
.  Furthermore, gGag was also found to be incorporated into virions (Figure 

3.2B) consistent with an earlier study
63

.   
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Figure 3.2.  Infectivity of virions released from 3T3 or 3T3/mA3 cells infected with 

gGag
+
 or gGag

-
 MuLVs.   

Virions released from 3T3/mA3 cells infected with gGag
+
 or with gGag

-
 were analyzed 

by immunoblotting for the presence of mA3 or gGag.   A). Immunoblot analysis of 

gGag
+
 virions, gGag

- 
virions and a 3T3/mA3 cellular lysate for the presence of mA3 

using a HRP-conjugated anti HA antibody.  The 3T3/mA3 cellular lysate was included 

as a comparison of mA3 in the cells to that in the virions.  The blot was also developed 

with a HRP-conjugated monoclonal antibody to p30 as a loading control. Exposure 

times for detecting mA3 were approximately 10-fold longer than for p30.   B). 

Immunoblot analysis of gGag
+
 or gGag

-
 for the presence of gGag using a HRP-

conjugated anti gGag antibody.  The blot was subsequently stripped and developed 

with an HRP-conjugated monoclonal antibody to p30 as a loading control.  Exposure 

times for detection of gGag were approximately 20-fold longer than for p30.  C). 3T3 

cells or 3T3/mA3 cells harboring the retroviral vector LAPSN were infected with 

gGag
+
 or gGag

-
 MuLVs.  Infectivity of progeny virions was assessed on uninfected M. 

dunni cells by alkaline phosphatase assays and by FIA. Infectivity titers, expressed as 

FFUs were normalized to the number of virions by assessing reverse transcriptase 

activity (RT).  RT was expressed as the absorbance per ml at 405nm.  Statistical 

analysis was performed using the unpaired Student's
 
t test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Virion-associated mA3 selectively inhibits gGag
-
 MuLV infectivity. To 

determine if virion-incorporated mA3 differentially influenced gGag
+
 and gGag

-
 MuLVs 

we examined the infectivity of viruses released from 3T3/mA3 cells as well as from 3T3 

cells lacking mA3.  Both cell lines were transduced with the retroviral vector, LAPSN, 
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which encodes alkaline phosphatase to enable the quantification of progeny virus 

infectivity in single cycle assays.  Cells were infected with gGag
+
 or gGag

-
 MuLVs and 

released viruses were quantified in assays on Mus dunni cells. Infectivity was normalized 

to the relative number of virus particles by quantifying reverse transcriptase activity.  

Considering that the reverse transcriptase activity included virions carrying the retroviral 

vector as well as virions carrying the MuLV genome, the infectivity of progeny virus 

released from 3T3 or 3T3/mA3 cells was also quantified using a monoclonal antibody 

specifically reactive to the envelope protein of the viruses in focal immunofluorescence 

assays.  The retroviral vector assays and the fluorescence assays closely paralleled one 

another and the results were combined (Figure 3.2C).  These analyses revealed that the 

infectivity of gGag
-
 virus released from 3T3/mA3 cells was markedly decreased 

compared to gGag
-
 virus released from 3T3 cells.  In contrast, no significant differences 

were observed in the infectivity of gGag
+
 virus released from 3T3/mA3 and 3T3 cells 

(Figure 3.2C).  Experiments using a Mus dunni cell line expressing the mA3 protein to 

assess the effects of cellular as well as virion-incorporated mA3 on the infectivity of 

gGag
+
 and gGag

-
 MuLVs yielded similar results (data not shown).  

3.4.4 mA3-deficient mice support the replication of gGag
+
 and gGag

-
 MuLVs.  

If mA3 restriction is a major factor influencing in vivo replication of MuLVs and its 

action is sufficiently repressed by gGag, it would be expected that mice lacking mA3 

would be permissive to infection by both gGag
+
 and gGag

-
 MuLVs.   To examine this 

possibility we determined the level of replication of gGag
+
 and gGag

-
 MuLVs in mA3 
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Figure 3.3.  Replication of gGag
+
 or gGag

-
 MuLVs in wild type and mA3 knockout 

mice.   
A). 129/Ola wild type (mA3

+/+
) or 129/Ola mA3 knockout (mA3 

-/-
) mice were inoculated 

with gGag
+
 or gGag

-
 MuLVs. Three weeks after infection the mice were sacrificed, sera 

collected and viruses quantified by a focal immunofluorescence assay on M. dunni cells. 

n=9 for gGag
+
 MuLV in mA3

+/+
 mice, n=9 for gGag

+
 MuLV in mA3

-/-
mice, n=7 for gGag

-
 

MuLV in mA3
+/+

 mice and n=14 for gGag
-
 MuLV in mA3

-/-
 mice.  Statistical analysis was 

performed using the unpaired Student's
 
t test. B). C57BL/6 wild type mice (mA3

+/+
) or 

C57BL/6 mA3 knockout mice (mA3
-/-

) were inoculated with gGag
+
 or gGag

-
 MuLVs.  

Three weeks after infection the mice were sacrificed, sera collected and viruses quantified 

by focal immunofluorescence assays on M. dunni cells.  Each point represents the level of 

viremia from an individual animal with n=6 for the gGag
+
 MuLV in mA3

+/+
 mice, n=7 for 

the gGag
+
 MuLV in mA3

-/-
 mice, n=9 for the gGag

-
 MuLV in mA3 

+/+
 mice and n=11 for 

the gGag
-
 MuLV in mA3

-/-
 mice.  Wilcoxon Signed rank test was used to differentiate 

whole number integers from zero values.  The unpaired Student‟s t test was used to 

compare non-zero results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

knockout mice (mA3
-/-

) and their wild type counterparts (mA3
+/+

). Comparisons of the 

replication of gGag
+
 and gGag

-
 MuLVs revealed a clear influence of 129/Ola mA3 on 

their replication (Figure 3.3A).   In agreement with previous studies on the replication of 

gGag-deficient mutants
36,123,153

, the replication of the gGag
-
 MuLV was severely 

restricted in normal 129/Ola mice.  However, in 129/Ola mice lacking mA3, the gGag
+
 

and gGag
-
 MuLVs replicated to equally high levels. These results indicate that the 

inability of the gGag
-
 MuLV to replicate efficiently in vivo is the result of mA3 

expression.   
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C57BL/6 mice contain the  Fv1
b
 allele

181
.  The MuLVs used in this study are N-

tropic, thus the levels of replication of the MuLVs in C57BL/6 mice were much lower 

than in the 129/Ola mice, which contain the Fv1
n
 allele (Figure 3.3B)

181
.  Nevertheless, 

replication in these mice was sufficient to observe mA3 inhibition in a gGag-dependent 

manner.  Replication of the gGag
+
 MuLV was easily detectable in both C57BL/6 mA3

+/+
 

and mA3
-/-

 mice, while replication of the gGag
-
 MuLV was below the level of detection 

in the wild-type C57BL/6 mA3
+/+

 mice.  However, in C57BL/6 mA3
-/-

 mice, the gGag
-
 

MuLV replicated to the same level as the gGag
+
 MuLV.   Thus, the inability of the gGag

-
 

MuLV to replicate in vivo in C57BL/6 mice is the result of mA3 expression, similar to 

our findings using 129/Ola mice.  It is noteworthy that C57BL/6 mice predominantly 

express a splice variant mA3 mRNA which lacks exon 5 while 129/Ola mice 

predominantly express a complete mA3 mRNA.  Assuming that the mRNAs are 

translated with equal efficiencies, our results indicate that the MuLV gGag studied here is 

able to suppress the antiviral effect of both the full-length and exon 5-deleted proteins.   

3.5 Discussion 

Nearly all exogenous MuLVs contain sequences encoding gGag which is 

synthesized from an alternate initiation site upstream of the start site of the gag 

polyprotein
48,154

.  Although studies have found gGag to be necessary for in vivo 

replication, the basis for this effect was unknown
36,121,153

.  Moreover, the means by which 

exogenous MuLVs evade the action of mA3 was unclear
28,162

.  Our results establish a 

novel role of gGag as an antagonist of mA3 thereby providing insight into both of these 

questions.   
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We observed gGag-dependent inhibition by mA3 in two distinct contexts: 

inhibition of infectivity by mA3 expressed in the cell as well as inhibition by virion-

associated mA3.  Interestingly, it was recently reported that infection by Moloney MuLV 

(M-MuLV) was partially inhibited by mA3 and that both virion and cellular mA3 

contribute to the inhibition
123

. Inhibition of infection by both virion and cellular mA3 has 

also been observed with mouse mammary tumor virus
138

.  Furthermore, HIV has also 

been reported to be inhibited by cytoplasmic hA3G
196

.   

It is somewhat surprising that cellular mA3 exerts a gGag-dependent effect on 

infecting MuLVs.  The level of gGag incorporated into virions is low compared to the 

structural proteins but clearly detectable.  Furthermore a previous study of the gGag
+
 

MuLV utilized here indicated that gGag is indeed a component of the virion
63

.  Virion-

associated gGag may directly influence the action of cellular mA3.  Alternatively, the 

susceptibility of the gGag
-
 MuLV to cellular mA3 may occur by an indirect mechanism.  

In this regard, it has been reported that gGag is involved in virion release and that gGag
-
 

M-MuLV exhibits an abnormal morphology during virion budding
121

.  It is conceivable 

that mature virions may also be altered from an mA3-resistant to an mA3-susceptible 

phenotype.    

We observed that progeny virions released from mA3 expressing cells were also 

inhibited in a gGag-dependent manner.  While the level of gGag incorporated into virions 

is low, in infected cells the rate of synthesis and the level of gGag are comparable to that 

of the unglycosylated Gag polyprotein precursor
54

.  It is possible that gGag counteracts 

the action of mA3 on progeny virions by a mechanism distinct from the effect of virion-

associated gGag on cellular mA3 discussed above.  Although both gGag
+
 and gGag

-
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MuLVs incorporate mA3 into virions at similar levels we have not determined if this 

incorporation is qualitatively the same with both MuLVs.  It is possible that the virion-

associated mA3 is altered in its location or association with virion components in the 

gGag
+
 MuLV.  Such an alteration could be influenced by an interaction of the newly 

synthesized gGag with mA3 in the cell.  The mechanism(s) by which gGag influences the 

action of mA3 awaits further investigation.   

A very recent report indicates that gGag exhibits some functional similarities  to 

the  Nef protein of HIV
149

.  Nef is an accessory protein of HIV and SIV that exhibits an 

incredibly complex range of functions that include down regulation of CD4 and MHC 

proteins
67,169

, induction of apoptosis
68

 and increasing efficiency of reverse 

transcription
168

.  Nef is incorporated into virions facilitating infectivity and in vivo 

replication
19,94,95,144

, however an influence of Nef on the action of APOBEC3 proteins has 

not been described.  It is quite possible that gGag, like Nef, has more than one function in 

the virus life cycle.    

Our analyses indicated that mA3 did not inhibit the gGag
+
 MuLV, however a 

number of studies have reported partial to marked inhibition of other  MuLVs
110,123,162,188

, 

all of which encode a gGag protein.  A direct comparison of the inhibitory effects of mA3 

on M-MuLV and the ecotropic AKV MuLV revealed that  AKV was inhibited to a greater 

extent than M-MuLV
110

.  Furthermore, inhibition of M-MuLV by mA3 was not 

accompanied by G-to-A  mutations in newly synthesized DNA
110,162

, whereas inhibition 

of AKV by mA3 exhibited extensive G-to-A mutations
110

.  Differences in the 

susceptibility of MuLVs to inhibition by mA3 could reflect differences in the efficacy of 

their respective gGags to counteract mA3.  In this regard, a comparison of the gGag 



 

51 

 

sequences of M-MuLV and AKV reveals extensive amino acid differences in their amino-

terminal fragments (data not shown).   

 A xenotropic murine leukemia–like retrovirus (XMRV) has been found in human 

prostate cancer tissue as well as in cohorts of patients diagnosed with chronic fatigue 

syndrome 
59,120,166,193

.   Recent studies have reported that mA3 inhibits the replication of 

XMRV to a much greater extent than M-MuLV
74,145

.  It is noteworthy that all XMRV 

isolates exhibit a termination codon in the coding sequences of gGag resulting in a 

truncation of the protein just before the transmembrane region
193

.  Thus, the sensitivity of 

XMRV replication to mA3 may reflect the absence of a functional gGag.    

In agreement with earlier studies, we observed a marked inhibition of in vivo 

replication of the gGag
-
 MuLV compared to the gGag

+
 MuLV.  Levels of the gGag

-
 

MuLV were restored to the high levels observed with the gGag
+
 MuLV in 129/Ola KO 

mice lacking mA3.  These results further substantiated the role of gGag as an antagonist 

of the restriction factor.  Similar results were observed with C57BL/6 mice with the level 

of replication of the gGag
-
 MuLV reaching levels observed for the gGag

+
 MuLV in mA3

-/-
 

mice.  The level of replication of the gGag
+
 MuLV in C57BL/6 mA3

+/+
 mice was low due 

to Fv1 restriction and was not significantly increased in C57BL/6 mA3
-/-

 mice.  This 

result differs from studies of M-MuLV replication in C57BL/6 mA3
-/-

 mice indicating 

enhanced MuLV replication compared to replication in  C57BL/6 mA3
+/+

 mice
123

.  In 

contrast to M-MuLV, which is moderately inhibited by mA3
110,123,162

, the gGag
+
 MuLV 

utilized in this study was not inhibited.  This difference would account for the increased 

replication of M-MuLV in the absence of mA3.   
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These studies provide at least partial answers to two difficult questions in 

retrovirology: those of the function of the gGag of MuLVs and the means by which 

MuLVs evade the action of APOBEC3. Although the gGag of exogenous MuLVs 

provides a similar function as the Vif protein of HIV, further studies are required to 

determine similarities and differences in their mode of action.  Such studies are 

particularly relevant in light of recent reports indicating cross-species retroviral infections 

from mouse to humans
120,166,193

.   
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Chapter 4-The Murine leukemia virus gGag protein facilitates reverse transcription 

in the presence of murine APOBEC3 

4.1 Abstract 

Humans and mice have evolved APOBEC proteins that act as innate defenses 

against retroviral infections. We have recently reported that a MuLV utilizes a 

glycosylated form of its Gag protein (gGag) to effectively inhibit the antiviral activity of 

murine APOBEC3 (mA3) in vitro. Our results indicated that gGag-dependent inhibition 

by mA3 occurs in two different contexts: cellular mA3, which inhibits initial infection of 

the cell by MuLVs not previously exposed to mA3; and virion-associated mA3, present in 

progeny MuLVs released from cells expressing mA3. Infection by MuLVs containing 

mA3 is inhibited irrespective of the expression of mA3 in the target cells.  The 

mechanism by which gGag is protective against mA3 is unknown. To counteract the 

human APOBEC3G (hA3g), HIV has evolved the Vif protein, which depletes hA3g from 

infected cells by facilitating its degradation through the proteosome. We report here that a 

gGag-containing MuLV does not deplete mA3 from an infected cell. Further, 

immunoprecipitation and localization experiments suggest that mA3 does not interact 

with gGag directly in an infected cell.  In contrast, both gGag and mA3 are associated 

with the virion core and are coprecipitated in the context of the mature virions. Both 

hA3g and mA3 have been reported to use deamination-dependent and -independent 

mechanisms to inhibit retroviral replication. Inhibition by mA3 on gGag-deficient virions 

correlates with a decrease in the level of transcripts upon infection of cells and appears 

largely independent of deamination activity.  
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4.2 Introduction  

APOBEC3s (hA3G in humans, mA3 in mice) are cytidine deaminases that act on 

single-stranded DNA during reverse transcription resulting in hypermutation of newly 

synthesized proviral DNA
28,110

. HIV-1 has a gene product, Vif, to counteract hA3G 

antiviral effects. Vif binds to the N-terminal of hA3G and recruits a ubiquitin ligase 

complex that marks hA3G for destruction in the proteasome
34

. Vif has also been shown to 

impair the translation of hA3G mRNA
128

 and prevent encapsulation by binding to 

hA3G
141

. MuLVs are largely insensitive
13

 to the actions of murine APOBEC3 (mA3), 

although this has recently become a point of controversy
18,43,100,110,145,162

. It appears that 

MuLVs escape mA3 activity without a Vif-like accessory protein. 

APOBEC3 family members from both humans and mice inhibit endogenous LTR 

retrotransposons and retroviruses
12,49,50

. A major difference between exogenous and most 

endogenous MuLVs in the mouse is the absence of a sequence for the expression of 

gGag. The gGag protein is translated from the same viral mRNA as Gag, but uses a CUG 

start codon that is upstream of the AUG start codon for Gag
54,65,133

 resulting in an 

additional 88 amino acids on the N-terminus of Gag. The protein is then targeted to the 

rough endoplasmic reticulum for glycosylation and is subsequently exported to the cell 

surface
65,147

 where it is cleaved in the CA domain. Some of the C-terminal portion of 

gGag is secreted whereas some of the N-terminal portion adopts a type II integral 

membrane configuration
65,147

. The amounts of Gag and gGag synthesized in infected cells 

are similar, however the amount of gGag  incorporated into the virion is low compared to 

other Gag structural proteins
65

. MuLVs require gGag for efficient replication  in vivo and 

it is a major determinant of virulence 
65

. However, gGag is not required for efficient in 
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vitro replication, as the mutant viruses that lack gGag are able to replicate in cell lines 

with similar efficiency to their wild-type counterparts
63,65,121

. In a recent report we 

observed that mA3 suppresses the replication of a gGag
-
 virus compared to a gGag

+
 virus 

both in vitro and in vivo, however the mechanism by which gGag exerts this effect is 

unclear.  The present studies were undertaken to investigate possible mechanisms by 

which gGag evade the action of mA3. 

4.3 Materials and Methods 

4.3.1 Plasmids, cells and viruses.   The maintenance of cell lines, the derivation 

of cells expressing mA3 by transfection of plasmids and the use of viruses in this study 

were as described in chapter 3.3.1. 

4.3.2 Virion core isolation.  Total virion isolation is described in chapter 3.3.2.   

For isolation of viral cores, a suspension of purified virions was sedimented through a 10-

30% sucrose step gradient in PBS containing 5% IGEPAL, in the 10% sucrose layer of 

the gradient.  The gradients were centrifuged at 30,000 rpm for 1.5 hours after which the 

pellets were resuspended in Laemmli sample buffer containing 5% β-mercaptoethanol 

and samples were incubated in a boiling water bath for 10 minutes. 

4.3.3 Immunoblotting.  Immunoblotting procedures were performed as described 

in chapter 3.3.5. 

4.3.4 Determination of cellular mA3 levels. The effect of infection on the levels 

of cellular mA3 was examined in 3T3/mA3 cells infected with either gGag
+
 or gGag

- 

MuLVs. Forty-eight hours after infection, cells were harvested and analyzed by 

immunoblot analysis. The level of mA3 was normalized by comparing its signal intensity 

to GAPDH or b-Actin signal intensity using ImageQuant software (GE).  
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4.3.5 Immunoprecipitation. Purified virions were lysed in 50 mM Tris, 80 mM 

potassium chloride, 0.75 mM EDTA and 0.5% Triton X-100, pH 7.8, and incubated for 

30 minutes at room temperature.   Confluent monolayers of cells were lysed by addition 

of Cell lytic M cell lysis reagent (Sigma).  Cell lysates harvested from the plates were 

centrifuged at 13,000 x g for 10 minutes to separate the soluble and insoluble fractions.  

The total protein concentration in the soluble fraction was determined using a BCA assay 

(Pierce) according to the manufacturer‟s protocol. Samples were normalized according to 

their protein concentrations. Protein G Dynal beads (Invitrogen) were incubated in the 

presence of monoclonal anti-HA antibody (Roche), polyclonal rabbit anti-gGag antibody 

or a monoclonal anti-p30 antibody (mAb 18-7). The bead/antibody mixtures were then 

incubated with BSA to block non-specific binding.   The blocked bead/antibody mixtures 

were added to lysates which had been pre-cleared with unconjugated protein G beads and 

incubated on a rotating platform for 1hr at 4C.  The incubated beads were washed with 

PBS five times and bound proteins were eluted by the addition of 1X Laemmli sample 

buffer containing 5% β-mercaptoethanol and incubating in a boiling water bath for 10 

minutes. The samples were then subjected to SDS-PAGE (10% acrylamide, Life 

Technologies), followed by electrophoretic transfer onto a PVDF membrane. 

4.3.6 Mutational Analyses. The effect of cellular mA3 on the mutation of viral 

transcripts was assessed in 3T3 or 3T3/mA3 cells infected with either gGag
+
 or gGag

-
 

MuLVs that had been biologically cloned by endpoint dilution using the FIA (Chapter 3).  

Cells were infected with the respective viruses and twenty-four hours after infection the 

cells were lysed and newly synthesized viral sequences amplified using the Extract and 

Amp PCR kit (Sigma) according to the manufacturer‟s instructions.  The primers used for 
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amplification were the env gene primers with CasFrKP6805 

(TTGAGAGAGTACACTAGTC) as the forward primer and CasFrKP7886RC  

(TCTGTTCCTGACCTTGATC) as the  reverse primer.  PCR products were resolved on a 

3% 3:1 NuSieve agarose gel and were purified using a Zymo gel purification kit (Zymo) 

according to manufacturer‟s instructions. Purified PCR products were cloned into the 

PCR4-TOPO vector using the TOPO TA Cloning Kit for Sequencing (Invitrogen) 

according to the manufacturer‟s instructions and sequenced using the env primers.  For 

virion mutation analysis, virions were harvested from tissue culture supernatant of 3T3 or 

mA3/3T3 cells infected with the gGag
+
 or gGag

-
 viruses. The transcripts from lysed 

purified virions were generated using the Colormetric reverse transcription kit (Roche). 

Reaction conditions were followed according to the manufacturer's instructions; however, 

random hexamers and unlabeled nucleotides were used in place of the primers and 

nucleotides provided with the kit.   Transcripts generated in this reaction originated from 

the virion RT with the virion genome as the template.    The transcripts were amplified, 

purified, cloned and sequenced as described above. The influence of virion-associated 

mA3 on the mutation of viral transcripts was assessed after infection of naive Mus dunni 

cells with gGag
+
 or gGag

-
 viruses harvested from 3T3 or 3T3/mA3 cells.   Twenty-four 

hours after infection the Mus dunni cells were lysed and viral sequences amplified, 

purified, cloned and sequenced as described.   

Groups of sequences generated in these analyses were compiled and compared in 

the DNAstar Lasergene program, SeqMan. All sequences were trimmed from either end 

to minimize ambiguity and to yield a 755 bp sequence for uniform comparisons.   

Redundant mutations occurring at the same position in two or more clones likely 
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originated from pre-existing heterogeneity in the virus stock or by amplification of the 

same proviral transcript (see chapter 2).  Therefore, coincident mutations were eliminated 

from the analysis.  Mutation rates for each type of point mutation (e.g., G-to-A 

transitions) were calculated as the frequency per nucleotide of that change in each 

sequenced clone.  The mutation rates for each type of mutation for each clone were 

averaged to give the mean mutation rate as well as the standard error for that specific type 

of mutation.  The overall mutation rate per clone was calculated as the frequency per 

nucleotide of all mutations in each clone.  The overall mutation rate for the data set was 

calculated by averaging the rate for each clone to give the mean overall mutation rate and 

the standard error.   

4.3.7 Accumulation of proviral transcripts in infected cells.  To determine the 

effect of cellular mA3 on reverse transcription, 3T3 and 3T3/mA3 cells were infected 

with gGag
+
 and gGag

-
 viruses.  Cellular DNA was isolated at eight and twenty-four hours 

post-infection using the AquaGenomic DNA isolation kit (Aquaplasmid) according to the 

manufacturer‟s instructions.  Levels of viral- specific DNA were then determined by 

semi-quantitative PCR using primers specific for the viral env gene (CasFrKP6805 and 

CasFrKP7886RC). PCR products of the gapdh gene were amplified using Gapdh-152f 

AACGACCCCTTCATTGAC (forward) and Gapdh-342r TCCACGACATACTCAGCAC 

(reverse) and used as internal controls. Evaluation of the influence of virion-associated 

mA3 on the level of transcripts in infected cells was assessed by infection of naïve Mus 

dunni cells with gGag
+
 and gGag

-
 viruses harvested from 3T3 or 3T3/mA3 cells.  DNA 

from infected cells was isolated and evaluated for viral transcript levels as described 

above.  In these experiments Mus dunni cells were infected with virus stocks normalized 
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using the major structural virion protein, p30.  A standard dilution curve was generated 

using amplification of a plasmid containing the sequence of the gGag
+
 MuLV with the 

env gene primers. The standard dilution curve was used to quantify transcript levels by 

densitometry using the AlphaView software program (Cell Biosciences).  

4.3.8 Localization of gGag and mA3 in infected cells. 3T3 or 3T3/mA3 were 

seeded on cover slips and infected with gGag
+
, gGag

-
 MuLVs, or mock-infected. Samples 

were collected at 6, 12, 24, and 48 hours post infection.  Cells were fixed for 15 minutes 

in 3.7% formaldehyde, washed in PBS, and permeabilized in 0.5% Triton X-100 for 15 

minutes. Samples were blocked with 10% BSA in PBS for 30 minutes, followed by 

incubation for 30 minutes with monoclonal rat anti-HA (1:100) and a 30 minute 

incubation with polyclonal rabbit anti-glycosylated gag (1:250) in 3% BSA in PBS. 

Samples were then washed in PBS and incubated with DylightFluor (Jackson 

Laboratories) 488-conjugated goat anti-rat IgG (1:250) and DylightFluor (Jackson 

Laboratories) 594-conjugated goat anti-rabbit IgG (1:250) with Hoechst 33342 

(1:100,000) as a nuclear counterstain. Samples were washed in PBS followed by rinsing 

in ddH2O. Processed coverslips were mounted onto slides with Mowiol (Polysciences) 

and fluorescence images were collected via sequential scanning on a Zeiss 510 Meta 

scanning laser confocal microscope. 
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4.4 Results 

4.4.1 mA3 is not depleted from infected mA3 cells in a gGag-dependent manner  

 In a previous report we observed that mA3 inhibited the replication of a gGag
-
 

virus but not a gGag
+
 virus

101
. The Vif protein of HIV blocks the action of hA3G by 

inducing its rapid proteolytic degradation through ubiquitination and transport to the 

proteosome
34

.  It was therefore of interest to determine if MuLVs utilize a similar 

mechanism to counteract the antiviral activity of mA3.  3T3/mA3 cells were infected 

with either gGag
+
 or gGag

-
 MuLVs. Forty-eight hours after infection, cells were 

harvested and mA3 levels evaluated by immunoblot analysis. The levels of mA3 were 

quantified by comparing signal intensities of mA3 to GAPDH or β-Actin signal 

intensities using ImageQuant software (GE).  

 

 

 

 

 

 

A reduction in the level of mA3 was not observed in gGag
+
 MuLV infected 3T3/mA3 

cells compared to cells infected with the gGag
-
 virus or mock infected cells (Figure 4.1), 

indicating that mA3 is not depleted from infected cells in a gGag-dependent manner.  

4.4.2 Interactions between gGag and mA3 are not detected in infected cells  

 The MuLV gGag protein is synthesized to levels equivalent to the structural Gag 

proteins in infected cells
54

 and may serve to bind and deactivate mA3.  To determine if 

there are binding interactions between mA3 and gGag in infected cells, 3T3/mA3 cells 

Figure 4.1. Determination of depletion in 

infected 3T3/mA3 cells. 3T3/mA3 cells were 

infected with either gGag
+
 or gGag

-
. Forty-

eight hours after infection, cells were harvested 

and analyzed via immunoblot analysis. The 

amount of depletion was quantified by 

comparing signal intensity to β-Actin signal 

intensity using ImageQuant software (GE).  
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Figure 4.2. Immunoprecipitation of infected 

3T3/mA3 cells.  Infected 3T3/mA3 cell lysates 

were immunoprecipitated with a monoclonal 

anti-HA antibody or the polyclonal rabbit anti-

glycosylated gag antibody. Immunoprecipitated 

samples were eluted by addition of running 

buffer and boiling for 10 minutes. The samples 

were then subjected to SDS-PAGE followed by 

transfer onto PVDF membranes. Membranes 

were analyzed by immunoblot technique. 

were infected with either gGag
+
 or gGag

-
 MuLVs or mock-infected. Forty-eight hours 

after infection, cells were lysed and immunoprecipitated with anti-HA or anti-gGag 

antibodies. Immunoprecipitated complexes were analyzed by immunoblot analysis. Both 

of the antibodies precipitated their respective proteins, however, coprecipitation of mA3 

and gGag was not observed with either antibody in lysates of infected 3T3/mA3 cells 

(Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3 Localization of mA3 and gGag in infected cells  

 It is possible the reaction conditions used in the immunoprecipitation reactions 

may disrupt weak interactions or that interactions between the mA3 and gGag proteins 

are transient.   Human APOBEC3G has been suggested to associate with lipid rafts in 

cells
116

.  An association of mA3 with lipid rafts has not been demonstrated, however 
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Figure 4.3. Localization of mA3 and gGag in an infected cell. 3T3/mA3 infected with the 

gGag
+
 MuLV. At 6, 12, 24, and 48 hours post infection cells were processed for 

colocalization analysis with monoclonal rat anti-HA and DylightFluor 488 conjugated Goat 

anti-rat IgG (green) or polyclonal rabbit anti-glycosylated gag IgG and DylightFluor 594 

conjugated Goat anti-rabbit IgG (red) with Hoechst 33342 (blue) A). 3T3/mA3 cells infected 

with the gGag
+
 MuLV, processed for colocalization analysis 6, 12, 24 and 48 hours post 

infection (40 X). B). 3T3/mA3 infected with the gGag
+
 MuLV, processed for colocalization 

analysis 48 post infection (100X). 

gGag has been reported to associate with lipid rafts during the process of virus budding 

from the cell 
96,123

 . It was of interest to determine where mA3 and gGag localize in an  
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infected cell and determine if there is colocalization of the two proteins at different times 

after infection. 3T3 or 3T3/mA3 cells were grown on cover slips and infected with 

gGag
+
, gGag

-
 MuLVs or mock-infected. At different times after infection samples were 

processed for localization analysis. In agreement with other reports, mA3 was localized 

predominantly in the cytoplasm whereas gGag occupied a perinuclear location suggesting 

processing in the endoplasmic reticulum (Figure 4.3B).  At no time after infection did 

gGag appear to be colocalized with mA3 in gGag
+
 MuLV-infected cells (Figure 4.3A). 

Taken together with the immunoprecipitation studies, these findings suggest that gGag 

and mA3 do not directly interact in an infected cell.   

4.4.4 Localization of gGag and mA3 in virions 

 In an earlier report, both mA3 and gGag were identified as virion components in 

gGag
+
 virions released from mA3-expressing cells

101
.  Differences in localization or 

association in the virion with gGag may have an influence on how virion-associated mA3 

exerts its activity in an infection. It is unknown where gGag exists in the virion and the 

location of mA3 in the virion is unclear, though one report suggested that some mA3 

exists in the viral core
162

. If gGag is a type II transmembrane protein as reported
65,147

, it 

might be expected to be located on the surface of the virion as a component of the 

envelope and thus be unavailable to interact with mA3.  To determine the localization of 

gGag and mA3 in the virion, 3T3/mA3 cells were infected with gGag
+
 viruses.  Purified 

virion samples were pelleted through a 10-30% sucrose step gradient in which the 10% 

sucrose layer contained the non-ionic detergent, IGEPAL. Non-ionic detergents such as 

IGEPAL or NP-40 have been used in similar gradients in several reports to separate viral 

cores from the membrane bound virion components
3,136,140,162

.Virion pellets were 
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Figure 4.4. Isolation of viral cores from 

virions produced in mA3 cells. gGag
+
 or 

gGag
-
 MuLVs from mA3/3T3 cells were 

purified and sedimented through a 10-30% 

sucrose step gradient in PBS with IGEPAL in 

the 10% layer of the sucrose gradient at a 

concentration of 5%. Resulting pellets were 

analyzed by immunoblot technique with 

monoclonal anti-HA HRP-conjugated 

antibody,  polyclonal rabbit anti-gGag HRP-

conjugated antibody, polyclonal goat anti-gp-

70 antibody or an HRP-conjugated 

monoclonal anti-capsid (p30) antibody (mAb 

18-7).   

analyzed via immunoblot techniques. Under conditions in which the virion membrane 

envelope protein gp70 (SU) is completely stripped from the virion, both mA3 and gGag 

proteins persist in the sedimented material suggesting that both proteins are components 

of the viral core.  Thus, their virion localization does not preclude an interaction between 

them (Figure 4.4).  It is noteworthy that conditions that result in the loss of the SU protein 

from virions also results in the loss of substantial levels of the major virion core protein, 

p30 (CA) and may reflect a similar loss of mA3 and gGag from the virion core during 

their fractionation
162

.   

 

 

 

 

 

  

 

 

 

 

 

4.4.5 Interactions between gGag and mA3 in virions   

 In our earlier studies, we observed that virions that have incorporated mA3 

exhibit a lower infectivity and that this inhibition is gGag-dependent
101

. The finding that 

both mA3 and gGag exist in the virion core suggests the possibility of an interaction 
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between mA3 and gGag in the virion that was not observed in the cell.  Virions were 

collected from mA3 cells infected with gGag
+
 or gGag

-
 MuLVs 48 hours post infection. 

The virions were lysed and immunoprecipitated with anti-HA or anti-gGag conjugated to 

protein G magnetic beads. The immunoprecipitated samples were analyzed by 

immunoblotting procedures.  An antibody to mA3 was able to precipitate mA3 but did 

not result in the coprecipitation of gGag (Figure 4.5).  There are a number of possible 

explanations for the inability to demonstrate an interaction between mA3 and gGag using 

the mA3 antibody.  These include stoichiometric differences, stearic hindrance, or 

differences in antibody affinities.  In contrast, the reciprocal experiments clearly 

demonstrated that the mA3 protein was precipitated by antibodies to gGag in virions 

containing gGag but not from gGag
-
 virions indicating an interaction between mA3 and 

gGag in the virion (Figure 4.5).   

 

 

 

 

 

 

 

 

  

 

 

Figure 4.5. Immunoprecipitation of mA3 

containing virions. gGag
+
 or gGag

-
 MuLVs 

from mA3/3T3 cells were purified and 

immunoprecipitated with Protein G beads 

conjugated with monoclonal anti-HA antibody 

or the polyclonal rabbit anti-glycosylated gag 

antibody  Resulting complexes were analyzed 

by immunoblot technique with monoclonal 

anti-HA HRP-conjugated antibody or the  

polyclonal rabbit anti-gGag HRP-conjugated 

antibody. 
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4.4.6 The cellular mA3 protein does not induce G-to-A hypermutation in viral 

transcripts  

 mA3 has been reported to induce hypermutation in the reverse transcripts of 

several retroviruses including the XMRV and AKV MuLVs as well as HIV resulting in a 

reduction of infectivity
14,74,110

. Our previous report revealed that both cellular and virion-

associated mA3 inhibited the gGag
-
 MuLV but not the gGag

+
 MuLV

101
. It is possible that 

this inhibition was the result of deamination mediated by mA3.  To investigate this 

possibility, viral transcripts from 3T3/mA3 cells infected with gGag
+ 

or gGag
-
 viruses 

were amplified by PCR, cloned and sequenced to determine point mutations incurred 

during infection. Parallel experiments were performed in 3T3 cells devoid of mA3.   

DNA was isolated early (24 hours) after infection to limit the analyses to transcripts that 

had undergone a single replication cycle. No evidence of G-to-A hypermutation was 

observed, nor was there a significant difference in the G-to-A mutation rate between 

transcripts generated in gGag
+
 or gGag

- 
MuLV-infected cells.  Surprisingly, a 

significantly higher overall point mutation rate was observed in transcripts from 

3T3/mA3 cells infected with the gGag
-
 virus compared to 3T3/mA3 cells infected with 

the gGag
+
 MuLV while a significant difference in overall mutation rate was not observed 

in 3T3 cells (Figure 4.6).  Examination of the mutation rates for all possible base changes 

did not suggest the prevalence of a particular type of mutation contributing to the overall 

mutation rate difference (data not shown).   These results suggest that mA3 may exert an 

influence on reverse transcription independent of cytidine deaminase activity. 
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Figure 4.6. The mutation rates of samples exposed to cellular mA3. For analysis of 

cellular mA3s activity, 3T3 or 3T3/mA3 cells were infected either gGag
+
 or gGag

-
. 

Twenty-four hours after infection cells were lysed and viral sequences amplified by 

PCR, cloned and sequenced. The mutation rates for each clone were averaged to give the 

mean mutation rate as well as the standard error. gGag
+
 NIH3T3/mA3=81 clones, gGag

-
 

NIH3T3/mA3=42 clones, gGag
+
 NIH3T3=63 clones, gGag

-
 NIH3T3=78 clones. 

 

 

 

 

 

 

 

4.4.7 Mutation rates in transcripts generated by cell-free virions 

 Uracil-containing DNA is rapidly degraded in cells by apurinic/apyrimidinic 

endonuclease (APE)
13,105,185

.  The cytidine deaminase activity of mA3 results in a 

conversion of cytidine to uracil in the single-stranded transcripts generated by RT and it 

is possible that such transcripts are rapidly eliminated.  If this were to occur it would bias 

the analyses of the mutation rate in infected cells and hypermutation would be apparent in 

a reaction without cellular factors.  To determine if cellular factors mask the true 

deamination rate, cell-free virions produced from mA3 cells infected with gGag
+
 or 

gGag
-
 MuLVs were isolated and employed in endogenous RT reactions to generate 

transcripts in the absence of cellular factors.   The determination of the G-to-A and 

overall mutation rates in the endogenous reverse transcription reactions did not reveal 

evidence of hypermutation nor were significant differences in mutation rates observed 

between the samples (Figure 4.7). Taken together, these mutational analyses suggest that 

cytidine deamination is not the main mechanism used by mA3 to inhibit MuLVs in a 

gGag-dependent manner. 
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Figure 4.7. The mutation rates of samples in the endogenous viral reactions. For 

analysis of mA3s activity in a cell free environment, 3T3 or 3T3/mA3 cells were 

infected either gGag
+
 or gGag

-
. Virions were collected and used in cell-free 

endogenous RT reactions. Viral sequences amplified by PCR, cloned and sequenced. 

The mutation rates for each clone were averaged to give the mean mutation rate as well 

as the standard error. gGag
+
 purified from NIH3T3/mA3=152 clones, gGag

-
 purified 

from NIH3T3/mA3=169 clones, gGag
+
 purified from NIH3T3=164 clones, gGag

-
 

purified from NIH3T3=156 clones. 

 

 

 

 

 

 

 

 

4.4.8 Mutation rates in transcripts induced by virion-associated mA3 in infected 

cells 

 It has been reported that cellular hA3g reduces the level of accumulated reverse 

transcripts in infected cells but does not induce G-to-A hypermutation
29

.  In contrast, 

virion-associated hA3g induces G-to-A hypermutation upon infection
26,27

.  To determine 

if virion-associated mA3 exerted a similar affect, naïve Mus dunni cells were infected 

with viruses released from 3T3 or 3T3/mA3 cells.  Twenty-four hours post infection viral 

transcripts were analyzed for point mutations as described above.  No evidence of 

hypermutation was apparent nor were significant differences observed in the G-to-A 

mutation rate or in the overall mutation rates between the samples (Figure 4.8).  It is 

noted that the experiments determining the mutation rates of virion-associated mA3 are 

complicated by the procedures employed to generate the viruses.  Progeny viruses were 

obtained after infection of 3T3 cells or 3T3/mA3 and incurred point mutations during this 

process.  Although precise determinations of mutation rate are compromised by this 

process, hypermutation as a result of virion-associated mA3 would be apparent.   
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Figure 4.8. The mutation rates of samples exposed to virion-associated mA3. For 

analysis of virion-associated mA3s activity, 3T3 or 3T3/mA3 cells were infected either 

gGag
+
 or gGag

-
. Virions were collected and used infect Mus Dunni cells. Cells were 

lysed and viral sequences amplified by PCR, cloned and sequenced. The mutation rates 

for each clone were averaged to give the mean mutation rate as well as the standard 

error. gGag
+
 from NIH3T3/mA3=87 clones, . gGag

-
 from NIH3T3/mA3=67 clones, 

gGag
+
 from NIH3T3=84 clones, . gGag

-
 from NIH3T3=21 clones 

 

 

 

 

 

 

 

 

 

 

4.4.9 Cellular mA3 reduces viral transcript accumulation in a gGag-dependent 

manner 

 APOBEC3 proteins have been reported to utilize hypermutation-independent 

mechanisms to inhibit retroviral replication 
4,29,79,100

. In this regard, a partial inhibition of 

M-MuLV by mA3 was reportedly associated with a reduction in the total amount of viral 

DNA accumulated in the cell
18

.  In our experiments cellular mA3 was shown to inhibit 

viral replication in a gGag-dependent fashion
101

.  It is possible that mA3 exerts an 

inhibitory effect on reverse transcription resulting in reduced levels of viral transcripts in 

infected cells. To determine if gGag influences the accumulation of viral DNA in infected 

cells, 3T3 or 3T3/mA3 cells were infected by gGag
+
 or gGag

-
 MuLVs and the level of 

accumulated transcripts determined.  At 24 hours after infection, PCR amplification of 

viral DNA revealed a striking reduction in the transcript levels in 3T3/mA3 cells infected 
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Figure 4.9. Quantification of viral transcripts in infected cells expressing mA3. 
gGag

+
 and gGag

-
 viruses were used to infect 3T3 and mA3 cells. Eight (B) and twenty-

four (A) hours after infection cells were lysed and viral sequences amplified by PCR. 

GAPDH PCR products were used as loading controls and samples were quantitated using 

a standard curve.  

with the gGag
-
 virus compared to levels found in 3T3 cells (Figure 4.9B).  In contrast, no 

significant reduction in transcript levels between the two cell lines was observed after 

infection by the gGag
+
 virus.    These results suggest a function of cellular mA3 that is 

inhibited by the presence of gGag that correlates with the reduction of infectivity.   

 

 

 

 

 

 

 

 

 At 24 hours after infection it is expected that most viral DNA in the cell exists as 

integrated proviruses in the host genome.  Thus, the reduction in viral DNA at this time 

could reflect processes that occurred after reverse transcription rather than an effect of 

mA3 on reverse transcription itself.  To examine this possibility, viral transcript levels 

were determined 8 hours after infection.  At this time, very little, if any, viral DNA would 

be in the form of integrated proviruses and would more closely reflect immediate 

products of reverse transcription.  These analyses also revealed a significant decrease in 

the level of transcripts in 3T3/mA3 cells compared to 3T3 cells when infected with the 

gGag
-
 MuLV (Figure 4.9A).  A similar difference in the level of transcripts in these cells 

was not observed upon infection with the gGag
+
 virus.   These results suggest that the 



 

71 

 

reduction in viral transcripts in cells infected by the gGag
-
 virus in the presence of 

cellular mA3 is the result of an effect of mA3 on reverse transcription rather than a 

subsequent process during infection.  

4.4.10 Viral transcript levels in cells infected by viruses containing mA3   

Our previous studies indicated that virion-incorporated mA3 is also inhibitory to 

infection in a gGag-dependent manner
101

.  In these studies a substantial reduction in the 

infectivity of individual virions (specific infectivity) was observed.  The experiments 

above suggest that the reduction in transcripts of gGag
-
 viruses in the presence of cellular 

mA3 occurs at the level of reverse transcription rather than at a later stage of infection.  If 

the inhibition of specific infectivity is due to inhibition of reverse transcription occurring 

at a post-entry stage of infection, then infection of naïve cells by an equal number of 

gGag
+
 or gGag

- 
MuLVs containing mA3 would be expected to result in a reduction of 

transcripts of the gGag
-
 compared to the gGag

+
 virus.  Alternatively, it is possible that the 

mechanism of inhibition by cellular mA3 differs from that of virion-associated mA3 and 

might involve post-transcriptional events.  These analyses were undertaken to determine 

if the decrease in specific infectivity of mA3-containing gGag
-
 virions observed in earlier 

experiments (Chapter 3) was a result of  events occurring early in infection, before or 

during reverse transcription or, alternatively, at a later stage of infection subsequent to 

reverse transcription.  To examine this possibility naïve Mus dunni cells were infected 

with gGag
+
 and gGag

-
 MuLVs harvested from 3T3 or 3T3/mA3 cells and normalized to 

equal levels of virions.  Amplification of viral DNA 24 hours after infection revealed that 

viral transcripts were virtually undetectable in cells infected with gGag
-
 MuLVs 



 

72 

 

Figure 4.10. Quantification of viral transcripts in cells infected by virions containing 

mA3. gGag
+
 and gGag

-
 viruses (amount normalized with p30 quantification) from 3T3 or 

mA3 cells were used to infect Mus Dunni cells. Cells were lysed after 24 hours and viral 

sequences amplified by PCR. GAPDH PCR products were used as loading controls and 

samples were quantitated using a standard curve.  

containing mA3 (Figure 4.10).  These results are consistent with a process of mA3 

inhibition of reverse transcription which is circumvented by gGag.   

 

 

 

 

 

 

 

 

 

 

4.5 Discussion 

 In this chapter we investigated the mechanisms of the MuLV gGag-dependent 

escape from mA3 antiviral activity. We found in our experiments that mA3 was not 

depleted from infected cells. This differs from the way HIV uses its Vif protein to 

facilitate the proteolytic degradation of hA3g in infected cells
34

. Further suggesting the 

absence of a direct interaction in an infected cell, neither coimmunoprecipitation nor 

colocalization between mA3 and gGag was observed. Thus, an indirect interaction 

between mA3 and gGag in an infected cell is hypothesized to be responsible for the 

gGag-dependent inhibition of replication seen in mA3 cells.  

 Our analysis of the localization of gGag in the virion revealed that gGag is 

localized within the core along with mA3. This was a surprising result as gGag is 
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described as a transmembrane protein in an infected cell and would be expected to be 

localized with the envelope
65,147

. Nonetheless, this colocalization in the virion between 

gGag and mA3 could facilitate the abrogation of mA3 inhibitory activity.   

Coprecipitation experiments revealed that gGag and mA3 do interact in mature virions. 

The importance of this localization and interaction of mA3 and gGag in the virion is 

unknown, but may further signify a protective role for gGag from mA3 activity.  Further 

experimentation will be necessary to delineate the importance of interactions of mA3 and 

gGag in the virion.    

 Previous studies of the action of APOBEC3 proteins on retroviral replication have 

predominantly examined the activity of virion-associated hA3G or 

mA3
17,20,22,23,34,77,96,100,124,126,128,132,179

.  Our approach enabled the analysis of the action of 

mA3 expressed in the cell, which perhaps more closely reflects a natural retroviral 

infection.  In our initial studies, cellular mA3 exerted a marked inhibition of virus 

infection in a gGag-dependent manner
101

.  This result was somewhat unexpected 

considering that the incorporation of gGag in virions is thought to be quite low
63

.  Here, 

the analyses of G-to-A mutation rates of viral transcripts in mA3-expressing cells were 

not significantly different between cells infected by the gGag
+ 

or gGag
-
 viruses.  

However, a significant increase in the overall mutation rate was observed after infection 

by the gGag
-
 MuLV.  Further, the level of viral transcripts in mA3-expressing cells was 

strikingly reduced when infected with the gGag
-
 virus.  These results are consistent with 

our results of the effect of cellular mA3 on infectivity.    

 Our studies have revealed that that virion-associated mA3 reduced the specific 

infectivity of virions in a gGag-dependent manner
63

 which was reflected in levels of viral 
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transcripts in infected cells. This observation is not without precedent, as another report 

indicated that mA3 may also possess deaminase-independent  activity
18

. While a high 

number of G-to-A mutations was not seen in M-MuLV, the transcript levels were reduced 

in an amount comparable to the reduction in infectivity
18

. This suggests that the gGag of 

M-MuLV may not completely block the action of mA3.  It is noted that analyses of other 

MuLV sequences reveal extensive differences in their gGags including deletions and 

amino acid substitutions (data not shown).   In this regard, XMRV exhibits termination 

codons in the sequence encoding gGag and has been reported to be susceptible to the 

action of mA3. 

 Inhibition of MuLVs by cellular or virion-associated mA3 occurs in a gGag-

dependent manner. The precise mechanism by which virion gGag abrogates the action of 

mA3 is unclear.  Considering the high infectivity to particle ratios reported for many 

retroviruses
165

, it is possible that a large number of “non-infectious” virions may 

nonetheless enter the cell and provide a sufficient amount of gGag protein to effect 

inhibition of cellular mA3.  Alternatively gGag present in the virion could protect the 

virus from inactivation by mA3.  Such an effect could be operative to protect against both 

cellular and virion-associated mA3.   Our results strongly suggest that the mechanism of 

inhibition by mA3 involves an effect on reverse transcription of the viral genome and is 

largely independent of G-to-A mutation. It is possible that gGag exerts a stabilizing effect 

during reverse transcription or perhaps in the integrity of other virion components.  It is 

also possible that gGag acts in a stearic manner preventing an interaction of mA3 with 

the RT or viral RNA.  In the absence of gGag, there is an increase in the overall point 

mutation rate and a reduction of the level of transcripts in infected cells in the presence of 
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mA3. These two effects may be linked, thereby causing both a decrease in transcription 

efficiency as well as a decrease in RT fidelity.  Further studies will help elucidate the 

protective effect of gGag against mA3 activity.  
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CHAPTER 5: Summary 

5.1 Discussion 

HIV evades the action of hA3G through expression of an accessory protein, Vif, 

however the means by which exogenous MuLVs evade the action of mA3 was 

unclear
28,162

. We have shown that gGag acts as an antagonist of cellular and virion-

associated mA3 in vitro and have found gGag to be essential for in vivo replication in 

mA3 expressing mice. The mechanistic basis for these observations is largely 

independent of G-to-A mutation but is associated with a reduction of reverse transcripts 

in infected cells. 

 Inhibition of infectivity by mA3 was observed in two distinct contexts in our in 

vitro system: during the initial infection in which viruses devoid of mA3 infect cells 

expressing mA3 (cellular mA3); and during the subsequent infection in which viruses 

containing mA3 (virion-associated mA3) infect naïve cells not expressing mA3.  

Inhibition by cellular mA3 is not without precedent. It has been reported that M-MuLV
123

 

and mouse mammary tumor virus
138

 are partially inhibited by cellular mA3. HIV has also 

been reported to be inhibited by cytoplasmic hA3g
196

.  Nevertheless, it was unexpected 

that cellular mA3 exerted a gGag-dependent effect on MuLV infectivity in the absence of 

virion-associated mA3 considering that the level of gGag incorporated into the virion is 

low compared to that which is expressed in an infected cell
54,63

.  Furthermore, the small 

amount of gGag in the virion would be expected to associate with the viral envelope as a 

type 2 transmembrane protein
65,147

.  Our experiments involving the localization of gGag 

in the virion shows clearly that it is associated with the virion core. There are many 

possible functional consequences of this localization. One of these is that gGag may serve 
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to stabilize the structure of the virion. It has been reported that gGag is involved in virion 

release and that gGag
-
 M-MuLV exhibits an abnormal morphology during virion 

budding
121

.  Mature virions also differed from the wild-type virions by envelope lipid 

content but did not exhibit detectable morphological differences. In agreement with a 

number of other studies with different MuLVs, the gGag-deficient M-MuLV was not 

replication-defective in vitro but replication was severely limited in vivo
121

.  

 A number of mechanisms by which cellular mA3 might interact with gGag were 

examined in these studies.  The HIV-1 Vif protein mediates the degradation of hA3G in 

infected cells and it was possible that the presence of gGag might lead to mA3 

degradation
28,162

.   However, no significant difference in the level of mA3 expression was 

detected in the presence or absence of gGag. Thus, viral gGag does not lead to the 

proteolytic degradation of mA3 in vitro. The inhibition of cellular mA3 by gGag may 

involve a direct interaction of the proteins that delays or prevents mA3 from exerting its 

effect.  In this regard, immunoprecipitation experiments using antibodies directed at 

either protein did not result in coprecipitation of the proteins. It is possible that 

interactions between cellular mA3 and gGag may exist but be too weak or fleeting to be 

detected by immunoprecipitation techniques.  If the proteins do interact in infected cells, 

it is possible that colocalization to the same cellular compartment might be detected by 

confocal microscopy; however, no specific colocalization of the two proteins was 

detected when examined at various times after infection.  In the absence of evidence 

supporting a direct interaction, it was surmised that there may be an indirect interaction 

between cellular mA3 and viral gGag that enables the virus to escape the activity of mA3.

 Although the mutation data did not reveal a substantial cytidine deaminase 
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activity for cellular mA3, a higher overall mutation rate was observed with gGag
-
 than 

with gGag
+
 MuLVs.  This may reflect a functional role of gGag in promoting the fidelity 

or stability of reverse transcription and counteracting a destabilizing action of mA3.    

Such a role is consistent with the location of gGag in the virion and suggests it may 

interact with RT, RNA or other virion components in the reverse transcription complex to 

stabilize the reverse transcription reaction. It has been reported that APOBEC3 proteins 

exert deaminase-independent inhibitory activity on retroviral replication, though the 

mechanism by which it is accomplished is poorly defined.  In this regard a recent study 

reported that M-MuLV was partially inhibited by mA3
18

.  An elevated G-to-A mutation 

rate was not observed, however, the transcript levels were reduced in an amount 

comparable to the reduction in infectivity.  Similarly, we observed a striking inhibition of 

viral transcription levels after infection of cells with the gGag
-
 virus.  While the gGag

+
 

transcript levels remained consistent between 3T3/mA3 and 3T3 cells, the gGag
-
 

transcript levels were significantly reduced in the presence of mA3. A number of studies 

have reported varying susceptibilities of MuLVs to mA3
110,123,162,188

 .   Differences in the 

susceptibility of MuLVs to inhibition by cellular mA3 could reflect differences in the 

efficacy of their respective gGags to counteract mA3. In this regard, a comparison of the 

gGags of different MuLVs reveals subtle to extensive differences which include deletions 

as well as amino acid substitutions (data not shown).   

 We observed that progeny virions released from mA3 expressing cells were also 

inhibited in a gGag-dependent manner when tested on cells not expressing mA3.  It is 

possible that both gGag
+
 and gGag

-
 MuLVs incorporate mA3 into virions at similar levels 

but that the incorporation of mA3 is qualitatively different between the MuLVs.   The 
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location or association of mA3 with virion components may be altered in response to the 

presence of gGag.   The observation that mA3 is located in the virion core for both the 

gGag
+
 and gGag

-
 MuLVs argues against this possibility. The presence of both gGag and 

mA3 in the virion core may allow for an interaction between the two proteins.   In 

contrast to the immunoprecipitation analyses in infected cells, coprecipitation of mA3 

and gGag was observed in the virion.  The proximity of mA3 and gGag to each other in 

the virion or the presence of a binding intermediate, such as the RNA genome or other 

binding partners may facilitate coprecipitation in the virion but not in the cell. Further 

experimentation will reveal if viral RNA or other proteins are associated with mA3 and 

gGag.  

The binding interaction observed in these analyses may function to prevent mA3 

from exerting its antiretroviral activity on the virus during reverse transcription upon 

infection. No statistically significant differences of the mutation rates were observed 

between any of the viruses regardless of virion incorporation of mA3 or gGag.  However, 

the transcript level was severely reduced in Mus dunni cells infected with the gGag
-
 

viruses produced from 3T3/mA3 cells. In these experiments the level of virus used to 

infect the Mus dunni cells was adjusted to the number of virions rather than the 

infectivity.  Assuming that the presence of mA3 in the absence of gGag does not alter the 

initial events of viral receptor binding and fusion to enter the cells, it is likely that the 

process of reverse transcription was altered in the infected cells.  Conversely, in cells 

infected with the wild-type virus possessing gGag and mA3, inhibition was presumably 

prevented by the interaction of gGag and mA3.   

 The results of the in vitro studies were corroborated in our in vivo investigations.  
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There was a striking inhibition of replication in vivo of the gGag
-
 MuLV compared to the 

gGag
+
 MuLV in mice expressing mA3.  In mice lacking mA3, the level of Gag

-
 

replication was restored to the high levels of gGag
+
 MuLV.  These results were obtained 

in both the 129/Ola and C57BL/6 genetic background.  Development of reagents, such as 

a specific mA3 antibody, will facilitate in vivo studies as one could determine beyond 

mRNA levels the amount and type of mA3 expressed in tissues and the amount that is 

incorporated into virions. The development of specific tags and/or refinements in the 

purification of virions from mice may also make it possible to more precisely determine 

the amount of gGag incorporated into virions.  

5.2 Future directions 

 Based on the localization of gGag in the virion core, gGag may serve a function in 

stabilizing the mature virion or the reverse transcriptase complex. To this end, a recent 

report indicated that gGag exhibits some functional similarities to the Nef protein of 

HIV
149

.  Nef is an accessory protein of HIV that exhibits many different functions 

including increasing the efficiency of reverse transcription
168

.  Nef is incorporated into 

virions and facilitates replication both in vitro and in vivo
19,94,95,144

. Nef-deficient viruses 

exhibit reduced infectivity which can be restored by complementation with gGag.  

Indeed, the complementing activity of gGag was discovered in cells which had been 

inadvertently infected with an MuLV
149

.  It is unknown if Nef has an influence on the 

action of APOBEC3 proteins nor is it clear if Nef can complement the effect of gGag on 

MuLV replication  Further studies of the action of Nef may provide insight into the 

precise mode of action of gGag on the activity of mA3. 

 The susceptibility of the gGag
-
 MuLV to cellular mA3 may occur by an indirect 
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mechanism.  In this regard, it has been reported that gGag is involved in virion release 

and that gGag
-
 M-MuLV exhibits an abnormal morphology during virion budding

121
.  It is 

conceivable that mature virions may be altered from an mA3-resistant to an mA3-

susceptible phenotype.  If an altered mA3-sensitive phenotype exist, then it may be 

possible to restore it by infecting cells that contain a gGag construct or by superinfecting 

cells with another MuLV encoding a functional gGag. Indeed, Low et al
121

 showed that 

expressing a gGag construct in a retroviral packaging cell line restored the gGag
-
 budding 

virion phenotype to a more common spherical one. It is of interest to determine if the 

expression of gGag in a cell would restore the infectivity of progeny virions on mA3 

expressing cells.  Further, if complementation in trans could be demonstrated, it might be 

possible to compare the efficacies of different MuLV gGag proteins.     

 In the in vitro studies, the gGag
+
 MuLV was not inhibited, however, there has 

been a number of studies that  report partial to marked inhibition of other gGag
+
  

MuLVs
109,122,162,187

.  One report compared the inhibitory effects of mA3 on M-MuLV and 

AKV MuLV. AKV was inhibited to a greater extent than M-MuLV
108

.  Inhibition of AKV 

by mA3 exhibited G-to-A mutations whereas M-MuLV did not
107,162

. The susceptibility 

of MuLVs to inhibition by mA3 could represent a difference in the efficacy of gGags to 

counteract mA3.  Comparing the gGag sequences of multiple MuLVs revealed 

differences in their amino-terminal fragments. It is of interest to determine if the 

inhibition of mA3 by gGag of viruses utilized in this study can be generalized to other 

gGag
-
 viruses.  This could provide insight into differences in the activities of gGag 

proteins from different sources.  As mentioned above, it may also be possible to directly 

compare efficacies of different MuLVs through complementation studies.   
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 Some studies have noted that there are allelic differences between different mouse 

strains in the both the levels and isoforms of expressed mA3.  Some mice express the full 

length protein, while others express a Δ exon 5 or a Δ exon 2 splice variant
111,139,162,163

.  

There are conflicting reports on the inhibitory activities of these variants. In our studies, 

there was a gGag-dependent inhibition in 129/Ola mice, which predominately produce 

the full-length version, and in C57BL/6 mice, which predominately produce the Δ exon 5 

splice variant. It is unknown if there are differences in the activities in vivo as the 

expression levels are different between mouse strains. In order to address this issue, it 

will be necessary to conduct parallel in vitro studies using cells expressing full length 

mA3 as well as the spice variant forms of the protein. 

During the course of these investigations it was noted that some uninfected mA3
-/-

 

mice developed a proliferative disease at 6 to 8 months of age.  Spontaneous proliferative 

diseases in mice are often accompanied by the expression of endogenous retroviruses.  It 

will be of interest to determine if the expression of endogenous viruses is demonstrable in 

mA3
-/-

 mice that have developed proliferative disease.   

In closing,  the studies conducted for this dissertation are of particularly interest in 

light of recent reports indicating cross-species retroviral infections from mouse to 

humans
120,166,193

.  In some studies, these infections are evidenced by the detection of 

endogenous gGag-deficient MuLVs.  Infection of mice by gGag
+
 viruses may inhibit the 

activity of mA3 and facilitate the mobilization of endogenous MuLVs through 

pseudotyping.  Certain MuLVs such as amphotropic and xenotropic MuLVs encode intact 

gGag proteins and can infect humans.  Pseudotyping of endogenous MuLVs by these 

viruses could account for the transmission of endogenous gGag-deficient MuLVs.  



 

83 

 

Reference List 

 

 1.  Abelson, H. T. and L. S. Rabstein. 1970. Lymphosarcoma: virus-induced 

thymic-independent disease in mice. Cancer Res 30:2213-2222. 

 2.  Abudu, A., A. Takaori-Kondo, T. Izumi, K. Shirakawa, M. Kobayashi, A. 

Sasada, K. Fukunaga, and T. Uchiyama. 2006. Murine retrovirus escapes from 

murine APOBEC3 via two distinct novel mechanisms. Curr Biol 16:1565-1570. 

 3.  Aguiar, R. S., N. Lovsin, A. Tanuri, and B. M. Peterlin. 2008. Vpr.A3A 

chimera inhibits HIV replication. J Biol Chem 283:2518-2525. 

 4.  Aguiar, R. S. and B. M. Peterlin. 2008. APOBEC3 proteins and reverse 

transcription. Virus Res 134:74-85. 

 5.  Baltimore, D. 1970. RNA-dependent DNA polymerase in virions of RNA tumour 

viruses. Nature 1970 Jun 27;226(5252):1 226:1209-1211. 

 6.  Baltimore, D. 1975. Tumor viruses: 1974. Cold Spring Harb Symp Quant Biol 

1975;39 Pt 2:1187- 39 Pt 2:1187-1200. 

 7.  Barbacid, M. and S. A. Aaronson. 1978. Membrane properties of the gag gene-

coded p15 protein of mouse type-C RNA tumor viruses. J Biol Chem 253:1408-

1414. 

 8.  Barbacid, M., J. R. Stephenson, and S. A. Aaronson. 1976. gag Gene of 

mammalian type-C RNA tumour viruses. Nature 262:554-559. 

 9.  Baumann, J. G. 2006. Intracellular restriction factors in mammalian cells--An 

ancient defense system finds a modern foe. Curr HIV Res 4:141-168. 

 10.  BERNHARD, W. 1958. Electron microscopy of tumor cells and tumor viruses; a 

review. Cancer Res 18:491-509. 

 11.  Bieche, I., A. Laurent, I. Laurendeau, L. Duret, Y. Giovangrandi, J. L. 

Frendo, M. Olivi, J. L. Fausser, D. Evain-Brion, and M. Vidaud. 2003. 

Placenta-specific INSL4 expression is mediated by a human endogenous 

retrovirus element. Biol. Reprod. 68:1422-1429. 

 12.  Bishop, K. N., R. K. Holmes, A. M. Sheehy, N. O. Davidson, S. J. Cho, and M. 

H. Malim. 2004. Cytidine deamination of retroviral DNA by diverse APOBEC 

proteins. Curr Biol 14:1392-1396. 

 13.  Bishop, K. N., R. K. Holmes, A. M. Sheehy, and M. H. Malim. 2004. 

APOBEC-mediated editing of viral RNA. Science (New York, N. Y 305:645. 



 

84 

 

 14.  Bogerd, H. P., F. Zhang, P. D. Bieniasz, and B. R. Cullen. 2011. Human 

APOBEC3 proteins can inhibit xenotropic murine leukemia virus-related virus 

infectivity. Virology 410:234-239. 

 15.  Bowerman, B., P. O. Brown, J. M. Bishop, and H. E. Varmus. 1989. A 

nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 

3:469-478. 

 16.  Brown, P. O., B. Bowerman, H. E. Varmus, and J. M. Bishop. 1989. Retroviral 

integration: structure of the initial covalent product and its precursor, and a role 

for the viral IN protein. Proc Natl Acad Sci U S A 86:2525-2529. 

 17.  Browne, E. P., C. Allers, and N. R. Landau. 2009. Restriction of HIV-1 by 

APOBEC3G is cytidine deaminase-dependent. Virology 387:313-321. 

 18.  Browne, E. P. and D. R. Littman. 2008. Species-specific restriction of apobec3-

mediated hypermutation. J Virol 82:1305-1313. 

 19.  Bukovsky, A. A., T. Dorfman, A. Weimann, and H. G. Gottlinger. 1997. Nef 

association with human immunodeficiency virus type 1 virions and cleavage by 

the viral protease. J. Virol. 71:1013-1018. 

 20.  Bulliard, Y., P. Turelli, U. F. Rohrig, V. Zoete, B. Mangeat, O. Michielin, and 

D. Trono. 2009. Functional analysis and structural modeling of human 

APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition 

of human immunodeficiency virus type 1 infection and Alu transposition. J Virol 

83:12611-12621. 

 21.  Burstein, H., D. Bizub, and A. M. Skalka. 1991. Assembly and processing of 

avian retroviral gag polyproteins containing linked protease dimers. J Virol 

65:6165-6172. 

 22.  Cadima-Couto, I., N. Saraiva, A. C. Santos, and J. Goncalves. 2011. HIV-1 Vif 

Interaction with APOBEC3 Deaminases and its Characterization by a New 

Sensitive Assay. J Neuroimmune Pharmacol. 

 23.  Cen, S., F. Guo, M. Niu, J. Saadatmand, J. Deflassieux, and L. Kleiman. 

2004. The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 

279:33177-33184. 

 24.  Chatis, P. A., C. A. Holland, J. W. Hartley, W. P. Rowe, and N. Hopkins. 1983. 

Role for the 3' end of the genome in determining disease specificity of Friend and 

Moloney murine leukemia viruses. Proc Natl Acad Sci U S A 80:4408-4411. 

 25.  Chesebro, B., W. Britt, L. Evans, K. Wehrly, J. Nishio, and M. Cloyd. 1983. 

Characterization of monoclonal antibodies reactive with murine leukemia viruses: 

use in analysis of strains of friend MCF and Friend ecotropic murine leukemia 

virus. Virology 127:134-148. 



 

85 

 

 26.  Chiu, Y. L. and W. C. Greene. 2006. APOBEC3 cytidine deaminases: distinct 

antiviral actions along the retroviral life cycle. J Biol Chem 281:8309-8312. 

 27.  Chiu, Y. L. and W. C. Greene. 2006. Multifaceted antiviral actions of APOBEC3 

cytidine deaminases. Trends Immunol 27:291-297. 

 28.  Chiu, Y. L. and W. C. Greene. 2008. The APOBEC3 cytidine deaminases: an 

innate defensive network opposing exogenous retroviruses and endogenous 

retroelements. Annu. Rev. Immunol. 26:317-353. 

 29.  Chiu, Y. L., V. B. Soros, J. F. Kreisberg, K. Stopak, W. Yonemoto, and W. C. 

Greene. 2005. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T 

cells. Nature 435:108-114. 

 30.  Chun, R. and H. Fan. 1994. Recovery of Glycosylated gag Virus from Mice 

Infected with a Glycosylated gag-Negative Mutant of Moloney Murine Leukemia 

Virus. J Biomed Sci 1:218-223. 

 31.  Coffin, J. M., T. C. Hageman, A. M. Maxam, and W. A. Haseltine. 1978. 

Structure of the genome of Moloney murine leukemia virus: a terminally 

redundant sequence. Cell 13:761-773. 

 32.  Collett, M. S., P. Dierks, J. F. Cahill, A. J. Faras, and J. T. Parsons. 1977. 

Terminally repeated sequences in the avian sarcoma virus RNA genome. Proc 

Natl Acad Sci U S A 74:2389-2393. 

 33.  Collett, M. S. and A. J. Faras. 1977. In vitro transcription of theavian 

oncornavirus genome by the RNA-directed DNA polymerase: analysis of DNA 

transcripts synthesized in reconstructed enzymatic reactions. J Virol 22:86-96. 

 34.  Conticello, S. G., R. S. Harris, and M. S. Neuberger. 2003. The Vif protein of 

HIV triggers degradation of the human antiretroviral DNA deaminase 

APOBEC3G. Curr Biol 13:2009-2013. 

 35.  Conticello, S. G., C. J. Thomas, S. K. Petersen-Mahrt, and M. S. Neuberger. 

2005. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine 

deaminases. Mol Biol Evol 22:367-377. 

 36.  Corbin, A., A. C. Prats, J. L. Darlix, and M. Sitbon. 1994. A nonstructural gag-

encoded glycoprotein precursor is necessary for efficient spreading and 

pathogenesis of murine leukemia viruses. J Virol 68:3857-3867. 

 37.  Corcoran, L. M., J. M. Adams, A. R. Dunn, and S. Cory. 1984. Murine T 

lymphomas in which the cellular myc oncogene has been activated by retroviral 

insertion. Cell 37:113-122. 

 38.  Cuypers, H. T., G. Selten, W. Quint, M. Zijlstra, E. R. Maandag, W. Boelens, 

W. P. van, C. Melief, and A. Berns. 1984. Murine leukemia virus-induced T-cell 



 

86 

 

lymphomagenesis: integration of proviruses in a distinct chromosomal region. 

Cell 37:141-150. 

 39.  Czernilofsky, A. P., W. DeLorbe, R. Swanstrom, H. E. Varmus, J. M. Bishop, 

E. Tischer, and H. M. Goodman. 1980. The nucleotide sequence of an 

untranslated but conserved domain at the 3' end of the avian sarcoma virus 

genome. Nucleic Acids Res 8:2967-2984. 

 40.  Czernilofsky, A. P., A. D. Levinson, H. E. Varmus, J. M. Bishop, E. Tischer, 

and H. M. Goodman. 1980. Nucleotide sequence of an avian sarcoma virus 

oncogene (src) and proposed amino acid sequence for gene product. Nature 1980 

Sep 18;287(5779):198- 287:198-203. 

 41.  de, P. N. and T. Heidmann. 2005. Human endogenous retroviruses: from 

infectious elements to human genes. Cytogenetic and genome research 110:318-

332. 

 42.  Dinowitz, M. 1975. Inhibition of rous sarcoma virus by alpha-amanitin: possible 

role of cell DNA-dependent RNA polymerase form II. Virology 66:1-9. 

 43.  Doehle, B. P., A. Schafer, H. L. Wiegand, H. P. Bogerd, and B. R. Cullen. 

2005. Differential sensitivity of murine leukemia virus to APOBEC3-mediated 

inhibition is governed by virion exclusion. J Virol 79:8201-8207. 

 44.  Dube, D. K. and L. A. Loeb. 1976. On the association of reverse transcriptase 

with polynucleotide templates during catalysis. Biochemistry 15:3605-3611. 

 45.  Dunlap, K. A., M. Palmarini, M. Varela, R. C. Burghardt, K. Hayashi, J. L. 

Farmer, and T. E. Spencer. 2006. Endogenous retroviruses regulate 

periimplantation placental growth and differentiation. Proc. Natl. Acad. Sci. U. S. 

A 103:14390-14395. 

 46.  Dunn, C. A., P. Medstrand, and D. L. Mager. 2003. An endogenous retroviral 

long terminal repeat is the dominant promoter for human beta1,3-

galactosyltransferase 5 in the colon. Proc. Natl. Acad. Sci. U. S. A 100:12841-

12846. 

 47.  DUNN, T. B., J. B. MOLONEY, A. W. GREEN, and B. ARNOLD. 1961. 

Pathogenesis of a virus-induced leukemia in mice. J Natl Cancer Inst 26:189-221. 

 48.  Edwards, S. A. and H. Fan. 1980. Sequence relationship of glycosylated and 

unglycosylated gag polyproteins of Moloney murine leukemia virus. J Virol 

35:41-51. 

 49.  Esnault, C., O. Heidmann, F. Delebecque, M. Dewannieux, D. Ribet, A. J. 

Hance, T. Heidmann, and O. Schwartz. 2005. APOBEC3G cytidine deaminase 

inhibits retrotransposition of endogenous retroviruses. Nature 433:430-433. 



 

87 

 

 50.  Esnault, C., J. Millet, O. Schwartz, and T. Heidmann. 2006. Dual inhibitory 

effects of APOBEC family proteins on retrotransposition of mammalian 

endogenous retroviruses. Nucleic Acids Res 34:1522-1531. 

 51.  Esnault, C., S. Priet, D. Ribet, O. Heidmann, and T. Heidmann. 2008. 

Restriction by APOBEC3 proteins of endogenous retroviruses with an 

extracellular life cycle: ex vivo effects and in vivo "traces" on the murine IAPE 

and human HERV-K elements. Retrovirology 5:75. 

 52.  Evans, L. H., A. S. Alamgir, N. Owens, N. Weber, K. Virtaneva, K. Barbian, 

A. Babar, F. Malik, and K. Rosenke. 2009. Mobilization of endogenous 

retroviruses in mice after infection with an exogenous retrovirus. J. Virol. 

83:2429-2435. 

 53.  Evans, L. H. and M. W. Cloyd. 1984. Generation of mink cell focus-forming 

viruses by Friend murine leukemia virus: recombination with specific endogenous 

proviral sequences. J. Virol. 49:772-781. 

 54.  Evans, L. H., S. Dresler, and D. Kabat. 1977. Synthesis and glycosylation of 

polyprotein precursors to the internal core proteins of Friend murine leukemia 

virus. J Virol 24:865-874. 

 55.  Evans, L. H., M. Lavignon, K. Peterson, K. Hasenkrug, S. Robertson, F. 

Malik, and K. Virtaneva. 2006. In vivo interactions of ecotropic and polytropic 

murine leukemia viruses in mixed retrovirus infections. J. Virol. 80:4748-4757. 

 56.  Evans, L. H., M. Lavignon, M. Taylor, and A. S. Alamgir. 2003. Antigenic 

subclasses of polytropic murine leukemia virus (MLV) isolates reflect three 

distinct groups of endogenous polytropic MLV-related sequences in NFS/N mice. 

J. Virol. 77:10327-10338. 

 57.  Fan, H. and D. Baltimore. 1973. RNA metabolism of murine leukemia virus: 

detection of virus-specific RNA sequences in infected and uninfected cells and 

identification of virus-specific messenger RNA. J Mol Biol 80:93-117. 

 58.  Fan, H., H. Chute, E. Chao, and M. Feuerman. 1983. Construction and 

characterization of Moloney murine leukemia virus mutants unable to synthesize 

glycosylated gag polyprotein. Proc. Natl. Acad. Sci. U. S. A 80:5965-5969. 

 59.  Fischer, N., O. Hellwinkel, C. Schulz, F. K. Chun, H. Huland, M. 

Aepfelbacher, and T. Schlomm. 2008. Prevalence of human gammaretrovirus 

XMRV in sporadic prostate cancer. J Clin Virol 43:277-283. 

 60.  Fleissner, E. and E. Tress. 1973. Isolation of a ribonucleoprotein structure from 

oncornaviruses. J Virol 12:1612-1615. 

 61.  Frendo, J. L., D. Olivier, V. Cheynet, J. L. Blond, O. Bouton, M. Vidaud, M. 

Rabreau, D. Evain-Brion, and F. Mallet. 2003. Direct involvement of HERV-W 



 

88 

 

Env glycoprotein in human trophoblast cell fusion and differentiation. Mol. Cell 

Biol. 23:3566-3574. 

 62.  FRIEND, C. 1957. Cell-free transmission in adult Swiss mice of a disease having 

the character of a leukemia. J Exp Med 105:307-318. 

 63.  Fujisawa, R., F. J. McAtee, C. Favara, S. F. Hayes, and J. L. Portis. 2001. N-

terminal cleavage fragment of glycosylated Gag is incorporated into murine 

oncornavirus particles. J Virol 75:11239-11243. 

 64.  Fujisawa, R., F. J. McAtee, K. Wehrly, and J. L. Portis. 1998. The 

neuroinvasiveness of a murine retrovirus is influenced by a dileucine-containing 

sequence in the cytoplasmic tail of glycosylated Gag. J Virol 72:5619-5625. 

 65.  Fujisawa, R., F. J. McAtee, J. H. Zirbel, and J. L. Portis. 1997. 

Characterization of glycosylated Gag expressed by a neurovirulent murine 

leukemia virus: identification of differences in processing in vitro and in vivo. J. 

Virol. 71:5355-5360. 

 66.  Fujiwara, T. and K. Mizuuchi. 1988. Retroviral DNA integration: structure of 

an integration intermediate. Cell 54:497-504. 

 67.  Garcia, J. V. and A. D. Miller. 1991. Serine phosphorylation-independent 

downregulation of cell-surface CD4 by nef. Nature 350:508-511. 

 68.  Geleziunas, R., W. Xu, K. Takeda, H. Ichijo, and W. C. Greene. 2001. HIV-1 

Nef inhibits ASK1-dependent death signalling providing a potential mechanism 

for protecting the infected host cell. Nature 410:834-838. 

 69.  Goff, S. 2004. Retrovirus restriction factors. Molecular cell 16:849-859. 

 70.  GRAFFI, A., H. BIELKA, F. FEY, F. SCHARSACH, and R. WEISS. 1955. 

[Frequency occurrence of leukemia after injection of sarcoma filtrates]. Wien 

Med Wochenschr 105:61-64. 

 71.  Grandgenett, D. P., G. F. Gerard, and M. Green. 1972. Ribonuclease H: a 

ubiquitous activity in virions of ribonucleic acid tumor viruses. J Virol 10:1136-

1142. 

 72.  Grandgenett, D. P., A. C. Vora, and R. D. Schiff. 1978. A 32,000-dalton nucleic 

acid-binding protein from avian retravirus cores possesses DNA endonuclease 

activity. Virology 89:119-132. 

 73.  Green, M. and M. Cartas. 1972. The genome of RNA tumor viruses contains 

polyadenylic acid sequences. Proc Natl Acad Sci U S A 69:791-794. 



 

89 

 

 74.  Groom, H. C., M. W. Yap, R. P. Galao, S. J. Neil, and K. N. Bishop. 2010. 

Susceptibility of xenotropic murine leukemia virus-related virus (XMRV) to 

retroviral restriction factors. Proc Natl Acad Sci U S A. 

 75.  GROSS, L. 1951. "Spontaneous" leukemia developing in C3H mice following 

inoculation in infancy, with AK-leukemic extracts, or AK-embrvos. Proc Soc Exp 

Biol Med 76:27-32. 

 76.  Guntaka, R. V. 1993. Transcription termination and polyadenylation in 

retroviruses. Microbiol Rev 57:511-521. 

 77.  Guo, F., S. Cen, M. Niu, J. Saadatmand, and L. Kleiman. 2006. Inhibition of 

formula-primed reverse transcription by human APOBEC3G during human 

immunodeficiency virus type 1 replication. J Virol 80:11710-11722. 

 78.  Hakata, Y. and N. R. Landau. 2006. Reversed functional organization of mouse 

and human APOBEC3 cytidine deaminase domains. J Biol Chem 281:36624-

36631. 

 79.  Hamilton, C. E., F. N. Papavasiliou, and B. R. Rosenberg. 2010. Diverse 

functions for DNA and RNA editing in the immune system. RNA Biol 7. 

 80.  Harada, F., G. G. Peters, and J. E. Dahlberg. 1979. The primer tRNA for 

Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and 

aminoacylation of tRNAPro. J Biol Chem 254:10979-10985. 

 81.  Hartley, J. W. and W. P. Rowe. 1976. Naturally occurring murine leukemia 

viruses in wild mice: characterization of a new "amphotropic" class. J Virol 

19:19-25. 

 82.  Hartley, J. W., N. K. Wolford, L. J. Old, and W. P. Rowe. 1977. A new class of 

murine leukemia virus associated with development of spontaneous lymphomas. 

Proc Natl Acad Sci U S A 74:789-792. 

 83.  Haseltine, W. A. and D. G. Kleid. 1978. A method for classification of 5' termini 

of retroviruses. Nature 273:358-364. 

 84.  Haseltine, W. A., A. M. Maxam, and W. Gilbert. 1977. Rous sarcoma virus 

genome is terminally redundant: the 5' sequence. Proc Natl Acad Sci U S A 

74:989-993. 

 85.  Heard, J. M. and O. Danos. 1991. An amino-terminal fragment of the Friend 

murine leukemia virus envelope glycoprotein binds the ecotropic receptor. J. 

Virol. 65. 

 86.  Hunter, E. and R. Swanstrom. 1990. Retrovirus envelope glycoproteins. Curr. 

Top. Microbiol. Immunol. 157. 



 

90 

 

 87.  Ikeda, H., W. Hardy, Jr., E. Tress, and E. Fleissner. 1975. Chromatographic 

separation and antigenic analysis of proteins of the oncornaviruses. V. 

Identification of a new murine viral protein, p15(E). J Virol 16:53-61. 

 88.  Ikeda, H., F. Laigret, M. A. Martin, and R. Repaske. 1985. Characterization of 

a molecularly cloned retroviral sequence associated with Fv-4 resistance. J Virol 

55:768-777. 

 89.  Ikeda, H. and H. Sugimura. 1989. Fv-4 resistance gene: a truncated endogenous 

murine leukemia virus with ecotropic interference properties. J Virol 63:5405-

5412. 

 90.  Jern, P., J. P. Stoye, and J. M. Coffin. 2007. Role of APOBEC3 in genetic 

diversity among endogenous murine leukemia viruses. PLoS Genet 3:2014-2022. 

 91.  Kai, K., H. Ikeda, Y. Yuasa, S. Suzuki, and T. Odaka. 1976. Mouse strain 

resistant to N-, B-, and NB-tropic murine leukemia viruses. J Virol 1976 Nov; 

20:436-440. 

 92.  Katen, L. J., M. M. Januszeski, W. F. Anderson, K. J. Hasenkrug, and L. H. 

Evans. 2001. Infectious entry by amphotropic as well as ecotropic murine 

leukemia viruses occurs through an endocytic pathway. J. Virol. 75:5018-5026. 

 93.  Kennel, S. J., B. C. del Villano, R. L. Levy, and R. A. Lerner. 1973. Properties 

of an oncornavirus glycoprotein: evidence for its presence on the surface of 

virions and infected cells. Virology 55:464-475. 

 94.  Kestler, H. W., III, K. Mori, D. P. Silva, T. Kodama, N. W. King, M. D. 

Daniel, and R. C. Desrosiers. 1990. Nef genes of SIV. J. Med. Primatol. 19:421-

429. 

 95.  Kestler, H. W., III, D. J. Ringler, K. Mori, D. L. Panicali, P. K. Sehgal, M. D. 

Daniel, and R. C. Desrosiers. 1991. Importance of the nef gene for maintenance 

of high virus loads and for development of AIDS. Cell 65:651-662. 

 96.  Khan, M. A., R. Goila-Gaur, S. Kao, E. Miyagi, R. C. Walker, Jr., and K. 

Strebel. 2009. Encapsidation of APOBEC3G into HIV-1 virions involves lipid 

raft association and does not correlate with APOBEC3G oligomerization. 

Retrovirology 6:99. 

 97.  Kirsten, W. H. and L. A. Mayer. 1967. Morphologic responses to a murine 

erythroblastosis virus. J Natl Cancer Inst 39:311-335. 

 98.  Knipe DM, Howley PM. Fields virology, Fifth edition, Retroviradae: the 

retroviruses and their replication, 2000-2025. Retroviradae: the retroviruses and 

their replication two. 2006.  

Ref Type: Serial (Book,Monograph) 



 

91 

 

 99.  Knoepfel, S. A., G. F. Di, M. Daumer, A. Thielen, and K. J. Metzner. 2011. In-

depth analysis of G-to-A hypermutation rate in HIV-1 env DNA induced by 

endogenous APOBEC3 proteins using massively parallel sequencing. J Virol 

Methods 171:329-338. 

 100.  Kobayashi, M., A. Takaori-Kondo, K. Shindo, A. Abudu, K. Fukunaga, and 

T. Uchiyama. 2004. APOBEC3G targets specific virus species. J Virol 78:8238-

8244. 

 101.  Kolokithas, A., K. Rosenke, F. Malik, D. Hendrick, L. Swanson, M. L. 

Santiago, J. L. Portis, K. J. Hasenkrug, and L. H. Evans. 2010. The 

glycosylated Gag protein of a murine leukemia virus inhibits the antiretroviral 

function of APOBEC3. J Virol 84:10933-10936. 

 102.  Kozak, C. A. 2010. The mouse "xenotropic" gammaretroviruses and their XPR1 

receptor. Retrovirology 7:101. 

 103.  Kozak, C. A. and A. Chakraborti. 1996. Single amino acid changes in the 

murine leukemia virus capsid protein gene define the target of Fv1 resistance. 

Virology 225:300-305. 

 104.  Kung, H. J., Y. K. Fung, J. E. Majors, J. M. Bishop, and H. E. Varmus. 1981. 

Synthesis of plus strands of retroviral DNA in cells infected with avian sarcoma 

virus and mouse mammary tumor virus. J Virol 37:127-138. 

 105.  Lada, A. G., L. M. Iyer, I. B. Rogozin, L. Aravind, and I. Pavlov. 2007. 

[Vertebrate immunity: mutator proteins and their evolution]. Genetika 43:1311-

1327. 

 106.  Landry, J. R., A. Rouhi, P. Medstrand, and D. L. Mager. 2002. The Opitz 

syndrome gene Mid1 is transcribed from a human endogenous retroviral 

promoter. Mol. Biol. Evol. 19:1934-1942. 

 107.  Langlois, M. A., K. Kemmerich, C. Rada, and M. S. Neuberger. 2009. The 

AKV murine leukemia virus is restricted and hypermutated by mouse APOBEC3. 

J Virol 83:11550-11559. 

 108.  Langlois, M. A., K. Kemmerich, C. Rada, and M. S. Neuberger. 2009. The 

AKV murine leukemia virus is restricted and hypermutated by mouse APOBEC3. 

J Virol 83:11550-11559. 

 109.  Langlois, M. A., K. Kemmerich, C. Rada, and M. S. Neuberger. 2009. The 

AKV murine leukemia virus is restricted and hypermutated by mouse APOBEC3. 

J Virol 83:11550-11559. 

 110.  Langlois, M. A., K. Kemmerich, C. Rada, and M. S. Neuberger. 2009. The 

AKV murine leukemia virus is restricted and hypermutated by mouse APOBEC3. 

J Virol 83:11550-11559. 



 

92 

 

 111.  Langlois, M. A., K. Kemmerich, C. Rada, and M. S. Neuberger. 2009. The 

AKV murine leukemia virus is restricted and hypermutated by mouse APOBEC3. 

J Virol 83:11550-11559. 

 112.  Ledbetter, J. and R. C. Nowinski. 1977. Identification of the Gross cell surface 

antigen associated with murine leukemia virus-infected cells. J Virol 23:315-322. 

 113.  Lee, J., J. Y. Choi, H. J. Lee, K. C. Kim, B. S. Choi, Y. K. Oh, and Y. B. Kim. 

2011. Repression of porcine endogenous retrovirus infection by human 

APOBEC3 proteins. Biochem Biophys Res Commun. 

 114.  Lee, Y. N., M. H. Malim, and P. D. Bieniasz. 2008. Hypermutation of an ancient 

human retrovirus by APOBEC3G. J Virol 82:8762-8770. 

 115.  Levy, J. A. 1973. Xenotropic viruses: murine leukemia viruses associated with 

NIH Swiss, NZB, and other mouse strains. Science (New York, N. Y 182. 

 116.  Li, Y., E. Golemis, J. W. Hartley, and N. Hopkins. 1987. Disease specificity of 

nondefective Friend and Moloney murine leukemia viruses is controlled by a 

small number of nucleotides. J Virol 61:693-700. 

 117.  Li, Y., C. A. Holland, J. W. Hartley, and N. Hopkins. 1984. Viral integration 

near c-myc in 10-20% of mcf 247-induced AKR lymphomas. Proc Natl Acad Sci 

U S A 81:6808-6811. 

 118.  Lilly, F. 1967. Susceptibility to two strains of Friend leukemia virus in mice. 

Science (New York, N. Y 155:461-462. 

 119.  Linial, M., E. Medeiros, and W. S. Hayward. 1978. An avian oncovirus mutant 

(SE 21Q1b) deficient in genomic RNA: biological and biochemical 

characterization. Cell 15:1371-1381. 

 120.  Lombardi, V. C., F. W. Ruscetti, G. J. Das, M. A. Pfost, K. S. Hagen, D. L. 

Peterson, S. K. Ruscetti, R. K. Bagni, C. Petrow-Sadowski, B. Gold, M. Dean, 

R. H. Silverman, and J. A. Mikovits. 2009. Detection of an infectious retrovirus, 

XMRV, in blood cells of patients with chronic fatigue syndrome. Science (New 

York, N. Y 326:585-589. 

 121.  Low, A., S. Datta, Y. Kuznetsov, S. Jahid, N. Kothari, A. McPherson, and H. 

Fan. 2007. Mutation in the glycosylated gag protein of murine leukemia virus 

results in reduced in vivo infectivity and a novel defect in viral budding or 

release. J. Virol. 81:3685-3692. 

 122.  Low, A., C. M. Okeoma, N. Lovsin, H. M. de las, T. H. Taylor, B. M. Peterlin, 

S. R. Ross, and H. Fan. 2009. Enhanced replication and pathogenesis of 

Moloney murine leukemia virus in mice defective in the murine APOBEC3 gene. 

Virology 385:455-463. 



 

93 

 

 123.  Low, A., C. M. Okeoma, N. Lovsin, H. M. de las, T. H. Taylor, B. M. Peterlin, 

S. R. Ross, and H. Fan. 2009. Enhanced replication and pathogenesis of 

Moloney murine leukemia virus in mice defective in the murine APOBEC3 gene. 

Virology 385:455-463. 

 124.  Luo, K., T. Wang, B. Liu, C. Tian, Z. Xiao, J. Kappes, and X. F. Yu. 2007. 

Cytidine deaminases APOBEC3G and APOBEC3F interact with human 

immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J 

Virol 81:7238-7248. 

 125.  Mangel, W. F., H. Delius, and P. H. Duesberg. 1974. Structure and molecular 

weight of the 60-70S RNA and the 30-40S RNA of the Rous sarcoma virus. Proc 

Natl Acad Sci U S A 71:4541-4545. 

 126.  Marin, M., S. Golem, K. M. Rose, S. L. Kozak, and D. Kabat. 2008. Human 

immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 

cytidine deaminases and moves with them between cytoplasmic sites of mRNA 

metabolism. J Virol 82:987-998. 

 127.  McAtee, F. J. and J. L. Portis. 1985. Monoclonal antibodies specific for wild 

mouse neurotropic retrovirus: detection of comparable levels of virus replication 

in mouse strains susceptible and resistant to paralytic disease. J Virol 56:1018-

1022. 

 128.  Mehle, A., B. Strack, P. Ancuta, C. Zhang, M. McPike, and D. Gabuzda. 

2004. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its 

degradation in the ubiquitin-proteasome pathway. J Biol Chem 279:7792-7798. 

 129.  Mehta, A., M. T. Kinter, N. E. Sherman, and D. M. Driscoll. 2000. Molecular 

cloning of apobec-1 complementation factor, a novel RNA-binding protein 

involved in the editing of apolipoprotein B mRNA. Mol Cell Biol 20:1846-1854. 

 130.  Muramatsu, M., V. S. Sankaranand, S. Anant, M. Sugai, K. Kinoshita, N. O. 

Davidson, and T. Honjo. 1999. Specific expression of activation-induced 

cytidine deaminase (AID), a novel member of the RNA-editing deaminase family 

in germinal center B cells. J Biol Chem 274:18470-18476. 

 131.  Murti, K. G., M. Bondurant, and A. Tereba. 1981. Secondary structural 

features in the 70S RNAs of Moloney murine leukemia and Rous sarcoma viruses 

as observed by electron microscopy. J Virol 37:411-419. 

 132.  Nagao, T., T. Yamashita, A. Miyake, T. Uchiyama, M. Nomaguchi, and A. 

Adachi. 2010. Different interaction between HIV-1 Vif and its cellular target 

proteins APOBEC3G/APOBEC3F. J Med Invest 57:89-94. 

 133.  Naso, R. B., L. H. Stanker, J. J. Kopchick, V. L. Ng, W. L. Karshin, and R. B. 

Arlinghaus. 1983. Further studies on the glycosylated gag gene products of 



 

94 

 

Rauscher murine leukemia virus: identification of an N-terminal 45,000-dalton 

cleavage product. J Virol 1983 Mar;45(3):1 45:1-6. 

 134.  Navarro, F., B. Bollman, H. Chen, R. Konig, Q. Yu, K. Chiles, and N. R. 

Landau. 2005. Complementary function of the two catalytic domains of 

APOBEC3G. Virology 333:374-386. 

 135.  NH Acheson. Fundamentals of molecular virology, Retroviruses, 272-283.  2006.  

Ref Type: Serial (Book,Monograph) 

 136.  Nitta, T., R. Tam, J. W. Kim, and H. Fan. 2011. The Cellular Protein La 

Functions in Enhancement of Virus Release through Lipid Rafts Facilitated by 

Murine Leukemia Virus Glycosylated Gag. MBio 2. 

 137.  Odaka, T., H. Ikeda, H. Yoshikura, K. Moriwaki, and S. Suzuki. 1981. Fv-4: 

gene controlling resistance to NB-tropic Friend murine leukemia virus. 

Distribution in wild mice, introduction into genetic background of BALB/c mice, 

and mapping of chromosomes. J Natl Cancer Inst 67:1123-1127. 

 138.  Okeoma, C. M., N. Lovsin, B. M. Peterlin, and S. R. Ross. 2007. APOBEC3 

inhibits mouse mammary tumour virus replication in vivo. Nature 445:927-930. 

 139.  Okeoma, C. M., J. Petersen, and S. R. Ross. 2009. Expression of murine 

APOBEC3 alleles in different mouse strains and their effect on mouse mammary 

tumor virus infection. J Virol 83:3029-3038. 

 140.  Ooms, M., S. Majdak, C. W. Seibert, A. Harari, and V. Simon. 2010. The 

localization of APOBEC3H variants in HIV-1 virions determines their antiviral 

activity. J Virol 84:7961-7969. 

 141.  Opi, S., S. Kao, R. Goila-Gaur, M. A. Khan, E. Miyagi, H. Takeuchi, and K. 

Strebel. 2007. Human immunodeficiency virus type 1 Vif inhibits packaging and 

antiviral activity of a degradation-resistant APOBEC3G variant. J Virol 81:8236-

8246. 

 142.  Oroszlan, S., C. W. Long, and R. V. Gilden. 1976. Isolation of murine type-C 

virus p30 precursor protein by DNA-cellulose chromatography. Virology 72:523-

526. 

 143.  Pal, B. K., R. M. McAllister, M. B. Gardner, and P. Roy-Burman. 1975. 

Comparative studies on the structural phosphoproteins of mammalian type C 

viruses. J Virol 16:123-131. 

 144.  Pandori, M. W., N. J. Fitch, H. M. Craig, D. D. Richman, C. A. Spina, and J. 

C. Guatelli. 1996. Producer-cell modification of human immunodeficiency virus 

type 1: Nef is a virion protein. J. Virol. 70:4283-4290. 



 

95 

 

 145.  Paprotka, T., N. J. Venkatachari, C. Chaipan, R. Burdick, K. A. viks-

Frankenberry, W. S. Hu, and V. K. Pathak. 2010. Inhibition of Xenotropic 

Murine Leukemia Virus-Related Virus by APOBEC3 Proteins and Antiviral 

Drugs. J Virol. 

 146.  Pearl, L. H. and W. R. Taylor. 1987. A structural model for the retroviral 

proteases. Nature 329:351-354. 

 147.  Pillemer, E. A., D. A. Kooistra, O. N. Witte, and I. L. Weissman. 1986. 

Monoclonal antibody to the amino-terminal L sequence of murine leukemia virus 

glycosylated gag polyproteins demonstrates their unusual orientation in the cell 

membrane. J Virol 57:413-421. 

 148.  Pincus, T., W. P. Rowe, and F. Lilly. 1971. A major genetic locus affecting 

resistance to infection with murine leukemia viruses. II. Apparent identity to a 

major locus described for resistance to friend murine leukemia virus. J Exp Med 

133:1234-1241. 

 149.  Pizzato, M. 2010. MLV glycosylated-Gag is an infectivity factor that rescues 

Nef-deficient HIV-1. Proc. Natl. Acad. Sci. U. S. A. 

 150.  Portis, J. L., S. Czub, C. F. Garon, and F. J. McAtee. 1990. Neurodegenerative 

disease induced by the wild mouse ecotropic retrovirus is markedly accelerated by 

long terminal repeat and gag-pol sequences from nondefective Friend murine 

leukemia virus. J Virol 64:1648-1656. 

 151.  Portis, J. L., R. Fujisawa, and F. J. McAtee. 1996. The glycosylated gag protein 

of MuLV is a determinant of neuroinvasiveness: analysis of second site revertants 

of a mutant MuLV lacking expression of this protein. Virology 226:384-392. 

 152.  Portis, J. L., S. Perryman, and F. J. McAtee. 1991. The R-U5-5' leader 

sequence of neurovirulent wild mouse retrovirus contains an element controlling 

the incubation period of neurodegenerative disease. J. Virol. 65:1877-1883. 

 153.  Portis, J. L., G. J. Spangrude, and F. J. McAtee. 1994. Identification of a 

sequence in the unique 5' open reading frame of the gene encoding glycosylated 

Gag which influences the incubation period of neurodegenerative disease induced 

by a murine retrovirus. J Virol 68:3879-3887. 

 154.  Prats, A. C., B. G. de, P. Wang, and J. L. Darlix. 1989. CUG initiation codon 

used for the synthesis of a cell surface antigen coded by the murine leukemia 

virus. J Mol Biol 205:363-372. 

 155.  Pryciak, P. M. and H. E. Varmus. 1992. Fv-1 restriction and its effects on 

murine leukemia virus integration in vivo and in vitro. J Virol 66:5959-5966. 

 156.  RAUSCHER, F. J. 1962. A virus-induced disease of mice characterized by 

erythrocytopoiesis and lymphoid leukemia. J Natl Cancer Inst 29:515-543. 



 

96 

 

 157.  Rein, A., M. R. McClure, N. R. Rice, R. B. Luftig, and A. M. Schultz. 1986. 

Myristylation site in Pr65gag is essential for virus particle formation by Moloney 

murine leukemia virus. Proc Natl Acad Sci U S A 83:7246-7250. 

 158.  Rose, J. K., W. A. Haseltine, and D. Baltimore. 1976. 5'-terminus of Moloney 

murine leukemia virus 35s RNA is m7G5' ppp5' GmpCp. J Virol 1976 Oct; 

20:324-329. 

 159.  Ross, S. R. 2009. Are viruses inhibited by APOBEC3 molecules from their host 

species? PLoS Pathog 5:e1000347. 

 160.  Rote, N. S., S. Chakrabarti, and B. P. Stetzer. 2004. The role of human 

endogenous retroviruses in trophoblast differentiation and placental development. 

Placenta 25. 

 161.  Roy, C., N. Tounekti, M. Mougel, J. L. Darlix, C. Paoletti, C. Ehresmann, B. 

Ehresmann, and J. Paoletti. 1990. An analytical study of the dimerization of in 

vitro generated RNA of Moloney murine leukemia virus MoMuLV. Nucleic Acids 

Res 18:7287-7292. 

 162.  Rulli, S. J., Jr., J. Mirro, S. A. Hill, P. Lloyd, R. J. Gorelick, J. M. Coffin, D. 

Derse, and A. Rein. 2008. Interactions of murine APOBEC3 and human 

APOBEC3G with murine leukemia viruses. J Virol 82:6566-6575. 

 163.  Santiago, M. L., M. Montano, R. Benitez, R. J. Messer, W. Yonemoto, B. 

Chesebro, K. J. Hasenkrug, and W. C. Greene. 2008. Apobec3 encodes Rfv3, a 

gene influencing neutralizing antibody control of retrovirus infection. Science 

321:1343-1346. 

 164.  Santiago, M. L., M. Montano, R. Benitez, R. J. Messer, W. Yonemoto, B. 

Chesebro, K. J. Hasenkrug, and W. C. Greene. 2008. Apobec3 encodes Rfv3, a 

gene influencing neutralizing antibody control of retrovirus infection. Science 

(New York, N. Y 321:1343-1346. 

 165.  Santiago, M. L., D. S. Smith, B. S. Barrett, M. Montano, R. L. Benitez, R. 

Pelanda, K. J. Hasenkrug, and W. C. Greene. 2011. Persistent Friend virus 

replication and disease in Apobec3-deficient mice expressing functional B-cell-

activating factor receptor. J Virol 85:189-199. 

 166.  Schlaberg, R., D. J. Choe, K. R. Brown, H. M. Thaker, and I. R. Singh. 2009. 

XMRV is present in malignant prostatic epithelium and is associated with prostate 

cancer, especially high-grade tumors. Proc Natl Acad Sci U S A 106:16351-

16356. 

 167.  Schwartz, D. E., P. C. Zamecnik, and H. L. Weith. 1977. Rous sarcoma virus 

genome is terminally redundant: the 3' sequence. Proc Natl Acad Sci U S A 

74:994-998. 



 

97 

 

 168.  Schwartz, O., V. Marechal, O. Danos, and J. M. Heard. 1995. Human 

immunodeficiency virus type 1 Nef increases the efficiency of reverse 

transcription in the infected cell. J. Virol. 69:4053-4059. 

 169.  Schwartz, O., V. Marechal, G. S. Le, F. Lemonnier, and J. M. Heard. 1996. 

Endocytosis of major histocompatibility complex class I molecules is induced by 

the HIV-1 Nef protein. Nat. Med. 2:338-342. 

 170.  Seif, I., G. Khoury, and R. Dhar. 1979. The genome of human papovavirus 

BKV. Cell 18:963-977. 

 171.  Selten, G., H. T. Cuypers, M. Zijlstra, C. Melief, and A. Berns. 1984. 

Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency 

and mechanisms of activation. EMBO J 1984 Dec 3:3215-3222. 

 172.  Sheehy, A. M., N. C. Gaddis, J. D. Choi, and M. H. Malim. 2002. Isolation of a 

human gene that inhibits HIV-1 infection and is suppressed by the viral Vif 

protein. Nature 418:646-650. 

 173.  Sheehy, A. M., N. C. Gaddis, and M. H. Malim. 2003. The antiretroviral 

enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. 

Nat. Med. 9:1404-1407. 

 174.  Sitbon, M., H. Ellerbrok, F. Pozo, J. Nishio, S. F. Hayes, L. H. Evans, and B. 

Chesebro. 1990. Sequences in the U5-gag-pol region influence early and late 

pathogenic effects of Friend and Moloney murine leukemia viruses. J Virol 

64:2135-2140. 

 175.  Sitbon, M., J. Nishio, K. Wehrly, D. Lodmell, and B. Chesebro. 1985. Use of a 

focal immunofluorescence assay on live cells for quantitation of retroviruses: 

distinction of host range classes in virus mixtures and biological cloning of dual-

tropic murine leukemia viruses. Virology 141:110-118. 

 176.  Sitbon, M., B. Sola, L. Evans, J. Nishio, S. F. Hayes, K. Nathanson, C. F. 

Garon, and B. Chesebro. 1986. Hemolytic anemia and erythroleukemia, two 

distinct pathogenic effects of Friend MuLV: mapping of the effects to different 

regions of the viral genome. Cell 47:851-859. 

 177.  Smit, A. F. 1999. Interspersed repeats and other mementos of transposable 

elements in mammalian genomes. Curr Opin Genet Dev 9:657-663. 

 178.  Sorge, J. and S. H. Hughes. 1982. Polypurine tract adjacent to the U3 region of 

the Rous sarcoma virus genome provides a cis-acting function. J Virol 43:482-

488. 

 179.  Soros, V. B., W. Yonemoto, and W. C. Greene. 2007. Newly synthesized 

APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and 

subsequently activated by RNase H. PLoS Pathog 3:e15. 



 

98 

 

 180.  Sova, P. and D. J. Volsky. 1993. Efficiency of viral DNA synthesis during 

infection of permissive and nonpermissive cells with vif-negative human 

immunodeficiency virus type 1. J Virol 67:6322-6326. 

 181.  Staats, J. 1976. Standardized nomenclature for inbred strains of mice: sixth 

listing. Cancer Res 36:4333-4377. 

 182.  Stopak, K., N. C. de, W. Yonemoto, and W. C. Greene. 2003. HIV-1 Vif blocks 

the antiviral activity of APOBEC3G by impairing both its translation and 

intracellular stability. Mol. Cell 12:591-601. 

 183.  Stopak, K. S., Y. L. Chiu, J. Kropp, R. M. Grant, and W. C. Greene. 2007. 

Distinct patterns of cytokine regulation of APOBEC3G expression and activity in 

primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 282:3539-

3546. 

 184.  Stremlau, M., C. M. Owens, M. J. Perron, M. Kiessling, P. Autissier, and J. 

Sodroski. 2004. The cytoplasmic body component TRIM5alpha restricts HIV-1 

infection in Old World monkeys. Nature 427:848-853. 

 185.  Suspene, R., P. Sommer, M. Henry, S. Ferris, D. Guetard, S. Pochet, A. 

Chester, N. Navaratnam, S. Wain-Hobson, and J. P. Vartanian. 2004. 

APOBEC3G is a single-stranded DNA cytidine deaminase and functions 

independently of HIV reverse transcriptase. Nucleic Acids Res 32:2421-2429. 

 186.  Svarovskaia, E. S., H. Xu, J. L. Mbisa, R. Barr, R. J. Gorelick, A. Ono, E. O. 

Freed, W. S. Hu, and V. K. Pathak. 2004. Human apolipoprotein B mRNA-

editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into 

HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 

279:35822-35828. 

 187.  Takeda, E., S. Tsuji-Kawahara, M. Sakamoto, M. A. Langlois, M. S. 

Neuberger, C. Rada, and M. Miyazawa. 2008. Mouse APOBEC3 restricts 

friend leukemia virus infection and pathogenesis in vivo. J Virol 82:10998-11008. 

 188.  Takeda, E., S. Tsuji-Kawahara, M. Sakamoto, M. A. Langlois, M. S. 

Neuberger, C. Rada, and M. Miyazawa. 2008. Mouse APOBEC3 restricts 

friend leukemia virus infection and pathogenesis in vivo. J Virol 82:10998-11008. 

 189.  Teng, B., C. F. Burant, and N. O. Davidson. 1993. Molecular cloning of an 

apolipoprotein B messenger RNA editing protein. Science (New York, N. Y 

260:1816-1819. 

 190.  Towers, G., M. Bock, S. Martin, Y. Takeuchi, J. P. Stoye, and O. Danos. 2000. 

A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci 

U S A 97:12295-12299. 



 

99 

 

 191.  Towers, G., M. Collins, and Y. Takeuchi. 2002. Abrogation of Ref1 retrovirus 

restriction in human cells. J Virol 76:2548-2550. 

 192.  Turelli, P., A. Liagre-Quazzola, B. Mangeat, S. Verp, S. Jost, and D. Trono. 

2008. APOBEC3-independent interferon-induced viral clearance in hepatitis B 

virus transgenic mice. J Virol 82:6585-6590. 

 193.  Urisman, A., R. J. Molinaro, N. Fischer, S. J. Plummer, G. Casey, E. A. Klein, 

K. Malathi, C. Magi-Galluzzi, R. R. Tubbs, D. Ganem, R. H. Silverman, and 

J. L. Derisi. 2006. Identification of a novel Gammaretrovirus in prostate tumors 

of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2:e25. 

 194.  van der, P. H., W. Quint, R. J. van, E. R. Maandag, I. M. Verma, and A. 

Berns. 1981. M-MuLV-induced leukemogenesis: integration and structure of 

recombinant proviruses in tumors. Cell 24:729-739. 

 195.  Varmus, H. E., S. Heasley, H. J. Kung, H. Oppermann, V. C. Smith, J. M. 

Bishop, and P. R. Shank. 1978. Kinetics of synthesis, structure and purification 

of avian sarcoma virus-specific DNA made in the cytoplasm of acutely infected 

cells. J Mol Biol 1978 Mar 25;1 120:55-82. 

 196.  Vetter, M. L. and R. T. D'Aquila. 2009. Cytoplasmic APOBEC3G restricts 

incoming Vif-positive human immunodeficiency virus type 1 and increases two-

long terminal repeat circle formation in activated T-helper-subtype cells. J Virol 

83:8646-8654. 

 197.  von, S. U., J. Song, C. Aiken, and D. Trono. 1993. Vif is crucial for human 

immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 

67:4945-4955. 

 198.  Weissmann, C., J. T. Parsons, J. W. Coffin, L. Rymo, M. A. Billeter, and H. 

Hofstetter. 1975. Studies on the structure and synthesis of Rous sarcoma virus 

RNA. Cold Spring Harb Symp Quant Biol 39 Pt 2:1043-1056. 

 199.  Wichroski, M. J., K. Ichiyama, and T. M. Rana. 2005. Analysis of HIV-1 viral 

infectivity factor-mediated proteasome-dependent depletion of APOBEC3G: 

correlating function and subcellular localization. J Biol Chem 280:8387-8396. 

 200.  Xu, H., E. Chertova, J. Chen, D. E. Ott, J. D. Roser, W. S. Hu, and V. K. 

Pathak. 2007. Stoichiometry of the antiviral protein APOBEC3G in HIV-1 

virions. Virology 360:247-256. 

 201.  Yang, B., K. Chen, C. Zhang, S. Huang, and H. Zhang. 2007. Virion-associated 

uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in 

the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem 

282:11667-11675. 



 

100 

 

 202.  Zabransky, A., R. Hadravova, J. Stokrova, M. Sakalian, and I. Pichova. 2009. 

Premature processing of mouse mammary tumor virus Gag polyprotein impairs 

intracellular capsid assembly. Virology 384:33-37. 

 203.  Zhang, L., X. Li, J. Ma, L. Yu, J. Jiang, and S. Cen. 2008. The incorporation of 

APOBEC3 proteins into murine leukemia viruses. Virology 378:69-78. 

 204.  Zielonka, J., I. G. Bravo, D. Marino, E. Conrad, M. Perkovic, M. Battenberg, 

K. Cichutek, and C. Munk. 2009. Restriction of equine infectious anemia virus 

by equine APOBEC3 cytidine deaminases. J Virol 83:7547-7559. 

 

 


	INTERACTIONS BETWEEN THE GLYCOSYLATED GAG PROTEIN OF A MURINE LEUKEMIA VIRUS AND MURINE APOBEC3: NOVEL INSIGHTS INTO HOW A MURINE LEUKEMIA VIRUS COUNTERACTS A RESTRICTION FACTOR
	Let us know how access to this document benefits you.
	Recommended Citation

	OFFICIAL SIGNATURE PAGE TEMPLATE (To be turned in to the Graduate School with your one certified copy

