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  Arbuscular mycorrhizal fungi (AMF) are soil fungi associations with the majority of 
terrestrial plants. These fungi may affect a wide range of ecosystem processes from primary 
productivity to soil stabilization. Understanding the patterns and controls of AMF abundance 
during succession soil will be critical to predicting and managing ecosystem development. 
The work presented in chapter 2 is the first to describe changes in the abundance of 
mycorrhizal types during development of an unregulated floodplain. These findings are 
important to floodplain regulation and management strategies as they suggest that flow 
regulation that limits early site formation will limit the ecosystem contributions of AMF on 
dammed rivers. Chapter 3 builds on the findings from chapter 2 to determine the mechanisms 
of how litter may affect the abundance of a native AMF community. We test the hypothesis 
that litter from cottonwoods (Populus sp.) is inhibitory to AMF colonization. Our works 
shows that even small amounts of litter and realistic concentrations of litter leachates can 
strongly inhibit AMF colonization of two plant species, and that this inhibition is not solely a 
result of changes in the soil nutrient status. Chapter 3 also demonstrates that common soluble 
phenolics found in cottonwood litter are inhibitory to AMF at ecologically realistic 
concentrations, whereas other root colonizing fungi are unaffected. These findings offer 
another explanatory mechanism for the shift we and others have observed between AMF and 
ECMF during succession. Chapter 4 addresses the potential consequences of a changing 
AMF community with respect to the key AMF mediated process of soil stabilization. This 
work is the first to document a significant interaction between co-occurring species of plants 
and AMF in soil aggregate formation. Chapter 5 synthesizes our findings with others to 
understand the potential consequences and management options to control AMF succession 
and species composition in agroecosystems. Chapter 6 is a product of my work with the 
ECOS program, and is a lesson on the importance of soil organic matter that is designed for 
the youngest of students. The significance of this body of work is discussed in chapter 7. 
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Chapter 1 

 Introduction  

Conceptual Overview 

 Arbuscular mycorrhizal fungi (AMF) are widely distributed symbionts that have 

significant roles ranging from enhancing plant growth to affecting ecosystem level 

processes (Rillig 2004). While the importance of mycorrhizae to plant establishment 

during succession has been documented, few studies have studied the successional 

changes of the fungi themselves during site development, and very few studies have 

looked at the changes in mycorrhizal abundance during floodplain development. Given 

that riparian zones are often the most productive and diverse systems in a region as well 

as critically threatened, an understanding of the ecologically significant mycorrhizal 

fungi is necessary for better understanding of how to manage floodplains. Following 

disturbance in temperate and boreal ecosystems, arbuscular mycorrhizae are often the 

first mycorrhizal association formed and are followed in succession by ECM as the 

dominant association. This “switch” has been frequently observed (Bellei et al. 1992, 

Boerner et al. 1996, Treseder et al. 2004), but the causes remain nebulous. The change is 

likely a product of changes in soil nutrient status and available plant hosts as 

hypothesized by Read (1991), however, other successional changes (e.g. increase in 

polyphenolic inputs from litter) may significantly affect AMF populations. Given that 

AMF species may differ in physiology and function, changes in AMF species 

composition of a system may affect plants as well as ecosystems (e.g. plant competitive 

relationships, NPP, soil aggregation, nutrient cycling).  
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 Herein, I investigate mycorrhizal succession in a floodplain ecosystem, determine 

how cottonwood litter may affect AMF succession within a riparian context, test how a 

key, AMF mediated, ecosystem process (soil aggregation) is affected by different AMF/ 

host combinations, and finally synthesize our current knowledge on AMF succession and 

unique species physiologies highlighting the importance of understanding AMF 

succession to ecological applications of these fungi. This work will enhance current 

theories of the role of AMF and ECM in plant community succession and allow better 

predictions of how alteration in AMF community structure will affect ecosystem 

processes. 

 In addition to my research, my dissertation will include one chapter on my work 

during my ECOS fellowship. This chapter describes the development a soil ecology 

curricula for early elementary school students. These lessons incorporate concepts 

studied and employed during my dissertation work.  

 

Background and derivation of research questions 

Biology and Ecology of AMF 

Arbuscular mycorrhizae are symbiotic root/ fungi associations of over 80% of all 

terrestrial plants (Smith and Read 1997). These associations have been have been 

described from plant fossils 460 million years old, and are thought to have aided plants in 

land colonization (Redecker et al. 2000). While nearly all phyla of plants have members 

that can form arbuscular mycorrhizae, the fungi forming these associations are all 

members of the phylum Glomeromycota (Formerly Zygomycota, Schüßler et al. 2001). 

To date, less than 200 species of AMF have been described.  
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 The arbuscular mycorrhiza symbiosis is generally advantageous to the host plant. 

In exchange for carbon and protection, the fungi provide a suite of benefits. AMF are best 

documented as efficient phosphorus scavengers, but they may also access zinc, copper, 

potassium, and nitrogen. Additionally, AMF may aid their host in drought and pathogen 

tolerance (Smith and Read 1997; Azcon-Aguilar and Barea 1996). These benefits may 

significantly increase plant growth and competition.  

 Through their effects on host growth, AMF contribute to ecosystem level 

processes. By affecting host growth, AMF can influence net primary productivity (NPP). 

AMF have also been shown to function in structuring plant communities by affecting the 

competition abilities of their hosts (Gagne et al. 1993, van der Heijden et al. 1998, 

Klironomos et al. 2000). Thusly, a plant community with members forming arbuscular 

mycorrhizae will have different productivity and structure than one formed in the absence 

of AMF. These fungi may also influence the soil microbial community and processes. 

Finally, AMF can directly affect soil structure and carbon storage through hyphae-

mediated soil aggregation (Miller & Jastrow 1990; Jastrow et al. 1998).   

 

Succession and AMF  

 The study of ecological succession has been overwhelmingly focused on plant 

communities. Theories of succession and community development have changed 

significantly in the past decade as the role of belowground microbiota has become 

apparent. Clements initial view that a community is interrelated and the structure is a 

product of these interactions (Clements 1916), although popular early in the century, was 

largely abandoned for Gleason’s individualistic view of community development. 
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Gleason argues that communities were simply an assemblage generated by the abiotic 

conditions and individual plant genetics (Gleason 1926). Currently, theories accept that 

mechanisms of community development are not as simple as the view of either Clements 

or Gleason (Callaway 1997). When the roles of soil microbiota, especially mycorrhizae, 

are considered it becomes obvious that community development is more than a function 

of the abiotic environment. Regardless of the abiotic environment, highly mycotrophic 

plants (plants that rely heavily on mycorrhizae) will likely not establish in soil void of 

mycorrhizae. Hence, the importance of mycorrhizae to plant community development has 

garnered considerable attention. 

Many studies have described correlations between mycorrhizal presence and plant 

community changes, and that AMF are crucial to establishment of some plants in early 

succession (Johnson et al. 1991, Miller and Jastrow 1992, Gange et al. 1993, Boerner et 

al. 1996, Corkidi and Rincon 1997, Koske and Gemma 1997, Gange et al.  1999, Barni 

and Siniscalo 2000, Oehl et al. 2003, Allen et al. . 2003), which has led to widely held 

models of the role of AMF in plant community succession. Janos (1980) proposed an 

early model for how AMF affect plant succession based on a tropical system. He states 

that following disturbance the mycorrhizal soil inoculum is reduced and pioneer plant 

species will be largely non-mycotrophic on fertile soils. As soil quality changes and the 

mycorrhizal inoculum increases, the shift is to facultative mycotrophes. Finally, in late 

successional stages with greater nutrient limitations, there will be a proliferation of 

obligate mycotrophic plants. While this pattern has been observed (Reeves et al.  1979, 

Miller 1987), exceptions are not uncommon (Pendleton and Smith 1983, Schmidt and 

Scow 1986), suggesting that following disturbance pioneer plants may be either 
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mycorrhizal or non-mycorrhizal. For instance, in western floodplains the earliest 

colonizer following flood disturbance is cottonwood (Bradley and Smith 1986). 

Cottonwood trees are mycotrophic, and host not only AMF but ectomycorrhizae as well. 

Nevertheless, it is generally agreed and well supported that late successional plant 

communities will have a large percentage of mycorrhizal plants. 

While the presence of AMF can influence plant succession and community 

development, the role of these fungi becomes more complex when changes AMF 

community composition or even changes in abundance are considered. Some of the most 

influential papers in current mycorrhizal ecology were published only recently. 

Klironomos et al. (2000) and van der Heijden et al. (1998) showed experimentally that 

AMF diversity of a system affect plant diversity and productivity. The mechanisms for 

these observations are less clear, but are likely a function of AMF community 

physiologies and specific plant/ fungus interactions.  

 

AMF community succession 

 As with plant succession, the species composition of the AMF community may 

change through time. Using an old-field successional system (secondary succession) 

Johnson et al. (1991) is one of the few studies that exclusively observed AMF succession. 

Her work demonstrated certain AMF species could be identified as “early successional 

species” and others as “late successional species.” Some species however, were 

cosmopolitan. Koske and Gemma (1997) found similar trends using a primary succession 

gradient along sand dune system on the Eastern coast of the US. Again, while some AMF 

species were found at all sites, others were found only in either early or late successional 
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soils. Conflicting results have also been observed, with no significant difference in AMF 

composition between early and late succession sites (Benjamin et al. 1989; Johnson and 

Wedin 1997; van der Heijden and Vosatka 1999).  

 

AMF functionality 

Studies have established that AMF differ in function. Some species elicit a greater 

growth response from the host than others, and the response can be dependent on the 

specific host/ fungus interactions, running the gamut from highly beneficial to nearly 

parasitic (Klironomos 2003). Jakobsen et al. (1992) determined AMF differ in nutrient 

absorption. Other studies indicate that species differ in spore production (Bever et al. 

1996), colonization rates (Wilson 1984), and extraradical hyphae (Hart and Reader 2002).  

Using a tropical system, Allen et al. (2003) found that late successional species of 

AMF were a greater carbon drain than early successional species, and thus were less 

beneficial to seedling establishment. The differences between the early and late species 

were resolved to the family level. Early sites were dominated by small-spored members 

of the Glomaceae, late sites had considerably more large-spored Gigasporaceae. This 

study suggests that as AMF community composition changes with succession, so too 

does AMF functionality with respect to aiding seedling establishment and increasing 

productivity.  .  

 

Succession of mycorrhizal groups 

 Mycologists currently recognize seven distinct types of mycorrhizal associations: 

arbuscular, ectomycorrhizae, ericoid, ectendo-mycorrhizae, arbutoid, monotropoid, and 
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orchidoid (Smith and Read 1997). Of these, arbuscular and ectomycorrhizae are the most 

widely distributed and well studied. AMF form associations with over 80% of all plants 

and typically form symbioses with grasses, forbs, shrubs, and some trees. 

Ectomycorrhizae only colonize 3% of land plants, but are the association of most 

gymnosperms and hardwood trees. Each of these symbiotic root relationships aid their 

plant hosts in nutrient acquisition, but differ in their abilities to access certain key 

nutrients. AM are considered most adept at phosphorus uptake, whereas ECM may best 

scavenge nitrogen (Read 1991, Read and Perez-Moreno 2002). These two groups of 

mycorrhizae often coexist in soil systems; but, because of their different functions, many 

systems are considered exclusively AM or ECM (Kovachich 1984, Read 1991). AM are 

the primary mycorrhizal association in P limited grasslands and tropical forests and ECM 

dominate N limited temperate and boreal forests (Read 1991).  

 During plant succession in temperate and boreal systems, communities often 

begin as grasses and forbs and develop into mixed or conifer forests. Hence, during this 

succession the dominant mycorrhizal association changes from AM to ECM (Johnson et 

al.   1991, Bellei et al. 1992, Boerner et al. 1996, Barni and Siniscalco 2000, Treseder et 

al. 2004). Read’s (1991) hypothesis offers an explanation for the distribution of 

mycorrhizal groups, which may be applied to succession of mycorrhizal types in 

temperate and boreal forests. Following disturbance the initial association is AM as P is 

most limiting, but as an organic layer develops so do more ECM associations. While this 

succession of mycorrhizal groups has been frequently observed, the impetus of the shift 

have only been speculated. 
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What are the potential consequences of AMF succession? 

 AMF can occupy many points along the parasite-mutualist continuum. While 

some species of AMF greatly enhance plant growth, others are inhibitory (Klironomos 

2003). If AMF species composition changes, so too could the NPP of the system. 

Similarly, as plant community structure is in part a function of AMF community 

diversity, then succession of AMF could affect the plant community structure and 

subsequent function.  

 Additional consequences of AMF succession would be evident belowground. 

AMF function in nutrient cycling, with particular respect to phosphorus. As AMF species 

can differ in their phosphorus scavenging abilities, soil phosphorus cycling would be 

affected by changes in the AMF species composition. Hence, soil phosphorus levels 

could be depleted at greater rates if the dominant AMF species changed from a poor 

phosphorus scavenger to an efficient one.  

 Soil structure is a state ecosystem variable that would be affected by changes in 

both AMF abundance and species composition. AMF are one of the greatest biotic 

mediators of soil stabilization (Miller & Jastrow 1990; Jastrow et al. 1998) by ensnaring 

soil particles in their extraradical hyphae. Soil stabilization is strongly correlated with soil 

hyphal lengths (Jastrow et al. 1998; Rillig et al. 2002), thus changes in AMF soil 

abundance would affect stabilization. Furthermore, as AMF species differ in function and 

physiology, they may also differ in their ability to stabilize soil particles. Succession of 

AMF may result in either faster or slower soil stabilization depending on the dominant 

species present at the successional ages. 
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Questions addressed within each chapter 

How do mycorrhizal groups change during floodplain development and what variables 

are most closely correlated with this change? 

 Chapter 2 is the first study to document changes in both arbuscular mycorrhizal 

fungi and ectomycorrhizal fungi during primary succession along the floodplain of an 

unregulated river. I test the hypothesis that AMF abundance will increase rapidly in early 

site development then decrease as abiotic and biotic changes select for greater abundance 

of ECMF. This hypothesis was derived from the predictions of Read (1991). We further 

attempt to determine a mechanism for the decline in AMF and discuss the interesting 

relationship between soil organic matter and litter accumulation and the declining AMF 

abundance. 

Does cottonwood litter, and litter leachates negatively affect AMF ? 

 In chapter 3, I test the hypothesis, derived from the observations presented in 

chapter 2, that litter and litter leachates derived from Populus trichocarpa can suppress 

infectivity the AMF community from the Nyack floodplain chronosequence. This study is 

the first of its kind to test the effects of litter, litter leachates, and pure phenolic 

compounds that occur in cottonwood litter on an entire native community of AMF. I 

demonstrate that litter and leachates derived from the dominant cottonwood species of the 

Nyack floodplain is inhibitory to AMF inoculum in the soil and may contribute to the 

succession between AMF and ECMF. Within this chapter I attempt to tease apart the 

mechanism of the observed inhibition and determine if it is a result of increased nutrient 

availability or if the leachates are directly toxic to AMF. 
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What are the consequences of changes in AMF species to soil aggregation?  

 Within chapter 4, I address one potential consequence of a changing AMF 

community. From the work presented in chapters 2 and 3, and appendix A, we know that 

AMF change in both abundance and species composition during site development; 

however, one of the most pressing questions in AMF research today is, “how will 

changes in AMF species composition affect AMF mediated processes?” This chapter 

documents a strong interaction between AMF species and host with respect to the 

ecosystem process of soil stabilization. The extent of macroaggregate stabilization is a 

function of the specific plant/ fungus combination. This is relevant to AMF succession in 

that the contribution of AMF to soil stabilization during site development will not be 

constant, and could be greatly affected by the plant community composition.  

  

What is the significance or AMF succession to agroecosystems? 

 Chapter 5 builds up not only the research from previous chapters, but also from 

the larger body of AMF successional literature to review what we know about the causes 

and consequences of AMF succession, but to also consider how AMF succession may 

affect agroecosystems that choose to manage and apply these symbiotic fungi for more 

sustainable agriculture. This chapter identifies gaps in AMF research that are necessary if 

we are to manage persistence of beneficial AMF species and maximize the utility of these 

fungi.  

 Chapter 6 is a departure from the research chapters and is the product of my work 

with the ECOS program. For two years I served as a ecologist in residence in local 

schools and helped develop more complete ecology curricula. This chapter is a simple 
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lesson on the importance of soil organic matter that can be taught to the youngest of 

students. Soil education in elementary and even higher levels of education is limited at 

best despite the relevance of the soil ecosystem to all of society. This lesson is designed 

to demonstrate that soil organic matter not only provides nutrients to plants but also helps 

hold water. The final chapter is a brief synthesis of the significance of this dissertation to 

terrestrial ecology with insights into necessary direction and research. I have also 

included an appendix that describes the considerable efforts involved in a molecular 

analysis of the AMF community from the Nyack chronosequence. 

 

Broader significance of this work 

 In the past decade the role of AMF in structuring plant communities has been 

established, as well as their role in ecosystem processes; however, very little is known 

about these fungi in free flowing floodplain ecosystems. Read’s (1991) hypothesis 

regarding the distribution of mycorrhizal types has been supported; still relatively little is 

known about the causes of shifting mycorrhizal groups, we simply know the numerous 

associated changes in biotic and abiotic properties. The role of polyphenolics in 

ecosystems is an emerging field (Hattenschwiler and Vitosek 2000). While their effect on 

other fungal groups has been investigated, very few studies have looked at the inhibitory 

effects of these secondary metabolites on AMF. This work elucidates the role litter 

derived polyphenolics play in shaping AMF abundance and in influencing succession. 

  If AMF communities do change through time as described by Johnson et al. 

(1991), how will changes in species composition affect the ecosystem role of AMF? 

AMF differ in physiology and function, thus early successional species may be adept at 
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soil aggregation while late successional species are not. My research will increase our 

understanding of the causes of shifts in AMF abundance. More importantly, I am seeking 

to understand how changes in AMF species composition may affect key ecosystem 

processes (in this case soil aggregation). Ultimately, this work will aid mycorrhizal and 

plant successional theory, and serve as groundwork in linking AMF successional theory 

with application to restoration ecology and sustainable agriculture. 
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Abstract 

 In this study, we explore two mycorrhizal groups during development of riparian 

soils along a freely-flowing river. We provide the first documentation of a shift in 

abundance between arbuscular mycorrhizae and ectomycorrhizae during floodplain 

succession. We used a chronosequence spanning 0-70 years along a river in northwestern 

Montana, USA, to test the hypothesis that abundance of arbuscular mycorrhizal fungi 

(AMF) is greatest in early stages of soil development, and abundance of ectomycorrhizal 

fungi (ECMF) is greatest later in floodplain succession. We also measured the AMF-

mediated process of formation of soil aggregates during site development. AMF 

colonization of the dominant tree (black cottonwood, Populus trichocarpa) remained low 

(<5%), while AMF colonization of understory species was high (45-90%), across the 

chronosequence. Mycorrhizal inoculum potential (MIP) and hyphal length of AMF in soil 

peaked within the first 13 years of succession and then declined. No single variable 

significantly correlated with AMF abundance, but AMF tended to decline as litter and 

soil organic matter increased. Density of ectomycorrhizal root tips in soil increased 

linearly throughout the chronosequence, and ectomycorrhizal colonization of cottonwood 
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roots increased rapidly in early stages of succession. These patterns suggest that ECMF 

are not limited by dispersal, but rather influenced by abundance of host plants. Formation 

of water stable aggregates increased rapidly during the first third of the chronosequence, 

which was during the period of greatest AMF abundance in the soil. The observed peak 

in AMF infectivity and hyphal length during early succession suggests that regular 

flooding and establishment of new sites maximizes AMF abundance in this ecosystem. 

Regulation of rivers that eliminates deposition of new sites may reduce contributions of 

AMF to riparian ecosystems.  
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Introduction 

 Globally, floodplains are some of the most threatened ecosystems (Tockner and 

Stanford 2002, Naiman et al. 2005). Although riparian areas often host high regional 

biodiversity, regulation of rivers changes fluvial dynamics that are required to maintain 

this diversity (Tockner and Stanford 2002, Naiman et al. 2005, Poole et al. 2006). High 

habitat diversity is maintained on floodplains through time as surfaces are recycled by the 

river through cut and fill alluviation (Ward et al. 2002). This process creates a shifting 

habitat mosaic of floodplain surfaces in different stages of plant succession (Stanford et 

al. 2005). Without regular flooding of different intensities, riparian vegetation may 

mature into relatively homogenous stands or be replaced by non-native species (Howe 

and Knopf 1991). For example, cottonwood trees (Populus spp.) dominate early-

successional sites along many rivers in the northern hemisphere. Cottonwoods specialize 

in establishing on new surfaces created by seasonal floods (Karrenberg et al. 2002), and 

without floods these trees often senesce without replacement (Howe and Knopf 1991, 

Braatne et al. 1996, Poiani et al. 2001). As this displacement is documented for 

cottonwoods, the same may occur with other taxa, both above and below ground. A better 

understanding of both the above- and belowground component of riparian areas during 

succession will be critical in preserving floodplain biodiversity and function (Naiman et 

al. 1993). 

  Mature floodplain soils are often nutrient rich and highly productive compared to 

surrounding upland soil because of constant nutrient inputs from headwater and lateral 

drainages (Gregory et al. 1991, Tockner and Stanford 2002). Soil development and 

diversity are important aspects of the shifting habitat mosaic, but they have not been 
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widely studied in this context. Mycorrhizal fungi and other soil organisms affect 

development of soil as well as the plant community directly and through their effect on 

plant productivity (Rillig 2004, Rillig and Mummy 2006). Mycorrhizal associations are 

ecologically significant symbioses between soil fungi and over 80% of all terrestrial 

vegetation. Mycorrhizal fungi often confer benefits to their plant hosts, such as increased 

access to immobile nutrients greater tolerance to drought, and protection from pathogens 

(Smith and Read 1997). However, very few studies to date have examined the fungal 

component of developing floodplain soils (Jacobson 2004, Beauchamp et al. 2007).  

 During development of riparian forests, patches of vegetation within the habitat 

mosaic undergo succession. As the aboveground community changes in abundance and 

composition, so too may the soil community. In other temperate and boreal successional 

systems arbuscular mycorrhizal fungi (AMF) are the primary mycorrhizal associate in 

early succession, whereas in older soils the main associate is ectomycorrhizal fungi 

(ECMF) (Johnson et al. 1991, Boerner et al. 1996, Barni and Siniscalo 2000, Treseder et 

al. 2004). The mechanism of this shift is proposed to be related to soil nutrient status 

(Read 1991), but concurrent changes in other soil properties and plant community 

composition make it difficult to isolate a single causal agent. For instance, the effect 

could be driven by an increase in the abundance of conifer roots over successional time. 

Nevertheless, such a change in the dominant mycorrhizal association could have a 

number of ecosystem consequences as these fungi differ in their functions. AMF affect 

phosphorus cycling, aid seedling establishment of many plant groups, help maintain plant 

diversity, and strongly contribute to soil stabilization and carbon storage through soil 

aggregate formation (Smith and Read 1997, Rillig 2004, van der Heijden et al. 1998, 
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2004, Rillig and Mummey 2006). Conversely, ECMF contribute to decomposition, 

organic nitrogen cycling, and conifer establishment (Smith and Read 1997, Read and 

Perez-Moreno 2003, Ashkannejhad and Horton 2006). If AMF abundance follows the 

same pattern during floodplain succession as has been shown in other studies of 

temperate succession, then river regulation that limits creation of young sites would be 

expected to affect AMF abundance, and thus plant diversity, soil stabilization, and soil 

carbon storage.  

 The Nyack floodplain at the southern boundary of Glacier National Park, 

Montana, USA, offers a model system to study mycorrhizae during floodplain 

development. It is one of the longest, freely flowing segments of river in the continental 

U.S., and it also has protected headwaters. This floodplain has a mosaic of habitat patches 

of known age since flooding deposited the foundation material, all within several 

kilometers of each other (Stanford et al. 2005, Whited et al. 2007). The main objective of 

this study was to test the hypothesis that AMF are most abundant in early successional 

soils and ECMF are most abundant in late successional soils. Additionally, we 

characterized changes in abiotic and biotic site variables through time that may affect 

AMF abundance. Lastly, we documented the change of a key AMF mediated process, 

soil stabilization, during floodplain development to understand if soil stabilization is 

related to AMF abundance in floodplain development. Results of this study will serve as 

a reference for studies of mycorrhizal dynamics along rivers with altered flow regimes 

and provide insight into soil processes that may aid in river restoration. 

  

Methods 
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Site description   

The Nyack floodplain is located in northwestern Montana (48º 27’ 30” N, 113º 

50’ W), on the Middle Fork of the Flathead River, a 5th order, free-flowing river with 

protected headwaters (catchment area = 2300 km2). The Nyack floodplain is 

approximately 2 km wide and 10 km in length and is comprised of active and abandoned 

channels, spring brooks, ponds and stands of regenerating and mature riparian vegetation. 

Actively scoured areas of the floodplain consist of gravel bars with shallow ponds, 

debris, and vegetation patches (Stanford et al. 2005).  

This floodplain has high regional plant diversity, hosting over 200 plant species 

(Mouw 2001, Mouw and Alaback 2003). Common vegetation at our study sites (Table 1) 

is similar to other high latitude cottonwood-dominated riparian systems (Helm and 

Collins 1997). Following floods on Nyack, dense patches of cottonwood seedlings 

establish on top of freshly deposited sediment. Forbs and grasses that host AMF also 

recruit within the first couple of years. By ten years, cottonwoods establish a dense 

thicket with a grass and herbaceous understory. The earliest conifer seedlings occur 

between 10-15 years, and are very sparse (J. Piotrowski, pers. observation). By 28 years 

post disturbance, cottonwood density has decreased, and a dense, grass dominated 

understory exists with occasional conifers. This structure eventually yields to a mixed 

cottonwood and conifer forest and diverse grass, herbaceous, and woody understory 

(Mouw 2001, Mouw and Alaback 2003). Thus, both AMF and ECMF hosting plants are 

abundant at all sites. 

Aging of sites along the Nyack floodplain is based on the average age of 

cottonwood trees at each site. Because cottonwoods colonize sites shortly after 
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disturbance and often recruit as even-aged stands, their age often reflects the time since 

disturbance (Everitt 1968). All sites on Nyack were initially aged in the summer of 2000 

by coring cottonwoods (Harner and Stanford 2003).  

 

Sample collection 

 We sampled along the Nyack chronosequence during October of 2003, October 

2004, and June-August of 2005. We sampled again from the same older sites (7-69) in 

2004-2005, but we aged new sites for collections < 5 years post disturbance as these sites 

may be lost to flooding yearly prohibiting return to all original young sites. While we 

collected over a three year period, we present the age of the sites we returned to (7-69) as 

their age at the first collection for consistency within graphs and tables. During 2003 we 

were able to collect replicates from three one year sites, thus hyphal length, fine root 

colonization, litter, and herbaceous biomass measurements of this age represent nine 

replicates. In 2005 we collected freshly deposited sediment from three sites, which we 

considered zero years old.  

 For soil analysis and arbuscular mycorrhizal measurements we collected 

approximately 4 L of soil from the top 10 cm beneath the litter layer from three randomly 

selected locations (five during 2005) within each of the different aged sites. We collected 

cottonwood roots for percent ectomycorrhizal colonization determination in October 

2004 from five random cottonwood trees within each aged site. For ECMF tip density 

measurements we collected whole soil samples (including soil and total roots) from three 

randomly selected areas per aged site using a corer (5 cm in diameter) to a depth of 10 

cm. We did not collect soil from the 12 and 37 year old site for the MIP bioassay because 
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high water limited access to the site. We were able to access the sites later in summer to 

collect for ECMF tip density measurements later in the year. 

 

Site and soil characterization 

 We measured abiotic characteristics of soil on three replicate samples from each 

site that we collected in 2003. We selected one replicate from each one year old site for 

analysis, thus the means of soil variables at one year is of three samples. Samples were 

analyzed at South Dakota University soil testing laboratory for pH, Olsen phosphorus, 

potassium, nitrate, soil organic matter, and soil texture. Soil pH was analyzed in 1:1 

soil:water (w/v). Soil organic matter was measured using the loss on ignition (LOI) 

method described in Combs and Nathan (1998). 

 We measured changes in the AMF-hosting herbaceous understory by clipping, 

drying, and weighing aboveground herbaceous material from three randomly selected 

900 cm2 plots per site. We used the same area to estimate litter accumulation at each site. 

We collected litter during a single sampling event rather than over a season; however, 

collection was after cottonwoods had lost the majority of their leaves and represents near 

maximum litter accumulation for a season. We dried litter and understory biomass for 2 

days at 80 ºC, and weighed. We converted these values into grams understory biomass or 

litter per square meter. We unfortunately lost one litter replicate from the four year old 

site and one biomass replicate each from the 7, 13, and 15 year sites, thus these site 

averages represent the mean of two samples.  

 

AMF measurements 
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 To determine how AMF change in abundance across the Nyack chronosequence, 

we assessed AMF colonization of random fine roots from the soil, AMF colonization of 

the cottonwoods, AMF potential (MIP) across the chronosequence, and AMF soil hyphal 

lengths. We collected fine cottonwood roots attached to three cottonwood trees at each 

site in August 2005. We collected fine roots from the soil by sieving the soil and picking 

out roots with forceps from the 2003 soil samples. We stained the community fine roots 

with trypan blue as described by Brundrett et al. (1994). We stained cottonwood roots the 

same way with the addition of a 5 minute 20% bleaching step after roots were cleared 

with KOH. Arbuscular mycorrhizal colonization (including presence of hyphae, vesicles 

and arbuscules) was assessed at 200X on a Nikon Eclipse E600 microscope by the 

gridline intersect method (McGonigle et al. 1990) at approximately 50 randomly selected 

locations per slide.  

Mycorrhizal inoculum potential is directly related to the abundance of infectious 

AMF propagules (spores, hyphae, infected root fragments) present in a soil (Johnson et 

al. 1993). To determine AMF inoculum potential across the chronosequence we modified 

the MIP method described by Boerner et al. (1996). Fresh field soil (100g) was collected 

in July 2005 and transferred into 115 ml Cone-Tainerstm (Stuwe and Sons Inc., Canby, 

OR). We used replicates from four random samples from each aged site in the bioassay. 

Each pot received 3 seeds of sudan grass (Sorghum sudanese) that were thinned to two 

plants per Cone-Tainer after germination. Sudan grass is routinely used for MIP 

measurements as it is a good host for AMF (Johnson et al. 1993). We grew the plants 

under ambient greenhouse conditions for 30 days, and plants were watered with tap water 

as needed. We lost three plants during growth from the one year site, thus the MIP data 
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from this age represents only one replicate. Roots were stained and AM colonization was 

estimated as described above.  

 We estimated soil abundance of AMF by measuring hyphal lengths in bulk soil. 

External hyphae were extracted from 4.0 g portions of soil and lengths were measured by 

a gridline intersect method at 200X (Jakobsen et al. 1992, Rillig et al. 1999). We 

distinguished hyphae of non-AMF fungi from AMF by observing characters normally 

missing in the latter: melanization, clamp connections or regularly septate hyphae, non-

dichotomous branching (Rillig et al. 1999).  

 

ECMF measurements 

We estimated percent ectomycorrhizal colonization ([number of ectomycorrhizal 

root tips/total number of root assessed] x 100) by screening a gently rinsed sub-sample of 

cottonwood roots collected in October 2004 under a dissecting scope. We randomly 

screened 100 root tips for each of the five samples collected from each site. We 

considered any root tips with visible mantle development and morphology and color 

differing from the long, narrow, orange appearance of non-infected cottonwood roots to 

be colonized by ECMF. 

We estimated ECMF abundance by collecting whole soil samples as described 

above in August 2005. Between 10-80 mL of homogenized whole soil was immersed in 

water over a 1 mm sieve to remove most of the soil and rinsed gently to avoid damaging 

the mycorrhizae. The content on the sieve was collected and examined under a dissecting 

scope. We counted the total number of ectomycorrhizal tips in each sample. We never 
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assessed hyphal lengths of ECMF because ECMF cannot be distinguished from non-

mycorrhizal fungal hyphae (e.g. saprobes and pathogens; Wallander et al. 2001).  

 

Water stable aggregate measurements 

 We measured the percent of water stable aggregates of the 1-2 mm diameter size 

class (% WSA1-2mm) as a measure of physical soil structure (Kemper and Rosenau, 1986). 

We sieved air dried soils and collected the 1-2 mm fraction from three replicates within 

each aged site. We used 4 grams of the fraction for the analysis and moistened replicate 

samples of soil aggregates by capillary action for 10 min before measuring stability. We 

measured water-stability of aggregates with a wet-sieving method using the apparatus 

and procedure described in Kemper and Rosenau (1986). We calculated percentage of 

water-stable aggregates (% WSA1-2mm) using the mass of aggregated soil remaining after 

wet sieving (5 min) and the total mass of aggregates at the beginning, correcting the 

initial and final weights of aggregates for the weight of coarse particles (> 0.25 mm) 

included in the soil samples. 

 

Data analysis  

 We analyzed change of soil properties, litter, and herbaceous biomass through 

time with Spearman’s rank correlation on the means from each site and site age using 

NCSS 2000 (NCSS, Kaysville, Utah, USA). We used regression analysis, after testing 

that the assumptions of normality and homoscedascity were met, to determine how 

mycorrhizal variables and water stable aggregate formation change with time using only 

the means (not individual samples, which would constitute pseudo-replication) of 
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response variables from each aged site with SigmaPlot 7.101 (SPSS Chicago, IL). 

Changes in AMF, ECMF, and aggregate formation across the chronosequence followed a 

distinctly nonlinear pattern, and because we had no a priori ecological basis on which to 

select a model for over this period of time we chose the model that best described the 

data. We verified the appropriateness of the nonlinear models by calculating Akaike’s 

information criterion (AIC) values for the model compared to a linear model. All 

nonlinear models selected had a lower AIC than linear models. To test if any soil or site 

variables, including percent water stable aggregates, were correlated with AMF hyphal 

length we conducted Spearman’s rank correlations using NCSS 2000 (NCSS, Kaysville, 

Utah, USA). 

 

Results 

Abiotic and biotic changes through time 

 Changes in abiotic variables along the chronosequence are presented in Table 2. 

While soil pH did not change dramatically across the chronosequence, it was negatively 

correlated with site age (P<0.05). Additionally, nitrate was negatively correlated with site 

age (P<0.05), whereas soil phosphorus and potassium were positively correlated with age 

(P<0.05). Soil organic matter correlated positively with site age, displaying close to a ten 

fold increase between 4 and 31 years (P<0.05). Percent sand was negatively correlated 

with age, while percent silt and clay were both positively correlated with age (P<0.05). 

Changes in surface litter, understory biomass are presented in Table 3. Herbaceous 

understory biomass and litter were both positively correlated with site age (P<0.05).  

 



 31

Changes of mycorrhizae across the chronosequence 

 AMF colonization of cottonwood roots was low across the entire chronosequence, 

averaging <2% and ranging from 0% at most sites to 4.38% at the youngest site (data not 

shown). Occasional vesicles were present, but very few arbuscules were visible in the 

cottonwood roots. Cottonwood roots also hosted non-AMF in roots. We observed regular 

septa and clamp connections in some hyphae, indicative of fungi other than AMF, when 

examined at 400X. AMF colonization of understory, non-cottonwood, fine roots 

displayed a peak early in site development (Figure 1). AMF colonization of fine roots 

ranged between 45 to 90%, increasing rapidly early in site development (0-5 years) then 

steadily declining to 30 years post disturbance after which colonization increased slightly.  

 AMF inoculum potential (Figure 2) and soil hyphal length of AMF (Figure 3) 

changed significantly during succession, and both fit a lognormal 4-parameter nonlinear 

model (adj. R2 = 0.58 and adj. R2=0.68 respectively, P<0.05, equation presented figure 

legend), which describes a rapid increase to a peak followed by a decline phase. The peak 

in inoculum potential occurred earlier (9 years post disturbance in 2005, presented as 7 

years in graph for consistency) than the peak hyphal lengths (13 years post disturbance); 

however, hyphal lengths were near maximum by this age as well. We extracted AMF 

hyphal lengths from 2005 soil samples, and these had a similar trend, with a peak in 

hyphal lengths the same site age as inoculum potential (data not presented). No site 

variables measured were significantly correlated with AMF hyphal lengths across the 

chronosequence. 

Ectomycorrhizal colonization and tip density in soil increased across the 

chronosequence. ECMF colonization of cottonwood roots increased rapidly early in site 
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development (Figure 4) and significantly fit a single rectangular two-parameter 

hyperbolic model (adj. R2= 0.95, P<0.05, equation presented in figure legend), which 

describes a rapid increase to a stable level. The soil density of ectomycorrhizal roots tips 

increased linearly across the chronosequence (Figure 5; adj. R2=0.98, P<0.05), with the 

greatest density at the oldest site.  

 

Changes in % WSA1-2mm  

 Percent WSA1-2mm increased (Figure 6) during the first half of the chronosequence 

and significantly fit a single rectangular two-parameter hyperbolic model (adj. R2= 0.70, 

P<0.05, equation presented in figure legend). Again, this model describes a rapid increase 

to a stable level. The greatest increase in the percent of WSA1-2mm occurred within the 

first 30 years of site development, after which it remained relatively stable with a slight 

decline towards the oldest sites. Percent WSA1-2mm did not have a significant correlation 

with AMF soil hyphal length across the entire chronosequence, but did increase rapidly 

during the period where AMF were most abundant. 

 

Discussion 

 This is the first documentation of change in abundance of two ecologically 

important mycorrhizal groups during development of floodplain soil along an unregulated 

river. Our study supports our prediction that abundance of AMF in soil is greatest during 

early site development (1-13 years) and then declines. We also found a steady increase in 

ECMF abundance throughout the chronosequence as predicted. This is similar to the 

pattern of AMF and ECMF in other temperate and boreal systems (Johnson et al. 1991, 
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Boerner et al. 1996, Barni and Siniscalo 2000, Treseder et al. 2004), with this study the 

first to measure fine root colonization, mycorrhizal inoculum potential, and AMF hyphal 

length across successional time. ECMF colonization of cottonwood roots increased much 

more rapidly in early succession than expected. Early proliferation of AMF and 

subsequent decline suggests that some ecosystem contributions of AMF may be 

diminished if river regulation reduces early site deposition and forests progress to host 

ECMF dominated soils. 

 

Potential consequences of a decline in AMF abundance during succession 

 The ecosystem contributions of AMF, insofar as they are a function of inoculum 

potential and soil hyphal length, might be attenuated if deposition of new sediment is 

reduced through river regulation. AMF facilitate seedling establishment by allowing them 

greater access to limiting nutrients during recruitment (van der Heijden 2004). Even 

though lack of open sites created by disturbance is often cited as a factor limiting 

recruitment of cottonwoods (Karrenberg et al. 2002), a reduced AMF inoculum potential 

as sites age may also affect cottonwood recruitment as well as other plant species. 

Additionally, the presence of AMF can strongly affect plant community composition and 

productivity (van der Heijden et al. 1998, Rillig 2004), which could ultimately affect 

floodplain biodiversity and primary productivity. Transport of mycorrhizal inoculum 

downstream during floods may be an important mechanism for dispersal of fungi 

(Veenendaal et al. 1992). Reduction in flooding could diminish the delivery of upstream 

sources of inoculum, thus also affecting plant communities downstream. Finally, AMF 

hyphae are significant contributing factors to soil stabilization and subsequent carbon 
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storage (reviewed by Rillig and Mummey, 2006). Despite a lack of correlation between 

AMF and %WSA1-2mm across the whole chronosequence, our data show a rapid increase 

in this aggregate size class during early site development, which could be a product of 

AMF abundance in young soils; however, changes in organic matter content and clay 

accumulation during succession would also contribute to aggregate formation. Yet, soil 

stabilization (and hence potentially river bank stabilization) and carbon storage could be 

slowed with reduced AMF abundance in riparian systems.  

 

Possible mechanisms contributing to the change between AMF and ECMF 

AMF are not lost from the system in late succession as evidenced by the moderate 

to high colonization of fine roots and increase in biomass of AMF hosting herbaceous 

plants. Nevertheless, the abundance of these fungi in soil decreases in mid to late site 

development. This suggests that factors other than host availability may regulate soil 

AMF abundance and infectivity. There are several possible mechanisms. While no 

variable measured was significantly correlated with AMF hyphal length, an interesting 

trend was apparent. The lowest mean hyphal length, fine root AMF colonization, and 

near lowest inoculum potential occurred at the 31 year old site. This site also has the 

greatest percent soil organic matter and surface litter. While other studies have shown 

additions of organic matter to stimulate AMF (Nan et al. 2006, Cavender et al. 2003), the 

trend we observed suggests that litter quality may be at least as important as quantity to 

AMF. The increased organic matter and litter could have stimulated organisms that 

compete with AMF. Another explanation may be that the chemistry of cottonwood litter 

may suppress AMF. Populus foliage contains soluble phenolic compounds, some of 
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which can inhibit fungal spore germination and hyphal growth (Wacker et al. 1990, 

Schimel et al. 1998, Isidorov and Vinogorova 2003). Other fungi including ECMF have 

more complex extracellular enzyme systems capable of degrading these compounds and 

may be less affected (Münzenberger et al. 2003). Nevertheless, other factors also change 

concomitantly with time (Tables 2, 3), making it difficult to isolate any one main cause. 

 Ectomycorrhizal fungi do not decline at any point across this chronosequence. 

While the abundance of ECMF (as indirectly measured through the soil density of 

colonized cottonwood root tips) steadily increased throughout the chronosequence, 

percentage colonization of cottonwood roots by ECMF increased rapidly to near 

maximum within the first five years. This suggests that ECMF disperse quickly to new 

sites and that their abundance is strongly influenced by the presence of ectomycorrhizae 

hosting root tips. Increasing soil organic matter and litter accumulation may contribute to 

ECMF proliferation, which supports Read’s (1991) hypothesis when applied to 

successional systems.   

These data increase our sparse knowledge of the belowground component of a 

threatened type of ecosystem and offer an important factor to consider in managing and 

restoring riparian ecosystems. Our examination of the Nyack riparian chronosequence 

represents the first documentation of a change in mycorrhizal groups within a floodplain 

system and reveals a pattern that largely adheres to other observations of changes 

between AMF and ECMF abundance during plant community succession in temperate 

and boreal systems, but on a faster time scale. River management is an enterprise of 

increasing global significance (Bernhardt et al. 2005). River regulation may not always 

affect AMF community composition (Beauchamp et al. 2007), but the overall abundance 
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of these fungi may be strongly affected. In this riparian system, regular flooding events 

appear to be critical for maintaining AMF, without which soils may progress to 

dominance by ECMF within a relatively short period of time.  
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Tables 

 

Table 1. Common plant species along the Nyack chronosequence (Adapted from Mouw 

2001, Mouw and Alaback 2003) and their occurrence across site ages. 

Plant types  Sites present 
Herbaceous   
Agrostis gigantea All sites 
Arnica cordifolia 34, 50 
Melilotus officinale 1, 4 ,7 ,10, 12 ,34 
Smilacina racemosa 34, 69 
Centaurea maculosa All sites 
Verbascum thapsus 4, 7 
Achillea millefolium 28, 34 
  
Woody Shrubs  
Rosa woodsii 53, 69 
Symphoricarpos albus 31, 37, 53, 69 
Crataegus sp.  50, 69 
Cornus stolonifera 13, 34, 53, 69 
Rubus parviflorus 66 
Salix spp. 16, 50 ,69 
Alnus tenuifolia 34, 53, 69 
  
Deciduous Trees  
Amelanchier alnifolia 53, 69 
Populus trichocarpa All sites 
Acer glabrum 34, 53, 69  
Prunus virginiana 69 
  
Coniferous trees  
Abies spp. 34, 50, 69 
Picea spp. 28 ,34, 50, 69 
Pseudotsuga menziesii 34, 50, 69 
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Table 2. Abiotic soil parameters of aged sites along the Nyack chronosequence (mean ± standard error) and Spearman’s 

correlation values of the variables correlated with site age. (“*”indicates significance at P<0.05)  

 

Site age pH  P mg kg-1 N03
- mg kg-1 K mg kg-1 %OM %  Sand % Silt % Clay

1 8.0 (0.0) 2.7 (0.3) 5.0 (2.6) 39.0 (3.5) 0.7 (0.8) 69.3 (2.19) 16.7 (1.8) 14.0 (0.6)

4 8.1 (0.0) 2.0 (0.0) 1.5 (0.3) 37.0 (1.5) 0.4 (0.0) 79.7 (1.45) 8.3 (1.2) 12.3 (0.3)

7 8.1 (0.1) 2.0 (0.0) 1.8 (0.6) 59.0 (8.7) 0.6 (0.2) 78.0 (5.77) 9.7 (4.4) 13.0 (1.5)

13 8.1 (0.0) 2.0 (0.0) 1.0 (0.5) 54.0 (6.0) 0.7 (0.0) 71.0 (2.08) 16.7 (1.3) 12.3 (0.9)

15 8.1 (0.0) 1.7 (0.3) 1.7 (0.2) 52.0 (5.7) 0.7 (0.0) 71.3 (0.67) 16.7 (0.7) 12.0 (0.0)

19 7.8 (0.0) 3.3 (0.3) 1.0 (0.0) 76.7 (5.5) 1.7 (0.2) 51.7 (3.18) 31.3 (2.7) 17.3 (0.9)

31 7.7 (0.0) 3.7 (0.3) 0.8 (0.2) 89.7 (5.4) 3.7 (0.2) 26.7 (2.67) 54.7 (8.2) 19.3 (6.2)

37 7.6 (0.0) 4.0 (0.0) 1.2 (0.2) 98.3 (7.1) 2.7 (0.4) 42.7 (5.21) 38.7 (5.2) 19.3 (0.9)

53 7.8 (0.0) 3.0 (0.0) 1.0 (0.0) 90.3 (2.7) 2.0 (0.4) 38.7 (3.71) 42.0 (3.1) 19.3 (0.7)

69 7.7 (0.1) 3.3 (0.3) 0.8 (0.2) 96.0 (6.7) 2.4 (0.1) 50.3 (8.09) 34.0 (7.2) 15.7 (0.9)

rs -0.75* 0.63* -0.76* 0.90* 0.82* -0.76* 0.82* 0.65*
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Table 3. Biotic parameters of aged sites along the Nyack chronosequence (mean ± 

standard error) and Spearman’s correlation values of the variables correlated with site 

age. (“*”indicates significance at P<0.05) 

 
Site age 

Herbaceous 
Understory 

biomass
(g m2 -1) 

Litter biomass
(g m2 -1) 

1 15 (3) 0 (0)

4 39 (5) 24 (9)

7  48 (16) 110 (37)

13 42 (1) 479 (61)

15 20 (7) 415 (114)

19 118 (18) 488 (98)

31 79 (22) 916 (101)

37 124 (10) 529 (89)

53 156 (26) 600 (137)

69 64 (18) 423 (24)

rs 0.78* 0.76*
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Figure 1. AMF Colonization of understory fine roots in October 2003 from bulk soil 

across the Nyack chronosequence (mean ± standard error). 
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Figure 2. Mycorrhizal inoculum potential across the chronosequence in July 2005 as 

measured by percent colonization of Sorghum bioassay fitted along the lognormal 4 

parameter nonlinear model ((y=y0+a^[-0.5(ln(x/x0)/b)2]), where a= 39.83 b=0.43, x0= 

6.36, and y0= 19.14 (mean ± standard error). 



 50

 

Site age (years)

0 10 20 30 40 50 60 70

A
M

F 
so

il 
hy

ph
al

 le
ng

th
s (

m
 g

-1
)

0

5

10

15

20

25
adj. R2=0.65
P<0.05

 
Figure 3. Changes in AMF biomass as measured by soil hyphal lengths (m g-1 soil) 

across the Nyack chronosequence fitted along the lognormal 4 parameter nonlinear 

model, where a= 11.7, b=0.86, x0= 11.5, y0= 3.31 (mean ± standard error).  
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Figure 4. Changes in percent ectomycorrhizal colonization of cottonwood root tips in 

October 2004 across the Nyack chronosequence fitted along a single rectangular two 

parameter hyperbolic model (y= ax/ (b+x)), where a= 64.49 and b= 3.29 (mean ± 

standard error).  
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Figure 5. Changes in abundance of ectomycorrhizae in soil as determined by the number 

of ECMF colonized root tips in 100 ml bulk soil at sites in August 2005 across the Nyack 

chronosequence fitted with a linear model (y=y0 + ax) where y0= -62.35 and a=59.4 

(mean ± standard error).  
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Figure 6. Change in percent water stability of the 1-2mm aggregate size class across the 

Nyack chronosequence fitted along a single rectangular two parameter hyperbolic model 

(y= ax/ (b+x)), where a= 96.67 and b= 6.63 (mean ± standard error).  
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Chapter 3 

Inhibition of colonization by a native arbuscular mycorrhizal fungi community via 

Populus trichocarpa litter, litter extract, and soluble phenolic compounds. 

 

Jeff S. Piotrowski1 , Scott Morford2, Matthias C. Rillig1,3

(In press, Soil Biology and Biochemistry) 

Abstract 

 Controls on the colonization and abundance of AMF in ecosystems are little 

understood and may be related to host factors, the fungal community, and soil physio-

chemical properties, and changes in these variables during soil development may affect 

succession between mycorrhizal groups. Here we investigated the effects of litter, litter 

leachates, and common soluble phenolic compounds on AMF colonization of roots. In 

previous studies, we observed a negative correlation between increases in cottonwood 

(Populus trichocarpa) litter and AMF abundance and inoculum potential along a riparian 

chronosequence in northwest Montana. From this we hypothesized that litter inputs 

negatively affect the native AMF community and may contribute to the shift between 

AMF and ectomycorrhizas. We tested the effects of cottonwood foliage and litter extract 

additions on the colonization of AMF of both cottonwood and Sudan grass (Sorghum 

sudanese) seedlings. Addition of 5% (v/v) dried cottonwood leaves completely inhibited 

AMF colonization of S. sudanese. AMF colonization of S. sudanese was significantly 

reduced by litter extract of P. trichocarpa foliage, and colonization was negatively 

correlated with litter extract concentrations. Additions of aqueous litter extract 

significantly reduced AMF colonization of cottonwood seedlings as well. The effect of 
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the litter extract on AMF colonization of S. sudanese did not appear to be mediated by 

changes in soil pH or plant biomass. Available phosphorus was higher in soil receiving 

highest concentration of litter extract, but not at a level expected to be inhibitory to AMF 

colonization. Litter additions significantly increased total soil phenolics, but with a range 

similar to natural soils of the Nyack floodplain. Pure soluble phenolic compounds 

common to Populus were tested for their effect on AMF colonization by native fungi 

from the Nyack floodplain. All tested compounds significantly reduced AMF 

colonization but did not affect colonization by non-AMF root colonizing fungi. This 

suggests secondary compounds present in cottonwood litter can affect colonization ability 

of a native AMF community. The potential mechanisms of inhibition and the relevance of 

these findings to AMF succession both within a single host and soil ecosystem are 

discussed.

________________________________________________________________________ 

1 Division of Biological Sciences, University of Montana, Missoula, MT  

2 John Muir Institute for the Environment, University of California,  Davis, CA  

3 Freie Universitaet Berlin, Institut fuer Biologie Berlin, Germany 
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Introduction 

 

 Arbuscular mycorrhizal fungi (AMF) are a group of soil fungi that form symbiotic 

associations with over 80% of all terrestrial vegetation (Smith and Read, 1997). These 

fungi have been considered keystone species in that they can increase ecosystem 

productivity and have the potential to affect plant diversity by providing increased access 

to immobile soil nutrients, water, and by increasing root pathogen resistance (O’Neill et 

al., 1991; Rillig et al., 2004). Through these benefits, AMF may also shape plant 

successional trajectories (Gange et al., 1993; Gange and Brown, 2002; Hart et al., 2001). 

Hence, factors that affect the abundance and infectivity of these fungi could affect both 

plant community and soil ecosystem development. 

 During plant community succession in temperate and boreal systems the dominant 

mycorrhizal associate often changes from AMF to ectomycorrhizal fungi (ECMF) 

(Johnson et al., 1991; Read, 1991; Treseder et al., 2004; Jeff Piotrowski unpublished 

observation). The mechanism of this change is proposed to be a result of changing soil 

nutrient status; however, other soil and plant changes occur over successional time, 

making it difficult to identify a single driver (Lodge and Wentworth, 1997; Beauchamp et 

al., 2006). Previously we observed a relationship between litter accumulation and AMF 

during floodplain succession: AMF hyphal length, inoculum potential, and colonization 

of roots were all suppressed at sites of greatest litter and soil organic matter accumulation 

despite an abundance of AMF hosting plants (Jeff Piotrowski unpublished observation). 

While other studies have shown that certain sources of organic matter are stimulatory to 



 57

AMF (Cavender et al., 2003; Nan et al., 2006), the observed inhibition of AMF suggests 

that litter chemistry may be an additional driver in the successional shift between AMF 

and ECMF during ecosystem development.  

 Aboveground inputs such as litter fall, litter leachates, and canopy leachates can 

significantly alter the function and abundance of many soil organisms (Schimel et al., 

1998; Wardle, 2002; Castells et al., 2005). While carbon and nutrients derived from 

aboveground materials are often stimulatory to saprobic organisms and detritivores, many 

plants produce secondary compounds that can inhibit the growth and function of soil 

microbes, affecting soil processes such as decomposition and nutrient cycling 

(Hättenschwiler and Vitousek, 2000). Symbionts, such as mycorrhizal fungi, may also be 

affected by litter inputs. To date, few studies have investigated the effect of litter 

leachates and plant secondary compounds on arbuscular mycorrhizal fungi within an 

ecosystem context. 

 The reported effects of plant secondary compounds on AMF growth are mixed. 

One class of phenolic compounds, flavonoids, has demonstrated both stimulatory and 

inhibitory effects on AMF depending on source, and certain flavonoids have been 

implicated as chemical signals that induce AM colonization (Morandi, 1996; Scervino et 

al., 2005: Bais et al., 2006). Yet, other phenolic compounds have an inhibitory effect on 

AMF. Wacker et al. (1990) found that ferulic acid, a common soluble phenolic found in 

high concentration in asparagus roots, inhibited germ tube elongation of germinating 

Glomus fasciculatum (Thaxter) spores in vitro. Fries et al. (1997) found additions of three 

phenolic compounds (p-coumaric acid, p-hydroxybenzoic acid, and quercin) to be 

stimulatory to colonization by Glomus intraradices (Schenck & Smith) at low 
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concentrations, yet inhibitory at higher concentrations. All these studies focused 

primarily on the effects of exogenously applied, pure phenolic compounds on single 

AMF species. Much  less is known about how litter and leachate chemistry may affect 

AMF or entire natural communities of AMF. Yan and Choi (2002) recently demonstrated 

that extracts from Artemisia princes var. orientalis (Pamp.) foliage applied to soil 

inhibited AMF colonization. This study suggests that litter leachates can affect AMF; 

however, the mechanism of inhibition remains unclear. Do litter and litter leachates 

suppress AMF by increasing soil phosphorus availability, altering soil pH, affecting host 

growth, stimulating antagonistic organisms, or is there direct toxicity? Irrespective of the 

mechanism, inhibition of AMF by litter leachates could be a contributing agent to the 

decline of AMF community observed during succession, and this phenomenon is thus 

clearly ripe for further investigation. 

 Black cottonwood (Populus trichocarpa Torr. & Gray) is the dominant tree 

species on the Nyack floodplain, located in northwestern Montana (48º 27’ 30” N, 113º 

50’ W) on the Middle Fork of the Flathead River, a 5th order, free-flowing river with 

protected headwaters (Harner and Stanford, 2003). Members of the genus Populus have 

been well studied for their foliar chemistry and its effect on soil microbes (Olsen et al., 

1971; Schimel et al., 1998; Madritch et al., 2006). These trees produce abundant 

secondary metabolites and trees may vary in productivity across genotype, age, and 

environmental gradients (Mansfield et al., 1999; Donaldson et al., 2006). Early studies 

have described foliage from members of this genus as inhibitory to some 

ectomycorrhizae species (Olsen et al., 1971); however, no studies have investigated the 

effects of litter and litter leachates from P. trichocarpa on a native community of AMF. 
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The aim of these studies was test the effects of cottonwood litter on the AMF 

community of the Nyack floodplain. We hypothesized that organic matter and leachates 

derived from cottonwood litter could reduce AMF infectivity. Furthermore we sought to 

gain a better understanding of the mechanisms of AMF inhibition by litter leachates and 

phenolics in natural soils by determining if this inhibition is a result of changes in plant 

growth, soil pH, phosphorus availability, or specific phenolic compounds. We test this 

hypothesis with three complementary experiments. The first experiment is designed to 

test the effects of whole P. trichocarpa litter on AMF colonization; the second tests a 

range of dilutions of litter leachates on colonization; and the last tests if pure, soluble 

phenolic compounds known to be in abundance in Populus litter are sufficient to inhibit 

colonization of a native AMF community. 

 

Methods 

 

Experiment 1: The effect of cottonwood leaves on AMF colonization 

 

 We conducted this experiment to determine if cottonwood leaves would affect 

AMF colonization. We collected whole cottonwood leaves from P. trichocarpa in 

Greenough Park Missoula, MT in June of 2005 and dried the leaves at 80º C for two 

days; then the leaves were pulverized using a Waring blender. We pulverized vermiculite 

to use as an inert control because it has a neutral pH and is commonly used in growth 

media with AMF. 
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 We grew plants in 250ml Cone-tainertm (Stewe and Sons Canby OR, USA) pots 

containing a homogenized mixture of 90% air dried field soil from a 9 year old sites on 

the Nyack floodplain, 5% (v/v) whole vermiculite for aeration, and 5%  of either 

pulverized cottonwood leaves or vermiculite as an inert control. To enhance ecological 

realism, we selected the Nyack soil because it represented a soil with low organic matter 

(0.6%), low phosphorus (~2 mg kg-1), and high native inoculum potential (Jeff 

Piotrowski unpublished observation). Because the soil was air dried prior to use, the 

infectious AMF propagules were mostly spores, as active hyphae and root fragments may 

have been desiccated and infectivity reduced. Each treatment had 7 replicates (n=14). We 

germinated surface sterilized Sorghum sudanese (Stapf .) seeds (5% H2O2 for 5 minutes) 

prior to sowing, then planted three per pot. S. sudanese was chosen for all experiments 

because it is readily colonized by AMF with little effect on its biomass. Plants were 

thinned to two per pot within the first week and grown for two months in greenhouse 

conditions with watering every 2-3 days.  

 

Experiment 2: The effect of cottonwood litter extract on AMF colonization of S. sudanese 

and P. trichocarpa seedlings 

 

 For these experiments we used an extract of cottonwood litter to simulate 

cottonwood litter leachate. In October 2005 we collected 500 g of freshly fallen 

cottonwood leaves from around P. trichocarpa in Greenough Park Missoula, MT. We 

produced the extract by soaking the leaf litter in 12 liters of dH2O for three days. The 

extract was filtered through a 53 μm sieve to remove particulate matter. We chose not to 
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sterilize the litter leachate before addition because we felt it was important to also add the 

microbes associated with this substrate and their products, as would be the case in the 

field. A portion of the litter extract was diluted with deionized water to concentrations of 

1X, 0.5 X, 0.25X, 0.1X, 0.01X, 0.001X, and 0.0001X,0.00001 X. All dilutions were 

adjusted to pH 7.0 using 1 M NaOH.   

 We grew plants in 125ml Cone-tainertm (Stewe and Sons Canby OR, USA) pots 

containing a homogenized mixture of 100% air dried field soil from a 9 year old sites on 

the Nyack floodplain. We germinated surface sterilized S. sudanese seeds prior to 

sowing, then planted three per pot. Plants were thinned to two per pot within the first 

week. The plants were grown for two months in growth chamber conditions (25ºC, 60% 

R.H., 320 μmol sec-1P.A.R ) and watered every 2-3 days with 20 ml of the prepared litter 

extract dilutions or dH2O as a control. Each treatment had 5 replicates (n=45). We 

harvested and stained plant roots for assessment of AMF colonization as described above. 

 We also tested the effect of the litter extract versus water on P. trichocarpa 

seedlings grown from seeds collected from the Nyack floodplain. Seeds were surface 

sterilized as above and pre-germinated prior to planting. Cottonwood seedlings were 

grown in the same soil as above in the growth chamber. Half the seedlings were watered 

with 20 ml 1X litter extract every 2-3 days, the others with water for two months (n=12). 

Root growth of the cottonwood seedlings was very low and not assessed for biomass.  

 

Experiment 3: The effects of individual soluble phenolics on AMF colonization 
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 To test if soluble phenolic compounds could alone inhibit AMF colonization by 

fungi from the Nyack floodplain, we used a modified AMF inoculum potential bioassay. 

We exposed S. sudanese seedlings to common soluble phenolic compounds. We divided 

the seedlings into five treatments (water control, ferulic acid, caffeic acid, vanillic acid, 

and coumarin) with eight replicates each (n=40). Ferulic, caffeic, and vanillic acids were 

chosen as they are present in Populus foliage, coumarin was selected as a known 

antifungal secondary compound found in plant tissues previously untested on AMF 

(Greenaway et al., 1987; Isidorov and Vinogorova, 2003). To determine the treatment 

concentration, we determined the total phenolic concentration of the cottonwood litter 

extract we prepared prior using the Folin-Cioteau assay described Singleton and Rossi 

(1965) with ferulic acid as the standard . Total phenolic concentration of the litter extract 

was determined to be 497 mg kg-1 of ferulic acid equivalents. This concentration is 

comparable to total phenolic measurements from leachates found in natural systems 

(Castells et al., 2003; Suominen et al., 2003). Based on our prior experiment, 0.5X 

dilution of our litter extract was most inhibitory to S. sudanese colonization. Hence we 

decided to test a concentration of 250 mg kg-1 of each soluble phenolic.  

 We grew S. sudanese seedlings in 100ml of 50:50 mixture of field soil and trap 

culture medium to ensure a high colonization potential and because snow prevented fresh 

soil collection. S. sudanese seeds were surface sterilized as above and pre-germinated 

prior to planting. We planted 3 seeds in each pot, and thinned to one seedling per pot 

after 1 week.  We treated the plants with 20 ml of either the phenolic solution or water 

every 2-3 days for a month, and grew the seedlings in environmental growth chambers as 

described above for one month.  
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Plant and mycorrhizal analysis 

 

 Upon harvest, we clipped, dried, and weighed shoot and root biomass. Roots were 

then separated from the shoots, washed, and stained. We stained the roots with trypan 

blue as described by Brundrett et al. (1994). We assessed mycorrhizal colonization at 

200X on a Nikon Eclipse E600 microscope by the gridline intersect method (McGonigle 

et al., 1990) at ~50 randomly selected locations covering the entire slide, scoring any 

AMF structures as positive for colonization (hyphae, vesicles, arbuscules). We 

distinguished AMF in roots from other root colonizing fungi which have characters 

absent in AMF: melanization, clamp connections or regularly septate hyphae, non-

dichotomous branching (Rillig et al., 1999). We did not assess AMF soil hyphal length 

because the short duration of these experiments would not allow sufficient hyphal 

production above background hyphae in these field soils. 

 

Soil analysis 

 

 We determined soil pH using a 1:1 (soil: 0.01M CaCl2) slurry. Available soil 

orthophosphate was estimated using the ascorbic acid method described by Murphy and 

Riley (1962). Total water soluble soil phenolics were determined by the method 

described by DeForest et al. (2005) with ferulic acid used to generate the standard curve. 

 

Statistical analysis 
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 We used Student’s two sample T-test to compare the results of experiment one 

and the cottonwood seedling experiment; if data could not be transformed to meet 

assumptions of parametric statistics we used the Mann-Whitney U test. We used 

ANOVA to compare the effects of litter extract and pure phenolic compounds on AMF 

colonization, plant growth, and soil parameters with Tukey’s HSD analysis where 

appropriate, if data fulfilled the assumptions of homoscedascity and normality of 

residuals. We log transformed the data if these assumptions were not met. If 

transformation did not allow data to fill assumptions, we used a Kruskal-Wallis one-way 

ANOVA with a Bonferroni corrected multiple comparison Z-test to determine differences 

between treatments. To test the effect of litter extract concentration on plant and soil 

parameters we calculated Spearman’s rank correlation values between on the mean AMF 

colonization, litter extract concentration, plant root and shoot biomass, available soil 

phosphorus, and total soil phenolics. We used NCSS (NCSS, Kaysville, Utah, USA) for 

all statistical analyses after testing for assumptions of normality and equal variances 

using JMP (JMP, Version 6. SAS Institute Inc., Cary, NC, 1989-2005). 

 

Results 

 

The effects of cottonwood derived organic matter on AMF colonization 

 

 The first experiment indicated that additions of dried cottonwood leaves inhibited 

root colonization of S. sudanese by AMF indigenous to the floodplain. The roots of 
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seedlings receiving the cottonwood additions had no evidence of AMF colonization, 

whereas the vermiculite control had 37.5% colonization (Table 1). Roots with the litter 

added were intermittently colonized by other non-AMF fungi with regular septation, 

melanization and/ or microsclerotia. The pH of the soils was not statistically different 

(Table 1). The available phosphorus content of the soils was significantly different 

(P<0.001), with the soil receiving the leaf addition having 13.2 mg kg-1 compared to 2 

mg kg-1 in the control (Table 1).  

 

The effects of aqueous extract of cottonwood litter on AMF colonization 

 

 Aqueous extract of cottonwood litter significantly reduced AMF root colonization 

of S. sudanese (Figure 1, F=2.74, P<0.05). Colonization ranged from 51% with the water 

control to 6% when treated with 0.5X dilution of the extract. Seedlings receiving 0.5X 

and 1X dilution treatments had produced significantly less colonization than those 

receiving the water control. There was no detectable difference in colonization between 

other treatments. The addition of the cottonwood extract did not significantly alter root 

biomass of the S. sudanese seedlings (Table 2, F= 1.6, P=0.17). Shoot biomass was 

significantly lower in the treatment receiving 0.25X than treatments receiving 1X and 0X, 

while all others were not statistically different (Table 2, F=2.79, P<0.05). Final soil pH 

was increased by the extract addition (Table 2, H=29.8, P<0.0001). Treatments receiving 

0.5X and 1X dilutions had higher soil pH than treatments receiving 0.001X and 0.1X, all 

other comparisons had not detectable differences. Available soil phosphorus differed 

across the litter extract treatments (Table 2, F=2.7, P<0.05), but Tukey’s HSD test did not 
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resolve any differences between individual treatments. Total soil phenolics were 

significantly increased with litter extract additions (Table 2, F=21.9, P<0.0001). Multiple 

comparisons are presented in Table 2. 

 Colonization was significantly negatively correlated with increasing concentration 

of the litter extract (Table 3). Additionally, total soil phenolics increased with extract 

concentration. Final soil pH was positively correlated with available phosphorus (Table 

3). No other correlations were statistically significant. 

 The litter extract significantly reduced AMF colonization of cottonwood seedlings 

(Table 4, P<0.001). Litter extract treatment also significantly reduced aboveground 

biomass (Table 4, P<0.001). Soil pH was not affected by the treatment (P=0.07). Both 

available soil phosphorus (P<0.01) and total soil phenolics (P<0.01) were significantly 

increased by the litter treatments. 

 

The effects of pure phenolic compounds on the AMF community 

 

  Additions of each tested phenolic significantly reduced AMF root colonization of 

S. sudanese compared to the water control (Figure 2, F=5.98, P<0.01). These compounds 

did not significantly alter plant biomass, soil pH, or available soil phosphorus compared 

to the water control (Table 5). All plants in all treatments had evidence of AMF 

colonization (arbuscules, vesicles, hyphae) as well as colonization by non-AMF root 

colonization fungi (sporangia, regularly septate hyphae, melanization). The lowest mean 

AMF colonization occurred with the coumarin treatment, but this was not significant. 
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Colonization by non-AMF fungi was unaffected by the phenolic compounds (Figure 2, 

F=0.47, P=0.75). 

 

Discussion 

 

 Results from these experiments support our hypothesis that leaves and litter 

extracts of P. trichocarpa as well as specific phenolic compounds found in Populus 

foliage are inhibitory to AMF colonization by fungi native to the Nyack floodplain. These 

data significantly increase our understanding of the effects of litter and soluble phenolics 

on communities of AMF in ecosystems. Results suggest an interesting host/ symbiont 

feedback within plants capable of hosting two mycorrhizal groups. Finally, this work 

indicates that these compounds alone are a potentially powerful control over the 

succession between AMF and ECMF during ecosystem development. 

  

Mechanisms of AMF inhibition by Populus leaf litter 

 

 The mechanisms of AMF inhibition by litter are becoming clearer. Suppression of 

AMF root colonization was not likely a result of altered soil pH. While a lowering of soil 

pH can affect inorganic P mobility and AMF abundance (reviewed in Entry et al., 2002), 

this does not appear to be the way litter reduced AMF. Soil pH was not significantly 

changed by addition of cottonwood foliage, litter extract to cottonwood seedlings, or pure 

phenolics. Soil pH did increase with 0.5-1X dilutions and this is likely a result of 

decomposition of the extract by saprophytic organisms as decarboxylation of organic 
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compounds can increase soil pH (Yan et al., 1996), but the observed change is within a 

range not expected to negatively affect AMF colonization (Olivera et al., 2005). 

Furthermore, the change in soil pH seen in the S. sudanese leachate experiment (Table 2) 

remains within the domain of Ca-P controlled fixation and would not dramatically alter 

the solubility of inorganic P species (Stevenson and Cole, 1999).  

 Additionally, with the exception of plants receiving the 0.25X dilution of the litter 

extract, the additions of both litter extracts and specific soluble phenolics did not 

significantly alter plant growth of S. sudanese. Hence, reduced colonization is not a 

product of reduced plant productivity. The extract additions did however reduce 

cottonwood seedling shoot biomass (perhaps as an indirect consequence of reduced 

mycorrhizal activity). Nevertheless, the treatment reduced both growth and AMF 

colonization of seedlings despite a significant increase in soil phosphorus. Increases in 

soil phosphorus provided by the litter treatments did not increase the growth of any 

plants, thus all were likely co-limited by other nutrients. The increase in available soil 

phosphorus we observed with the litter treatments was not at a level expected to be 

inhibitory to AMF colonization. The highest measured soil phosphorus level at the end of 

all experiments was 13 mg kg-1, much lower than what has proven inhibitory to AMF 

colonization (Graham et al., 1981; Blanke et al., 2005). Moreover, at the 0.5X extract 

dilution, the treatment with the lowest AMF colonization, phosphorus concentration (7.9 

mg kg-1) was not significantly higher than in the weaker dilutions.  

Our results do show that soluble phenolics compounds known to occur in Populus 

foliage alone can reduce colonization by an entire AMF community (Figure 2). It is likely 

these compounds in cottonwood litter are responsible for the reduced colonization in our 
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experiments, and that inhibition of AMF could occur in ecosystems as a result of their 

presence. Total soil phenolics present after litter extract additions were within a 

biologically realistic range (Muscolo and Sidari, 2006). Total soil phenolics at the 31 year 

old site on the Nyack floodplain was 22 mg kg-1 (Jeff Piotrowski unpublished 

observation), a level equivalent to the soils receiving the 0.5X treatment (24 mg kg-1). 

Secondly, total phenolic concentration of the litter extract was 497 mg kg-1, lower but 

within a realistic range of phenolic concentrations of leachates in other systems (Castells 

et al., 2003; Suominen et al., 2003). Moreover, as we adjusted our extract to a pH of 7.0 

to reduce pH effects, this could have reduced the phenolic toxicity as well by reducing 

concentrations of the dissociated forms of the phenolic compounds, leading to an 

underestimation of their biological effects on mycorrhizal fungi. 

 There are several mechanisms by which these leachates and soluble phenolics 

derived from cottonwood litter could reduce AMF colonization. Soluble phenolic 

compounds like ferulic acid are inhibitory to AMF hyphal elongation following spore 

germination (Wacker et al., 1990). As we used air dried soils, the inoculum was expected 

to be largely in the form of spores. While phenolics inhibit hyphal elongation following 

spore germination, it is still uncertain how these compounds would affect colonization by 

other inoculum sources like hyphal networks and colonized root fragments. If only spores 

are affected, accumulation of phenolics could result in a shift to a AMF community with 

fewer species dependent on spores for colonization (e.g. fewer Gigasporaceae).  

 Increased inputs of phenolic compounds and other labile carbon sources in litter 

leachates may also stimulate organisms antagonistic to AMF. Some of our observations 

support this mechanism. In our first experiment we noted sporadic non-AMF root 
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colonizing fungi in roots receiving the litter treatment but no AMF. In our second 

experiment, while there were no detectable non-AM root colonizing fungi, the increase in 

soil pH is likely the result of increased decomposer activity. When we added only pure 

phenolic compounds, AMF colonization was reduced whereas other root colonizing fungi 

found in the trap culture soils were not. Inhibition of colonization was much greater with 

the litter leachate than with the pure phenolics, suggesting a combined effect of phenolic 

toxicity and stimulation of antagonistic organisms. Even so, AMF do not produce any 

documented extracellular enzymes capable of detoxifying phenolic compounds, whereas 

other fungi, including ECMF, do (Münzberger et al., 2003; Zeng and Mallik, 2006). 

Thus, AMF may not only be more susceptible to phenolic toxicity, but may also be at a 

competitive disadvantage to fungi and bacteria that can detoxify these compounds or use 

them or other compounds from litter leachates as carbon sources.  

  

Implications for mycorrhizal succession  

 

 Many floodplains, including the one studied here, are dominated by members of 

the Salicaceae, a plant family capable of simultaneously hosting both AMF and ECMF 

(Vozzo and Hacskaylo, 1974; Chilvers et al., 1987; Khasa et al., 2002). Mycorrhizal 

symbionts can exert a significant carbon drain on their host. So far, no biochemical 

mechanism has been identified by which members of the Salicaceae can “select” which 

symbiont it associates with, but the displacement of AMF by ECMF in these roots is 

considered to be a product of the physical exclusion of AMF colonization when the 

ECMF mantel forms (Last et al., 1983; Santos et al., 2001). Our data suggest that 
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phenolics present in leaf litter could be inhibitory to AMF colonizing roots but not other 

fungi capable of detoxifying them, providing another potential mechanism by which a 

host can control its own symbiont community. 

 From a successional standpoint, whereas some ECMF can degrade phenolics and 

AMF cannot, increasing soil phenolic concentrations over time and host shifts in 

mycorrhizal associates could contribute to the frequently observed shift from AMF 

dominated soils to ECMF soils. Further field based studies are necessary to determine if 

these compounds are affecting AMF to ECMF succession in situ. Additionally, isolation, 

quantification, and assessment of the soluble phenolics of black cottonwoods will be 

necessary to determine if they alone inhibit AMF. Yet, these data strongly suggest a 

potentially powerful biochemical mechanism contributing to successional shifts of 

mycorrhizal groups. 

 

Conclusions 

 

 Together, these results suggest that soluble phenolic compounds from litter are a 

significant and largely unexplored control on AMF abundance and potentially community 

composition in natural ecosystems. The mechanisms of inhibition may be a product of 

phenolic toxicity to AMF, stimulation of antagonistic fungi that compete for space and 

nutrients, or a combination of both where AMF are suppressed and other fungi capable of 

phenolic detoxification are able to can proliferate. Nevertheless, soluble phenolic in 

ecologically realistic concentrations in both soil and litter leachates could be a driving 

force in succession of AMF to ECMF in both roots and soils. 
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Tables 

Table 1. Comparison of AMF colonization of Sorghum seedlings, soil pH, and  soil 

phosphorus and following treatment with either 5% addition of ground cottonwood 

leaves or ground vermiculite (mean± standard error).  

 

Treatment % AMF 
colonizationb

Soil pHa Soil phosphorus 
(mg kg-1) b

Cottonwood litter 0.0 ± 0.0 7.64 ± 0.06 13.2 ± 0.8 

Vermiculite 37.5 ± 7.5 7.80 ± 0.09 2.0 ± 1.1 

 Z=2.99** 
N= 14 

T=-1.55 
N=14 

Z=2.61* 
N= 8 

*P<0.05, **P<0.001 

a Comparisons were made using Student’s two sample T-test.  

b Comparisons were made using the Mann-Whitney U test. 
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Table 2. Comparison of S. sudanese seedlings and soil parameters across the dilution of 

cottonwood extract (mean± standard error). Lettering indicates significant difference 

between treatments as determined by Tukey’s multiple comparison test.  

Leachate 
Dilution 

Shoot biomass 
(g) 

Root 
biomass 
(g) 

Soil pHa Soil 
Phosphorus 
(mg kg-1) c

Total soil 
phenolics  
(mg kg-1) b

Control 0.06 ± 0.01 a 0.08 ± 0.02 7.65 ± 0.01 ab 2.8 ± 1.0 10.4 ± 1.6 ab 

0.00001 0.07 ± 0.01 ab 0.08 ± 0.01 7.61 ± 0.01 ab 3.8 ± 2.0 6.3 ± 0.9 a 

0.0001 0.09 ± 0.01 ab 0.07 ± 0.01 7.61 ± 0.03 ab 2.1 ± 1.2 12.2 ± 1.8 ab 

0.001 0.07 ± 0.01 ab 0.07 ± 0.02 7.58 ± 0.01 a 1.2 ± 0.5 11.2 ± 2.1 ab 

0.01 0.06 ± 0.01 ab 0.08 ± 0.02 7.62 ± 0.01 ab 2.4 ± 1.2 8.2 ± 1.2 ab 

0.1 0.07 ± 0.01 ab 0.11 ± 0.01 7.59 ± 0.01 a 2.6 ± 0.6 8.6 ± 1.0 ab 

0.25 0.05 ± 0.01 b 0.07 ± 0.01 7.76 ± 0.02 ab 4.8 ± 1.3 15.4 ± 1.3 bc 

0.5 0.07 ± 0.01 ab 0.08 ± 0.01 8.04 ± 0.02 b 7.9 ± 2.8 24.2 ± 2.0 c 

1 (full 
strength) 

0.10 ± 0.01 a 0.10 ± 0.05 8.04 ± 0.05 b 13.0 ± 3.4 59.5 ± 7.4 d 

 F=2.79* 
N= 45 

F=1.6  
N= 45 

H=29.83*** 
N= 36 

F=2.7* 
N= 36 

F=21.91*** 
N= 36 

*P<0.05, ***P<0.0001. 

a  Comparisons were made using the Kruskal-Wallis test with the Z-test for multiple 

comparisons.  

b Indicates these data were log transformed prior to ANOVA.  

c Indicates Tukey’s test did not resolve differences despite significance of the ANOVA. 
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Table 3. Spearman’s Rank correlation matrix of S. sudanese AMF colonization, litter 

extract concentration and soil variables. 

Variable % AMF 
col. 

Extrac
t conc. 

Availabl
e soil P 

Total soil 
phenolics 

Shoot 
biomass 

Root 
biomass 

Final 
soil pH 

% AMF 
col. 

1.00       

Extract 
conc. 

-0.95* 1.00      

Available 
soil P 

-0.60 0.58 1.00     

Total soil 
phenolics 

-0.63 0.68* 0.52 1.00    

Shoot 
biomass 

-0.16 0.21 0.13 0.34 1.00   

Root 
biomass 

-0.25 0.30 0.42 -0.13 0.25 1.00  

Final soil 
pH 

-0.48 0.55 0.84* 0.63 -0.06 0.18 1.00 

*P<0.05.
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Table 4. Comparison of P. trichocarpa shoot biomass, soil pH, and  soil phosphorus, and 

total soil phenolics following treatment with either 1X cottonwood litter extract or water 

(mean± standard error).  

Cottonwood 
Extract 
treatment 

% AMF 
colonizationb

Shoot 
biomass (g) b

Soil pHb Soil 
Phosphorus 
(mg kg-1) a

Total 
phenolics 
(mg kg-1) b

Control 5.8 ± 1.3 0.05 ± 0.01 7.80 ± 
0.03 

2.7 ± 0.8 11.0 ± 0.5 

Full 
strength 

37.6 ± 7.3 0.02 ± 0.01 7.88 ± 
0.01 

8.9 ± 0.9 36.0 ± 2.6 

 Z=-2.74** 
N=12 

Z=3.13** 
N= 12 

Z=1.6 
N= 10 

T= -5.08** 
N= 10 

Z=2.89* 
N= 10 

*P<0.05, **P<0.001. 

a Comparisons were made using Student’s two sample T-test. 

b Comparisons were made using the Mann-Whitney U test. 
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Table 5. Comparison of S. sudanese and soil parameters when treated with specific 

phenolic compounds of deionized water (mean± standard error).  

Treatment Shoot biomass 
(g) c

Root 
biomass (g) c

Soil pHa Soil P 
(mg kg-1) 

Ferulic Acid 0.019 ± 0.004 0.034 ± 0.006 7.61 ± 0.01 2.7 ± 0.6 
Caffeic Acid 0.017 ± 0.002 0.029 ± 0.004 7.58 ± 0.02 2.1 ± 0.2 
Vanillic Acid 0.018 ± 0.004 0.038 ± 0.008 7.63 ± 0.01 1.9 ± 0.9 
Coumarin 0.014 ± 0.001 0.023 ± 0.002 7.61 ± 0.01 2.1 ± 0.6 
Water 0.018 ± 0.002 0.026 ± 0.003 7.61 ± 0.01 2.7 ± 0.2 
 F=0.60  

N= 40 
F=1.18  
N= 40 

H=6.6  
N= 25 

F=0.43  
N= 25 

a Comparisons were made using the Kruskal-Wallis test. 

b Indicates these data were log transformed prior to ANOVA 
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Figures

Cottonwood litter extract dilution
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Figure 1. Percent AMF colonization of S. sudanese when treated across a range of 

cottonwood litter extract dilutions (mean ± standard error). ANOVA F statistic and p-

value are presented. Multiple comparison using Tukey’s HSD test indicated AMF 

colonization of seedlings receiving 1X and 0.5X dilutions of the litter extract was 

significantly lower than colonization of the 0X treatment (n=45).  
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Figure 2. Percent root colonization of S. sudanese by AMF and non-AMF fungi when 

treated with either specific phenolic compounds or water (mean ± standard error). Black 

bars indicate AMF colonization of roots and white bars indicate other root colonizing 

non-AM fungi. ANOVA F statistic and p-value are presented. “*” indicated the water 

treatment had significantly greater AMF colonization compared to the phenolic 

treatments as determined by Tukey’s HSD test. There was no significant difference in 

colonization by non-AM fungi (n=40) . 
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Chapter 4  

The effects of arbuscular mycorrhizae on soil aggregation depend on the interaction 

between plant and fungal species. 

Jeff S. Piotrowski1, Tanya Denich2, John N. Klironomos2, John  M. Graham3, Matthias C. 

Rillig1  

(2004. In New Phytologist. 164:365-373) 

Abstract 

 Arbuscular mycorrhizal fungi (AMF) and roots mediate soil stabilization, 

although the mechanisms and how their interactions affect soil stabilization are not 

known. We tested the effects of specific plant/ fungus combinations on aggregate 

stabilization, and whether hyphal length and root biomass determine stabilization, 

predicting that fungi with longer hyphae and plants with higher root biomasses would 

better stabilize soils. The percentage of water stable aggregates (%WSA1-2mm), hyphal 

lengths, and root biomass were measured from a 5 AMF x 9 plant factorial experiment. 

AMF with longer hyphae were represented by the Gigasporaceae and plants of high root 

biomass by grasses. Other taxa represented lower hyphal lengths and root biomass. An 

interaction between symbionts with respect to %WSA1-2mm was observed (p<.0001). Root 

biomass and total hyphal lengths were not positively correlated with %WSA. 

Combinations of grasses with Gigasporaceae fungi had the lowest %WSA. Mechanisms 

underlying aggregation were not captured by measuring root biomass and total hyphal 

lengths alone; suggesting other physiological or architectural mechanisms may be 

responsible.  

________________________________________________________________________ 
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Introduction 

 Arbuscular mycorrhizal fungi (AMF) are functional components of terrestrial 

ecosystems worldwide. These fungi in the phylum Glomeromycota (formerly 

Zygomycota, Schüssler et al., 2001) form symbiotic relationships with the majority of 

land plants. Among the benefits AMF confer to their plant hosts are enhanced mineral 

nutrition (Smith & Read, 1997) and greater root-pathogen resistance (Newsham et al., 

1995); in exchange, the obligate biotrophic fungi receive carbon. These effects at the 

scale of the individual plant can influence processes at the scale of the ecosystem, such as 

ecosystem engineering through their ability to aggregate soils. 

Soil aggregation is a complex, hierarchical process mediated by both biotic and 

abiotic factors (Tisdall & Oades, 1982). Aggregation is essential to maintaining soil 

porosity, allowing gas exchange, water infiltration, and facilitating biogeochemical 

cycling (Diaz-Zorita et al., 2002). Additionally, soil structure is crucial to the success of 

sustainable agriculture and erosion resistance. Over one third of the world’s arable land 

was lost to erosion over the last 40 years (Pimentel et al., 1995), and much of the focus of 

sustainable agriculture has shifted towards managing for well-aggregated soils.    

Hyphae of AMF are considered to be the primary soil aggregators for several reasons: 

the extraradical hyphae of AMF have a significant biomass in most soils (Rillig & Allen 

1999). As obligate biotrophs these fungi do not need to compete with saprobes for soil 

carbon, and AMF hyphae are more resistant to fungivory than saprobic fungi 

(Klironomos & Kendrick, 1996). AMF may stabilize soils up to five months after their 

host’s death (Tisdall & Oades, 1980). A positive correlation between AMF hyphae and 
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aggregate stabilization in natural systems is described by Miller & Jastrow (1990) and 

Jastrow et al. (1998). Rillig et al. (2002) described significant indirect effects of AMF 

hyphal length on WSA stabilization via the production of glomalin-related soil protein 

(GRSP) in a natural grassland system. AMF showed similar results on the five plant hosts 

used, but like the other grassland studies no AMF species involved were described (Rillig 

et al., 2002). 

Little is known about the effects of different AMF taxa on aggregate stabilization. 

Schreiner et al. (1997) tested the WSA forming ability of three AMF species on soybean 

(Glycine max). The authors found Glomus mosseae stabilized aggregates in the 2-4mm 

size class significantly more than G. etunicatum and Gigaspora rosea, but there were no 

differences between species in the 1-2mm or 0.25- 1mm size classes. In natural 

grasslands, Miller & Jastrow (1992) correlated spore densities of Gi. gigantea with 

%WSA, but not densities of G. etunicatum.  

Plants with dense, fibrous root systems (such as grasses) assist aggregate formation 

(Amézketa 1999, Oades 1993). Similarly, hyphal characteristics may contribute to 

aggregation ability. AMF with dense hyphal clusters may hold soil particles together 

better than diffuse hyphae. These mechanisms of aggregation may be species dependent 

like other AMF characters, and this has given rise to the hypothesis that AMF species 

particularly adept at soil aggregation exist. The idea of an aggregation “specialist” is 

attractive to agribusiness as well as to applications in ecosystem restoration. If a species 

of AMF promoted WSA stabilization independent of plant host or soil type, it could be 

used to inoculate crops or other soils with poor water aggregate stability. 
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Evidence exists that many AMF species, despite their broad host range, are host 

specific with regards to beneficial effects for the plant. AMF effects can run the gamut 

from mutualist to parasite depending on its host plant (Klironomos, 2003). In this study 

the effects of a single AMF on many hosts ranged from greatly stimulating shoot biomass 

to drastically reducing it. These types of interactions may also manifest in differential 

amounts of soil aggregation. If the effects of an AMF species vary widely from host to 

host, then the search for an applicable aggregation “specialist” may be complicated. If a 

certain AMF interacts with specific hosts to strongly promote aggregation, AMF-host 

combinations could be customized to yield the highest aggregate formation. 

Overall, little is known about the effects of species of AMF on soil aggregation in 

natural ecosystems or agroecosystems. We know of no study in which the ability to 

promote stable soil aggregation has been compared among several hosts and fungal 

species combinations. This is the focus of the present study. Importantly, many studies 

have used biological material that was not derived from the same soil and ecosystem. The 

existence of intraspecific variation in AMF with respect to their ecosystem origin casts 

doubts on the degree of ecological realism of such studies (Klironomos, 2003). This 

experiment takes advantage of native inhabitants of a long-term mycorrhizal research site 

to study possible effects of plant/fungi interactions on WSA formation. 

This experiment is one of the first designed to test for interactions between AMF and 

plant host from a natural community with regards to soil aggregate stabilization. To help 

explain the mechanism of aggregate stabilization we measured root biomass and hyphal 

lengths. As these variables are thought to be major determinants of stabilization, 
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correlation between these and aggregate percentage could predict which fungi/ plant 

combinations are most suited to form water stable aggregates. 

We tested the following hypotheses: 

1)       Fungi of the family Gigasporaceae will be better soil aggregators independent 

of their plant host compared to non- Gigasporaceae members, as this family 

produces greater hyphal lengths and denser hyphal clusters (Hart & Reader 2002). 

2)       Plants in the Poaceae (grasses) will be better soil aggregators independent of 

their AMF partner, as grasses have more fibrous root biomass to ensnare soil 

particles (Amézketa 1999). 

3)       There will be three levels of aggregation based on the above assumptions. The 

combinations of grasses with Gigasporaceae fungi will yield the most water stable 

aggregates, followed by the combinations of Gigasporaceae fungi and non-grasses 

and Grasses and non-Gigasporaceae fungi, finally the lowest percent of water 

stable aggregates will be found in pots with the combination of non-grasses and 

non-Gigasporaceae fungi. 

 

Material and Methods 

Experimental design and Materials 

 The plant and AMF species used in this experiment are listed in Figure 1. All 

organisms were collected from the Long-Term Mycorrhiza Research Site (LTMRS) at 

the University of Guelph, Ontario, Canada (43°32'30"N, 80°13'00"W). Plant seeds were 

collected from May-September 2000 and stored under dry conditions at 4°C prior to the 

experiment. The five AMF species were isolated from the soil by first allowing them to 
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sporulate in trap cultures containing Allium porrum L. cv. Giant Musselburgh, and then 

using single AMF spores to start single species cultures (Brundrett, 1996). For a period of 

approximately four years prior to setting up the experiments described below, all the 

AMF were grown in dual pot culture with the host Allium porrum under similar 

greenhouse conditions. During that time, AMF were subcultured at three month intervals 

to keep the cultures clean and viable.  

 This experiment was set up using a (5 AMF x 9 plants) factorial design. The AMF 

factor consisted of one of five AMF species (Table 1). The plant factor consisted of one 

of nine plant species (Table 1). Each treatment combination consisted of ten replicated 

units, for a grand total of 450 experimental units. Each unit was positioned in a 

completely randomized design on benches in a greenhouse. The experiment ran from 

May 2001 – April 2002 under ambient light conditions, 22.1: 16.7°C average day:night 

temperatures, and 48.5 : 74.2 % average day:night relative humidity. 

 Each experimental unit consisted of a single pot (15cm D x 60cm L) containing 

sterile field soil, AMF inoculum, and an individual plant. The sandy-loam soil was 

collected from the LTMRS (total N = 80.5 mmol kg-1; total P = 6.9 mmol kg-1; 

percentage organic matter = 5.7). It was autoclaved and then added to individual pots. At 

a depth of 2 cm below the surface of the soil, we added a band of AMF inoculum with a 

mass of approximately 1g. This inoculum was composed of sheared Allium porrum roots 

(pre-colonized by one of the AMF isolates) and approximately 100 spores. To correct for 

possible differences in microbial communities, each experimental unit received a 50-mL 

filtered washing comprised of microbial extract from every AMF isolate used (Koide & 

Li, 1989). Plant seeds were germinated in a growth chamber at 20°C on moist filter 
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paper.  Individual seedlings were then transferred to the pots. We initially added two 

seedlings, but after 1 week we removed one plant. The remaining plant in each pot was 

left to grow for a period of one year. In some experimental units, the second plant died 

during the course of the experiment, so these units were removed from the final analysis. 

Removal of these dead plants from this analysis is valid because the treatments (plant x 

fungus combo) themselves did not cause the plants to die. All plants were watered every 

2 days or as needed with deionized water. They were also fertilized once per week with a 

modified Long-Ashton Nutrient solution (half strength P; Hewitt, 1966). 

 

Plant and fungal measurements 

 At the end of the experiment, plant shoots and roots were harvested. Plant 

material was then dried at 60°C for 48 hours and then weighed to determine biomass. 

Only root biomass is reported here. Prior to drying, a subsample of roots was taken from 

each pot and stored in 50% ethanol. This subsample of roots was then cleared in 10% 

potassium hydroxide, and stained with Chlorazol Black E (Brundrett, et al., 1984) to 

confirm the presence of AMF structures. In all experimental units, plants were colonized 

by AMF (data not presented). Extraradical hyphal lengths were estimated by extracting 

hyphae from two 5-g portions of soil (Miller et al., 1995) and measuring lengths by a 

gridline-intersect method. Hyphal length (m g-1 dry soil) was calculated as in Newman 

(1966). The hyphae of non-mycorrhizal fungi were distinguished from those of 

arbuscular mycorrhizal fungi by careful observation of characters normally missing in the 

latter (melanization, clamp connections or regularly septate hyphae). 
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Percentage of water stable aggregates (%WSA1-2mm) measurement  

 All soils had been stored as air-dried samples >4 months. We concentrated on 

macro-aggregates of 1-2 mm diameter, since the amounts of these aggregates are 

sensitive to short term (< 2 yr) management and treatment of soils (Kemper & Rosenau 

1986). Replicate samples of soil aggregates were moistened by capillary action for 10 

min. Water-stability of aggregates was then measured with a wet-sieving method using 

the apparatus and procedure described in Kemper & Rosenau (1986). Percentage of 

water-stable aggregates (%WSA) is calculated using the mass of aggregated soil 

remaining after wet sieving (5 min) and the total mass of aggregates at the beginning. The 

initial and final weights of aggregates were corrected for the weight of coarse particles (> 

0.25 mm) included in the soil samples. 

 
Statistical analysis  

 All analyses were conducted with SPSS version 10.0 (SPSS, Chicago, IL) or 

Number Cruncher Statistical Software (NCSS, Kaysville, UT). Univariate analyses of 

variance (ANOVA) were used to examine the effect of the two factors plant species and 

fungus type on soil aggregates (WSA), root biomass, and hyphal length. Analysis was 

undertaken separately for these three responses as there was no significant correlation 

between them. Three Bromus inermis treatments had unusually high root biomass and 

were pot bound. Due to these potentially confounding pot size effects, models were run 

with and without the three Bromus inermis plant treatments grown with the fungi G. 

intraradices, G. etunicatum, and A. denticulata (BI3). In this way, a total of six ANOVAs 

were performed as summarized below. Tukey-Kramer HSD or Kruskall-Wallis Z-test 

was used for post-hoc comparisons, where applicable. 
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 Additionally, for each of the three responses, the three sets of contrasts outlined 

earlier on the plant/fungus treatment combinations were estimated.  These contrasts were 

chosen to represent the following comparisons: 

 1.  Grasses vs. Non-grass plant types 

 2.  Gigasporaceae vs. Non-Gigasporaceae fungus types 

 3.  An ordering of treatments as: 

(Grass-Giga) > (NonGrass-Giga, Grass-NonGiga) > (NonGrass-NonGiga) 

This third contrast was examined in two parts, by first comparing the (Grass-Giga) 

treatments to the middle treatments, and then the middle treatments to (NonGrass-

NonGiga). 

 Univariate ANOVAs of WSA, root biomass, and hyphal lengths on the factors 

plant species and fungus type both with and without the Bromus inermis (BI3) treatments 

were performed. To correct the variance heterogeneity in WSA percentages and root 

biomass, the log-transformed variables log(100-WSA) and log(root biomass) respectively 

were used in all analyses, and a square root transformation was used for hyphal lengths. 

Root biomass and hyphal length were initially considered as covariates in the WSA 

ANOVA but added nothing significant to the model (p= 0.819, 0.768 respectively). 

Results  

Soil aggregate water stability (%WSA1-2mm) 

 Factor effects and contrast effects are summarized in the first two columns of 

Tables 2 and 3.  There are significant interactions between plant and fungus species in 

their effects on WSA (p<.0001), and between plants (p<0.0001), but no significant 

differences among fungus species (p=0.253) whether the interaction is included in the 
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model or not.  There are significant differences in soil aggregation between grasses and 

non-grasses (p=0.018) where the median percentage of water unstable aggregates is 1.12 

times higher for grasses than non-grasses (95% CI:  1.02 – 1.23).  The primary 

contribution to this difference occurs within the fungal type A. denticulata (type 3) where 

the median percentage of water-unstable aggregates is 1.38 times higher for grasses than 

non-grasses (95% CI: 1.10 – 1.73).  There are mild differences in soil aggregation 

between the families Gigasporaceae and non-Gigasporaceae (p=0.039) where the median 

percentage of water unstable aggregates is 1.09 times higher for Gigasporaceae than non-

Gigasporaceae (95% CI:  1.00 – 1.17). The contrasts identifying the proposed ordering of 

treatments indicate that the ordering (Grass-Giga) > (NonGrass-Giga, Grass-NonGiga) > 

(NonGrass-NonGiga) is not present in WSA (p=0.967, p=0.091 respectively).  In fact, as 

indicated in Table 3, mean WSA is highest for the middle group and lowest for the Grass-

Gigasporaceae treatments. 

 All fungal species except S. calospora had significant differences in %WSA1-2mm 

across the plant hosts. G. etunicatum had the lowest mean %WSA1-2mm when grown with 

Plantago, Daucus, Crysanthemum, and Rudbeckia; but, had the highest with Fragaria 

(Figure 1). In contrast, Gi. gigantea had the highest mean % WSA1-2mm when associated 

with Plantain, Daucus, Crysanthemum, and Rudbeckia, and had the lowest with 

Fragaria. Both species of Glomus had lowest mean %WSA1-2mm with Plantago, and the 

Gigasporaceae species had the highest mean % WSA1-2mm with Daucus. The species of 

Plantago, Bromus, Daucus, Fragaria, and Rudbeckia had significant differences in 

%WSA1-2mm depending on the AMF associate; the others did not.  
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 With the three Bromus inermis treatments (B13) removed, the plants factor and 

plant by fungus interaction remain highly significant (p<0.0001) with no differences 

among fungus types (p=0.257), as with the full data.  However, removal of these 

treatments resulted in no differences in WSA between grasses and non-grasses (p=0.926).  

This lack of significance stems from the relatively small WSA values for the Bromus 

inermis treatments. Significant differences between Gigasporaceae and non-

Gigasporaceae treatments remain with the median percentage of water unstable 

aggregates 1.10 times higher for Gigasporaceae (95% CI: 1.01 – 1.19).  Finally, based on 

the p-values in Table 3, there is no evidence of the proposed ordering, with the smallest 

WSA values again residing in the (Grass-Giga) treatments (Table 4). 

Root biomass 

 The variability in root biomasses across treatments is presented in Figure 2. 

Factor effects and contrast effects are summarized in the middle two columns of Tables 2 

and 3. There are significant interactions between plant and fungus species in their effects 

on root biomass (p=0.001), between plants (p<0.0001), and among fungus species 

(p<0.0001). There are significant differences in root biomass between grasses and non-

grasses (p<0.0001) where the median root biomass is 1.29 times higher for grasses than 

non-grasses (95% CI:  1.19 – 1.40). There are significant differences in root biomass 

between fungi of types Gigasporaceae and non-Gigasporaceae (p<0.0001) where the 

median root biomass is 1.26 times lower for Gigasporaceae than non-Gigasporaceae 

(95% CI:  1.18 – 1.35).  The main contributors to this difference were P. lanceolata and 

B. inermis. 
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 With the three Bromus inermis treatments removed, the plant and fungus factors 

(p<0.0001) as well as the plant by fungus interaction (p=0.002) remain highly significant, 

as with the full data.  However, removal of these treatments completely reversed the 

direction of the difference in root biomass between grasses and non-grasses. With these 

treatments removed, the median root biomass is now 1.20 times lower for grasses than 

non-grasses (95% CI:  1.07 – 1.34, p=.003). This reversal of effect direction is due to the 

very large biomass values for the Bromus inermis treatments.  Significant differences 

between Gigasporaceae and non-Gigasporaceae treatments remain with the median root 

biomass 1.23 times lower for Gigasporaceae (95% CI: 1.15 – 1.32). Finally, based on the 

p-values in Table 3, there is again no evidence of the proposed ordering, with the smallest 

root biomass values residing in the middle treatment group (Table 4). 

Hyphal lengths 

 S. calospora and Gi. gigantea had the highest mean hyphal lengths on seven of 

the nine plants tested (Figure 3). Factor effects and contrast effects are summarized in the 

middle two columns of Tables 2 and 3. There are significant interactions between plant 

and fungus species in their effects on root biomass (p=0.0004), between plants (p=0.004), 

and among fungus species (p<0.0001). There is no difference in hyphal lengths between 

grasses and non-grasses (p=0.775); however, there is a significant difference between 

fungi of types Gigasporaceae and non-Gigasporaceae (p<0.0001) with the mean square 

root hyphal length (m/g dry soil) of Gigasporaceae being 0.688 larger than that for non-

Gigaspora treatments (95% CI: .580 - .795). This difference in hyphal lengths for the two 

groups was highly significant within all but the A. novae-anglieae.  The contrasts 

identifying the proposed ordering of treatments indicate that the ordering (Grass-Giga) > 
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(NonGrass-Giga, Grass-NonGiga) > (NonGrass-NonGiga) is present in the hyphal 

lengths (p=..0003, p<.0001 respectively).  This ordering can be seen through comparison 

of the mean hyphal lengths in column 5 of Table 2.  

 With the three Bromus inermis treatments removed, the plants and fungus factors 

(p=0.004, p<0.0001) as well as the plant by fungus interaction (p=0.0004) remain highly 

significant, as with the full data.  There is still no difference in hyphal lengths between 

grasses and non-grasses (p=0.498), and the mean square root hyphal length (m/g dry soil) 

remains significantly larger (0.651) for Gigaspora treatments than for non-Gigaspora 

treatments (95% CI:  .535 - .768).  Finally, based on the p-values in column 6 of Table 2, 

although the middle group of treatments (Grass/Non-Gig, Non-Grass/Gig) has a 

significantly higher square root mean hyphal length than the (Non-Grass/Non-Gig) group 

(p<0.0001), the (Grass/Gig) treatment group is no longer significantly larger in terms of 

hyphal length than the middle group.  This loss of ordering is due to the small hyphal 

lengths in the (Grass/Non-Gig) removed treatments (see columns 5 & 6 of Table 3). 

Discussion 

 Other studies have demonstrated an interaction between AMF and host plant 

species with respect to host and/ or fungal growth and hence net primary productivity 

(Adjoud et al., 1996; Bever et al., 1996; Eom et al., 2000; Klironomos, 2003). Here we 

significantly extend these findings by showing that AMF/ host species combinations also 

differentially control the percentage of water stable soil aggregates, and thus another 

major ecosystem state variable (i.e. soil structure). Previous studies established that 

%WSA varied between fungi associated with a single host (Schreiner et al., 1997); but 

ours is the first study to use multiple co-occurring plant and fungal species combinations 
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from a single, natural ecosystem. Additionally, the soil used in our study was from the 

same field site from which the AMF isolates and plants were obtained, maximizing 

ecological relevance of this greenhouse experiment. Klironomos (2003) showed that 

exotic AMF species have far different effects on their plant host than co-occurring 

species, and vice versa. Previous pot experiments on aggregation have used soils or fungi 

that are exotic to the symbionts, adding further complications (Bearden & Petersen, 2000; 

Andrade et al. 1998, Schreiner et al., 1997). 

This greenhouse study stands in contrast to other field studies showing positive 

correlation between %WSA and hyphal lengths/ root biomass (Jastrow et al., 1998; Rillig 

et al., 2002). Negative correlations have been observed however (Schreiner et al. 1997). 

A possible explanation for the decrease in %WSA1-2mm with grasses may be a result of 

our experiment’s duration and the extremely high root biomass of B. inermis. The plants 

were grown in pots for a year and some B. inermis were pot bound at harvest time. Such a 

high density of roots could have inhibited aggregate formation. The differences between 

the %WSA of grasses and non-grasses disappeared when the Bromus treatment 

combinations yielding extremely high root biomass were removed from the analysis. 

While root biomass is positively correlated with %WSA in field studies, greenhouse pot 

experiments must consider the deleterious effects of high root densities on %WSA 

formation.  

In our study the AMF family with greater overall hyphal lengths (Gigasporaceae) 

produced significantly lower %WSA in contrast to our initial hypothesis. While members 

of the Gigasporaceae generally have more abundant and denser hyphal growth (Hart & 

Reader, 2002), the species used in our study yielded lower percentages of WSA than 
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members of the Glomaceae and Acaulosporaceae. Although S. calospora 

(Gigasporaceae) hyphal lengths were greater, Jakobsen et al. (1992) states they do not 

spread as far from the root as A. lavis (Acaulosporaceae), which could explain this 

difference. This study considered only one host (Trifolium subterraneum) however, and a 

potential interaction between S. calospora and T. subterraneum may have compromised 

S. calospora’s aggregation ability.  Nevertheless, soil aggregate formation may depend 

more on hyphal spread from the host root rather than hyphal length alone. Hyphae that 

forage farther from the host root could form more %WSAs because a higher proportion 

of runner hyphal (Friese & Allen 1991) could “string” together more soil particles.  

Our hypothesis that combinations of grasses and Gigasporaceae fungi would stabilize 

more aggregates than non-grasses and non-Gigasporaceae combinations was not 

supported. Actually, the grass-Gigaspora combination had the lowest mean %WSA. This 

again suggests that other mechanisms mediated by the symbiont’s interaction may dictate 

WSA stabilization rather than root biomass and total hyphal length. Given that these 

obvious mechanisms may not function as strongly as first thought in WSA stabilization, 

we must consider that other aspects of extraradical hyphae and root development could 

be determined by host interaction and affect %WSA1-2mm.  

AMF hyphae, like plant roots, can vary widely in their branching patterns. More 

highly branched hyphae or roots may be more effective in binding soil particles. 

Moreover, AMF species can differentially affect root branching (Norman et al., 1996). 

Future studies should consider measurement of both root and hyphal branching.  

Glomalin related soil protein (GRSP) is strongly positively correlated with %WSA1-

2mm (Rillig in press; Rillig et al., 2001; Wright & Anderson, 2000; Wright & Upadhyaya, 



 104

1998. Production of GRSP per fungal mycelium biomass may vary as a function of AMF 

species (Wright et al., 1996), although the AMF species used for that study did not come 

from the same ecosystem. However, the same pattern appears to hold up for AMF from 

the same ecosystem (Rosier and Rillig, unpublished.). Certain hosts might differentially 

stimulate GRSP production in their AMF symbionts, resulting in increased WSA 

formation. In this experiment we could not test for this mechanism because background 

levels of GRSP in the soils used were high and fluxes of GRSP are generally small (Rillig 

et al., unpublished observation). Further, beyond a level of WSA of ca. 80% (using the 

WSA measurement technique we used here), the relationship between glomalin 

concentration and water stability plateaus (Wright & Upadhyaya, 1998). 

No evidence of an AMF aggregation “specialist” was apparent in this study; even so, 

species less affected by their host, which simultaneously provide overall high WSA (i.e. 

S. calospora) may be better candidates for applications in restoration. These could confer 

the benefit of higher WSA stabilization to a broad range of hosts in the field. While we 

do not suggest that field inoculation should only be carried out with one fungal species, 

our data lend support to the idea of using a cocktail of AMF species, a component of 

which could be an AMF isolate that is specifically included for promoting soil 

stabilization. 

Our data also show that specific fungal host species combinations can maximize soil 

aggregate water stability (e.g., in our case Daucus/ Gi. gigantea and Fragaria/ G. 

etunicatum). In situations where a specific host plant is the target, such as in production 

agroecosystems or in certain restoration and revegetation applications, our data strongly 

suggest that AMF inoculum could be specifically tailored to maximize aggregate 
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formation. Alternatively, in restoration situations where the host plant is a variable, it is 

clear that host plant choice can co-determine soil stabilization together with AMF 

inoculum identity. We conclude soil aggregation is a function of both the fungi and its 

host, and exists as a spectrum from a poor interaction to strongly positive much like other 

AMF- host exchanges, and management of soils for aggregate stability must consider 

this. 
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Tables 

Table 1. Species and families of AM fungi and plants used in this study. 

 
Plant species Family 
Plantago lanceolata Plantaceae 
Bromus inermis Poaceae 
Daucus carota Apiaceae 
Chrysanthemum leucanthemum Asteraceae 
Aster novae-angliae Asteraceae 
Fragaria virginiana Rosaceae 
Rudbeckia hirta Asteraceae 
Solidago canadensis Asteraceae 
Agrostis gigantea Poaceae 
Fungus species  
Glomus intraradices Glomaceae 
Glomus etunicatum Glomaceae 
Acaulospora denticulata Acaulosporaceae
Scutellospora calospora Gigasporaceae 
Gigaspora gigantea Gigasporaceae 

 
 



 114

  
Table 2:  Main Effect p-values 
 Models 

Main Effects 
WSA 
(all data) 

WSA 
(no BI3) 

Root 
Biomass 
(all data)

Root 
Biomass 
(no BI3) 

Hyphal 
Length 
(all data) 

Hyphal 
Length 
(no BI3) 

Plant Type < .0001 < .0001 < .0001 < .0001 .011 .004 
Fungus Type .253 .257 < .0001 < .0001 < .0001 < .0001 
Plant x Fungus < .0001 < .0001 .001 .002 < .0001 .0004 
 
Table 3:  Contrast Effects Summary 
  Models 

Contrast Summary 
WSA 
(all data) 

WSA 
(no BI3) 

Root 
Biomass 
(all data) 

Root 
Biomass 
(no BI3) 

Hyphal 
Length 
(all data) 

Hyphal 
Length 
(no BI3) 

Estimate1 .115 .007 .258 -.180 .019 -.066 
SE1 .048 .071 .040 .059 .066 .097 

Grass 
vs. 
Non-grass p-value .018 .926 <.0001 .003 .775 .498 

Estimate .083 .092 .234 .210 -.688 .651 
SE .040 .043 .033 .036 .055 .059 

Gigaspora 
vs. 
Non-Giga. p-value .039 .034 <.0001 <.0001 <.0001 <.0001 
GG >(GN,NG) p-value2 .967 .755 .212 .979 .0003 .269 
(GN,NG)> NN p-value2 .091 .015 .958 >.9999 <.0001 <.0001 
1 Estimates and standard errors (SE) are on a log scale for 100-WSA and root biomass 
and a square root scale for hyphal length. 
2 P-values for the two contrasts testing the ordering of treatments are one-sided. 
 
Table 4:  Grass/Gigaspora Group Means 
 Models 

Treatment 
Groups 

WSA 
(all data) 

WSA 
(no BI3) 

Root 
Biomass 
(all data) 

Root 
Biomass 
(no BI3) 

Hyphal 
Length 
(all data) 

Hyphal 
Length 
(no BI3) 

Grass/Gigaspora 83.81 83.81 6.709 6.709 5.517 2.658 
Grass/Non-Giga. 83.94 85.59 10.704 5.068 2.492 2.658 
Non-Grass/Gigaspora 86.67 86.67 4.952 4.952 4.894 4.894 
Non-Grass/Non-Giga. 84.68 84.68 6.240 6.240 2.534 2.534 
Grass 83.89 84.43 9.039 6.131 3.752 4.511 
Non-Grass 85.48 85.48 5.724 5.724 3.480 3.480 
Gigaspora 86.05 86.05 5.336 5.336 5.031 5.031 
Non-Gigaspora 84.53 84.76 7.167 6.132 2.525 2.546 
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Figures 

Figure 1. Mean percentage plus standard error of 1-2 mm WSA containing one of 5 AMF isolates in combination with 9 plant 

species. P values are from Kruskal-Wallis tests. Standard errors shown are not computed on the log-transformed scale used in 

analysis of these data. 
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Figure 2. Mean root biomass plus standard error of the nine plant hosts associated with the five AMF species. Standard errors 

shown are not computed on the log-transformed scale used in analysis of these data. 
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Figure 3. Mean hyphal length plus standard error of the five AMF species associated with the nine plant hosts. Standard errors 

shown are not computed on the square root-transformed scale used in analysis of these data.
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organic agriculture 
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(In press, Advances in Agronomy) 

Abstract 

 Arbuscular mycorrhizal fungi (AMF) have been promoted as a biofertilizer for 

sustainable agriculture and production of inoculum is a widespread and growing industry. 

The last decade of AMF research has revealed far greater host specificity and interactions 

of the fungi than previously imagined, with the effects of specific host/ AMF 

combinations ranging from beneficial to parasitic; hence, the next step in AMF 

application will be employing beneficial combinations. AMF communities and 

abundances may fluctuate throughout seasons and years because of changes in the abiotic 

and biotic environment. To date, we have little information on the persistence of applied 

AMF in systems, and how changes in the AMF community through time may affect plant 

growth. We must consider how to manage the soil environment to direct succession of 

AMF species and the displacement of applied or beneficial AMF. This review attempts to 

merge our current understanding of AMF succession from natural ecosystems with that of 

AMF application in agriculture. We discuss the patterns and causes of both change in 

both AMF abundance and species compositions through time, considering how common 

organic farming techniques may affect these fungi. We propose that management 

techniques could be employed to direct AMF succession and maintain specific, beneficial 
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species or species groups, with the potential to increase the sustainability and benefits 

derived from AMF in organic agriculture.  

________________________________________________________________________ 

1 Division of Biological Sciences, University of Montana, Missoula, MT  
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Introduction 

 Sustainable agriculture and organic agriculture are broad terms that describe 

numerous crop and land management techniques that are designed to reduce 

anthropogenic inputs like chemical fertilizers, pesticides, and water while preserving the 

integrity of the soil for future farming (Altieri, 1995). While there are unique crop 

specific techniques, commonly employed practices include crop rotation, no till farming, 

integrated pest management, green manures, polyculture, and the use of so-called 

“biofertilizers” (Altieri, 1995). Biofertilizers are beneficial, often mutualistic soil 

organism that can promote plant growth and reduce inputs; these include nitrogen fixing 

bacteria in leguminous crops, ectomycorrhizal fungi like Pisolithus in timber plantations, 

Azospirillum in rice culture, and arbuscular mycorrhizal fungi (AMF) in many crop plants 

(Rai, 2006).  

 The past two decades have seen an exponentially increasing interest in the use of 

AMF as biofertilizers in sustainable agriculture, site amelioration, and renaturalization 

(Gianinazzi et al., 1995; Cuenca et al., 1998; Jeffries et al., 2003; Hart and Trevors, 

2006). Despite a lack of consistent and predictable benefits (Ryan and Graham 2002; 

Gosling et al. 2006), the commercial production of these symbiotic fungi has developed 

into a global industry with dozens of companies producing inoculum (Gianinazzi and 

Vosatka, 2004). The use of AMF in sustainable agriculture is particularly attractive in 

that through the symbiotic association with these fungi plants are able to increase nutrient 

uptake and reduce inputs of fertilizers, water, and pesticides. Even with their popularity, 
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widespread, prophylactic application, and the potential hazards of careless introductions 

of non-native mycorrhizal species there still is a paucity of information regarding the 

persistence of applied AMF (Schwartz et al., 2006). AMF are susceptible to successional 

pressures resulting from changes in the abiotic and biotic environment; yet, little 

definitive information is available on the mechanisms behind AMF community changes. 

Displacement of applied AMF by indigenous AMF or other competitive soil microbes 

may occur very shortly after application, which has the potential to greatly attenuate the 

purported benefits of these fungi, resulting potentially in a considerable waste of 

resources 

 Over time, soils under certain organic practices may change in certain biotic and 

physiochemical properties that can affect AMF. Many sustainable practices are designed 

to increase soil nutrients and organic matter (low till, no till, green manures), and in many 

cases these can stimulate AMF inoculum potential (Oehl et al., 2004; Gosling et al., 

2006). However, in order for the benefits of AMF to be maximized or to be even simply 

positive, agriculturalists must consider that abundance alone will not always translate to 

benefit, rather the specific fungi selected must be identified (Douds et al., 2005). 

Moreover, AMF vary widely in their tolerances and requirements, and soil parameters 

that change under long term organic management techniques may select less beneficial 

AMF and displace applied species of known benefit.  

 Owing to the functional diversity of soil microbial groups, the importance of 

microbial species diversity to sustainable agriculture, not just abundance, has been 

realized (Kennedy and Smith, 1995).  Studies of AMF have highlighted that it is not 

merely their presence, but rather the community composition and specific plant/ AMF 
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combinations that can determine the benefit of these fungi. AMF can vary tremendously 

with respect to promoting host plant growth (Klironomos, 2003), phosphorus uptake 

(Jakobsen et al., 2002), conferring drought tolerance (Ruiz-Lozano et al., 1995), soil 

aggregation (Piotrowski et al., 2004), pathogen protection (Maherali and Klironomos, 

2007), and seedling establishment (Van der Heijden, 2004). Hence, managing for 

abundance alone may not yield the greatest benefit these symbionts can offer, but 

promoting AMF diversity, or even the proliferation of particular species or families of 

AMF could be a more effective strategy. Furthermore, if specific AMF are applied, then 

understanding the physiological tolerances and requirements of the applied species will 

be necessary to promoting their persistence and reduce the need and costs of multiple 

applications. If specific AMF/ host combinations are to be employed to maximize a 

desired function, then displacement of inoculum by immigrant or indigenous fungi could 

have significant economic and production consequences. To protect the investment in 

AMF inoculum by stabilizing to the desired abundance and community structure, we 

must understand the drivers and patterns of AMF succession. 

  Therefore, the purpose of this paper is to merge our knowledge of patterns and 

causes of AMF succession from natural systems with frequently observed soil changes 

that occur during the course of long term organic agricultural techniques; the goal is to 

predict how these changes will affect AMF communities in agroecosystems and what 

techniques would allow management of specific AMF. We seek to highlight areas of 

collaboration between both AMF biologists and agriculturalists that desire to use the 

fungi in order to create more efficient application strategies. We will primarily focus on 

annually cropped systems, realizing that AMF management in woody production systems 
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may be considerably different. Herein we describe some predictable patterns of AMF 

succession, identify driving causes of these changes that may occur under long term 

organic management, and discuss if it is feasible to direct AMF species succession. 

Finally, we outline future research needed to properly address AMF succession to ensure 

more consistently effective application of these fungi.    

 

Are there predictable patterns of AMF succession? 

Succession in natural systems 

 Major studies reporting on patterns of successional changes in AMF abundance 

across decades are presented in Table 1. From these a consistent pattern has emerged in 

temperate and boreal systems. Following disturbance, the abundance of AMF increases 

rapidly with increases in AMF hosting species (~0-20 years post disturbance); however, 

the period of AMF dominance is brief as ectomycorrhizal fungi (ECMF) and ECMF-

hosting plants replace AMF plants (Johnson et al., 1991; Boerner et al., 1996; van der 

Heijden and Vostaka, 1999; Barni and Siniscalo, 2000; Treseder et al., 2004; Trowbridge 

and Jumpponen 2004; Piotrowski et al., in press). Lowland tropical systems display a 

continual increase in AMF abundance following disturbance as ECMF hosting species 

are not generally as common in these systems (Janos, 1980). Additionally, assessment of 

AMF abundance from some dune ecosystems has shown steady increases in AMF 

abundance during succession, with the greatest abundances at the oldest site (Allen and 

Allen, 1980; Gemma and Koske, 1990; Koske and Gemma, 1997; Greipsson and El-

Mayas, 2000).  
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 Regarding changes in AMF species composition through many years, Johnson et 

al. (1991) provided the first and most complete documentation of AMF succession during 

old field development. This study suggests that “early succession” versus “late 

succession” species of AMF species could exist. Johnson et al. (1991) did not find an 

increase in AMF richness through time, but increasing species evenness through time as 

Glomus aggregatum spores became less abundant. Nevertheless, some species were 

much more abundant in late succession sites (Acaulospora elegans) and some in early 

sites (Scutellospora persica). Koske and Gemma (1997) presented a similar pattern based 

on spore data from a dune system of the eastern United States. This study of a five year 

chronosequence documented an increase in species richness across the artificially planted 

system. Like Johnson et al. (1991) they identified certain species characteristic of certain 

successional stages. For instance, one species of Acaulospora was only found in mid to 

late successional soils, and Glomus 7243 was only present in the oldest sites. Thus far, no 

consistent patterns of early vs. late AMF species have been defined, and some studies 

have documented no change in AMF during succession (Johnson and Wedin 1997), or a 

decline in species richness through time (Beauchamp et al., 2007). Nevertheless, similar 

patterns have been documented in agroecosystems. 

 

AMF succession in organically managed agricultural systems 

 A large body of literature supports the fact that conventional agriculture practices 

of tillage and high inputs of phosphorus fertilizers can drastically reduce AMF inoculum 

in agroecosystems over time (Douds and Millner, 1999; Jansa, 2002; Kabir, 2005). The 

scenario can be different under certain long-term organic management regimes. Many 
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studies have demonstrated that after decades of organic management AMF abundance, as 

measured by hyphal density or spore numbers, is significantly increased compared to 

conventionally managed plots (Kabir et al., 1998; Mäder et al., 2002; Oehl et al., 2003). 

Long term sustainable practices may also increase AMF diversity compared to 

conventional agriculture (Jansa et al., 2002; Oehl et al., 2003, 2004). These studies have 

also revealed a change in species composition similar to succession in natural systems. 

Notably, over long term organic management (BiodynamicTM and no-till) species of 

Acaulospora increase in abundance, as well as other slow growing species like 

Scutellospora and Entrophospora (Jansa et al., 2002; Oehl et al., 2004). These data 

suggest that significant changes in AMF abundance and species composition occur over 

the years and decades since conversion to organic management, similar to natural 

systems (Johnson et al., 1991; Koske and Gemma, 1997). What are the changes driving 

the succession of AMF? Over time abiotic changes similar to those in natural soil 

development (e.g. decreasing pH, increasing OM and litter leachates, and increasing 

saprophytic fungi) could affect AMF. A list of potential effects of long term organic 

management on AMF is presented in Table 2. Sustainable management practices in long 

term cropping may have to consider these pressures, as well as AMF host diversity, in 

order to maintain a beneficial AMF abundance and effective species composition. 

 

Potential environmental drivers of AMF succession in organic management 

 In natural systems, many studies have correlated changes in AMF abundance with 

changes in abiotic properties in an attempt to define a specific cause of changes in AMF 

during succession. During soil development, components of the soil physio-chemical 
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environment known to influence AMF growth (e.g., pH, soil moisture, phosphorus) can 

change dramatically over relatively short periods of time. AMF abundance and species 

composition can also change through time, even without changes in the plant community, 

indicating that exogenous forces are affecting proliferation of these fungi (Wacker, 1988; 

Koske and Gemma, 1997; Husband et al., 2002). 

 Organic agricultural practices are designed to reduce seasonal inputs and tillage, 

and therefore soils in these systems may develop more similarly to natural soil systems 

following disturbance, compared to conventionally tilled and managed fields. During 

development of non-managed soils, predictable changes in soil texture, pH, organic 

matter, and nutrient content can occur (Walker and Moral, 2003); similar changes may 

occur in some organically managed systems. For instance, pH may be reduced (Pekrun et 

al., 2003), organic matter increases (Marriott and Wander, 2006), soil nutrient status 

changes (Gosling and Shepherd, 2005), and phenolic compounds accumulate (Blum et 

al., 1991). These variables all have the potential to affect AMF abundance and species 

composition. While these changes are correlated with increases in AMF abundance and 

diversity (Mäder et al., 2002; Oehl et al., 2004), selection for less beneficial AMF might 

also occur depending on the host/ AMF interaction. This section discusses what we know 

of controls of AMF abundance and species composition from natural systems and how 

we may use these to predict changes in agroecosystems.   

  

Long term abiotic changes of organic management that can affect AMF 

Soil pH 
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 Decreases in soil pH have been correlated with reduction of AMF in soils 

(reviewed in Entry et al., 2002). The mechanism may be a function of the pH tolerance of 

AMF, increasing metal toxicity, or alteration of phosphate availability. There is 

considerable variability in how pH responds to long term organic management practices. 

In general, organic management such as reduced tillage increases soil buffering capacity 

and reduces large shifts in pH; however, there are instances where long term no-till can 

significantly alter soil pH (Pekrun et al., 2003). In a summary of studies, Pekrun et al. 

(2003) found that half of the soils under no till management for >5 years had significantly 

reduced soil pH, the other half had no significant change. Other practices like green 

manure, compost additions, and crop rotations can also affect soil pH (Astier et al., 2006; 

Godsey et al., 2007). No research to date has documented that such shifts in pH are 

correlated with reduced AMF abundance; however, these changes may affect species 

composition in a predictable manner. A few studies suggest that species of Acaulospora 

are more tolerant of low soil pH (Porter et al., 1987, Johnson et al., 1991). This could 

explain proliferation of these AMF in late succession or after long term no till 

management (Johnson et al., 1991; Jansa et al., 2002; Oehl et al., 2004). Interestingly, 

this species is also more adept at phosphorus acquisition than Glomus or Gigaspora 

species (Jakobsen et al., 1992). Perhaps the Acaulospora is a preferred associate in late 

succession soils where low pH limits phosphorus availability. 

 

Soil nutrient status 

 Changes in soil nutrient status may have a strong effect on AMF colonization and 

abundance. The soil nitrogen to phosphorus ratio has been shown repeatedly to affect 
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AMF colonization (Liu et al., 2000; Johnson et al., 2003), but the exact mechanism is 

still unclear. Changes in available (mineralized) soil phosphorus and nitrogen are the 

basis of Read’s (1991) hypothesis regarding the distribution of AMF across ecosystems, 

and this idea has since been applied to changes in AMF across successional time in 

temperate and boreal ecosystems (Treseder et al., 2004; Piotrowski et al., in press). 

While excess phosphorus inputs can reduce AMF abundance in agricultural settings, the 

role of P inhibition of AMF during soil development in natural ecosystems is not 

conclusive because concomitant changes in other variables make it difficult to isolate a 

single cause. 

  The effect of organic management on soil nutrient status again depends on the 

particular practice. As with conventional fertilizer amendments, long term use of organic 

fertilizers and green manures can affect soil phosphorus and nitrogen levels (Edmeades, 

2003),  potentially affecting AMF. To date no studies have described nutrient inhibition 

of AMF by organic fertilizers that is similar to long term reduction of AMF through 

conventional fertilizer regimes, and this may not be a strong selective force under organic 

regimes. Nevertheless, alteration of the nutrient status over time may result in similar 

shifts towards less beneficial AMF as described by Johnson et al. (1993).  

   

Soil organic matter and crop residues 

 Following disturbance soil organic matter can increase rapidly in natural systems 

as well as under many organic regimes (e.g., no till, green manure, compost additions). 

Read (1991) proposed that as soil organic matter increases, the preferred mycorrhizal 

associate will be one that can access organic nutrients, hence AMF will be replaced by 
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ECMF that have extracellular enzyme systems capable of accessing organic nutrients. 

While this phenomenon is frequently observed, it is unknown if organic matter is directly 

involved in the displacement of AMF. Experimental tests of organic matter additions on 

AMF are mixed. Experiments have shown that organic matter additions stimulate AMF 

colonization and soil abundance (Cavender et al., 2003; Nan et al., 2006). Other studies 

however, have shown that organic matter inputs in the form of litter and litter leachates 

may strongly inhibit AMF colonization (Yun and Choi, 2002, Piotrowski et al., 2007). As 

with other microorganisms, the effect of organic matter inputs on AMF depend on the 

litter chemistry. Piotrowski et al. (2007) document that increases in soluble phenolic 

compounds over time may result in inhibition of AMF colonization. The mechanism may 

be a product of phenolic toxicity or competitive exclusion by organisms capable of 

detoxifying or tolerating these compounds. Of course, this may only occur in young soils 

with low humic substance content, as humic materials may bind phenolic substances 

(Cecchi et al., 2004). Similarly, some no till systems have significantly higher soil 

phenolic concentrations than conventional till (Blum et al., 1991). The effect of these 

substances from crop residues on AMF may be most significant in crops that have a high 

foliar phenolic concentration and less noticeable in other crops.  

 Phenolics might even contribute to succession of AMF species. A study by 

Wacker et al., (1990) described inhibition of germ tube elongation of AMF spores by the 

common phenolic compound ferulic acid. This suggests that accumulation of soil 

phenolics could lead to selection of AMF species that can infect through other means 

besides spores alone. In this instance, accumulation of phenolics could potentially reduce 

root colonization by Gigasporaceae species in a soil (which colonize primarily from 
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spores), compared to members of the Acaulosporaceae and Glomaceae that have more 

infective soil hyphae (Hart and Reader, 2002). 

 

Long term biotic changes affecting AMF 

 In addition to changes in the abiotic soil properties discussed above, many biotic 

parameters that can affect AMF abundance and/ or diversity can change through soil 

development. Some sustainable agriculture practices allow for greater changes in the 

biotic environment than conventionally managed fields. Green manures, polyculture, and 

crop rotation introduce greater plant diversity to a cropped system, and these practices 

have the potential to determine AMF abundance as well as species composition.  

 Host identity can affect sporulation and abundance of particular AMF species 

(e.g., Bever et al., 1996, Vandenkoornhuyse et al., 2002). Here the choice of the cover 

crop or co-cultivated crop can strongly affect AMF. It is established that using non- AMF 

host species as cover crops may reduce soil inoculum (Miller, 2000; Arihara and 

Karasawa, 2000), but the AMF communities associated with the cover crop may not be 

optimal for conferring a benefit to the crop. If so, the cover crop has the potential to 

amplify a less beneficial AMF community and affect the performance of the production 

crop, similar to the negative feedback phenomena described in the work of Bever (2002). 

The same negative feedback phenomena could also hold for crop rotations. Rotating one 

crop species and its associated AMF community with another crop species that does not 

benefit from the previous AMF community could affect production.  

 Increases in organic matter inputs during soil development can stimulate 

populations of saprobic organisms. These could compete with AMF for resources within 

 



 132

the soil. Also, saprobic organisms parasitic to AMF may be stimulated with increased 

organic matter (Lozupone and Klein, 1994). Hyphal grazers like collembolans can 

significantly increase under reduced tillage (Titi, 2003). While collembolans are thought 

not to prefer AMF over other fungi (Klironomos and Kendrick, 1996), in high abundance 

they could still reduce AMF hyphal lengths enough to give other proliferating fungi a 

competitive advantage, or even selectively graze certain AMF species.  

 During succession in natural systems there typically is a large turn-over in plant 

species, presumably also resulting in larger changes in the AMF community. In most 

conventional agricultural settings, there are no large changes in the plant community 

outside of the crop; however, in less intensively managed systems, neighboring plants 

and weeds with their associated AMF could lead to changes in inoculum identity within a 

field. For instance Mummey and Rillig (2006) describe the decrease in diversity of an 

AMF community of a natural grassland after invasion by Centaurea maculosa; a similar 

phenomenon may occur as weeds invade cropped fields. Over seasons and in the post-

harvest periods, inoculum of any applied fungi could quickly be displaced if they have 

lower sporulation with the established weeds. 

 

Inoculum immigration 

 The initial AMF community is determined by the resident inoculum, which will 

be a function of site history. However, over time immigration of AMF inoculum from 

off-site has the potential to alter the community composition. AMF inoculum is available 

as spores, hyphal fragments, or colonized root fragments. While the amount of inoculum 

available will depend on disturbance intensity (e.g. tillage intensity) and time since 
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disturbance (e.g., hyphal fragments and colonized root lengths do not persist as long as 

spores), the invading species composition of the inoculum will be almost entirely a 

product of vegetation surrounding the disturbed site. Unlike most fungi, wind is not the 

primary dispersal agent of AMF. While aeolian deposition of AMF spores is possible 

(Allen et al., 1989), their spores are much larger than other fungi and produced entirely 

underground. AMF spores are transported into disturbed and denuded environments via a 

variety of vectors, including rodents (Allen et al., 1984; Mangan and Alder, 2002), 

earthworms and microarthropods (Doube et al., 1994; Klironomos and Moutoglis, 1999), 

and anthropogenic dispersal (Schwartz et al., 2006). The extent of dispersal may depend 

on the specific AMF family and spore size (Klironomos and Moutoglis, 1999). Members 

of the Glomeraceae produce copious, small-volume spores compared to the 

Gigasporaceae which produce fewer spores of a significantly greater size (Hart and 

Reader, 2002). In early successional sites, members of Glomeraceae spores will likely be 

the primary immigrants; however, over longer time scales, species that have larger 

spores, produce fewer spores, or both will immigrate as well.  

   

Consequences of AMF succession to production 

 The reduction of AMF abundance and colonization alone has the potential to 

reduce plant performance in highly mycorrhizal-responsive plants, but what about 

changing AMF community composition? While AMF diversity can affect plant diversity 

in natural plant communities (van der Heijden et al., 1998, Hartnett and Wilson, 1999), in 

low diversity agricultural systems the composition of the AMF community might not 

always be beneficial. Increasing AMF diversity can lead to a greater likelihood of a 
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beneficial host/ plant combination and functionally complementary combinations of 

AMF; however, although not yet documented, the opposite might also possible. During 

succession of agricultural fields employing AMF, a shift in community composition 

could potentially affect the benefits that the desired applied community confers. Our 

knowledge of how changes in AMF communities change in function through time is 

almost nonexistent, but we can make a few predictions. 

During soil development the nutrient status, water holding capacity, and soil 

pathogen load can change dramatically. Early successional soils are often exposed and 

dry, whereas older soils may host a greater density of root pathogens. We hypothesize 

that as a whole, early successional AMF communities in arid and semi-arid environments 

have a greater capacity for drought tolerance whereas AMF in older soils as a whole may 

be more adept at conferring pathogen resistance to their hosts. If this predicted change in 

AMF function through time holds, then new crop rotation strategies may be designed. 

Plants that greatly benefit from AMF-assisted pathogen protection could be used late in 

rotation or following crops that increase populations of AMF that confer greater pathogen 

tolerance.   

 It is difficult to predict how the phosphorus acquisition abilities of an AMF 

community would change over time. In many natural systems, as sites age, soil pH 

decreases markedly, hence phosphorus becomes more limiting as it is bound in iron and 

aluminum complexes. Late successional species of AMF may be more adept at 

phosphorus scavenging, and this may not be a function of plant allocating carbon to the 

most beneficial associate. For instance, some species of Acaulospora are able to tolerate 

low pH soils and have a greater capacity to uptake phosphorus (Porter et al., 1987; 
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Jakobsen et al., 1992). These species are characteristic of late successional soils (Johnson 

et al., 1991). Thus, as phosphorus becomes less available, AMF species that can tolerate 

low pH soil persist and maintain phosphorus scavenging for hosts. To the organic farmer, 

this suggests that plants that benefit from Acaulospora associations can be rotated into 

soils of decreased pH to enhance the occurrence of the association. 

 One known phenomenon that affects production is the “organic transition.” The 

organic transition is a recognized phenomenon that occurs as a conventionally managed 

agroecosystems is converted to a lower input, organically managed system (Liebhardt et 

al., 1989; Delate and Cambardella, 2004). This period of approximately 3 years entails 

significantly lower yields before returning to higher production rates (Delate and 

Cambardella, 2004). This transition has been attributed in part to the microbial 

community of the soil (Tu et al., 2006). If traditional agriculture selects for less 

beneficial, more parasitic AMF (Johnson et al., 1993), then the lower yields of the 

organic transition could result from the succession of less beneficial AMF to ones of 

greater host specificity, as host controls on populations begin to outweigh edaphic 

factors. Through a better understanding of controls and succession of AMF, perhaps 

better management practices acting on the AMF community could be employed to 

shorten the organic transition period.  

 

Can we manage AMF succession in organic agriculture? 

Managing succession of AMF abundance 

A number of studies have explored innovative practices that can stimulate the 

abundance of AMF in agricultural fields (e.g., reduced tillage, liming, organic matter 
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additions, green manures) (reviewed in Gosling et al., 2006). Moreover, additions of 

living top soils, organic matter, and commercially produced inoculum are all able to 

temporarily increase the mycorrhizal inoculum potential of a soil. But do the indigenous 

AMF communities offer a net benefit to the crop species? An exploration of this 

interaction prior to planting on the local scale may help maximize the benefits of native 

AMF, determine management strategies to promote proliferation of beneficial AMF 

groups, or highlight the need to apply specific fungi.  

 

Maintaining AMF species composition 

 Our current understanding of patterns of AMF species succession relies on only a 

few studies, and the mechanisms behind the observed shifts between species or groups 

are even more obscure; however, some controls on AMF species are apparent and may 

serve as the basis for testing direct manipulation of AMF in field settings. For instance, 

members of the Acaulosporaceae have been found to be more abundant in mid to late 

succession (Johnson et al., 1991; Koske and Gemma, 1997). While this could be a 

product of the family’s slow-growing life history strategy (Hart and Reader, 2002), 

genera within this family have demonstrated a tolerance of low soil pH (Porter et al., 

1987). During soil development or across some long term organic management regimes, 

soil pH may decrease, leading to a greater abundance of Acaulospora species. If these 

species are beneficial to the crop, artificially reducing soil pH may help select for them in 

cases where the decrease in pH is not detrimental to the crop species. The opposite is 

possible as well, if Acaulospora associations are not as beneficial to the specific crop, 

then their abundance may be suppressed through maintaining a neutral to alkaline pH. 
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 Another example of a successional change in the abiotic environment that could 

be managed is soil moisture content. During soil development in both natural and long 

term organic systems, the water holding capacity of a soil can increase with increases in 

organic matter and texture changes. Changes in soil moisture have been shown to alter 

the colonizing ability of AMF compared to other root colonizing fungi (Lodge, 1989). 

Also, certain AMF species are able to tolerate a drying environment and confer greater 

drought tolerance (Ruiz-Luzano et al., 1995). If the goal of AMF management is to 

confer greater drought tolerance, then cover crops could be water starved to stimulate the 

abundance of drought tolerant AMF species like Glomus deserticola, or one could choose 

a cover crop that promotes significantly more sporulation of Glomus deserticola than 

another. 

 We know that AMF species sporulation can be host dependent (Bever et al., 

1996). Thus, a better understanding of crop/ AMF interactions with respect to sporulation 

as well as indigenous non-crop AMF hosting species is necessary. The abundance of 

certain beneficial species may be stimulated by cover crops and crops that maximize 

sporulation of a desired AMF species. Crop rotation may be developed to capitalize on 

positive feedbacks delivered by AMF communities beneficial to multiple plants. Finally, 

controlling the immigration of AMF undesirable AMF inoculum that could displace the 

applied or managed community will be critical to maintaining beneficial AMF 

communities in agroecosystems and reducing repeat inoculations. Preventing the 

establishment of weeds that are non-mycorrhizal or promote a change to a less beneficial 

AMF community will help slow succession towards potentially less optimal crop/ AMF 

interactions. 
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Future research needs to improve AMF application 

Measures of persistence 

 For AMF to be most useful as biofertilizers, they should persist across seasons. If 

specific fungi are used to maximize benefits, they must remain when confronted by other 

edaphic or biotic changes. Our understanding of this is limited and presents a huge gap in 

the knowledge of application of these fungi. Molecular techniques have made 

identification of AMF species from roots and soil easier, and recent studies are beginning 

to apply these to monitoring the persistence of applied AMF (Farmer et al., 2006). 

 

Physiological studies and environmental match of AM species and ecotypes 

 There are approximately <200 described AMF morpho-species globally. AMF 

can vary dramatically in their physiology, even within genera (Munkvold et al., 2004). 

To understand which AMF are most adept at certain desirable functions (e.g., P uptake, 

biomass stimulation, pathogen protection) and manage for their persistence, the unique 

physiologies and environmental tolerances of these fungi must be more thoroughly 

documented. To that end, we must also gain a better understanding of host/ fungi 

interactions with respect to function and inoculum production. As the benefits of AMF 

colonization can range from positive to neutral to negative, it will be important to know 

that the applied species will not result in decreased biomass despite increased drought 

tolerance. Optimal combinations that minimize the parasitic aspects of the association 

will be important in effective application.  
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Characterization of native communities 

 The widespread application of non-native AMF inoculum has the potential to 

promote species invasions and negative associations (Schwartz et al., 2006). Sustainable 

AMF application will likely depend on managing native AMF species. Applied AMF can 

vary in their ability to establish and persist; however, management that stimulates 

inoculum potential and abundance of native AMF species, and reduces the need to apply 

AMF would be a more cost-effective strategy devoid of the risks associated with non-

native introductions. Additionally, we need greater understanding of AMF succession 

after conversion to organic management from a greater number of cropping systems. We 

have a rudimentary understanding of the end-point AMF communities between 

conventional and organic systems (Mäder et al., 2002; Jansa et al., 2002; Oehl et al., 

2003), yet almost no information about the time-course of changes in the AMF 

community.  

Conclusions 

 Despite the potential of AMF to enhance organic agriculture, many unknowns 

regarding host/ AMF interactions and persistence in the face of soil changes remain to 

guarantee predictably positive results from application. Further studies of changes in 

AMF abundance, infectivity, and species composition over years of low input farming 

practices will be critical to identifying and maintaining beneficial AMF in croplands. It is 

apparent that AMF diversity alone may not be the absolute goal of mycorrhizal 

management and application for every crop, rather it should be to develop and maintain 

an AMF community that can provide the greatest benefit to the crop. Our sparse 

understanding of the control of the soil and plant environment does indicate a potential to 
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manage not only for AMF abundance but for community composition. To achieve 

effective use of these often beneficial symbionts we still need a great deal of information 

on the functioning of indigenous AMF communities, how to select for certain species, 

and how to maintain the most beneficial host/ AMF combinations in the face of changing 

abiotic and biotic environments. 
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Table 1. Studies that directly measure long term changes in AMF abundance during soil development following disturbance 
using chronosequences. (MIP= Mycorrhizal inoculum potential, PLFA= phospholipid fatty acid analysis) 

 

Disturbance  Chronosequence 
age 

AMF Measure Summary of AMF pattern 

Tillage    
Barni & Sinicalo 2000 0- >60 MIP MIP peaks at 10 years then declines 
Johnson et al. 1991 0- >60 Spores, MIP Spores increase across most of sequence but are very low at 

oldest sites. MIP peaks at 19 yr then declines 
Boerner et al. 1996 5-30 MIP Decrease through time 
 
Dune formation 

   

Greipsson & El-Mayas 
2000 

0-245 Spore number Spores increase across entire sequence 1st sampling, peak in 
abundance at penultimate site following year 

Koske and Gemma 1997 0- >5 (oldest not 
determined) 

Spores, MIP Rapid steady increase 

Volcano    
Balser et al. 2005  Hyphal length, 

PLFA 
Peak at middle site, lowest abundance at the oldest site 

Fire    
Treseder et al. 2004 3-80 Hyphal lengths Peak and decline 
 
Flood 

   

Piotrowski in review 0-70 Hyphal length, MIP Peak at 10-13 then decline in both measures 
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Table 2. Comparison of common sustainable agriculture practices and their long term effects on the soil environment and 
potential effects on AMF. 
Agricultural 
practice 

Some known long term effects abiotic 
and biotic environment 

Hypothesized effects on AMF  

No till • Increased soil organic matter 
 

• Alteration of soil pH 
 

•  Increased soil moisture 
 
• Increased soil phenolics 
• Increase saprophytic fungi/ hyphal 

grazers 

• Mixed effects on abundance, potential selection for non-
Gigasporaceae depending on organic matter chemistry 

• Mixed effects on abundance, potential selection of Acaulospora 
species with pH decrease 

• Potential decrease in abundance at high moisture levels, unknown 
selection  

• Decrease in abundance, potential selection for non-Gigasporaceae 
• Potential decrease in abundance, unknown selection  

 
Crop 
rotation 

• Alteration of soil nutrient status 
 

• Alteration of soil pH 
• Alteration of AMF host interactions 
 

• Mixed effects on abundance, potential selection towards more 
parasitic Glomus species at high nutrient levels 

• Mixed effects on abundance, potential selection of Acaulospora 
• Mixed effects of abundance and species selection depending on 

the specific AMF/ host combination 

Green 
manures/ ley 
crops 

• Soil organic matter 
 

• Alteration of soil nutrient status 
 

• Increase in soil moisture 
 
• Increased soil phenolics 
• Increase saprophytic fungi 
• Alteration of AMF host interactions 

• Mixed effects on abundance, potential selection for non-
Gigasporaceae depending on organic matter chemistry 

• Mixed effects on abundance, potential selection towards more 
parasitic Glomus species at high nutrient levels 

• Potential decrease in abundance at high moisture levels, unknown 
selection  

• Decrease in abundance, potential selection for non-Gigasporaceae 
• Potential decrease in abundance, unknown selection  
• Mixed effects of abundance and species selection depending on 

the specific AMF/ host combination 
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Chapter 6 

The radish party: an exciting exploration of soil organic matter for K-2 students 

 

Jeff S. Piotrowski, Tammy Mildenstein, Kathy Dungan, Carol Brewer 

(In: Science and Children Oct. 2007) 

Abstract 

 Healthy soils are crucial to society, and they depend on soil organic matter. This 

inquiry teaches about soil organic matter to the youngest of students.  

 

Its not dirt, its soil! 

 Young children like soil (even though they may refer to it as dirt). Soil is a part of 

their daily lives: they play on it, dig in it, and are often covered with it. Hence, soil can be 

a highly visible and relevant ecosystem to children. Classroom inquiries that incorporate 

soil explorations are an excellent way to teach basic biological and ecological lessons that 

are applicable to their lives, even at very young ages.  

 In addition to being an appealing medium for making mud pies, soil is the basis of 

all terrestrial life (Hillel 1991). Healthy soils sustain ecosystems, agriculture, and human 

societies. However, because of inefficient agricultural, the earth is losing large amounts 

of cultivatable soil at alarming rates. For instance, Pimentel et al. (1995) estimate that 

over 40% of the world’s farmable soil has been lost to erosion by water and wind. One 

crucial element of healthy soil is soil organic matter (SOM). SOM is decomposed and 

decomposing remains of organisms, which give soil a dark color and spongy texture. In 
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addition to greater nutrient content, soil rich in organic matter forms water stable soil 

aggregates, which are more resistant to the forces of erosion (Six et al. 2002).  

 This inquiry is designed to teach the importance and relevance of soil organic 

matter to first K-2 grade students through a fun and rewarding experiment. “The radish 

party” (originally named by Kathy Dungan’s combined first and second grade class at 

Lewis and Clark elementary) requires few materials (see Table 1), minimal set up and 

addresses many of the National Science Education Standards for this grade band. This 

experiment can also be easily extended into a series of integrated lessons (Table 2) on 

soil biology and ecology applicable to the daily lives of even the youngest elementary 

students (see http://www.bioed.org/ecos/inquiries.aspx to download additional lessons).  

 

Getting Started  

 Before beginning this investigation, three types of soil (sand, sand plus nutrients, 

and potting soil) must be prepared (see Table 1 for ingredients). First place half the sand 

in one bucket and label it “sand.” Next place the potting soil in a bucket labeled “soil.” 

Finally, thoroughly mix the Osmocotetm (a common, widely available fertilizer) with the 

remaining half bag of sand in a third bucket labeled “sand + nutrients.” Osmocotetm  was 

chosen as the nutrient addition because they are large capsules that children can see and 

know nutrients were added. Now you are ready to have a radish party. Radishes were 

chosen because they germinate and grow quickly, alleviating impatience of some 

students. The experiment requires either fluorescent grow lights or a sunny, warm 

window. The other materials are readily available and inexpensive.  
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Getting to know soil 

 There are many informative websites that teach the basics of soil ecology (see 

additional resources at the end of this article). Young kids will certainly know what soil is 

and reasons plants need it to survive, but some more thought provoking questions to get 

them excited about the investigation are: 

• What is soil made of? 

• Where does soil come from? 

• Why do plants need soil to grow? 

• What do plants get from soil? 

• What are roots for? 

• What are the differences between a good soil for plants and a bad soil?  

 The first key lesson of this investigation is that soil comes from both the 

weathering of rocks (inorganic portion) and the decomposition of plants and animals 

(organic portion). Students need to understand that plants get their nutrients and water 

from the soil. Without these nutrients, plants would not be able to grow. 

 Introduce the students to three types of soil that you have prepared ahead of time: 

sandy soil, sandy soil plus nutrients, and potting soil. Osmocotetm is not edible, so the 

children should be warned not to taste any of the soils. As the different soils are passed 

around, ask the students to feel them and smell them. Explain to the students that they are 

about to be both farmers and scientists. The story line for the investigation is that we 

want to grow radishes for our food but are not sure which soil is best. The challenge is to 

test which of these three soil types is best for growing radishes. Be sure to have a few 

radishes or pictures of radishes for the children to see and touch. After students have seen 
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the soils and radishes, and understand the question, ask the students to predict which soil 

will grow the biggest radish. They will do this by drawing a picture of the radishes 

growing in each different soil type (Figure 1). The students should draw a big radish in 

the soil they think will be the best and a small radish in poor soil. If they think soil type 

will not make a difference, they should draw all radishes the same size. Ask them to 

make sure they carefully label their drawings with both the type of soil each radish is 

growing in and also label the basic parts of the radish: stem, leaves, roots, radish tuber. 

This may take 10-15 minutes. Afterwards, gather all the students in a circle and have 

them describe their pictures, predictions, and rationale for predictions.  

 

Time to start growing radishes  

 The radish party investigation worked best for our class when the students worked 

in groups of two during the experimental set up.  

1. Supply each group with a box containing one 6-chambered seed starting pot, 6 

popsicle sticks, a spoon, and 20 radish seeds.  

2. Have the students fill 2 chambers of the seedling tray with each of the three soil 

types for a    total of six filled chambers.  

3. Next have the groups design popsicle sticks that indicate the soil types and the 

date of planting: (e.g. Sand+ 8/30/06). Each chamber should have one clearly 

labeled stick.  

4. Now ask the students to plant three radish seeds into each chamber, leaving a little 

space between the seeds to avoid crowding. Plant the seeds at least 1/2” deep and 
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make sure they are covered with soil. Ideally, if no seeds are lost, each team will 

have two extra. 

5. Place all the pots into a large garden tray that does not leak, and put this tray 

under the grow lights or in the sunny window.  

6. Ask the children to water each pot carefully with an exact volume of water (50-

100mL). They can use a cup with a “fill-to” mark on the side or a graduated 

cylinder if they are available. Why use the exact amount of water for each plant? 

In addition to providing nutrients, soil organic matter holds more moisture than 

sand, thereby prevents plants from wilting and dying. Consequently, to have a 

“fair test,” each pot should receive the same amount of water.  

7. Allow the plant to grow for several weeks to a month (if you want to try to 

harvest a mature radish) watering every 2-3 days with the same amount of water. 

Have the students make observations every week: when do seedlings first emerge, 

which ones are growing faster,  taller, slower? 

 

Harvest time and assessment questions 

 Finally it is time to collect data and compare the results with the students’ 

predictions. Gather all the plants together on a table in front of the students. Ask the 

students to carefully remove all the plants from the all the different treatment pots and 

place them in a pile on the table in three separate piles (sand, sand + nutrients, potting 

soil). Ask the students to make observations and look for differences (advanced students 

may even make a few measurements of plant height). Some questions for discussion are 
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listed below. These questions can also form the basis of an assessment of learning from 

the inquiry.  

• What differences do you see? 

• Which soil yielded the largest plants? The most healthy looking plants? 

• Is the tallest plant always the healthiest? 

• Where your predictions met? Why or why not? 

• What if we grew cacti instead of radishes?  

Once they have determined which soils produced the “best” plants, you can explore the 

following questions: 

• Why didn’t the plants with added nutrients grow better than the plant in the dark 

soil? 

The answer is likely to be because the plants in sand dry out more quickly than plants in 

soil, which holds more water. 

• How can you increase the organic matter in your soil at home in the garden or 

houseplants? 

 

Radishes, soil, and the National Science Standards  

Science as inquiry  

 The relevance of this inquiry to the National Science Standards is presented in 

Table 3. This investigation introduces students to asking questions and helps them focus 

their questions during the initial discussion. Students are asked to make predictions based 

on their current knowledge of plants and soil and communicate their predictions to the 

entire class as pictures. Children also employ simple skills in setting up the experiment 
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(planting seeds, labeling pots, measuring and watering). While the radishes grow, the 

students can be encouraged to observe plant growth using magnifying glasses and other 

tools. At the end of the experiment students can measure radish growth. Finally, the 

children must come up with a conclusion about which soil type was best for radish 

growth based on their observations, and then explain their conclusion in a group 

discussion 

Life Science 

 This is an excellent inquiry to introduce young students to plant form and 

function, life cycles, and environmental requirements. Children become familiar with the 

basic parts of a plant (e.g. seed, stem, leaves, roots) and their function, as well as part of a 

radish’s life cycle from seed to plant. If time allows, the radishes could be grown to the 

flowering stage. To keep the plants alive, students learn about the plant’s requirements 

for growth (e.g. water, light, soil, warmth) and the consequences if these requirements are 

not properly met (i.e. when the soil is poor).  

Science in personal and social perspectives 

 Through this experiment students learn about the conditions that plants, 

specifically an agricultural crop, need to grow. From this inquiry, teachers can help 

students understand more about their own food. For example, if foods crops don’t thrive, 

humans will not have an abundance of fruits and vegetables. An excellent extension is to 

explore the resources good soils provide to plants, and this includes not only nutrients, 

but also water. They might discuss what would happen if good soil was lost, and how 

human-caused environmental changes that reduce soil quality can affect food production, 

and ultimately, them. A key learning outcome is that organic matter makes soil healthy, 
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and that by adding organic matter to soil in the form of compost plant growth increases. 

Students may wish to interview a local farmer about soils and the value of soil organic 

matter. 

 

The radish party was enjoyed by all 

 The students of Kathy Dungan’s combined first and second grade class were 

engaged and excited during the entire experiment. Every week they were eager to share 

new stories about what the seedlings were doing, when they emerged, which were 

growing better, and even if their predictions were correct after just a few weeks of 

growth. This proved a very exciting inquiry for these grade levels. Why? The students 

loved being farmers and actually growing vegetables and watching the stages of growth. 

Second they were excited to see how their predictions would turn out and they kept an 

ever- vigilant eye on their crops, in addition to very detailed pictures of their predictions 

and lucid explanations of why they made to their predictions. Finally, students were 

enthralled when their predictions were correct (often the case). Through the concluding 

discussions the children gave evidence of a greater understanding of soil organic matter. 

They understood how organic matter adds nutrients, as well as retaining water. More 

importantly, they seemed to understand how this inquiry and its results could apply to 

their lives and home gardens, making it relevant to them personally.  
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http://www.bioed.org/ecos/inquiries.aspx 

http://soils.usda.gov/education/ 

http://www.wtamu.edu/~crobinson/DrDirt.htm 

http://www.bioed.org/ecos 
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Tables 

Table. 1 Supplies necessary to host a radish party with your class. Almost every item is 

always available at a local hardware or garden supply store, with the exception of radish 

seeds that are seasonally available in some areas. 

Supply Quantity 
Radish seeds 3-4 packs 
Potting soil 1 medium bag 
Sand 1 medium bag 
Osmocotetm granules 1 small bottle 
Popsicle sticks 6 per group  
Seedling pots (6 packs) 1 6 pack per group 
Seedling trays that don’t leak 2-3 
Fluorescent lights* Enough to cover the seedlings 
Measuring cups (mL) 2-3 
Rulers 1 per group 
* If fluorescent lights are unavailable, a warm sunny window could be an alternative. Be 

aware though that the effects of too little light could outweigh the effects of the soil types 

leading to different results.  
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Table 2. Companion exercises to “The radish party” on soil ecology appropriate for K-2 

students available for download and comments at 

http://www.bioed.org/ecos/inquiries.aspx.  

A tour of soils 
This is a simple and fun outdoor activity that is a perfect introduction to soils, especially 
good to use before “The radish party.” Children are on a scavenger hunt to find and 
describe five different soils from around the schoolyard. With only the help of a shovel, 
magnifying glasses and their senses the students explore the diversity of soil types and 
organic matter content from areas around the schoolyard or anywhere (Figures 2 and 3). 
Teachers and students alike will be surprised at the diversity of soil characters in even the 
most homogenous schoolyard. 
Composting 101: It’s the microbes 
This is a long term experiment where students actually create soil organic matter from 
fallen leaves they collect in the fall. Here the influence of soil microbes on decomposition 
take center stage as students test if “living soil” speeds up decomposition compared to 
“dead soil.” This is another activity that can precede “The radish party.” Students can 
even use some of the compost they make in this experiment in the radish experiment for 
an integration of concepts.  
Soil erosion: causes and cures 
Here students learn how soil organic matter and litter help prevent soil erosion. This is an 
advanced experiment that takes a little set up and time, but is very informative, dramatic, 
and relevant to their daily lives. The teacher with the help of the students create an 
erosion machine and test how different soil types with varying organic matter and litter 
layer respond to the erosive force of water. Students can see how organic matter and litter 
mulch can greatly reduce soil loss from erosion. They are encouraged to think of ways to 
prevent erosion in their own gardens at home. 
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Table 3. Specific National Science Content Standards addressed with “The Radish Party” 

investigation. 

National science standards  How addressed 
Science as inquiry  
- Abilities necessary to do scientific inquiry 
- Understanding about scientific inquiry 
  

Students ask questions, make predictions, 
set up and maintain an experiment, make 
observations and conclusions, and present 
their conclusions to a group. 

  
Life Science  
- Characteristics of organisms  
- Life cycles of organisms 
- Organisms and environments 

Students learn plant form and functions, 
life cycles, and environmental requirements 
for growth. 

  
Science in personal and social 
perspectives 

 

- Types of resources 
- Changes in environments  
- Science and technology in local 
challenges 

Students learn how agriculture crops 
depends on environmental conditions and 
soil, and thus so do human societies, how 
soil quality is changing from human 
activity, and they learn how they can 
improve growing conditions for plants of 
their own. 
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Figures 

Figure 1. Examples of student predictions of how well radishes will grow in the three 

different soil treatments. A note on the bottom two drawings: students weren’t explicitly 

told that radishes grow underground.   
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Figure 2. A student at Lewis and Clarke elementary gets down and dirty during a “Tour 

of soils” (Table 1, available at  http://www.bioed.org/ecos/inquiries.aspx ) field trip to 

explore soil biology and ecology. 
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Figure 3. Students on the “Tour of soils” experience many aspects of soil: feel, smell, 

texture, and appearance. 

 

. 
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Chapter 7 

Synthesis 

 

 Owing to their ubiquity in nearly all ecosystems and consistently demonstrated 

benefits to many plant hosts and plant diversity, research of arbuscular mycorrhizal fungi 

(AMF) is at the forefront of terrestrial ecology as well as agroecology. Understanding 

these fungi has given ecologists a measure of predictive power of many ecosystem 

phenomena, from plant community development to soil genesis. AMF research and the 

desire for application of these symbionts have developed very rapidly and gaps in  our 

understanding of the basic biology and life history of them is becoming more apparent. 

For instance, how do changing soil variables like pH affect abundance, community 

composition, and even functioning of AMF through time? The work presented here as a 

whole will hopefully aid our current understanding of the dynamics and controls of AMF 

during site development in natural systems, increase our knowledge of plant AMF 

interactions with respect to the ecosystem process of soil stabilization , and describe 

necessary considerations for effective application of AMF in the agriculture and 

restoration industries.  

 Mycorrhizal abundance can vary considerable during site development, 

potentially affecting plant establishment, community development, and soil aggregation 

among other things. The work presented in chapter 2 describes changes in two 

mycorrhizal groups, AMF and ectomycorrhizae (ECMF), during soil development of an 

unregulated floodplain. Floodplains of free-flowing rivers are some of the most critically 

threatened ecosystems. My work describes the brief “window” of AMF proliferation in 
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this system. These data are very significant to both understanding the development of 

floodplain plant communities, often representing the greatest diversity within a region, as 

well as the effect of river regulation. As flow regulation reduced flood intensity and the 

creation of young successional sites, intense regulation has the potential to reduce AMF 

abundance in the floodplain and potentially to downstream soils. From a floodplain 

management perspective, these data are valuable to effort to maintain floodplain plant 

diversity and soil carbon storage.  

 Exogenous controls on AMF abundance have been well explored since the early 

days of the discipline. When AMF were though to be uniform in benefit, the goal of AMF 

management was to maximize soil inoculum available to the host. To date several 

edaphic variables have shown strong correlation with AMF abundance: soil phosphorus, 

soil pH, soil moisture, soil N:P ratio. My work describes another largely unexplored 

control on AMF inoculum, soil phenolics. I have shown that these powerful, litter derived 

biochemicals can strongly inhibit AMF colonization by an entire native AMF 

community. Moreover, these effects do not seem to result from alteration of soil nutrient 

status via these litter leachates. This is the first to describe the effects of the litter of a 

plant capable of hosting both AMF and ECMF on these largely beneficial symbionts, and 

hints at a novel mechanism by which plants that can host both mycorrhizal types may 

select their symbionts and potentially reduce competition from AMF dependent species.  

 As AMF communities can change in abundance over time, so to can AMF 

community composition, regardless of host changes. These fungi can differ in their 

physiologies and host benefits, and this may depend on the specific host fungi 

combination. This work is the first to describe the interaction between host and AMF of 
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naturally co-occurring species with respect to soil stabilization. These data are very 

relevant to both ecosystems and AMF applications. This is a valuable finding in that it 

suggests that specific AMF/ host combinations might by selected to maximize soil 

stabilization. Additionally, with increased knowledge of native AMF and the effects of 

time and exogenous factors, fields may simply be managed to promote species of AMF 

that are most adept at a desired function.  

 Despite the known benefits of the arbuscular mycorrhizae condition, consistently 

benefits of AMF application are yet to be achieved. These inconsistencies, and even 

negative growth responses of crops could be a result of displacement of beneficial AMF 

resulting from changing soil conditions over time. This work attempts to identify 

significant yet unexplored causes for lack of applied AMF benefits. Researchers must 

shift focus from simply applying AMF, to applying the most beneficial AMF/ host 

combinations and/ or managing for their persistence. Moreover, I suggest that indigenous 

AMF communities can be stimulated and even their composition selected by managing 

the successional pressures of the abiotic and biotic environment.  

 My work with the ECOS program at the University of Montana provided insight 

into the appalling state of soils education not only at the elementary level, but also at the 

undergraduate level. The soil ecosystem is the basis of societies, and preservation of a 

countries soil health will ultimately rely in part on the knowledge of the voting populous. 

I have spent considerable time designing a series of lessons on soil ecology that are 

accessible to all elementary teachers of even the youngest students, one of which is 

presented here. This work will be accessible to all teachers via publication and the ECOS 

website and was designed with the goal of demonstrating that many principles of biology 
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and ecology, from organisms to ecosystem function, can be taught through exploring the 

soil environment. 

 In conclusion, the importance of AMF on the ecosystem scale is apparent; 

however, to explain the patterns and significance of AMF diversity, more research is 

necessary at the physiological level of these fungi. With less than 200 species of AMF 

worldwide, we still have a striking lack of information on how these species differ with 

respect to their know functions. To fully predict how a change in AMF species 

composition will affect ecosystem processes, either seasonally, yearly, or longer, there 

needs to be greater information of the unique contributions of individual AMF species 

and ecotypes. This research will not only aid our understanding of ecosystem 

development, but also yield more effective applications of AMF employing the most 

beneficial plant/ fungus combinations.  
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Appendix 

Exaction of total DNA from floodplain soil 

 

Introduction  

 I initially proposed to characterize changes in the arbuscular mycorrhizal fungi 

(AMF) community composition across the Nyack chronosequence. To date molecular 

characterization of AMF succession during floodplain development has not been 

documented. Beauchamp et al. (2007) characterized floodplain AMF based on spore 

morphology; however, as not all species of AMF sporulate (Helgason et al. 1999)  total 

community assessment cannot be achieved through spores alone. Based on my data of 

AMF abundance across the chronosequence and observations of AMF host diversity, I 

predicted that AMF diversity would follow a pattern similar to abundance, diversity 

would be greatest in early to middle aged sites and decline at older sites as more 

ectomycorrhizal host establish. To test this hypothesis I choose to characterize changes in 

the AMF community based on terminal restriction fragment length polymorphisms (T-

RFLP) analysis using the large subunit (LSU) of the ribosomal repeat.  

 The extraction of total soil DNA has been widely employed for nearly a decade 

and many methodologies have been developed. One of the most common method of 

extraction is through the use of commercially produced extraction kits. While these kits 

have documented shortcomings when used with soils of high clay, organic matter, or 

humic material (Whitehouse and Hottel 2006), they have proven an efficient method for 

many soil types. Therefore, I initially choose to use a “kit based” methods for DNA 

extraction of soils from the Nyack floodplain.  
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Methods, results, and conclusions 

 I collected soils from aged sites along the floodplain describes in Chapter 2 (5 

replicates per site). We collected 25 ml of soil from the top 10 cm of soil beneath the 

litter layer and immediately placed the samples on dry ice for transport until storage at -

20 C. To extract DNA I initially used a the MoBio UltraSoil extraction protocol . 

Previous work had indicated that 0.25-0.4 g of soil was optimal for extraction (Mummey 

and Rillig 2006). Following extraction we attempted to amplify AMF DNA using the 

nested protocol described by Gollotte et al. (2004), employing the LR1 and FLR2 primer 

set for the first reaction and the FLR3 and FLR4 set for the second reaction. The reaction 

is nested to achieve a high specificity and amplification of AMF DNA. We tested 

dilutions of 1X, 1/10X and 1/100X to optimize PCR product. Additionally, we used 

labeled FLR3/ FLR4 primers to generate product for T-RFLP analysis. While we had 

weak amplification with 1/10X dilutions using the unlabelled primers, the FAM and HEX 

labeled primers did not allow for successful amplification of our samples despite 

amplification of the positive control (genomic Glomus intraradices DNA). These 

extractions and amplifications did not provide a sufficient amount of DNA for T-RFLP 

analysis. We also tested if using only one labeled primer (FLR3-FAM) would aid 

amplification as these flours can reduce PCR efficiency. Nevertheless, no product was 

detectable at any of our tested dilutions.  

 I decided that the extraction trouble may be a result of low amounts of soil DNA. 

AMF hyphal lengths are very low across the chronosequence compared to grassland 

soils, especially at the earliest sites. I decided to increase the amount of soil extracted to 1 
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g, by combining 2 separate extractions of 0.5 g of a replicate soil using silicone capture 

after a phenol chloroform extraction. This method also proved fruitless.  

 I further decided that I needed to extract a much larger volume of soil. I had the 

option of testing the MoBio MegaSoil kit, designed to extract total DNA from up to 10 g 

of soil. These kits are considerable expensive give my number of samples (N=45), and 

that they have questionable extraction efficiency because decreased ability to achieve 

high cell disruption because of the high volume of soil (Dan Mummey, pers. obser.). I 

decided to use a method described in Lord et al. (2002). This paper describes DNA 

extraction from soils similar to the floodplain soils, sandy with low microbial biomass. 

This is a modified kit based method that allows for the extraction of DNA from many 

grams of soils through a final silicon capture step of the pooled extracts. We extracted  

three samples (1 g each) from each of the replicate soils using the MoBio Ultraclean kit. 

These were pooled together with previously extracted sampled from each replicate 

sample for a total of 3.8 g of soil extracted from each replicate site. I added binding 

solution to the pooled extracted and these were filtered through a silicon membrane, 

washed with ethanol, and eluted with 50 μl of TE buffer.  

 Following extraction we amplified the extracted using the nested reaction as 

described above with the single label second reaction (FLR3-FAM/ FLR4) across a range 

of dilutions (1X, 1/10X, 1/100X, 1/250X, 1/500X). I detected significant amounts of 

product in all of the tested samples, with some variation in the dilution that gave the 

strongest banding. The youngest sites had the greatest product using a 1X dilution, 

supporting our hypothesis that the soils have exceedingly low amounts of AMF DNA. 

The older soils yielded good amplification at dilutions of 1/100X and higher. This 
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method of extraction, while labor intensive compared to other kit based methods, offers a 

simply way to extract DNA from large amounts of soils when required, and may be used 

for future studies of AMF along floodplain.  
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