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Covino, James J., M.S. November 2007     Chemistry 
 
Repair and Effects of the 8-oxoG Lesion in DNA 
 
Chairperson: Kent D. Sugden  
 
  Eukaryotic DNA is packaged in a condensed state with histone proteins.  The minimal 
structural unit within packaged eukaryotic DNA is the nucleosome core particle (NCP). 
The NCP consists of a 146 bp DNA fragment wrapped around an octamer of histone core 
proteins.  Nucleosome core particle formation induces DNA structural changes and 
reduced DNA accessibility providing a very different setting than that commonly 
modeled by in vitro studies.  In vitro reconstituted NCP provide a controlled environment 
that more closely models eukaryotic DNA than studies using naked DNA.  Reconstituted 
NCP studies of DNA damage have exhibited a spectrum of effects compared to naked 
DNA ranging from protective, enhanced, and no effect.  The nature of the effect appears 
to be related to the type of oxidant, its sterics and interactions with the histone surface 
and altered DNA structure.  While there is differences in efficiencies of oxidation of 
nucleobases throughout the nucleosome, nucleobase oxidation is still widespread within 
the genome.  
   DNA repair processes that combat global DNA oxidation are crucial to cell survival. 
One major cellular repair mechanism that is employed to remove DNA damage is base 
excision repair (BER).  The BER pathway involves the concerted activity of a small 
number of proteins which catalyze individual reactions in a chemical pathway that repairs 
single nucleotide lesions.  In vivo, the majority of  DNA is wrapped around histones and 
the repair machinery of BER has to work within or around the structure of the 
nucleosome and deal with a distorted DNA structure and reduced accessibility due to the 
presence of bulky histone proteins.  
  To address the questions of DNA damage and repair in the nucleosome an in-vitro 
nucleosomal system was established by reconstituting purified histones and a 154 bp 
wrapping fragment from the Xenopus borealis 5S rRNA gene to form individual 
nucleosome core particles (NCP).  The effect of nucleosome formation on chromium- 
mediated DNA damage and the efficiency of BER glycosylase cleavage of the lesion 8-
oxoG were investigated. 
  Base excision of  8-oxoG by Fpg and hOGG1 indicated that:  i) the position of the 
lesion 8-oxoG in naked DNA can influence BER activity; ii) nucleosomal formation 
decreases the activity of these BER enzymes by as much as 2.5 fold with a rotational 
dependence exhibiting increased cleavage towards the more accessible lesion; iii) the 
rotational dependence for both Fpg and hOGG1 was almost identical, however hOGG1 
showed better cleavage in the nucleosome setting relative to free DNA at earlier time 
points. 
  An additional study was done to examine the potential of 8-oxoG lesions to mimic 
cytosine methylation effects with regard to the activity of a methyl-sensitive 
endonuclease. Using enzyme cleavage assays the effects of placing an 8-oxoG or 
methylated cytosine into the recognition sequence of a restriction endonuclease, NotI, 
were investigated. Results indicate identical inhibitory effects between 8-oxoG and 
cytosine methylation, hinting at a potential role of 8-oxoG in epigenetics.  
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Chapter 1: Nucleosomal DNA Damage 
 
1.1 Introduction: The Nucleosome 
 

 The human genome of 3 billion base pairs would extend over a meter if 

unraveled, however nature has engineered a way to compact it into a nucleus with a 

diameter of only 10-5 meters [1].  Such compaction is possible due to histone proteins that 

mediate the folding of DNA into nucleosomes, and subsequently allow the formation of 

higher order chromatin structures that facilitate the compaction of DNA up to 10,000 fold  

its naked length [2].  The foundation of this engineering feat is the nucleosome.  The 

nucleosome consists of an octamer of core histones - two dimers of H2A-H2B and a 

tetramer of H3-H4 , 146 base pairs of wrapped DNA in a left handed superhelix, and a 

linker histone, such as H1 or H5.  

 DNA - histone binding occurs through a vast number of hydrogen bonds and  the 

coulombic interactions between positively charged amino acids on the histone surface 

and the abundance of  negatively charged phosphate oxygens in the DNA backbone [3,4].  

The majority of these bonds are between arginine or lysine and the DNA backbone [3,4].  

Hydrogen bonding to the phosphate backbone can also occur through histidine as well as 

the amino terminal end of amino acid chains [3,4].  

 Nucleosomal formation reduces accessibility to DNA in addition to producing 

DNA deformation, figure 1.1.  Overall nucleosomal DNA is stretched leaving a 

periodicity average of 10.2 base pairs per turn compared with 10.4 base pairs per turn in 

naked B form DNA [1,3].  Such DNA deformation is non-uniform with areas of 

increased bending and altered periodicity.  Early studies utilizing highly reactive singlet 

oxygen and hydroxyl radical cleavage illustrated a non-uniform deformed state in the 
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nucleosome.  Singlet oxygen preferentially reacted towards DNA 1.5 turns on either side 

of the center of the nucleosome, which is referred to as the dyad [5].  Hydroxyl radical 

cleavage illustrated an altered helical periodicity with the three turns of DNA over the 

dyad having 10.7 bp/turn and the remaining turns of DNA having 10.0 bp/turn [1].  The 

2.8 Ǻ resolution crystal structure of the nucleosome confirmed the non-uniform deformed 

state revealing a maximum curvature and radius at 1.5 and 4.5 turns on either side of the 

dyad  [4].  

A) 

NCP 
 

 

 

 

 

 

DNA 

 

Figure 1.1 Illustration of DNA wrapping of DNA around the histone octamer core. 
 A) Top: Dimensions of the nucleosome: histone octamer represented by a cylinder, 
DNA by a tube. Bottom: Path of one turn of nucleosomal DNA:  the numbers represent 
one turn of DNA, and arrows represent places of increased distortion. B) Nucleosome 
cross section showing rotational accessibility of DNA. Orange square represents 
histone, circles represent DNA. Red regions indicate solution accessible grooves in 
nucleosomal DNA [1]. 

Nucleosome cross section 

 Histone
B) 

Accessible 
regions 
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Nucleosomal DNA exhibits a sequence dependence to nucleosome formation. 

Sequence dependent wrapping efficiencies have been correlated to the ease of 

compression of the minor grooves facing the histone protein, which facilitates the 

bending of the superhelix around the histone octamer.  A-T base pairs are more easily 

compressed into the minor groove facing the histone surface compared with G-C 

sequences.  DNA and histones will position themselves to maximize such interactions [1-

3].  Research has illustrated a high degree of variation in DNA sequence affinities for 

nucleosome formation with a 1000 fold difference between the lowest and highest 

affinity DNA [6].   

 

1.2 Chromium induced DNA damage   

The cellular uptake and metabolism of chromate is described by the classical 

uptake-reduction model [7].  Hexavalent chromium, being structurally similar with 

phosphate and sulfate, allows for passive uptake through nonselective anionic membrane 

channels, figure 1.2.  Once internalized, chromate is rapidly reduced to Cr(III) by 

endogenous reductants resulting in the unidirectional accumulation of chromium in the 

cell.  Accumulations of intracellular chromium at concentrations greater than 1 mM have 

been observed in cell culture following a 10 µM chromate exposure in the extra-cellular 

media [8].   
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Figure 1.2  Chromate’s structural similarity to sulfate and phosphate. 

 

During the reduction of chromate a number of redox active species including 

reactive oxygen species (ROS), carbon- and sulfur-centered radicals and high valent 

chromium intermediate species, Cr(V) and Cr(IV) can be formed [10-24].   Nearly all of 

these species are capable of damaging DNA and yields of the different radical and metal 

species have been found to be dependent upon the type of reductant, the 

reductant/chromate ratio, pH, and oxygen concentration [10-24].  This wide assortment of 

potential DNA damaging agents has led to considerable discussion on the ultimate 

species responsible for DNA damage associated with chromate toxicity.  Two different 

pathways have been proposed to account for DNA damage associated with chromate: the 

radical-mediated and the metal-mediated pathway (for a comprehensive explanation of 

these chromium mediated pathways see a recent review by Covino and Sugden, [9]).   

 4



Oxidative DNA damage as a result of Cr(VI) metabolism is believed to be one of 

the critical steps in the carcinogenetic effects of chromium.  DNA oxidation can occur 

either at the deoxyribose sugar or at one of the four nucleic acid bases.  Depending upon 

the site of oxidation, different lesions with differing mutagenic and toxic endpoints can 

be formed.  Exposure to chromate has been shown to cause frank DNA strand breaks and 

abasic sites in bacterial and mammalian systems [25-31].  Frank strand breaks occur by 

oxidation of the deoxyribose sugar through electron abstraction.  Thermodynamically, 

hydrogen atom abstraction is favored at the tertiary hydrogens, 1’, 3’, 4’, over the 

secondary hydrogens, 2’, 5’,  due to the enhanced stability of the resulting tertiary 

radicals over secondary radicals, figure 1.3.  However, accessibility to the deoxyribose 

hydrogens in duplex DNA is a more controlling factor than thermodynamics alone.  The 

increased solvent accessibility of the, 4’ and 5’ hydrogen(s) in duplex DNA makes them 

more likely to be abstracted than the thermodynamically favored but less accessible 

hydrogens [32].  

 

B
O

HO

HH

HH

O
H

H

1'

2'

3'

4'

5'
Radical Stability

1', 4', 3'  > 2', 5'

 

 

Figure 1.3 Deoxyribose structure showing hydrogen atoms available for abstraction [9]. 
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In addition to frank strand breaks exposure to chromate has been shown to cause  

nucleobase oxidation.  Historically the 8-oxo-7,8-dihydro-2'-deoxyguanosine  (8-oxoG)   

lesion has been associated with DNA nucleobase oxidation.  8-oxoG has been shown to 

form from a variety of redox active xenobiotics and endogenous metabolic processes.  It 

has been estimated that 8-oxoG occurs at a frequency of ~10,000 bp per cell per day [33].  

Because of its high frequency of occurrence, 8-oxoG has been implicated in the etiology 

of a large number of diseases and has been extensively used as a sensitive biomarker for 

oxidative damage to the cell [34-36].  The basis for the relatively high levels of cellular 

8-oxoG formation is the enhanced sensitivity of the nucleobase guanine towards 

oxidation with respect to the other nucleic acid bases, figure 1.4 [37].  The sensitivity of 

guanine towards oxidation is further enhanced within duplex DNA in consecutive runs of 

guanines at the 5’ of GG and GGG sequences [38].  In addition, the 8-oxoG lesion has a 

significantly lower reduction potential than the parent guanine, making it highly reactive 

toward further oxidation [39].  High valent chromium species have reduction potentials 

adequate to oxidize guanine within duplex DNA as well as the 8-oxoG lesion as the free 

nucleoside [40].  This thermodynamic basis explains chromate’s propensity to cause 

exclusive guanine nucleobase damage forming both 8-oxoG as well as further oxidized 

guanine lesions. 
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DNA with consecutive runs.  Dashed lines show the calculated reduction potentials of 
different high valent oxidation states of chromium with respect to the nucleoside or DNA 
[9]. 
  

The formation of 8-oxoG in DNA following chromate exposure has been shown 

in a variety of in vitro, cellular (ex vivo) and in vivo systems.  However, not all chromate 

treated systems have shown 8-oxoG formation.  Irrespective of these inconsistencies, the 

mechanism associated with 8-oxoG formation by chromate has historically been tied to 

reactive oxygen species (ROS) production, pathways a and c in figure 1.5.  Recently a 

number of other mechanisms have been postulated to account for the formation of this 

ubiquitous guanine lesion.  Two such mechanisms are the electron abstraction 

mechanism, pathway b in figure 1.5, and a metal-mediated oxo-atom transfer mechanism 

such as that shown in pathway d of figure 1.5.  Regardless of the mechanism, the final 8-
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oxoG product is the same for all pathways and discerning between these pathways to 

identify the ultimate species responsible for guanine oxidation is often difficult. 
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Figure 1.5  Multiple pathways of 8-oxoG formation by chromium or ROS [9]. 

 

1.3 Nucleosomal Chemical Damage 

The in vitro cross-linking and oxidation of free DNA by numerous agents has 

been examined extensively in the literature.  However, in eukaryotes nearly 80 % of 

nuclear DNA is wrapped around histones providing a significantly different DNA 

structural setting.  Studies on nucleosomal DNA damage can be categorized into two 

schools of experimental approach.  The first resembles an pseudo-in vivo approach 

whereby intact nucleosome structures were extracted from cells, treated and then 

examined.  Such studies provided a general feeling for the effect of the nucleosome 
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setting but lacked the ability to probe in detail any mechanistic or structural effects of the 

NCP alone.  Generally, such studies inferred regions of localized DNA damage, such as 

in linker DNA or in Nucleosomal regions.  The second approach utilizes extracted 

histone proteins and a known sequence of DNA to create a reconstituted nucleosome core 

particle.  The reconstituted NCP system allows for a detailed systematic study of the 

effect of the NCP on DNA processes.  DNA fragments commonly used for reconstitution 

are a 154 bp fragment of  the Xp-11 plasmid from the 5S rRNA gene of X. borealis, the 

146 bp fragment from the L. variegatus 5S rRNA gene or the 134 bp fragment of the S. 

cerevisiae  DED1 promoter (HISAT sequence) [41].  The use of these fragments for 

chemical modification studies has allowed accurate controls, cross comparisons, site 

directed (rotational and translational) and sequence specificity studies.  The sequence of 

the Xp11 154 bp 5S rRNA gene fragment is ideal for oxidative damage studies with its 

high guanine content, numerous GC-CG base pair steps as well as a run of eight guanines 

that are coincident with the more deformed wrapping region of DNA, figure 1.6. 

 The chemical agents investigated with the 154 bp 5s rRNA gene have included 

Cu(II)/H2O2  and Fe(II)EDTA Fenton chemistry,  protein crosslink studies utilizing cis 

and trans-diamminedichloroplatinum (II), nitrogen mustard family antitumor agents and  

benzo[a]pyrenediol epoxide.  Additional agents such as bleomycin, neocarzinostatin, 

melphalan and UV light have been investigated using the Xenopus laevis and HISAT 

sequences.  Collectively, reconstitution and pseudo-in vivo studies of  nucleosomal DNA 

damage have exhibited a spectrum of effects compared to naked DNA ranging from 

protective, enhanced, and even no effect.  The nucleosome protects DNA from damage 

from a diverse array of agents including bulky chemicals: N-acetoxy-2-
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acetylaminofluorene [42], aflatoxin [43], benzo[alpha]pyrene diol epoxide [44, 45]; small 

alkylating agents:  n-methyl-n-nitrosourea (MNU)  [46]; ionizing radiation:  γ-ray [47]; 

antitumor drugs: bleomycin, neocarzinostatin, and melphalan  [48, 49]; cross-linking 

agents:  cisplatin and its analogues [50], mitomycin C [51], trimethylpsoralen [52]; and 

Fe(II) Fenton generated radicals [53, 54].  No protective effect has been observed with 

agents such as UV radiation [55], dimethylsulfate [46, 56], and cis- and trans-

diamminedichloroplatinum(II) [57].  One study to date, has shown increased DNA 

cleavage in the nucleosome with low concentrations of Cu(II) generated Fenton 

chemistry [58].      

AATTCGAGCT CGCCCGGGGA TCCGGCTGGG CCCCCCCCAG AAGGCAGCAC       
TTAAGCTCGA GCGGGCCCCT AGGCCGACCC GGGGGGGGTC TTCCGTCGTG 
 
AAGGGGAGGA AAAGTCAGCC TTGTGCTCGC CTACGGCCAT ACCACCCTGA 
TTCCCCTCCT TTTCAGTCGG AACACGAGCG GATGCCGGTA TGGTGGGACT    
 
AAGTGCCCGA TATCGTCTGA TCTCGGAAGC CAAGCAGGGT CGGGCCTGGT    
TTCACGGGCT ATAGCAGACT AGAGCCTTCG GTTCGTCCCA GCCCGGACCA 
 
TAGT 
ATCA 

 

Figure 1.6 Sequence of the EcoRI-RsaI restriction fragment of the Xenopus borealis 5S 
rRNA gene 

 
All these studies have provided mixed results with regard to the localization of 

DNA damage in the NCP.  However, given the nature of histones to dictate DNA region 

accessibility, different results would be expected depending upon the mechanism of 

modification, steric considerations and the area of localized attack.  Nonetheless, 

correlations cannot be viewed as being ideally straightforward.  Despite the altered state 
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of DNA in the nucleosome, long range charge transport can still occur [59].  Disruption 

of the integrity of nucleosome core particles by  experimentation can also provide further 

discrepancies when conducting these studies.  Such discrepancies are illustrated by the 

conflicting results of ciplatin damage observed between the Millard and Wilkes [57] and 

Galea and Murray studies [50].  

 The Cu(II)/H2O2  study by Liang and Dedon used reconstituted nucleosome core 

particles (formed from the 154 bp Xp11 fragment) as a model to examine the protective 

nature of the nucleosome against copper- and iron- mediated Fenton chemistry [58].  

Rather than protection, an enhanced oxidation of nucleosomal DNA relative to naked 

DNA was generated by Cu(II) pseudo-Fenton chemistry at lower concentrations with a 2 

fold increase in strand breaks and a 8 fold increase in base lesions sensitive to Fpg and 

EndoIII.  In nucleosomal DNA oxidative damage of base lesions outnumbered strand 

breaks by a factor of  3-4  while in naked DNA the ratio of strand breaks to base lesions 

was 0.6.  In both naked and NCP substrates damage to nucleobases was localized around 

regions of guanine abundance.  While Fe(II)-EDTA hydroxyl radical studies exhibited a 

rotational footprint no apparent footprinting effect was seen in the nucleosome with 

copper Fenton chemistry.  Explanations for these results were ascribed to the high affinity 

of Cu(II) for amines, which are highly concentrated on the surface of the histone, and an 

increased accessibility and reactivity due to DNA structural changes set forth by the 

nucleosome [58].  The question now is how will chromium interact with the NCP and 

what effect will the DNA structural changes set forth by the nucleosome have on 

chromium mediated DNA oxidation? 
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1.3.1 Chromium Mediated DNA Damage to Free and Nucleosomal DNA Substrates 

 The focus of this project is to study the effects of the nucleosome structure on 

chromium-induced DNA damage.  Of particular interest is to determine if the 

translational and rotational setting and DNA perturbations set forth by the nucleosome 

will enhance or protect DNA against damage and dictate oxidative hot spots.  In the 

process of reduction chromate exposure has illustrated the ability to attack through metal 

mediated and radical pathways,  primarily attacking, respectively, the nucleobase or the 

deoxyribose [9].  It is expected that the distribution of nucleosomal DNA damage will 

depend upon the dominant mechanistic route.  Chromate Fenton-like chemistry (using 

ascorbic acid and H2O2) will create hydroxyl and ascorbate radicals in addition to high 

valent chromium complexes [18].  It was our hypothesis that damage mediated by this 

mechanism will be mitigated in nucleosomal substrates and that a rotational dependence 

of oxidation would be observed with increased oxidation on DNA facing away from the 

histone surface.  The high valent chromium complexes Cr(IV) and Cr(V) that are 

generated by the reduction of chromate by ascorbic acid are capable of oxidizing DNA 

through a metal mediated pathway [9].  Metal mediated oxidation as a result of chromate 

reduction was also expected to exhibit a damage pattern consistent with hindered access 

to DNA in the nucleosome.  It was expected that metal-mediated oxidation would exhibit 

an increased rotational dependence relative to hydroxyl radical damage due to differences 

in accessibility.  It was unclear how the affinity of high valent chromium(V) for the DNA 

phosphate backbone [60] would affect the propensity for strand breaks or nucleobase 

oxidation.  However, it was believed that both mechanistic pathways would favor 

nucleobase damage over sugar damage in the nucleosomal setting due to increased 
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relative accessibility set forth by  the nucleosome.  Given the oxidative sensitivity of 

guanine that is enhanced within consecutive runs of guanines at the 5’ of GG and GGG 

sequences, oxidation was expected to be localized to these regions.  In addition, given the 

reduced size of the minor groove in the nucleosome, and increased accessibility to the N7 

in the major groove of duplex DNA it was expected that the majority of nucleobase DNA 

damage would also be localized to guanine(s) in the major groove facing away from the 

histone surface.  

 

1.4 Materials and Methods 

1.4.1 Histone Extraction  

 All steps were done on ice or at 4 oC.  Frozen chicken blood was thawed in 6% sodium 

citrate and clots were broken up with a loose fitting Dounce homogenizer.  Samples were 

centrifuged at 2,000 x g for 10 min then resuspended in 15 mM sodium citrate and 150 

mM NaCl.  The nuclear pellet was frozen and thawed in a cell lysis buffer [100 mM Tris 

(pH 7.2), 150 mM NaCl, 0.5 mM PMSF], washed 4-5 times with 0.2% Igepal (Sigma) 

and the buffy coat was removed.  Nuclei were ruptured with a nuclei lysis buffer [100 

mM Tris (pH 7.8), 2 mM EDTA, 0.5 mM PMSF] and chromatin was pelleted by 

centrifugation at 16,000 x g for 30 min.  Nucleosomal DNA was digested with 10,000 

units of micrococcal nuclease (NEB) in 10 mM Tris (pH 7.8) and 1 mM CaCl2 at room 

temperature for 1 hour with successive trituration with broken pasteur pipets of orifices 

~4, 3, 2, and 1 mm.  The digestion was stopped with the addition of EDTA to a final 

concentration of 2 mM.  The sample was spun at 10,000 x g for 30 min and the pellet was 

discarded.  H1 internucleosomal linker histones were removed by cation exchange by 
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stirring the supernatant with CM-Sephadex C-25 (30 mg/mL) with a slow NaCl gradient 

to a final concentration of 50 mM.  After centrifugation at 10,000 x g for 10 min the 

resulting supernatant was collected and dialyzed overnight in a slide-alyzer cassette 

(Pierce 10,000 MWCO) against 20 mM Tris (pH 7.8), 0.2 mM EDTA.  Following 

centrifugation at 10,000 x g for 10 min the supernatant was digested again with 10,000 

units of micrococcal nuclease (NEB) in 10 mM Tris (pH 7.8) and 1 mM CaCl2 at 37 oC 

for 30 min.  The reaction was brought to 125 mM NaCl, placed on ice and stirred for 60 

min.  After centrifugation at 10,000 x g for 15 min the supernatant was dialyzed 

overnight against 20 mM Tris (pH 7.2), and 0.2 mM EDTA.  Additional dialysis steps 

were done in 20 mM Tris (pH 7.2) to remove EDTA.  The sample was lyophilized to 

dryness and relative protein concentration was determined using a BCA assay (Pierce, 

IL).  The presence of histone protein was confirmed with an 18% SDS PAGE gel with 

Coomassie staining.  

 1.4.2 DNA Amplification 

The Xp11 plasmid was obtained from Dr. Julie Millard at Colby College (ME).  The 

plasmid was introduced by transformation into E.coli DH5α and grown in sufficient 

quantities using standard techniques [61].  Primers were designed to allow amplification 

of the 154 bp high affinity wrapping fragment.  The reverse primer was purchased with a 

5’ phosphate group to allow for 5’-32P  labeling of only the forward strand.  Amplified 

products were identified and purified from 1.2% Agarose gels using QIAex gel extraction 

kit (Qiagen).  The following oligonucleotide primers were used in this study: Forward 

primer-5’-AAT TCG AGC TCG CCC, Reverse primer-5’-Phos- ACT AAC CAG GCC 

CGA 

 14



1.4.3 Substrate Preparation 

DNA substrates were quantified using A260 absorbance values.  DNA was 5’-32P  labeled 

with [γ-32P] ATP (GM Healthcare) using 10 units of T4 polynucleotide kinase (T4 PNK, 

New England Biolabs)  and 1x T4 PNK buffer at 37 o C for 40 min.  Following labeling 

the oligonucleotides were purified using  Micro Bio-Spin 30 (Biorad) columns. 

 1.4.4 Reconstitution  

5’-32P  labeled 154 bp fragments were incubated with histone protein (0.8:1 molar ratio) 

in 1 M NaCl, 10 mM Tris ( pH 7.2), and 1 mM PMSF (28 µL total volume) for 1 hr on 

ice.  Aliquots of 10 mM phosphate, Tris-HCl or MOPS Buffer (pH 7.5) were added at 1 

hour intervals to dilute the NaCl concentration in a stepwise manner to 0.8, 0.67, and  0.1 

M NaCl.  Free and nucleosomal DNA were separated on a 6% native PAGE gel (30.19:1, 

acrylamide/Bis) containing 5 % glycerol, and run in 0.5X TBE at 220 V for 20 min. 

Autoradiography was utilized to visualize reconstitution.  Wrapping efficiency was 

determined by densitometry of the wrapped and unwrapped bands with Bio-Rad Quantity 

One software.  

 1.4.5 Cr(VI)/Ascorbate  Damage  

Ascorbic acid (>99%) and sodium dichromate were purchased from Sigma-Aldrich.  The 

154 bp free and nucleosomal DNA (1-7 µg) were treated with Cr(VI) and Ascorbate at 

ratios of 1:1, 1:5 and 1:10 respectively.  Concentrations of Cr(VI) varied from 25-200 µM  

with ascorbate ratios of  10:1 to 1:1.  Hydrogen peroxide when utilized, was added last at 

concentrations up to 500 µM.  Treatments were carried out for 1 hour at room 

temperature.   
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1.4.6 Analysis of Site and Sequence-Specific Oxidation of DNA by Chromium 

All DNA samples were purified by phenol:chloroform extraction followed by Micro Bio-

Spin 6 or 30 chromatography columns (BioRad) or ethanol precipitation.  Piperidine 

labile cleavage sites on the DNA were analyzed by treating purified lyophilized samples 

of the chromium treated DNA with 100 µL of a 1.0 M  (10%) solution of freshly distilled 

piperidine followed by heating at 90 oC for 30 min.  BER glycosylase labile sites were 

analyzed by enzymes Fpg or hOGG1 (NEB) under the enzyme suppliers recommended 

conditions, namely: 1x buffer 1 (NEB Fpg) or  buffer 2 (NEB hOGG1), 1x BSA at 37 oC.  

Samples were loaded on a 8-15% (depending on focusing area) denaturing (7 M urea) 

polyacrylamide gel, 0.4 mm thickness, 21 cm × 50 cm.  The gel was pre-warmed to 50 oC 

and lyophilized samples were loaded with a  80% formamide loading buffer containing 

0.05% xylene cyanol and bromophenol blue, 1 mM EDTA, and 10 mM NaOH. 

Electrophoresis was carried out at 2300 V and 24 mA with 2X TBE as the running buffer.  

Visualization of the DNA cleavage products was carried out by autoradiography with a 

phosphoimager.  Maxam-Gilbert G-A lanes were utilized to assign bands.  

 
1.5 Results  
 

1.5.1 Preparation of Nucleosome Core Particles 

Histones were extracted from chicken erythrocytes as previously described by 

Millard et al., 1998 [51] and identified by SDS-PAGE, figure 1.7.  The Xp11 plasmid 

was previously obtained from Julie Millard at Colby College and the plasmid was 

introduced into E.coli DH5α, grown in sufficient quantities and extracted using the 

QIAprep miniprep kit (Qiagen).  After extraction the 154 bp high affinity wrapping 
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fragment was isolated with EcoRI/RsaI double digest of the Xp11 plasmid followed by 

agarose gel purification of the 154 bp band.  Polymerase chain reaction was eventually 

utilized to replace the inefficient restriction digest and extraction of the 154 bp wrapping 

fragment from the plasmid, figure 1.8.  An additional advantage of PCR is that only one 

of the DNA strands can be easily labeled for Maxam-Gilbert sequencing.  This can be 

done either by labeling the primer prior to carrying out PCR or by purchasing one primer 

with a 5’ phosphate and carrying out blunt end labeling on the other strand following 

PCR.    

Labeled DNA was purified with Micro Bio-Spin 6 (BioRad) columns and 

reconstituted into nucleosomes using the dilution technique as described by Millard and 

Wilkes [57].  The dilution technique is based on the principle of first dissociating the 

histone proteins and DNA at high salt concentration and then slowly reconstituting and 

‘freezing in’ the constituted nucleosome core at low salt concentrations.  Nucleosome 

formation was visualized by an upward gel shift from the free DNA control on a 6% 

native PAGE, figure 1.9.  Reconstitution efficiencies of 90% or greater were typical and 

only reconstitution efficiencies of  85% or greater were utilized in subsequent oxidation 

experiments. 
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Figure 1.7 SDS-PAGE gel of histone sub-unit separation A) Histone octamers isolated 
from chicken erythrocytes with H1 removed. B) Histone sub-units and corresponding 
molecular weight of calf thymus histones [62].  
 
 

154 bp Wrapping Fragment Amplification 
MW                                                Control MW Marker    _____Xp11 digest_____ Xp11 
plasmid                                   Marker PCR

154
 

 
Figure 1.8 Agarose gel separation of 154 bp wrapping fragment from Xenopus borealis 
5S rRNA gene. A) Plasmid EcoRI/RsaI restriction enzyme digest production of 154 
fragment; B) PCR production of 154 bp fragment. 
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nucleosome core particles upon serial salt dilution in the presence of histone octamer, 
producing a characteristic gel shift in a native 5 % PAGE gel. 
 

1

To understand how chromatin structure affects chromate-mediated DNA da

 nucleosomal substrates were compared utilizing sequencing gel analysis.  After 

the reconstitution of nucleosome core particles (NCP) were verified to be greater than 

85%, free and NCP samples were subjected to conditions to mimic chromate metabolis

while maximizing DNA oxidative damage.  In attempt to visualize guanine nucleobase 

damage on sequencing gels, samples were treated with piperidine or base excision repair

enzyme (BER) treatment by hOGG1 or Fpg.  Only limited chromate oxidative damage 

was seen above background on free DNA or NCP samples and neither piperidine 

treatment nor BER glycosylase cleavage of damaged bases illustrated DNA damage 

above background.  Cr(VI) and ascorbate reactions with the  respective ratios of 1:1, 

1:2.5, 1:5, 1:10 were used, in addition to studies using Cr(V)-salen, CR(V)-ehba and 

Cr(VI)- ascorbate and H2O2.  While chromium-generated species produced little DNA
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damage, positive controls of copper Fenton chemistry consistently produced intense 

DNA damage on sequencing gels. 

Representative sequencing gels demonstrate no DNA damage above background 

in any samples of the 154 bp fragment in neither the free (figure 1.10) nor nucleosomal 

(figure 1.11, 1.12) substrates with the wide array of chromium treatment cocktails and 

piperidine nor BER cleavage treatment.  Both forward and reverse primers were labeled 

in attempt to see the presence of oxidative damage above background.  In addition to the 

variation in chromium treatment regimes, a variety of post treatment chromium salt 

cleanup techniques were utilized to investigate the possibility of lost damaged DNA in 

the clean-up step.  These methods included Micro Bio-Spin 6 and 30 (BioRad) columns, 

ethanol and isopropanol precipitation and simple dilution.  While it is still likely that 

these chromium generated lesions or adducts could cause unfavorable interactions and 

subsequent losses during clean up, copper Fenton chemistry positive controls were not 

problematic regardless of the cleanup technique utilized.  

 While chromium treatment regimes did not provide DNA damage above 

background, copper Fenton chemistry of free and nucleosomal samples produced similar 

amounts of  DNA damage in a non sinusoidal footprint cleavage pattern, figure 1.12. 

Damage is most heavily localized at 5’guanines located in a run of two or more guanines 

as depicted by intense bands at  G17, G24, G28, G43, and G47, figure 1.12.  Little 

differences in site specificity, frequency or intensity of damage is seen between free and 

nucleosomal samples when treated at 100 µM Cu and 500 µM H2O2 .  However, there are 

some regions of variable DNA damage and intensity around G40, G43 and the bands 

circled around bp 60 and 75, figure 1.12. 
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Figure 1.10 Sequence gel analysis of DNA damage produced by chromate and ascorbate  
upon treatment of free substrates of the forward 5’ labeled 154 bp wrapping fragment.  
The “F” symbols represent free substrates.  Lanes marked G/A represent Maxam-Gilbert 
chemical sequencing standard. 
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 Free and Nucleosomal DNA: Chromium and Ascorbate 

 *Reverse Primer* 
    FC F1 F2 F3    Nc N4 N5 N6 Piperidine Treatment 
 A50 G/AF= Free C 

 
 
Figure 1.11 Sequence gel analysis of  DNA damage produced by chromate and ascorbate  
upon treatment of free and nucleosomal substrates of the reverse 5’ labeled 154 bp  
wrapping fragment.  The “F” and “N” symbols represent, respectively, free and 
nucleosomal substrates.  The Lane marked G/A represents Maxam-Gilbert chemical 
sequencing standard. 
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Free and Nucleosomal: Chromium Ascorbate and Peroxide 
 +F  +N         Fc  F1  F2  F3   Nc  N4  N5  N6  * Forward Primer 

FPG Treatment A49 
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Figure 1.12 Sequence gel analysis of  DNA damage produced by chromate, ascorbate 
and hydrogen peroxide upon treatment of free and nucleosomal substrates of the forward 
5’ labeled 154 bp wrapping fragment.  The “F” and “N” symbols represent, respectively, 
free and nucleosomal substrates.  The “+” symbol represents the positive control, 100 µM 
CuCl2 and 500 µM  H2O2.  Numbers on right of first two lanes correspond to guanine 
bases counted from the labeled 5’ end.   
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1.6 Discussion 
 
 The goal of this project was to better understand the mechanism of chromate-

mediated oxidative damage in free and nucleosomal samples by visualizing oxidative hot 

spots on large sequencing gels and correlating damage to solution accessibility, oxidant 

mechanisms, steric considerations, and nucleosomal positioning.  Unfortunately, 

chromate oxidative chemistry provided insufficient DNA oxidation to view with the 

techniques employed.  Utilizing sequencing gel analysis previous studies in the field of 

chromate DNA damage have illustrated the potential for chromate to generate oxidized 

guanine lesions in small oligonucleotides [28, 63-65].  While identical chromate 

treatment procedures of these studies were followed, differences in sequence and length 

of the oligonucleotide could explain the lack of damage visualized in this study.  These 

studies utilized smaller sequences of  DNA, 22-28 base pairs [28, 63-65].  The fragment 

utilized in this study was 154 bp which provided a greater number of potential bases to be 

oxidized.  In addition, given the significantly high GC content of the154 bp fragment this 

oligonucleotide has a greater ability to delocalize the damage.  

 The fact that copper Fenton chemistry consistently provided visual DNA damage 

suggests that the techniques and procedures in this study were done correctly.  In 

addition, it illustrates that relative to copper Fenton chemistry, chromium is a weak 

oxidant.  While only one copper concentration was utilized in this study, the results of 

copper induced DNA damage matches a previous study investigating copper DNA 

damage in the nucleosome [58].  Liang and Dedon (2001) observed that at lower 

concentrations of copper, nucleosomal DNA damage was augmented relative to naked 

DNA but as the copper concentration was increased past 75 µM DNA damage was 
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relatively similar in both settings with a limited  footprint caused by the nucleosome [58].  

This study observed similar results with copper-mediated DNA damage illustrating little 

difference in DNA damage in free and nucleosomal samples.  DNA damage was mainly 

targeted at the 5’guanine in a series of adjacent guanines which is explained by the 

lowered redox potential of the 5’guanine.  The lack of a protective footprint cleavage 

pattern in the nucleosomal substrates distinguishes the damage from Fe(II)-EDTA Fenton 

chemistry.  While Cu(II) has illustrated a weak interaction with histones , 4-5 x 10 4 M-1 

[66], this value is very similar to the estimated binding constant of  Cu(II) to naked DNA, 

~104 M-1 [67].  These results discredit the belief that Cu(II) histone binding explains the 

increase of Cu(II) Fenton generated DNA damage in the nucleosome.  Instead, increased 

damaged to nucleosomal DNA may be attributed to copper species greater access and 

reactivity to nucleosomal DNA due to the DNA conformational changes associated with 

nucleosome formation.    

 While chromium DNA damage did not work in this study the foundation has 

been established to pursue other oxidants, or DNA processes in the nucleosomal setting.  

Future studies may entail the use of stronger oxidizing chromium complexes or the study 

of DNA methylation, DNA repair, and how epigenetic effects such as DNA methylation 

and histone acetylation can affect DNA process in the nucleosome.  
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Chapter 2:  Repair in the Nucleosome     

2.1 Introduction: Nucleosomal DNA Repair    

 Eukaryotic DNA is packaged in a condensed state with histone proteins.  The 

formation of the nucleosome core particle (NCP) introduces DNA structural changes 

providing a very different setting than that commonly modeled with in vitro studies [1]. 

These effects must be considered in any biochemical study in which DNA is a substrate. 

In general, interactions requiring multiple nucleotide interactions have been found to be 

significantly reduced in the nucleosomal setting [2].  Overall structural changes set forth 

by the NCP have illustrated restricted access to wrapped DNA by recognition proteins [3-

5], repair enzymes [7-14], polymerases [6-8], restriction enzymes [1,7], nucleases [1,15-

16] and many oxidizing and cross-linking agents [17-23].  Nucleosomal structural 

changes to DNA have also been shown to direct accessibility to certain translation and 

rotational regions of the NCP [1,8,24-25].  Cellular systems have developed several 

strategies to lessen the impediments associated with the nucleosome and chromatin to 

allow better access by polymerases, repair enzymes, transcription factors and other 

proteins involved in DNA processes. These strategies include histone post-translational 

modifications and ATP-dependent nucleosome remodeling [1].  

  In terms of DNA damage NCP studies have illustrated protective, enhanced, and  

no effect compared to naked DNA studies and the effects appears to be related to the type 

of oxidant, particularly its sterics, and interactions with the highly electropositive histone 

surface and altered DNA structure [17-23,26-27].  While there appears to be differences 

in efficiencies of oxidation of nucleobases in the nucleosomal setting and respective 

higher order nucleosomal structures, nucleobase oxidation is still widespread throughout 
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the genome.  To combat global oxidation, DNA repair processes are required to work 

within or around this structural nucleosomal setting.  

DNA oxidation is a common event that can be caused by a number of endogenous 

and exogenous factors and the DNA repair processes that repair it are crucial to cell 

survival.  The two major cellular repair mechanisms that remove DNA damage are base 

excision repair (BER) and nucleotide excision repair (NER).  The NER pathway is a 

complex biochemical process involving multiple large protein complexes (up to 30) 

which cooperate in a rapid sequential assembly mechanism to facilitate NER [28-32].  

NER machinery handles a vast array of DNA lesions with varied structures.  It has been 

postulated that NER doesn’t recognize individual structures but specific conformational 

features [33].  While not completely understood, it appears that NER repair shows 

enhanced activity towards bulky DNA lesions that cause perturbations to DNA topology 

and or lesions that cause disruption of DNA base pairing [33-34].  The differences in 

repair rates by NER have been ascribed to local conformation flexibility surrounding the 

lesion [34] and the thermodynamic stability of the DNA adducts [33-36]. 

The BER pathway appears to be a simpler process involving the concerted 

activity of only a few proteins which catalyze individual reactions within the pathway.  

The BER family is involved in repairing small lesions that don’t effect DNA topology 

and in many cases have only slight structural differences to their respective parent 

nucleobases.  These lesions include 8-oxoguanine(8-oxoG), 8-hydroxyadenine(8-oxoA), 

foramidopyrimidine (Fapy) guanine (FapyG), Fapy-adenine (FapyA) and methyl-Fapy-

guanine, 5-hydroxy-uracil (HOU), 5-hydroxy-cytosine (HOC), aflatoxin B1-Fapy-

guanine,  and spiroiminodihydantoin (Sp) to name a few.  The variety of small lesions 
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cleaved by the BER family is a result of the variety of different BER glycosylases and 

their ability to repair multiple lesions [37].  hOGG1 for example can recognize and 

cleave 8-oxoG, 8-oxoA, FapyG and FapyA.   

The BER pathway occurs in two steps.  The first step is recognition by a BER 

family glycosylase that subsequently removes the damaged base producing a shared 

product of all BER glycoylases independent of the lesion, an abasic site (AP) [38-39].  

After this initial step two phases of BER can be undertaken, short patch BER or  long 

patch BER.  Both pathways involve the removal of the abasic site but only one pathway 

replaces the damaged base (short-patch BER) while the other replaces the damaged base 

in addition to 2-13 adjacent bases (long-patch BER).  The second step in short patch BER 

involves the removal of the AP site by an AP endonuclease, replication by Polβ/XRCC1 

and DNA ligation with DNA ligase I, or Ligase III/XRCC1.  Long patch BER differs in 

that it utilizes Pol β, δ or ε in conjunction with PCNA to produce a 2-13 bp patch that 

displaces the damaged strand.  Subsequently, the extending flap is removed by FEN1 and 

the resulting nick is ligated with DNA ligase I [40-41]. 

Although BER and NER have significant differences in repair mechanisms they 

both have to deal with a DNA substrate that is far from the “naked” form in which they 

are commonly studied in vitro.  In vivo DNA exists as chromatin forcing the repair 

machinery of  NER and BER to deal with a distorted DNA structure and reduced 

accessibility due to the bulky histone proteins and superhelical wound DNA.  To date a 

handful of studies have employed in vitro reconstitution of nucleosome core particles 

(NCP) to investigate the effects of nucleosomal DNA on the repair efficiency of both 

NER and BER machinery.  
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NER repair studies in the nucleosome have given insight into the cooperative 

process involved in repair in the nucleosome.  Given the number of bulky proteins that 

cooperate to form the NER machinery, the large excised DNA fragments, and DNA helix 

distortion NER produces, it is believed that NER repair occurs in regions absent of the 

histone protein [31,32, 42,43].  Early observations by  Michael Smerdon have pointed 

towards the phenomenon of specific nucleosomal rearrangements prior to excision repair 

[43].  To date numerous studies have provided further evidence of this rearrangement 

process (See ref 32 & 42 for good NER reviews).  A widely accepted mechanism for 

NER has been termed the “access-repair-restore” mechanism in which damage is 

detected, chromatin is remodeled, the damage is made accessible by NER machinery and 

the site is excised and the nucleosome is restored [44-45].  Such remodeling explains the 

reduced NER efficiency seen in the nucleosome with in vivo and in vitro repair assays 

[12,13, 46-48 ].  

  In parallel to the helix distortion caused by the NER mechanism, crystal studies 

of BER glycosylases in action have illustrated that the targeted base is flipped out (to 

facilitate excision) producing significant global DNA distortion [49-51].  This is best 

illustrated by the crystal structure (2NOB) of hOGG1 glycosylase in action, figure 2.1 

and 2.2.  Four structural super families of DNA glycosylases have been identified so far , 

UDG (uracil DNA glycosylase), AAG (alkyladenine DNA glycosylase), MutM/Fpg 

(bacterial 8-oxoguanine DNA glycosylase) and HhH-GPD (hOGG1).  While each super 

family is structurally discernible they all share the same extrahelical cleavage 

mechanism.  This mechanism entails binding primarily to the lesion-containing DNA 

strand, recognizing the lesion and kinking the DNA to help flip the lesion out into the 
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active site pocket of the enzyme [52].  Once in the active site the lesion is released 

through cleavage of the glycosidic bond (C1’), figure 2.3.  The extrahelical mechanism is 

advantageous for it allows better access to the sugar moiety and provides a better working 

environment by excluding water [50].  The need for the extrahelical mechanism is 

exemplified by the mechanism of  Fpg and hOGG1 in which access to the C1’ on the 

deoxyribose is required for nucleophilic attack by the amino group of lysine and 

subsequent release of the lesion, figure 2.3.  Given the DNA distortion caused by DNA 

glycoylases the question that remains unanswered is whether in vivo BER utilizes a 

similar “access-repair-restore” mechanism as NER or if the smaller BER machinery 

carries out repair on the nucleosome with out the repositioning of the nucleosome.   

 

 

 

 

 

 

 36



8-oxoG 

DNA hOGG1

 

Figure 2.1- Crystal structure of hOGG1 activity on a DNA substrate containing an 8-
oxoG lesion. DNA is represented in orange, hOGG1 in blue, and 8-oxoG in red. Image 
was created using Viewerlite and PDB crystal 2NOB [53]. 
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Figure 2.2- Crystal structure of hOGG1 activity on a DNA substrate containing an 8-
oxoG lesion with the protein omitted. Image was created using Viewerlite and PDB 
crystal 2NOB [53]. 
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Free  8-oxoG base 

   H 

Lys-Enz 

Figure 2.3-  Fpg and hOGG1 mechanism of excision of 8-oxoG. Modified from 
mechanism by Hamm et al, 2007  [54].  
 

A few in vitro studies have been conducted with mono-NCP to assess the effect of 

histones on BER repair.  The majority of these studies focused on the BER enzymes 

associated with the repair of uracil residues produced from the deamination of cytosine or 

the misincorporation of dUMP opposite adenine (A) residues during replication.  Nilsen 

et al. (2002) examined the excision rates of  two major mammalian uracil DNA 

glycosylase UNG2 and SMUG1 of a U:A bp positioned at different locations on a NCP 

wrapped fragment (146 bp 5S rRNA Lytechinus variegatus) reconstituted with histones 

purified from chicken erythrocytes [7] .  Overall, enzyme cleavage assays illustrated a 3-

9 fold reduction in uracil removal from nucleosomal substrates with no rotational 

dependence on the three different uracil sites [7].  The presence RPA and PCNA were 

shown to have no effect on the repair process in the nucleosomal setting despite the fact 
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that these proteins are known to interact with UNG2 during repair [7].  Furthermore, 

efficient strand incision was seen with APE1 (abasic site removal) on NCP substrates and 

although activity was reduced, Pol β was able to extend one nucleotide on nucleosomal 

substrates [7].  In a similar study,  Beard et al. 2003 investigated uracil removal and 

repair (G:U) in reconstituted NCP with UDG, APE1 and Pol β.  The study found the 

activity of UDG in the nucleosome to be reduced by a factor of ten but saw a rotational 

dependence on repair with uracil residues facing away from the histone octamer 

exhibiting 2-3 times faster excision than those facing the octamer [8].  In disagreement 

with Nilsen et al. (2002) this study found complete inhibition of Polβ in the nucleosomal 

setting [8].  A complementary study by Beard et al (2005) found that removal of histone 

tails (by trypsin digest) did not affect DNA-histone reconstitution nor the activity of BER 

enzymes, UDG, APE1 or Polβ [9].  

A number of in vitro studies have also been done to investigate the efficiencies of 

BER enzymes DNA ligase I and FEN1 in the nucleosome.  Chafin et al (2000) examined 

DNA ligase I activity on reconstituted NCP with the X.  borealis 5S rRNA gene wrapping 

fragment.  Results indicated that ligase activity was reduced 4-6 fold on either side of the 

dyad while a 10 fold reduction was observed at the dyad [55].  Kysela et al. (2005) 

indicated that DNA ligase IV in conjunction with XRCC4 can ligate nucleosomal 

substrates at similar efficiencies to free substrates.  However, when H1 was added the 

activity of the enzyme complex was found to be significantly inhibited in both free and 

NCP substrates [56].  Of all the studies done only one has shown increased enzyme 

efficiency in nucleosome substrates.  Huggins et al. (2002) illustrated that FEN1 repair of 

flaps (mimicking long patch BER) had a 1.3-7 fold higher efficiency for nucleosomal 

 40



substrates at lower enzyme concentrations.  In addition, histone tails appeared to increase 

cleavage suggesting a beneficial binding interaction [57].  In summarizing these results it 

appears that BER in the nucleosomal setting requires more research with further 

emphasis on histone post-translational modifications,  H1 and histone tails, and their 

implications to BER repair.  Furthermore, while there are a number of BER glycosylases, 

only UDG and SMUG1 glycosylase activities have been investigated in the nucleosomal 

setting (see Reference  41 for a comprehensive review on BER repair in the nucleosome).  

 To date no work has been done on the repair of 8-oxoG in the nucleosomal setting 

despite the fact that 8-oxoG is the lesion that has historically been associated with DNA 

nucleobase oxidation.  8-oxoG has been shown to form from a variety of redox active 

xenobiotics and endogenous metabolic processes including chromate exposure.  It has 

been estimated that 8-oxoG occurs at a frequency of ~10,000 bp per cell per day [58]. 

Because of the high frequency of occurrence, 8-oxoG has been implicated in the etiology 

of a large number of diseases and has been extensively used as a sensitive biomarker for 

oxidative damage to the cell [59-61].  Cellular repair of 8-oxoG is imperative to 

preventing cellular mutagenesis and toxicity.  8-oxoG is repaired by the BER pathway 

with a variety of BER glycosylases illustrating the ability to bind and cleave this lesion. 

hOGG1 (human) and Fpg (bacterial) are considered to be the dominant glycosylases for 

8-oxoG.   

 It is well known that hOGG1 and Fpg repair the 8-oxoG lesion when paired 

opposite cytosine, thymine or guanine in double stranded DNA [62].  As illustrated, these 

glycosylases excise oxidized lesions with the formation of a Schiff base intermediate 

between the primary amine of the glycosylase and the C1’ of the deoxyribose, figure 2.3 
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[54].  While both hOGG1 and Fpg exhibit lyase activity, recent studies have illustrated 

the stimulation of glycosylase activity with the addition of human AP Endonuclease, 

APE (also known as HAP1) [63].  hOGG1 has illustrated inefficient AP lyase activity 

with a low turnover rate.  The addition of APE1 appears to bypass this rate limiting step 

of hOGG1 lyase activity and increase base excision activity [63]. Unpublished results in 

this lab have indicated a similar effect on Fpg glycosylase activity.  This cooperative 

effect explains the need for APE1 in cellular systems despite the fact that many 

glycosylases have lyase activity.  Furthermore, it suggests that BER cleavage assays 

should employ the use of APE1 to better mimic the in vivo workings of BER and allow 

the glycosylases to carry out their primary function.  This phenomenon also raises new 

questions about the possibility of further cooperativity between BER machinery.     

The focus of this study is to investigate the cleavage efficiencies of hOGG1 and 

Fpg on free and nucleosomal 8-oxoG substrates.  By placing an 8-oxoG lesion in 

different nucleosomal rotational settings this study will also examine the ability of  Fpg 

and hOGG1 to deal with altered lesion accessibility in the nucleosome.  Of particular 

interest is if in vivo BER utilizes a similar “access-repair-restore” mechanism as NER or 

if the smaller BER machinery carries out repair on the nucleosome without the need for 

nucleosomal repositioning?   
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2.2 Materials and Methods 

2.2.1 Histone Extraction  

The procedure was identical to that described in Chapter 1,  Section 1.4.1. 

2.2.2 DNA Substrates 

The procedure was identical to that described in Chapter 1,  Section 1.4.2, with the 

exception of the following oligonucleotide primers used in this study. Forward primer: 

G24- AAT TCG AGC TCG CCC GGG GAT CCX GCT GGG CCC C, G30- AAT TCG 

AGC TCG CCC GGG GAT CCX GCT GGX CCC C , with X representing 8-oxoG. 

Reverse primer: 5Phos-ACT AAC CAG GCC CGA. 

2.2.3 Substrate Preparation 

The procedure was identical to that described in Chapter 1,  Section 1.4.3. 

2.2.4 Reconstitution  

The procedure was identical to that described in Chapter 1,  Section 1.4.4. 

2.2.5 Characterization of reconstituted nucleosomes 

The rotational positioning of the reconstituted nucleosomes was determined by DNaseI 

digestion.  Free and nucleosomal substrates (7 µg DNA) were treated with 4 units of 

DNaseI (NEB) in 20 mM Tris-HCl (pH 7.6), 2.5 mM MgCl2, 0.5 mM CaCl2 ,100 mM 

NaCl at room temperature.  Aliquots were removed after  0.5, 1, 2, 3, 5, and 10 minutes, 

and the reactions were stopped by the addition of 25 mM EDTA and heating at 90o
 C for 

5 min.  The samples were phenol:chloroform extracted and loaded on a 12 % denaturing 

(7 M urea) polyacrylamide gel, 0.4 mm thickness, 21 cm × 50 cm.  The gel was pre-

warmed to 50 oC  and lyophilized samples were loaded with a 80% formamide loading 

buffer containing 0.05% xylene cyanol and bromophenol blue, 1 mM EDTA and 10 mM 
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NaOH.  Electrophoresis was carried out at  2300 V and 24 mA with 2X TBE as the 

running buffer.  Visualization of the DNA cleavage products was carried out by 

autoradiography with a  phosphoimager and  FujiFilm Image Gauge software.  One 

Maxam-Gilbert G-A lane was run on each gel in order to identify nucleotide bands. 

2.2.6 Base Excision Repair Assays  

Free and nucleosomal substrates (4 µg) were treated with BER enzymes hOGG1 (3.2 U) 

or  Fpg (16 U) at similar molar concentrations at 37 oC.  Reactions included APE1 (20 

U), 10 mM Tris-HCL (pH 7.5), 10 mM MgCl2, 100 mM NaCl, and 280 ng BSA.  APE1 

was utilized in the cleavage assays to increase the activity of the glycosylases by limiting 

their lyase activity.  Aliquots were removed after 0, 1, 3, 5, 10, 15, and 30 minutes; the 

reactions were stopped by the addition of 25 mM EDTA and heating at 90o
 C for 5 min.  

The samples were phenol:chloroform extracted and samples were loaded on a  prepoured 

15% TBE-urea gel (Invitrogen) with  80% formamide loading buffer containing 0.05% 

xylene cyanol and bromophenol blue, 1 mM EDTA and 10 mM NaOH.  Visualization 

and densitometry of the assay products was carried out by autoradiography with a  

phosphoimager and FujiFilm Image Gauge software. Control samples were prepared as 

above in order to verify the stability of the nucleosomes during the course of the BER 

assays.  Nucleosome samples were treated by the BER assays as described above with the 

exception of the phenol: chloroform extraction step.  Samples were removed  at 0, 5, 15, 

and 30 minutes, and the reactions were placed on ice.  The nucleosomal samples were 

loaded on a 6% native PAGE (30.19:1, acrylamide/bisacrylamide) gel containing 5 % 

glycerol and run in 0.5X TBE at 220V.  Autoradiography was utilized to visualize 

nucleosomal stability.   
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2.3 Results 

2.3.1 Nucleosome Core Particle  Formation and Rotational Analysis 

Histones were extracted from chicken erythrocytes as previously described by 

Millard et al, 1998 and identified with SDS PAGE [26], figure 2.4.  PCR was utilized to 

amplify the 154 bp fragment.  The DNA substrates were subsequently 5’-32P radiolabeled 

and wrapped with chicken histones using the reconstitution method as described by 

Millard et al [26].  Formation of nucleosome core particles produced a distinct gel shift 

on a 6% native PAGE and densitometry indicated a consistent wrapping efficiency of  

85-95%, figure 2.5.  Rotational accessibility of the nucleosome core particle was assessed 

with a DNaseI footprinting technique in which solution accessible minor groove sites 

were preferentially cleaved where the DNA was facing away from the histone protein.  

The DNaseI results were in agreement with previous DNaseI cleavage analysis of 

nucleosome substrates showing reduced cleavage in nucleosomal substrates with a 10 bp 

periodicity cleavage pattern indicative of alternating minor groove cleavage and correct 

nucleosomal rotational positioning [1,7,15 ,64-65].  Based on accessibility to DNaseI 

cleavage, two guanine sites in the 154 bp fragment that exhibited a contrast in rotational 

accessibility were chosen to be modified with an 8-oxoG.  These were positions G24 and 

G30, figure 2.6.  As illustrated by the DNaseI gel, G24 positioning is solution accessible 

and facing away from the histone in the minor groove.  G30, being 6 base pairs away, has 

a rotational position that is in the minor groove closely apposed to the histone protein.  

 

 

   

 45



 

H3 
H2B 
H2A 

 
H4

Figure 2.4 SDS PAGE gel showing histone sub-unit separation.  
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Figure 2.5 154 bp fragment of the Xenopus borealis 5S rRNA gene reconstituted into 
nucleosome core particles upon serial salt dilution in the presence of histone octamer,  
producing a characteristic gel shift in a native 5 % PAGE gel. 
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Figure 2.6 – A) Sequencing gel analysis of DNaseI footprinting of free and nucleosome 
core particles of the 154 bp fragment of the Xenopus borealis 5S RNA gene.  Aliquots 
were removed after 0, 30 sec, 1, 2, 5, and 10 min, phenol:chloroform extracted and 
analyzed on a 12 % polyacrylamide urea sequencing gel.  The “F” and “N” symbols 
represent, respectively, free and nucleosomal substrates.  The lane marked G/A represent 
the Maxam-Gilbert chemical sequencing standard.  B) NCP figure illustrating the 
rotational accessibility of G24 and G30.  G24 and G30 positions are indicated by red 
squares. 
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Sequence of the EcoRI-RsaI restriction fragment of the 
Xenopus borealis 5S rRNA gene 

AATTCGAGCT CGCCCGGGGA TCCGGCTGGG CCCCCCCCAG AAGGCAGCAC    
TTAAGCTCGA GCGGGCCCCT AGGCCGACCC GGGGGGGGTC TTCCGTCGTG 
 
AAGGGGAGGA AAAGTCAGCC TTGTGCTCGC CTACGGCCAT ACCACCCTGA 
TTCCCCTCCT TTTCAGTCGG AACACGAGCG GATGCCGGTA TGGTGGGACT   
 
AAGTGCCCGA TATCGTCTGA TCTCGGAAGC CAAGCAGGGT CGGGCCTGGT   
TTCACGGGCT ATAGCAGACT AGAGCCTTCG GTTCGTCCCA GCCCGGACCA 
 
TAGT 
ATCA 

 

Figure 2.7-Sequence of the 154 bp wrapping fragment of the Xenopus borealis 5S rRNA 
gene. G24 and G30 are highlighted in red and PCR primers are underlined. 
 

 PCR was used to amplify the 154 bp fragment with the 8-oxoG lesion 

synthesized in the primer at positions G24 or G30, figure 2.7.  The DNA substrates were 

subsequently 5’-32P radiolabeled and wrapped around the chicken histones using the 

reconstitution method as described by Millard et al [26].  Formation of nucleosome core 

particles produced a distinct gel shift on a 6% native PAGE and densitometry indicated a 

consistent wrapping efficiency of  85-95%.  Gel analysis indicated that reconstitution 

efficiency or stability were not influenced by placement of 8-oxoG in position G24 or 

G30 relative to unmodified wrapped DNA, figure 2.8. 
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 The stability of the nucleosome core particles during BER glycosylase activity on   

8-oxoG incorporated substrates (G24 and G30)  was assessed with a 6% non-denaturing 

page gel.  No disruption of the pre-formed nucleosome core particles was observed under 

the reaction buffering or temperature conditions required for BER activity for either 

hOGG1 or Fpg.  Furthermore, the activity of Fpg and hOGG1 with the addition of APE1 

did not disrupt core particle stability.  This is indicated by the fact that the percentage of 

free DNA remained unchanged when pre-formed nucleosome core particles were 

subjected to Fpg and hOGG1 activity with APE1 at 37 o C, figure 2.8.  

2.3.2 Nucleosomal BER Cleavage 

The effect of the nucleosome core particle on the base excision of 8-oxoG by Fpg 

and hOGG1 was investigated by determining the cleavage activities of these enzymes on 

free and nucleosomal substrates.  An 8-oxoG residue was placed at a defined position 

along the 154 bp wrapping fragment that correlated to an altered NCP solution 

accessibility (G24 and G30) as defined by DNaseI cleavage.  Human 

apurinic/apyrimidinic endonuclease (APE1) was utilized to prevent the rate limiting step 

of lyase activity by the glycosylases and thereby increase glycosylase activity.  The free 

and nucleosomal samples were treated under the same conditions and relative cleavages 

were compared by gel cleavage assays.  The appearance of the smaller cleaved band is 

indicative of BER removal of the 8-oxoG lesion and subsequent APE1 DNA backbone 

cleavage.  Densitometry using FujiFilm Image Gauge software was utilized to provide 

comparative enzyme activities with the percentage of lesion cleavage.  Averages and 

standard deviations were taken from statistical analysis of 4 (Fpg) and 8 (hOGG1) 

experimental runs.  
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Fpg/APE1 hOGG1/APE1 

 C              C      5    15     30     C     5    15      30     
NCP

Free 

 

Figure 2.8- 154 bp fragment of the Xenopus borealis 5S rRNA gene with 8-oxoG 
incorporated into G24, reconstituted into nucleosome core particles upon serial salt 
dilution in the presence of histone octamer.  NCP produced a characteristic gel shift in a 
native 5 % PAGE.  Samples were subjected to 37 o C for 5, 15, and 30 min with BER 
enzymes Fpg and APE1 or hOGG1 and APE1.  The “C” symbol represents controls in 
which APE1 was used but Fpg and hOGG1 were omitted. 
 

The effect of the nucleosome on the activity of 8-oxoG removal by Fpg and 

hOGG1 was addressed by gel cleavage assays.  Differences in enzyme cleavage 

efficiencies were seen in both free and nucleosomal substrates with approximate 

equimolar amounts of enzyme.  Fpg provided increased cleavage of all samples relative 

to hOGG1 due to an increased molar activity which is described by increased units/mL 

by New England Biolabs (NEB); hOGG1 (1,600 units/mL), FPG (8,000 units/mL).  

Results indicated that both Fpg and hOGG1 activity have a sequence dependence on the 

position of 8-oxoG in naked DNA.  A  1.4-2 fold increase in cleavage by hOGG1 and 

Fpg of the modified site G24 was observed relative to the G30 site in unwrapped 

samples.  This data suggest that the BER glycosylase activity is influenced by the 

nucleobase chemistry surrounding the targeted lesion. 
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 Fpg                            Free 

  

Figure 2.9 – Excision of 8-oxoG by the BER enzymes Fpg and APE1.  A 15% urea gel 
showing the time course of excision of an internal 8-oxoG residue (G24 or G30) from 
naked DNA (Free) and nucleosomal core particles (NCP) at times 0, 1, 3, 5, 10, 15 and 
30 min, with “C” being a control with no Fpg added.  
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Figure 2.10 – Fpg and APE1 average rate of 8-oxoG excision from free (open) and NCP 
(closed) G24 and G30 substrates at 0, 1, 3, 5, 10, 15 and 30 min.  Averages and standard 
deviations were taken from statistical analysis of 4 experimental runs. 
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Figure 2.11 – Excision of 8-oxoG by the BER enzymes hOGG1 and APE1.  A) 15% 
TBU gel showing the time course of excision of an internal 8-oxo G residue (G24 or 
G30) from naked DNA (Free) and nucleosomal core particle (NCP) at times 1, 3, 5, 10, 
15 and 30 min, with “C” being a control with no hOGG1 added. 
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Figure 2.12 – hOGG1 and APE1 average rate of 8-oxoG excision from free (open) and 
NCP (closed) G24 and G30 substrates at 0, 1, 3, 5, 10, 15 and 30 min. Averages and 
standard deviations were taken from statistical analysis of 8 experimental runs. 
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The nucleosome decreased activity of both Fpg and hOGG1 by a maximum of 2.5 

fold.  Glycosylase cleavage of  8-oxoG also exhibited a  rotational dependence towards 

the more solution accessible lesion as defined by DNaseI  footprinting.  The G24 lesion 

exhibited enhanced cleavage relative to G30 in nucleosomal substrates for both 

glycosylases.  Results also illustrated differences of relative cleavage efficiency of naked 

and wrapped substrates between the two glycosylases.  hOGG1 exhibited smaller 

differences in cleavage efficiency of nucleosomal substrates relative to naked substrates 

than Fpg.  Cleavage data graphed in figure 2.10 and 2.12 illustrated the apparent 

differences in Fpg and hOGG1 cleavage of free and nucleosomal substrates.  The 

efficiency of Fpg reached a maximum after 10 min in contrast to hOGG1 which never 

reached a maximum even after 30 min.  Relative differences of free and nucleosomal 

substrates were much smaller in hOGG1 samples versus Fpg.  Early time points of 

hOGG1 indicated increased or equal cleavage efficiency of nucleosomal substrates 

relative to free DNA. 

The ability of the nucleosome to alter BER cleavage efficiency by changing the 

solution accessibility through rotational positioning is seen by comparing the ratios of 

G24/G30 cleavage by Fpg and hOGG1.  A similar sequence specificity for both enzymes 

was observed with free DNA substrates.  Nucleosome formation dictated  reduced 

cleavage to the G30 position by both Fpg and hOGG1, as indicated by the increased ratio 

of G24 to G30.  The ratio of nucleosomal substrates also appeared to be very similar 

between the two enzymes indicating that neither enzyme was more efficient at dealing 

with a lesion that is facing the histone octamer, figure 2.13 
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Figure 2.13- G24/G30 cleavage ratios of Free and Nucleosomal substrates by Fpg and 
hOGG1 at time points 10, 15 and 30 min.  Averages and standard deviations were taken 
from statistical analysis of 4-8 experimental runs. 
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2.4 Discussion 

 This study addressed the question of how the BER glycosylase activity of hOGG1 

and Fpg is affected by the nucleosomal environment.  The prokaryote BER glycosylase 

Fpg does not function in the same nucleosomal environment in vivo as its eukaryotic 

counterpart hOGG1 but was used as a comparison.  The activity of these two enzymes 

were investigated in vitro utilizing reconstituted nucleosome core particles.  An 8-oxoG 

lesion was placed into two different positions on the 154 bp wrapping fragment that 

provided an altered rotational settings as demonstrated by DNaseI footprinting; G24 and 

G30.  Lesion cleavage efficiency was measured for both modified DNA substrates in  

naked and nucleosomal DNA with both Fpg and hOGG1.  It was determined that i) the 

position of the 8-oxoG lesion in naked DNA can significantly influence enzyme activity; 

ii) nucleosomal formation decreases the activity of these enzymes by a maximum of  2.5 

fold and shows a rotational dependence with increased cleavage towards the more 

accessible lesion, G24; iii) the rotational dependence for both Fpg and hOGG1 were 

almost identical, however hOGG1 showed more efficient cleavage in the nucleosome 

setting relative to free DNA than Fpg did at shorter time points.  

This study illustrated that both Fpg and hOGG1 activity is dependent on the 

positioning of 8-oxoG in naked DNA.  A 1.4-2 fold increase in cleavage of G24 relative 

to G30 was observed for both hOGG1 and Fpg cleavage of naked DNA.  While 

unexpected,  Hirano et al., 2001 observed a similar result with up to a 10 fold difference 

in hOGG1 cleavage activity depending on the substrate sequence and 8-oxoG placement 

in naked DNA [66].  These data suggest that the BER glycosylase mechanism is 

influenced by the nucleobase chemistry surrounding the targeted lesion.  It is known from 
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crystal structures that hOGG1 must flip out the targeted base into its active site, and plug 

the subsequent hole with the aryl ring of tyrosine to help sharply kink the DNA and 

improve access to the deoxyribose C1’ [50].  It is likely that glycosylase activity is 

dependent on the ability (or resistance) of the lesion to be flipped out and kink the DNA.  

Since base sequence has long been known to impact DNA structural flexibility and 

thermodynamics, the local sequence surrounding the lesion could impact the efficiency of 

the BER glycosylase activity in this way.  This thermodynamic dependence resembles the 

explanation utilized to explain the differences in repair rates by NER on different DNA 

adducts [33-36].  Differences could also be attributed to the kinetics of lesion recognition.  

Perhaps the surrounding sequence alters the lesion recognition kinetics of the BER 

glycosylases. 

It should be noted that the cleavage efficiency of these BER enzymes correlates 

with the propensity of the oxidized guanine lesions to form based on their surrounding 

sequence. G24 is a 5’ guanine of a guanine doublet, while G30 is the 3’ guanine of a 

guanine triplet.  Redox potential studies have illustrated that the 5’guanine in multiples is 

the most oxidation prone site, producing an oxidative hot spot.  While it may be 

coincidental, it is interesting that a BER enzyme shows higher activity when the lesion is 

in a potential oxidative hot spot.  

 The nucleosome decreased the activity of these enzymes by a maximum of 2.5 

fold and showed a rotational dependence with increased cleavage towards the more 

accessible lesion, G24.  As illustrated by DNaseI cleavage, figure 2.6, naked DNA is 

more accessible than nucleosomal DNA.  In addition, G24 is more accessible than G30 in 

the nucleosome due to rotational positioning.  DNaseI binds and cleaves with higher 
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activity across the minor groove [65].  This infers that G24 is in the minor groove facing 

away from the histone and G30, half a turn away (6 bp), is in the minor groove facing the 

histone protein.  Nucleosomal induced altered accessibility to these lesions explains Fpg 

and hOGG1’s rotational dependence.  BER enzymes can also be affected by nucleosome 

translational positioning, as seen by the impact of histone tails on enzyme FEN1 [57].  

The rotational and translational positioning of G24 and G30 are illustrated in figure 2.14, 

and figure 2.15 respectively, using the crystal structure of the nucleosome core particle 

1KX3 and Viewerlite software.  Since the nucleosome in the crystal structure utilized a 

146 bp wrapping fragment (palindromic DNA fragment derived from human α-satellite 

DNA) positioning similar to G24 and G30 was identified as cytosine21 and adenine27 in 

1KX3 based on the rotational placement of G24 and G30 in this study.  Cytosine21 and 

adenine27 were labeled ‘G24’ and ‘G30’ in figure 2.14, and figure 2.15.  As depicted 

‘G24’ is made more solution accessible than ‘G30’  through nucleosomal rotational 

placement, figure 2.14.  Translational positioning of the nucleosome is such that ‘G24’ 

and ‘G30’ are over the H2A (yellow) and H2B (red) dimmer.  The tail of H2B is in close 

proximity to both ‘G24’ and ‘G30’ suggesting that it could have interacted with the BER 

enzymes in this study, figure 2.15. 
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Nucleosome

‘G30’ position

‘G24’ position

 

Figure 2.14- Crystal structure of the nucleosome illustrating rotational positioning of 
‘G24’ and ‘G30’ lesions.  The histone protein is represented in blue, DNA in orange and 
DNA bases matching the rotational positioning and placement of lesions G24 and G30 in 
this study are in red.  Image was created using Viewerlite and PDB crystal 1KX3 [67]. 
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Figure 2.15- Crystal structure of the nucleosome illustrating translational positioning of 
‘G24’ and ‘G30’ lesions.  Histone is represented in standard histone sub-unit colors: 
yellow is H2A; red is H2B; Blue is H3; and Green is H4.  DNA is orange and DNA bases 
matching the rotational positioning and placement of G24 and G30 lesions in this study 
are in black.  Image was created using Viewerlite and PDB crystal 1KX3 [67]. 

 

 

 

 

 

 

 

 61



  hOGG1 and Fpg may also have an activity dependence on lesion recognition and 

cleavage in the major or minor groove independent of rotational placement in the 

nucleosome.  It is well known that protein motifs present in eukaryotic transcription 

factors adopt highly ordered conformations specific to DNA rotation.  The well 

characterized helix-turn-helix alpha helices motif found in homeodomain proteins and the 

zinc finger domain proteins bind primarily through contacts in the major groove [1]. 

Complementing such a mechanism with Fpg and hOGG1 is the fact that in duplex DNA 

the N7 guanine is more accessible in the major groove.  Since it has been shown that the 

N7 of guanine is the main recognition site for Fpg and hOGG1 to distinguish between 8-

oxoG, FapyG and Guanine [49-52]  it seems possible that Fpg and hOGG1 would show a 

dependence towards major groove binding and lesion recognition.  While there would be 

no dependence in naked DNA, solution accessibility in the nucleosome is rotationally 

limited and rotational placement (minor or major groove) of lesions facing away from the 

histone might further impact glycosylase efficiency through the kinetics of lesion 

recognition. 

The rotational dependence for both Fpg and hOGG1 was almost identical, 

however hOGG1 showed slightly better cleavage in the nucleosomal setting relative to 

free DNA than Fpg.  This infers that the increased activity of hOGG1 towards 

nucleosomal samples is not attributed to dealing with altered rotational accessibility, but 

perhaps is associated with the ability of hOGG1 to interact with the bulky electropositive 

histone octamer.  As illustrated by figure 2.11 and 2.12 the activity of hOGG1 towards 

nucleosomal DNA at early time points is higher than that for naked DNA.  This may be 

explained by interactions between hOGG1 and the histone octamer or a protein structure 
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that is less hindered by the histone protein than the Fpg.  The fact that this trend doesn’t 

continue at longer time points may be attributed to an increased binding that decreases 

the dissociation of the hOGG1-nucleosomal DNA complex.  Increased binding would 

slow the kinetics of rebinding to other damaged nucleosomal substrates and subsequently 

decrease glycosylase activity.  The process of binding and unbinding may be unnecessary  

in-vivo since nucleosome core particles are connected forming beads on a string.  A 

processive enzyme that travels along the DNA may very well be the mechanistic route 

BER glycosylases utilize.  In either case, this data suggests that the altered nucleosomal 

setting is inhibitory and presents a rotational dependence to BER.  However, given the 

small relative differences of glycosylase excision in free and nucleosomal substrates, 

BER glycosylases may not require histone remodeling in order to carry out excision.   

While the nucleosome provides a very different DNA setting the formation of the 

NCP doesn’t appear to be very refractory towards BER glycosylase activity.  The ratio of 

free/nucleosomal cleavage illustrates that these enzymes are active at a reduced activity 

of  1.4 to 2.5 fold.  These values are comparative to the other studies in which BER 

activity was studied in the nucleosomal setting.  Nilsen et al. reported a 3 to 9 fold 

reduction in uracil excision by the BER glycosylases UNG2 and SMUG1 with no 

rotational dependence [7].  Beard et al. 2003 also investigated uracil removal and repair 

with UDG and found the activity in the nucleosome to be reduced by a factor of ten with 

a rotational dependence of  2-3 fold [8].  The reduction of glycosylase cleavage seen in 

these studies is relatively small when compared to the efficiency of the independent 

repair processes of NER.  Utilizing a NCP system Smerdon’s group discovered  that the 

individual activity of T4 endonucleaseV and E. Coli UV photolyase repair of a single UV 
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photoproduct (cis-syncylobutane thymine dimmer, CTD) on nucleosomal DNA was 

reduced 100-1000 fold relative to naked DNA [68].  However, when Xenopus oocyte 

nuclear extracts (contain all NER machinery) were utilized only a two fold reduction of 

DNA repair in the nucleosome was observed.  This data provides further evidence for 

nucleosomal rearrangement during NER repair in addition to suggesting that BER 

glycosylase activity does not require nucleosomal rearrangement.  

Studies (including this one) have shown slightly reduced rates of glycosylase 

activity in the nucleosome relative to naked DNA.  These studies provide evidence for an 

independently working BER system that is not dependent on nucleosome rearrangement. 

The use of reconstituted nucleosomes has provided a controlled environment to better 

understand the workings of BER within the nucleosome.  However, the in vivo 

environment is more variable with the formation of long continuous nucleosomal 

structures with altered levels of compactness and accessibility.  Our understanding of the 

role of epigenetics, nucleosome rearrangements, and BER cooperativity is still premature 

and further experiments are needed to investigate the BER process in a more 

physiological setting.      
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Chapter 3: DNA adduct 8-hydroxy-2’-deoxyguanosine inhibits NotI 
restriction enzyme activity 

 
3.1 Introduction: DNA Oxidation, Methylation and Epigenetics 

 

DNA methylation and histone modification play a crucial role in the epigenetic 

control of eukaryotic cells.  Human tumor cells frequently have an altered expression of a 

number of genes due to altered cytosine methylation patterns [1-4].  However, both 

coding region mutations and altered methylation patterns can account for altered gene 

expression patterns and the loss of gene function [1, 5-7].  It has been reported 

throughout the literature that the number of  cancer related genes affected by epigenetic  

inactivation equals or exceeds the number that are inactivated by mutation [4,6-10].  

While many would argue for one route over another, it is very likely that both routes 

contribute to cancer formation and that the two process are intricately connected.  

  Epigenetic control through the methylation of cytosines is regulated by a family 

of proteins with a high affinity towards CpG dinucleotide sequences in DNA.  These 

proteins known as methyl-binding proteins, MBP, have the ability to discriminate 

between oligonucleotides with methylated and unmethylated CpG dinucleotides [10-20]. 

After binding to CpG sequences MBP have been shown to recruit cytosine 

methyltransferase, histone deacetylases and other proteins involved in chromatin 

remodeling leading to the belief that the binding of MBP is an initial step in a complex 

epigenetic pathway involved in nucleosome condensation and gene silencing [10-27].   

The hydrolytic deamination of methylated cytosine, 5-methylcytosine (5MeC), 

generates thymine residues producing not only an authentic mutation if replicated but 

also an inactive potential epigenetic site.  While abnormal DNA methylation patterns 
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have been strongly correlated with cancer for over two decades, the influence of 

oxidative lesions on epigenetics is still poorly understood.  8-oxoG adduct formation has 

been attributed to genotoxicity and is a well known biomarker for oxidative DNA 

damage.  Genotoxicity from this lesion is generally attributed to replication errors 

causing alterations in the primary DNA sequence that in turn can give rise to gene 

malfunction.  However, a recent study illustrated that a single 8-oxoG adduct in a CpG 

site significantly inhibits the binding of a MBP, MeCP2 [28].  Complementing this result 

are studies showing that a single 8-oxoG adduct can significantly inhibit human and 

prokaryotic DNA methyltransferases as much as 13 fold [29,30].  These studies infer the 

ability of a single 8-oxoG adduct to regulate epigenetic changes usually ascribed to 5-

methylcytosine.  Thus, 8-oxoG has the ability to cause genetic alterations by altering 

epigenetics and or by inducing sequence mutations.  

Restriction endonucleases are components of a restriction modification systems 

that utilize DNA methylation patterns and DNA degradation to protect bacteria from 

invading foreign DNA, such as bacteriophages [31].  Methylation patterns are used in this 

system to help distinguish between foreign and native DNA, and prevent native 

degradation by inhibiting the activity of many restriction endonucleases [32,33].  Type II 

restriction endonucleases cleave the phosphodiester bond at specific DNA sequences and 

lack methylase activity [31].  NotI is a type II DNA restriction endonuclease which 

exhibits inhibited enzyme activity upon CpG methylated sequences [32].  The purpose of 

this study is to examine the effect that an 8-oxoG lesion (placed in the recognition 

sequence) has on NotI cleavage compared with the inhibition seen upon DNA 

methylation.    
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3.2 Materials and Methods 

 

5’ ACC AGC AGC▼ G1 G2 C1 CG C ACC AGT G- 3'  
3’ TGG TCG TCG  C2 C G  GC▼G TGG TCA C- 5’ 

 

M1- unmodified top strand 
M2- unmodified complement 
M3- C1 methylated top strand 
M4- C2 methylated complement 
G1 - 8-oxoG- top strand 
G2 - 8-oxoG- top strand 

 

Figure 3.1- Sequence of DNA utilized in NotI cleavage assay. Two duplexes containing 
8-oxoG were termed G1  and G2.  Two duplexes containing 5-MeC were termed C1 and 
C2

.   NotI recognition sequence is indicated by the underlined bases.   The ▼▲ symbols 
represent the site of cleavage by NotI 
 

3.2.1 Substrate Preparation 

Complimentary 24 mer oligonucleotides were purchased containing a central NotI 

restriction endonuclease recognition sequence.  Modified oligonucleotides were 

purchased that incorporated 8-oxoG or 5-methylcytosine at two different positions in the 

NotI active site, G1, G2, or M1 and M2 respectively,  figure 3.1.  DNA oligonucleotides 

were quantified using A260 absorbance values.  Single stranded 24 mer oligonucleotides 

were 5’32P  labeled by T4 polynucleotide kinase (New England Biolabs) with [γ-32P] 

ATP (GM Healthcare) using 10 units of T4 polynucleotide kinase (T4 PNK, NEB)  and 

1x T4 PNK buffer at 37 o C for 40 min.  Labeled oligonucleotides were purified with 

Micro Bio-Spin 6 (BioRad) columns.  The labeled strand was incubated with 20% excess 
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of the unlabeled complementary strand utilizing a thermocycler.  Oligos were heated to 

90o C for 5 min and then allowed to cool to room temperature slowly (1o C per minute) to 

allow duplex formation.  Five complexes were annealed; M2M1, M2G1, M2G2, M2M3, 

and M1M4. 

3.2.2 Enzyme cleavage Efficiency  

NotI restriction endonuclease was purchased from Promega (10 units/µl).  Enzyme 

cleavage was assessed on DNA concentrations from 3 µM to 55 µM.  Reaction volumes 

of  70 µl were utilized consisting of 1X Promega Buffer D, 1X Promega BSA, and 60 

units of Promega NotI.  Reactions were carried out at 37 o C.  After the addition of NotI 

10 µl aliquots of the reaction were removed at  15, 30, 45, 60, 75,  and 90 min.  Reactions 

were quenched with 10 µL of formamide loading buffer at 90 o C for 5 min.  Cleavage 

efficiency was assessed with a  15% TBE Urea gel using autoradiography with Kodak 

BioMax MS Film.  

3.3 Results 

3.3.1 NotI cleavage assays 

The oligo duplexes M2M1, M2G1, M2G2, M2M3, and M1M4 were labeled and 

annealed for the NotI cleavage assay.  The assay was carried out on all five 

oligonucleotides with the same experimental conditions.  Results were visualized with 

autoradiography with the appearance of a lower shifted band indicative of NotI activity. 

The unmodified oligo  (M2M1) exhibited a strong cleavage pattern indicated by the 

intense gel shift, figure 3.2.  The level of inhibition by the presence of  8-oxoG in the G1 

or G2 position, or 5-methylcytosine in the C1 or C2 position is indicated by the cleavage 

product produced on the gels relative to M2M1.  As illustrated, NotI cleavage assays 

 74



showed almost complete inhibition of activity by the presence of 8-oxoG at the G1 

(M2G1) or G2 (M2G2) position.  The extent of inhibition by 8-oxoG is similar to that 

seen with 5-methylcytosine in position C1 (M2M3) or C2 (M1M4), figure 3.2.  Graphical 

representation of  densitometry data from these gels depicts the similar intense level of 

inhibition by 5-methylcytosine and 8-oxoG, figure 3.3.  Notice, the unmodified oligo 

(M1M2)  reaches ~65 % cleavage while the modified oligos are all below 6 % cleavage. 

 

 

Figure 3.2- 15 % TBU denaturing gel of NotI cleavage assay of duplex 24 mers 
containing unmodified (M2M1) substrate and modified substrates.  8-oxoG at G1 
(M2G1) and G2 (M2G2), 5-methylcytosine at C1 (M2M3) and C2 (M1M4).  NotI 
activity was measured at 0, 15, 30, 45, 60, 75 and 90 min.      
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Figure 3.3- Graphical representation of NotI cleavage assay containing unmodified 
(M2M1) substrate and modified substrates.  8-oxoG at G1 (M2G1) and G2 (M2G2), 5-
methylcytosine at C1 (M2M3) and C2 (M1M4).  NotI activity was measured at 0, 15, 30, 
45, 60, 75 and 90 min and graphed vs. percent cleavage. 
 

 

3.4 Discussion 

 While very little is known about the potential mechanisms by which DNA 

damage can result in epigenetic changes, emerging studies indicate the role that oxidized 

lesions can play in altering epigenetics and their potential for causing cancer or disease 

states.  Turk et al. investigated the efficiency of a human DNA methyltransferase to 

methylate a CpG dinucleotide containing an 8-oxoG lesion.  This study illustrated that a 

single 8-oxoG lesion in the CpG site inhibited methylation of the adjacent cytosine 
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residue, but had limited effects on cytosine methylation when 8-oxoG was complemented 

to the target cytosine residue [29].  Valinluck et al, investigated the effect of oxidative 

damage to methyl CpG sequences on the binding of the methyl-CpG binding protein 

(MBP).  The study observed that oxidative damage leading to 8-oxoG or 5-

hydroxymethylcytosine formation in a CpG sequence significantly inhibited the binding 

of  MBP [28].  Since MBP proteins are associated with epigenetic changes and gene 

down-regulation, oxidative events could play a large role in epigenetic regulation and 

gene dysfunction.   

Complementary to the findings of  previous studies we observed close to 

complete inhibition of the NotI restriction endonuclease when either an 8-oxoG or a 5- 

methylcytosine was placed into the recognition sequence of the enzyme.  The level of 

inhibition was very significant, as illustrated by the large deviations in percent cleavage 

between the unmodified (M2M1) and modified oligonucleotides,  figure 3.3.  

Furthermore, the  inhibition by methylated oligos M2M3 and M1M4 matches the extent 

of  NotI methylation inhibition by previous studies [32,33]. 

  This study directly infers the possibility of an 8-oxoG lesion to affect the 

bacteria restriction modification system.  Additionally, since DNA methylation in 

bacteria is involved in gene regulation, repair and control of cell cycle it is likely that 8-

oxoG formation could affect these processes.  While NotI is not involved in epigenetic 

programming this study illustrates the potential for DNA oxidative damage by the 

ubiquitous 8-oxoG  lesion to completely inhibit enzymatic machinery in a similar manner 

to DNA methylation.  Further studies are needed to investigate the impact of the 8-oxoG 

lesion on epigenetic processes in eukaryotic cell systems.  In addition to 8-oxoG, further 
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oxidized guanine lesions (Sp and Gh) impact on epigenetic changes should also be 

evaluated.  Given the fact that further oxidized lesions of guanine (Sp and Gh) are bulky 

and cause local DNA distortion it would be expected that their effects on epigenetics 

would be more detrimental than 8-oxoG lesions. 
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