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Bentley, Marvin, Ph.D., Fall 2010      Cell Biology 

 

Luminal calcium is a regulator in the early secretory pathway 

 

Chairperson:  Jesse Hay 

 

Calcium is an important regulatory ion which acts as a trigger or is required at a basal 

level for many membrane fusion events.  The role of calcium, and in particular luminal 

calcium, in regulating fusion in the early secretory pathway has not been thoroughly 

investigated.  Here, I show that calcium has an inhibitory effect on homotypic coat 

protein complex (COPII) vesicle fusion.  In particular, chelation of luminal calcium as 

well as fast chelation of extra luminal calcium, result in a significant increase of COPII 

vesicle fusion.  Specific inhibition of Sarco/endoplasmic reticulum calcium ATPases 

using cyclopiazonic acid in the presence of calcium free medium results in low luminal 

calcium while maintaining normal calcium concentration in the cytosol.  This luminal 

calcium depletion results in a dramatic expansion of the endoplasmic reticulum to Golgi 

intermediate compartment (ERGIC) in the periphery of the cell visualized using the 

markers rbet1 and p24.  Depletion of luminal calcium also results in major kinetic defects 

of VSV-G transport to the Golgi, as well as reconstitution of the Golgi after it has been 

dispersed using brefeldin A.  These results suggest that luminal calcium regulates 

fusogenicity, structure, and function of COPII derived membranes in transport.  

However, bulk soluble cargo is not affected by luminal calcium depletion.  This suggests 

that luminal calcium may act at the level of membrane protein sorting in the ERGIC.  

Possible mechanisms by which luminal calcium exerts these novel roles are discussed 

herein and include prolonged retention of the outer COPII shell Sec13/Sec31 with 

Apoptosis Linked Gene-2 (ALG-2) being a likely candidate as the calcium sensor on the 

outside of the vesicle.   
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Introduction and Background 

 

I -- The secretory pathway is an essential cellular system 

The secretory pathway is an essential organizational system of eukaryotic cells.  

Up to one third of all cellular proteins require transit through this pathway to reach their 

ultimate destinations (Levine et al., 2005).  These destinations include lysosomes, 

secretory granules, endosomes, synaptic vesicles, the plasma membrane, and the 

extracellular space.  The primary intracellular compartments involved in transport are the 

endoplasmic reticulum (ER) and the Golgi apparatus (Figure 1).   

The ER is a membranous network consisting of interconnected tubules and 

cisternae, which takes up more than half of the total cellular membrane.  The ER is 

distributed around the nucleus and from there it extends throughout the cytoplasm of the 

cell.  The ER functions as a site for lipid synthesis, as well as well as protein folding.  

The ER also acts as the primary calcium storage compartment for the cell.   

The ER surface is classified as either ―rough‖ or ―smooth.‖  The rough ER is 

characterized by the presence of ribosomes, which gives it a rough appearance in EM 

micrographs and is an area of active protein biosynthesis.  Proteins destined for the ER 

have a signal sequence at their N-terminus.  While these signal sequences exhibit great 

variation in amino acid sequence, each signal sequence contains a minimum of eight non-

polar amino acids at the center.  The signal sequence is recognized by the signal-

recognition particle (SRP), a hetero-hexameric protein attached to a small RNA 

molecule.  As soon as the nascent amino acid chain starts exiting the ribosome, SRP 



2 

 

recognizes the hydrophobic signal sequence and binds to the ribosome.  This interaction 

arrests translation.  While translation is arrested the ribosome attaches to the SRP 

receptor which is located in the ER membrane.  The SRP receptor then mediates the 

hand-off of the nascent polypeptide ribosome to the translocon, after which translation 

resumes.  

Soluble proteins are simply transported through the translocator in one piece.  

However, type I single pass transmembrane proteins on the other hand have an additional 

hydrophobic stop transfer signal.  Once the stop transfer signal is reached the translocator 

releases the polypeptide and further translation is completed in the cytosol, resulting in a 

single pass membrane anchored protein.  Proteins with several transmembrane domains 

also contain internal start transfer signals, which recruit a translocator (Alberts et al., 

2008).   

After translocation, proteins are folded in the ER.  There are several ER resident 

chaperones that aid in protein folding.  Protein disulfide isomerase (PDI) aids in the 

formation of disulfide bonds between cysteines (Bassuk and Berg, 1989).  Proteins of the 

Hsp90 family help a variety of proteins in their folding and maturation (Taipale et al., 

2010).  

After proteins complete folding, they are glycosylated in the ER.  During protein 

glycosylation a large sugar chain containing N-acetylglucosamine, mannose, and glucose 

is transferred to the target side chain, an asparagine residue.  The reaction is catalyzed by 

the ER membrane oligosaccharyl transferase.  While this is a transmembrane protein, the 

active domain is located on the luminal side of the ER membrane.  Glycosylation in the 

ER allows quality control of the folding state of the protein.  Improperly folded proteins 
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have single glucose molecules added to their N-linked oligosaccharides by glucosyl 

transferase.  These single glucose molecules are then recognized by sugar binding (lectin) 

chaperones, such as calnexin.  Calnexin is attached to the ER membrane and retains any 

unfolded proteins in the ER.  This allows the protein to properly fold and have the 

glucose removed, at which point the protein can leave the ER.   

Figure 1 shows a diagram of the secretory pathway (Alberts et al., 2008).  After 

proteins are properly folded, glycosylated, and assembled in the ER, they are packaged 

into transport vesicles that bud from the ER.  The bud is formed by members of the coat 

protein II (COPII) group.  These coat proteins define the identity of the vesicle as it 

leaves the ER and is destined for the ER to Golgi intermediate compartment (ERGIC).  

Mature vesicles fuse with each other or with the ERGIC.  In the ERGIC cargo is sorted.  

Coat protein I (COPI) vesicles bud off from here to retrieve wayward ER proteins and 

return them to the ER.  After the cargo is sorted here, the ERGIC attaches to microtubules 

and is transported to the Golgi apparatus with the help of dynein motor proteins.  As the 

ERGIC approaches the Golgi it receives COPI vesicles that are derived from the cis-

Golgi.  These slowly change the identity of the ERGIC compartment into a cisterna of the 

cis-Golgi.  This membraneous compartment then flattens out and slowly travels through 

the Golgi apparatus (Figure 2).  Inside the Golgi apparatus proteins are further modified.  

In the cis-Golgi covalently attached sugars that were attached to the protein in the ER are 

further modified.  Example enzymes that mediate such sugar processing are Mannosidase 

I and Mannosidase II, the latter removing mannose groups from oligosaccharides, 

rendering the sugar insensitive to Endo-H cleavage.  After proper processing, proteins are 

released from the trans-Golgi.   
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From the trans-Golgi proteins are packaged into vesicles and transported to their 

final destination.  This can lead through late endosomes to lysosomes.  The main pathway 

for constitutive secretion leads directly from the trans-Golgi network to the plasma 

membrane.  Neurotransmitter proteins are packaged into synaptic vesicles that bud from 

recycling endosomes before they head to the plasma membrane, where they can fuse and 

release their cargo into the extracellular space (Alberts et al., 2008).   

 

II – ER to Golgi transport is the rate limiting step of cargo secretion 

 

Export from the Endoplasmic Reticulum  

The first step in ER to Golgi transport is the budding of small vesicles that are 

generated at ER Exit Sites (ERES) (Kirk and Ward, 2007).  ERES are specialized regions 

of the ER that are ribosome free, but have high concentrations of the coat protein 

complex COPII (Hughes and Stephens, 2008).  These regions function to concentrate 

cargo and to generate COPII vesicle buds.  COPII is a multi-protein complex that is 

involved in the accumulation of cargo at the ERES as well as the deformation of the ER 

membrane and the subsequent budding of the vesicle (Bielli et al., 2005; Lee et al., 2005).  

ERES have been  found in all eukaryotic cells including yeast (Wooding and Pelham, 

1998), protozoan parasites (He et al., 2001), and plants (daSilva et al., 2004).   

The primary regulating protein involved in vesicle formation is the COPII small 

GTPase Sar1.  Sar1 is a soluble protein and is recruited to the ERES membrane by its 

Guanine Nucleotide Exchange factor (GEF) Sec12 (Nakano et al., 1988).  Sec12 initiates 

the exchange of GDP for GTP that results in activated Sar1.  Sar1 then starts initial 
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deformation of the ER membrane, by changing its structure and inserting its N-terminal 

amphipathic helix into the membrane (Bielli et al., 2005).  After attaching to the 

membrane, Sar1 recruits the inner shell of the COPII coat to the ERES.  This shell is 

composed of Sec23/Sec24 (Barlowe et al., 1994).  The recruitment is mediated by direct 

interaction of Sar1 and Sec23 (Figure 3) (Budnik and Stephens, 2009).  Sec23 also acts as 

the Sar1 GTPase Activating Protein (GAP), while Sec24 is involved in cargo binding 

(Aridor et al., 1998).  The outer COPII shell, consisting of the heterodimer Sec13/Sec31, 

is recruited after cargo binds to Sec23/Sec24 and formation of the pre-budding complex 

(Fath et al., 2007).  This final layer of the COPII coat consists of hetero-tetramers which 

are made up of two Sec13 and two Sec31 subunits that self assemble into a cage like 

structure.  This cage defines the structure of the vesicle that then forms a bud at the 

ERES.  Completion of this assembly results in the budding of a coated vesicle that is 

loaded with cargo and prepared to move away from the ER.  Sar1 hydrolyzes its GTP 

before membrane fission can be completed (Bielli et al., 2005).  The process of 

assembling COPII coated vesicles can be reconstructed in vitro using just liposomes and 

the five above mentioned proteins (Sar1, Sec23, Sec24, Sec13, and Sec31) (Matsuoka et 

al., 1998).   

The mechanism of vesicle formation and budding from the ERES has been 

extensively studied (Budnik and Stephens, 2009).  Immunofluorescence microscopy 

visualizes ERES as punctate structures found throughout the periphery of the cell.  

However, ERES cannot be resolved from the ERGIC by basic light microscopy.  This is 

because the ERGIC assembles very near ERES.  Electron microscopy or advanced light 
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microscopy techniques, such as Stimulated Emission Depletion are required for sufficient 

resolution.   

In vivo, the budding of COPII vesicles is temperature-dependent.  At 10°C, 

membrane fission is thermodynamically inhibited (Mezzacasa and Helenius, 2002).  

Thus, this can be used experimentally as an artificial block of ER cargo release in the 

laboratory.  A temperature shift back to a permissive temperature allows budding to 

resume.   

In addition to COPII and cargo proteins, ERES also contain the structural protein 

Sec16.  Sec16 is a 240 kD peripheral membrane protein that is found on the ER 

membranes where it plays a central role in maintaining the organization of ERES 

(Budnik and Stephens, 2009; Espenshade et al., 1995).  A function impairing mutation of 

Sec16 results in a general breakdown in ERES organization (Connerly et al., 2005; 

Rossanese et al., 1999).  Sec16 was originally discovered and studied in yeast (Novick et 

al., 1980), but is also found in mammalian cells (Watson et al., 2006) and is likely 

conserved in all eukaryotic cells.  

Sec16 is localized to ERES and overexpression as well as knockdown of the 

protein result in disruption of ER to Golgi transport (Bhattacharyya and Glick, 2007; 

Iinuma et al., 2007; Watson et al., 2006).  In addition to interacting with Sec23/Sec24 and 

Sec13/Sec31, Sec16 also stabilizes the active vesicle budding complex by interacting 

with Sar1 as well as the structural coat proteins (Budnik and Stephens, 2009; Supek et al., 

2002).  Electron microscopy has revealed that the distribution of Sec16 is limited to the 

ER membrane and that the protein does not get loaded onto COPII vesicles.  At the 

ERES, Sec16 immunogold labeling does not overlap with COPII labeling, showing a 
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clear spatial separation between the two sets of proteins.  This shows that the ERES is 

clearly divided in cargo assembly areas, which contain Sec16, and budding sites that 

generate fully loaded vesicles (Hughes et al., 2009).   

 

Cargo adaptors on COPII vesicles 

In addition to the structural proteins outlined above, COPII vesicles are loaded 

with a plethora of regulatory and cargo proteins.  Cargo adaptor proteins play an 

important role in enriching COPII vesicles with the correct proteins.  ER resident proteins 

need to be excluded from the vesicle while cargo molecules are concentrated.  Cells 

lacking cargo receptors display selective cargo trafficking defects (Strating and Martens, 

2009; Zhang et al., 2009).  This shows that cargo adaptor proteins are specific for certain 

cargo, rather than facilitating bulk export.  Additionally, these proteins have been 

observed in the ER, the intermediate compartment, as well as the Golgi, indicating that 

they travel throughout the early secretory pathway (Dancourt and Barlowe, 2010).   

The prototypical cargo adaptor protein is ERGIC-53, a 58 kD protein that has 

become one of the primary identifiers of the ERGIC.  ERGIC-53 has binding sites on the 

C-terminus that interact with Sec23/Sec24, targeting it directly to the inner shell of the 

COPII vesicle coat.  The luminal domain of ERGIC-53 interacts with the glycosylated 

coagulation factors V and VIII, which do not traffic efficiently when ERGIC-53 is 

dysfunctional (Moussalli et al., 1999).  Deficiency in these coagulation factors 

predisposes individuals towards haemophilia.  Interestingly, deficiencies in another 

protein, MCFD2, result in phenotypes indistinguishable from dysfunctional ERGIC-53 

(Zhang et al., 2005).  MCFD2 is assembled in a calcium dependent manner into a 
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complex with ERGIC-53.   MCFD2 and ERGIC-53 co-localize based on 

immunofluorescence data (Nyfeler et al., 2006).  MCFD2 contains two calcium binding 

EF-hand motifs.  If either of these is mutated to prevent calcium binding, MCFD2 cannot 

fold correctly and is prevented from interacting with ERGIC-53 (Guy et al., 2008; Zhang 

et al., 2006).  This means that calcium plays an important role for cargo sorting in the 

lumen of the ER and in particular in ERES.   

Another cargo adaptor protein family prominently active in the early secretory 

pathway is the p24 receptor family.  Originally p24 was identified as a membrane protein 

that is enriched on COPII and COPI vesicles (Schimmoller et al., 1995; Stamnes et al., 

1995).  p24 proteins are type I transmembrane proteins of ~24 kD molecular mass.  The 

protein has three primary structural elements:  An N-terminal luminal domain, an alpha-

helical transmembrane domain, and a cytoplasmic C-terminal domain that interacts with 

COPII (Dominguez et al., 1998).  Yeast strains lacking the p24 family members Emp24 

or Erv25 show trafficking defects (Belden and Barlowe, 1996; Schimmoller et al., 1995).  

As an example, in yeast cells lacking p24, the Golgi arrival of Gas1p and secretory 

invertase was measured and is significantly retarded (Muniz et al., 2000).  While p24 acts 

as a cargo adaptor, it may have further functions, such as quality control, vesicle 

biogenesis, or as a structural protein in ER to Golgi transport (Aguilera-Romero et al., 

2008).   

 

Rab GTPases and Tethers 

Vesicles that are ready to attach to and fuse with their target membranes require 

activated Rab GTPases.  Rab GTPases play a key role in specificity and are expressed in 
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all cells, with over 60 of them identified in mammals (Grosshans et al., 2006).  Rabs 

cycle between a cytosolic state and a membrane-bound state.  In the cytosolic state, the 

Rab GTPase is attached to a guanine nucleotide dissociation inhibitor (GDI).  With the 

help of a GDI displacement factor (GDF), the protein is recruited to the membrane 

(Dirac-Svejstrup et al., 1997).  The membrane association of the Rab GTPases is 

mediated by a prenyl group, which is masked by the GDI (Grosshans et al., 2006).  

Membrane association of the Rab is correlated with the activation by a specific guanine 

nucleotide exchange factor (GEF) that mediates the exchange of GDP for GTP (Soldati et 

al., 1994; Ullrich et al., 1994).  The GTP bound, activated Rab GTPase then acts on 

downstream effectors.  Between the ER and the Golgi apparatus, Rab1 is the active Rab 

GTPase.   

An important group of downstream Rab effectors are membrane-tethering 

proteins.  Tethers are divided into two categories:  Long rope-like proteins or multi-

subunit protein complexes.  These proteins make initial contact between the transport 

vesicle and the target compartment.  The coiled coil protein p115 acts as a tether between 

the ER and the Golgi apparatus and is a Rab1 effector.  p115 resides in the cytosol until 

activated Rab1 and soluble N-ethlymaleimide sensitive factor attachment protein 

receptors (SNAREs) recruit the tether to COPII vesicles (Bentley et al., 2006; Cai et al., 

2007a).  Active p115 is required for in vitro COPII vesicle fusion to complete (Bentley et 

al., 2006).   

Rabs and tethers are required for membrane fusion throughout the secretory 

pathway.  Together they act as the first structural bridge between two membranes.  After 
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Rabs and tethers establish this first contact, other fusion machinery can engage and 

mediate membrane mixing.   

 

SNAREs in the secretory pathway 

As vesicles move away from the ER they need to fuse with other membranes in 

the secretory pathway to join their intended cargo compartment.  The primary regulators 

of membrane fusion are soluble N-ethylmaleimide-sensitive factor attachment protein 

receptors (SNAREs).  SNAREs act in the final stage of vesicular fusion, the mixing of 

the two membranes (Weber et al., 1998).  SNAREs are classified as either v-SNAREs or 

t-SNAREs.  v-SNAREs are associated with the vesicle, t-SNARES are located at the 

target membrane for the vesicle (Hong, 2005).  In general, v-SNAREs are tail anchored 

SNARE proteins with a single SNARE motif, whereas t-SNAREs contribute three 

SNARE motifs to each SNARE bundle (Fukuda et al., 2000; Hong, 2005).  SNAREs can 

be classified by their SNARE-motif.  Each such motif contains either a glutamine (Q) or 

an arginine (R) amino acid in the center.  For every four SNARE motifs that generate a 

bundle, there are three Q-SNAREs and one R-SNARE.  After v- and t-SNAREs engage, 

they form a trans-SNARE complex, a highly organized four-helix bundle.  The energy 

released in the formation in this bundle drives the mixing of the two opposing membranes 

into a fusion stalk.  This eventually progresses into the presence of all SNARE proteins 

within a single membrane, which is the final product of membrane fusion.  The four helix 

SNARE bundle remains arranged in a tightly bound tetramer, which does not easily 

dissociate and is referred to as a cis-SNARE complex.  The best-studied exocytic 

synaptic vesicle SNARE complex consists of the SNARE motifs from Syntaxin1, 



11 

 

VAMP2, and two SNARE motifs from SNAP25 (Sutton et al., 1998).  After membrane 

fusion, the cis-SNARE complex needs to be broken up, which happens in an ATP-

dependent manner.  This allows for the recycling of the SNARE proteins, returning 

functionality to the individual complex subunits.   

The active SNAREs involved in mammalian COPII vesicle fusion are rbet1, 

membrin, Sec22, and Syntaxin5 (Dascher et al., 1994; Hay et al., 1996; Hay et al., 1998; 

Tang et al., 1998).   

 

Regulation of SNARE activity 

While SNARE activity is highly specific, it is also highly regulated.  N-

ethylmaleimide sensitive factor (NSF) and alpha-SNAP are the two primary proteins that 

regulate the recycling of SNAREs.  An assembled cis-SNARE complex interacts with 

three molecules of alpha-SNAP and an NSF hexamer (Furst et al., 2003).  NSF contains 

two ATPase domains that are required to have bound ATP in order for NSF to interact 

with alpha-SNAP (Hong, 2005).  Alpha-SNAP has a region containing nine alpha 

helices, which form a sheet that interacts with the surfaces of the SNARE complex (Marz 

et al., 2003).  ATP hydrolysis by NSF allows NSF/alpha-SNAP to break up SNARE 

complexes and releases individual fusogenic SNAREs.  Accordingly, NSF and active 

alpha-SNAP is required for functioning ER to Golgi transport and all other transport 

steps (Peter et al., 1998).   

 

Cargo in the secretory pathway 
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In addition to COPII components, adaptor proteins, and vesicle machinery, 

ERES-derived vesicles contain cargo.  Several model cargo proteins have been studied, 

including the large molecule procollagen (Mironov et al., 2003), the soluble Semliki 

Forest virus capsid protein Cp (Thor et al., 2009) and, maybe most notably, the 

membrane protein Vesicular Stomatitis Virus Glycoprotein (VSV-G).  Further, artificial 

cargo systems have been devised (Rivera et al., 2000; Wieland et al., 1987).   

There are two separate types of ER to Golgi cargo:  Bulk flow and specifically 

sorted cargo.  Bulk flow includes soluble proteins that are not actively sorted.  These are 

present in the ER and are not actively loaded onto COPII vesicles, but are present on the 

inside of the vesicle when it buds off.  A typical laboratory example of bulk flow is 

secreted GFP (Rivera et al., 2000).  Much more controlled is the transport of specifically 

sorted cargo like VSV-G or coagulation factor V.  This type of cargo is actively sorted 

throughout the secretory pathway.  In order for this cargo to be enriched in COPII 

vesicles it needs to interact with subunits of the coat or adaptor proteins.   

VSV-G in particular is a membrane bound protein that has been used extensively 

as a model cargo.  Vesicular Stomatitis Virus (VSV) is a negative sense RNA virus in the 

Rhabdovirus family that primarily infects cattle.  VSV-G mediates the entry of the 

enveloped virion into the cell by receptor-mediated endocytosis (Wagner and Hewlett, 

2004).  Assembled VSV viral cages bud from the plasma membrane, converting the 

plasma membrane into the viral envelope (Strauss and Strauss, 2008).  In order for VSV-

G to be incorporated into the viral membrane it needs to be trafficked to the plasma 

membrane during viral replication.  The virus uses the secretory pathway for this process, 

moving the molecule from the ER through the Golgi to the plasma membrane.   
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In the laboratory, a temperature-sensitive variant of VSV-G (ts045) is an 

attractive molecule because its budding from the ER can be tightly regulated (Bergmann, 

1989).  VSV-G needs to assemble into homotrimers in order to be released from the ER 

(Kreis and Lodish, 1986).  At 40°C the ts045 VSV-G mutant is reversibly misfolded and 

cannot assemble into trimers (de Silva et al., 1993; de Silva et al., 1990).  When the 

temperature is lowered below 40°C, trimers can then form, allowing VSV-G export from 

the ER and trafficking towards the Golgi.  After releasing VSV-G from the ER, a 

temperature shift back up to 40°C does not further affect downstream trafficking 

(Mezzacasa and Helenius, 2002).  This means that VSV-G is not required to be in trimers 

once it is packaged; in fact, subunits can be exchanged inside vesicle membranes while 

transport proceeds through the secretory pathway.   

 

ERGIC to Golgi transport 

 After vesicle budding, the cargo is eventually localized to the ER-Golgi 

intermediate compartment (ERGIC).  In vitro experiments with COPII vesicles have 

shown that they can fuse homotypically to form a de novo intermediate compartment (Xu 

and Hay, 2004).  Fusion of these vesicles requires the four ER to Golgi soluble SNAREs: 

Syntaxin 5, membrin, rbet1, and Sec22.  The study by Xu and Hay in 2004 showed that 

nascent COPII vesicles contain all of the machinery necessary for vesicle fusion such as 

SNARES and the tethering proteins p115 and TRAPP.  Fusion of these vesicles requires 

the four ER to Golgi SNAREs Syntaxin 5, membrin, rbet1, and Sec22.  All of these are 

present in the ERGIC and as well as the ER and the Golgi (Chao et al., 1999; Emery et 

al., 2000).  
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An important function of the ERGIC is protein sorting.  This retrieval is mediated 

by COPI coated vesicles.  Inhibiting COPI activity results in a trafficking delay of 

anterograde cargo, most likely caused by a failure to sort cargo in the ERGIC, which 

prevents the maturation of the intermediate compartment (Pepperkok et al., 1993).  

Another sorting mechanism is mediated by the drop in calcium at the ERGIC.  As 

discussed above, ERGIC-53 requires calcium to bind its cargo.  Calcium measurements 

of the secretory pathway have shown that the ERGIC has no discernable calcium (Pezzati 

et al., 1997), which allows ERGIC-53 to release its cargo protein as the compartment 

matures and loses its calcium (Appenzeller-Herzog and Hauri, 2006).   

 The distance from the ERGIC, which is formed close to ERES, to the cis-Golgi is 

tens of µm.  In order to bridge this gap, the intermediate compartment is actively 

transported through the cell.  The motor responsible for this transport is dynein, which 

binds to the dynactin complex.  Disrupting this complex prevents VSV-G from 

trafficking to the Golgi and arrests it in the intermediate compartment (Presley et al., 

1997).   

 As the ERGIC arrives at the Golgi, it receives COPI vesicles from the cis-Golgi 

(Alberts et al., 2008).  These contain Golgi proteins and help the ERGIC take on the 

proteomic characteristic of the Golgi.  The ERGIC eventually flattens out and becomes a 

Golgi cisterna.   

 

III – Endoplasmic reticulum stress and ATF-6 

 Protein folding is an essential process for all life.  Quality control mechanisms 

allow only properly folded proteins to exit the ER and travel through the secretory 
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pathway.  Misfolded proteins are retained in the ER in order to allow chaperone proteins 

to facilitate refolding.  Permanently misfolded proteins are sent to the ER-associated 

degradation pathway or degraded through autophagy (Malhotra and Kaufman, 2007).   

Accumulation of a large amount of misfolded proteins in the ER presents a threat 

to cell viability.  Because the hydrophobic effect is the driving force behind protein 

folding, improperly folded proteins usually have large hydrophobic patches exposed.  

This can result in the accumulation of large aggregates in the ER, disrupting proper ER 

function.  In these conditions, folding chaperones are sequestered by proteins and 

unavailable to fold nascent polypeptide chains.  Examples of ER chaperone proteins are 

Bip, calnexin, and GRP 94 (Argon and Simen, 1999; Gething, 1999; Ruddock and 

Molinari, 2006).  To prevent the buildup of a large amount of misfolded protein in the 

ER, stressed conditions in the ER trigger the unfolded protein response.   

The gatekeeper protein that regulates the cellular response to ER stress is Bip.  

When Bip recognizes ER stress, it activates three signaling pathways.  These are inositol 

requiring kinase 1 (IRE1) (Sidrauski and Walter, 1997), protein kinase-like ER kinase 

(PERK) (Harding et al., 2000), and activating transcription factor 6 (ATF-6) (Sidrauski 

and Walter, 1997; Yoshida et al., 2000).  Under non-stressed conditions, Bip binds to 

each of these three elements keeping them in an inactive state, unable to signal (Bertolotti 

et al., 2000).  However, when unfolded proteins accumulate inside the ER, Bip begins to 

bind the unfolded proteins instead and, in the process, releases the ER stress-inducing 

elements that can then begin signaling.   

Two alleles of ATF-6 are expressed in mammals, ATF-6alpha and ATF-6beta, 

which are 90 kD and 110 kD respectively.  Both are transmembrane proteins that have 
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their luminal domain bound to Bip during non-stress conditions as described above.  This 

interaction retains the protein in the ER and prevents its incorporation into COPII 

vesicles (Shen et al., 2002).  After Bip senses stress and releases ATF-6, the transcription 

factor is incorporated into COPII vesicles and released from the ER.  ATF-6 then traffics 

to the Golgi where successive cleavages result in the active cleavage product which is 

about 60 kD in size.  The processed form of ATF-6 then translocates to the nucleus and 

binds ATF/cAMP response elements as well as ER stress response elements to initiate 

transcription of unfolded protein response (UPR) genes (Malhotra and Kaufman, 2007).  

Activation of these response elements results in the increased expression of folding 

chaperone proteins, as well as other proteins that help increase the folding capacity of the 

ER (Schroder, 2008).   

 

IV – Calcium in the secretory pathway 

 

Calcium is a regulator of several membrane fusion events 

Constitutive intracellular membrane fusion in the ER to Golgi pathway has been 

shown to require calcium.  Chelation of cellular calcium results in cargo not reaching the 

Golgi (Beckers and Balch, 1989).  Calcium is also required for yeast vacuole fusion 

(Peters and Mayer, 1998), fusion of early endosomes (Colombo et al., 1997), as well as 

many other cellular membrane fusion events (Burgoyne and Clague, 2003).   

The most studied calcium-dependent membrane fusion event is neuronal 

exocytosis.  In regulated exocytosis, the SNAREs mediating membrane fusion are 

assembled, but are arrested before they can initiate membrane mixing.  A local calcium 
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signal is required to enable fusion of the synaptic vesicle with the plasma membrane 

(Malsam et al., 2008).  The molecular sensor for this process is synaptotagmin, a 

molecule that is not present in the early secretory pathway (Hay, 2007; Tang et al., 2006).   

The early conclusion from these results was that calcium is a universal regulator 

for membrane fusion.  However, recent studies have discovered several membrane fusion 

events that do not have a calcium requirement.  Addition of a membrane-permeant 

chelator to living cells resulted in a block of anterograde as well as retrograde fusion of 

Shiga toxin B, while at the same time, some known fusion steps were unencumbered 

(Chen et al., 2002).  For example, trafficking from the ER to the ERGIC was not affected, 

while trafficking from the ERGIC to the Golgi was.  Further, early results showing a 

calcium requirement for yeast vacuole fusion have been challenged (Starai et al., 2005).  

The study by Starai et al. shows that the inhibitory effect of BAPTA on vacuole fusion 

can be explained by the ionic strength of the molecule alone, rather than its ability to 

chelate calcium.  The ionic BAPTA molecule acts by extracting peripheral membrane 

proteins.   

Basal cytosolic free calcium concentration is at about 60 nM in the cell, while 

calcium sensors implicated in synaptic membrane fusion have estimated sensitivities 

between 1 µM and 10 µM.  For other intracellular fusion events, the calcium 

requirements are not as clearly defined.  In many cases, it has not been established 

whether the calcium requirement for fusion is basal or an elevated local burst.  Inhibition 

with chelators may just mean that free calcium levels at or near 100 nM are required for 

fusion to not be impaired, as chelation is not easily calibrated inside cells.   
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There are several intracellular fusion events that are sensitive specifically to fast 

chelators, but are not impaired by the presence of equal amounts of a slower chelator that 

take longer to reach equilibrium (Burgoyne and Clague, 2003).   In these cases, it is likely 

that membrane fusion  requires a local calcium pulse above steady state calcium levels 

(Adler et al., 1991) or requires calcium sensors near a source of a continuous calcium 

leak (Hay, 2007).   

 

The endoplasmic reticulum is the primary cellular storage compartment for calcium 

The primary calcium storage compartment in the cell is the ER. The majority of 

calcium in the ER is bound by calcium-binding proteins, with the free calcium in the ER 

estimated to be as high as 0.7 mM (Bygrave and Benedetti, 1996; Meldolesi and Pozzan, 

1998; Montero et al., 1995).  Including calcium sequestered by proteins in the lumen of 

the ER, the total calcium concentration is estimated to be more than 1 mM (Foskett et al., 

2007).  Regulated calcium release from the ER happens through Inositol 1,4,5-

trisphosphate (IP3) receptors or ryanodine receptors, which are transmembrane channels 

located in the ER membrane.   

IP3 receptors are a diverse family of transmembrane proteins that allow calcium 

to leave the ER upon activation.  IP3 receptors are activated by binding of IP3.  IP3 is a 

soluble second messenger molecule that is generated at the plasma membrane by 

phospholipase C (Alberts et al., 2008).  After activation the channel provides a pathway 

for calcium to follow its electrochemical gradient and diffuse from the ER into the 

cytoplasm.  This process results in calcium clouds near the channel in which the calcium 

concentration can be as high as 1 µM, while distances as close as 1 µm away from the 
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channel may have calcium concentrations 100 times lower (Foskett et al., 2007).  A 

model of such a calcium cloud is shown in Figure 4 (Foskett et al., 2007).  Because IP3 

receptor activation is highly regulated the calcium signal leaving the ER can be decreased 

and amplified depending on receptor activation.  This allows the receptor to generate a 

diverse set of calcium signals on the outside of the ER.   

 

Calcium chelators  

All of the studies that have investigated the role of calcium in ER to Golgi 

transport have relied on calcium chelators, primarily 1,2-bis(2-aminophenoxy)ethane-

N,N,N’,N’-tetraacetid acid (BAPTA) and ethylene glycol tetraacedic acid (EGTA).  

BAPTA and EGTA are structurally very similar molecules (Figure 5).  Each of these 

molecules can bind four calcium ions, one with each of its four carboxylic acid groups 

and both have the same affinity for calcium.  The only structural differences between the 

two molecules are the two aromatic rings that are present on BAPTA, but not EGTA.  

This small structural change results in a lower rate constant in EGTA for calcium 

binding.  That means that calcium quenching happens about one thousand times faster 

with BAPTA than with EGTA in otherwise equal conditions (Adler et al., 1991; 

Burgoyne and Clague, 2003).  However, it is also possible that effects of BAPTA on 

membrane fusion are a product of its proximity to the plasma membrane, due to its 

aromatic rings.  In cases in which BAPTA, but not EGTA inhibit fusion it is likely that a 

highly localized calcium pulse acts in a regulatory fashion in this membrane fusion event.  

This is the case because a calcium pulse will diffuse very quickly in the cytosol.   
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While the fusion steps within the secretory pathway are well defined, the roles for 

calcium have not been established.  Because this is such a physiologically important 

pathway, it is going to be necessary to understand the regulatory aspects of ER to Golgi 

transport as well as possible.  Calcium plays important regulatory roles in many 

membrane fusion events, as outlined above.  My hypothesis is that luminal calcium plays 

a regulatory role in ER to Golgi transport that previous studies have failed to elucidate.  

Calcium may act as a negative regulator for COPII vesicle fusion on the way to the ER.  

Calcium may also act in the intermediate compartment and regulate cargo sorting events 

that happen there.  Cargo sorting in the intermediate compartment is poorly understood at 

present.  Elucidating a role for calcium in this compartment will give us a better 

understanding of these important sorting events.  Better knowledge of protein sorting in 

the intermediate compartment could become useful in the development of protein drugs, 

as well as in trafficking diseases.   
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Figure 1—The secretory pathway.   

 

This diagram shows all of the compartments of the secretory pathway.  Proteins are 

folded and glycosylated in the endoplasmic reticulum.  This is followed by trafficking to 

the Golgi apparatus, where final protein modifications occur.  After that the cargo is 

transported to its final destination, which is one of several available compartments, 

including the lysosomes, different endosomes, the plasma membrane, or the extracellular 

space.   
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Figure 2 – Endoplasmic reticulum to Golgi transport leads through the ER to Golgi 

intermediate compartment.  

 

This Figure shows the location of COPII and COPI coats between the ER and the Golgi.  

COPI is responsible for retrieving ER proteins from the ERGIC, as well as from the 

Golgi apparatus.  COPII buds vesicles from the ER.  These vesicles form the ERGIC, 

which then attaches to microtubules and is moved towards the Golgi by motor proteins.   
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Figure 3– Schematic of COPII vesicle formation (adapted with permission from Budnik 

and Stephens, 2009) 

 

Step 1: Sec12 recruits and activates Sar1.  Step 2: Sec16 and Sec23/Sec24 are recruited 

by Sar1.  Steps 3 and 4: Sec23/Sec24 binds adaptor proteins to concentrate cargo.  Step 5: 

Inner coat proteins form the first COPII shell.  Step 6: Sec13/Sec31 is recruited to from 

the outer shell.  Step 7: The complete coat is assembled and the vesicle is ready to bud 

off.   
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Figure 4 – Calcium puffs can elevate local calcium concentrations (adapted with 

permission from Foskett et al., 2007) 

 

This schematic representation shows that channels in the ER membrane can generate 

local areas with a high calcium concentration.   
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Figure 5 –Chemical structures of EGTA and BAPTA 

 

BAPTA is represented by both black and red lines, while EGTA is represented by the 

black lines only.   
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Materials and Methods 

 

Depletion of luminal calcium 

 Calcium free DMEM (D9802-05B; US Biological, Swampscott, MA) was 

supplemented with 10% fetal bovine serum (FBS) that had been dialyzed (twice for 2 

hours each) in a 100-fold excess of calcium-free phosphate-buffered saline (PBS).  Cells 

to be depleted of luminal calcium were washed twice with calcium-free DMEM/10%FBS 

containing 10 µM cyclopiazonic acid (CPA; C1530, Sigma-Aldrich, St. Louis, MO), 1 

mM EGTA or 0.3 mM EGTA, and 25 mM Hepes, pH 7.2, and then incubated in that 

medium for 15 minutes.  This was followed by an incubation (usually 15 minutes) in 

calcium-free DMEM/10%FBS, no CPA, 0.3 mM EGTA, and 25 mM HEPES, pH 7.2.  

Some treatments did not include HEPES in the buffer or included 10 µg/mL 

cycloheximide for a 30-min period before addition of CPA; in these cases, cycloheximide 

was also maintained in the medium during the CPA treatment and subsequent calcium-

free chase.  A 40 minutes cycloheximide pretreatment has been shown to block ATF-6 

activation by thapsigargin in HeLa and COS cells (Haze et al., 1999).   

 For 15°C treatment, cells were incubated for 30 minutes at 15°C in DMEM 

supplemented with 10% FBS and 25 mM HEPES (pH 7.2).   

 

Immunofluorescence 

 For immunofluorescence, cover slips were dropped directly into well of room 

temperature 4% paraformaldehyde in 0.1 M sodium phosphate, pH 7.0, for 30 minutes.  

Samples were then quenched twice for ten minutes with 0.1 M glycine in PBS.  Cell 
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permeabilization was carried out for 15 minutes at room temperature by using 

permeabilization solution (0.4% saponin, 1% bovine serum albumin (BSA), and 2% 

normal goat serum in PBS), followed by incubation in primary antibodies diluted in 

permeabilization solution for 1 h at room temperature.   After three rigorous washes with 

permeabilization solution, the cover slips were incubated with secondary antibodies 

diluted in the same buffer for 30 minutes, followed by three more washes.  For 

immunofluorescence of Sec16, cover slips were washed with PBS and then fixed for 10 

minutes at -20°C in 100% methanol, and the antibody incubation/wash solution was PBS, 

pH 7.5, with 1% BSA.  Cover slips were mounted using Vectashield anti-fade solution 

(Vector Laboratories, Burlinggame, CA) and analyzed using an E800 microscope (Nikon, 

Tokyo, Japan) with a 60X plan APO numerical aperture 1.40 objective.  Images were 

collected using an ORCA 2 digital camera (Hamamatsu, Bridgewater, NJ) controlled by 

OpenLab software (Improvision, Coventry, United Kingdom).  Images for quantification 

were collected in a consistent manner with regard to cell morphology, protein labeling 

intensities, and exposure.  After choosing a fixed exposure time for each color channel 

that would accommodate the majority of cells, I avoided any cells whose intensity values 

in any color exceed the saturation value of 16383 or fell below 4000 on our 14 bit 

acquisition system.  I also avoided capturing cells lacking a flat morphology and single, 

well-defined nuclei surrounded on all sides by an expanse of cytoplasm.  Only cells 

exhibiting relatively strong and clear antibody labeling were selected.  An image stack 

was collected for each color channel for each field of cells randomly encountered 

containing at least one cell that met the necessary objective criteria for quantification.   
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Quantification of Images 

 Separate excitation and emission filter wheels equipped with fluorescein 

isothocyanate (FITC) and cyanine (Cy) 3 and Cy5 were used.  For quantification of rbet1 

and p24 objects, 21 images were captured in 200 nm increments.  Images were 

deconvolved using Huygens Essential Widefield software (Scientific Volume Imaging, 

Hilversum, The Netherlands).  For a given field, a single image plane containing rbet1 or 

p24 labeling in focus in the peripheral cytoplasm was selected, and the background 

labeling was removed by defining a dark extracellular area of the image as zero using the 

automation tool in OpenLab.  An rbet1 or p24 object binary image mask was generated 

by thresholding rbet1 labeling at four times over its intensity in a peripheral area lacking 

punctate objects (i.e., the labeling of rbet1 or p24 in the ER).  A Golgi mask was then 

created by thresholding the GM130 or GPP130 labeling at 25% of its maximum intensity.  

The Golgi mask was subtracted from the rbet1/p24 object mask using Boolean operations 

to generate a peripheral rbet1 object mask; this mask was used to identify and quantify 

pixels within peripheral rbet1 or p24 objects.   

 For measurement of ER to Golgi transport a single widefield plane was collected 

for each color channel.  Images were not deconvolved.  Background was removed by 

defining a dark extracellular area of the image as zero using the automation tool in 

OpenLab.  The Golgi markers GM130 or GPP130 were then used to generate a Golgi 

mask.  The ER mean value was derived by drawing an ROI in the peripheral area of the 

cell, usually close to the nucleus but on the side of the nucleus opposite to the Golgi 

apparatus.  The mean value of the ER ROI and the maximum value of the Golgi mask 
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were used to generate the transport index.  Each data point in these experiments includes 

at least 20 quantified cells.   

 To measure bulk flow ER to Golgi transport HeLa cells stably expressing the 

Ariad regulated secretion domain fused to GFP were grown on cover slips in the presence 

of 1 µg/mL puromycin (Rivera et al., 2000).  Throughout the experiments, culture 

medium was maintained at 37°C.  Cells were calcium-depleted as described above with 

15 minutes of CPA treatment followed by 15 minutes in calcium-free medium.  Cover 

slips were then placed into medium containing 1 mM AP21998 and 10 µg/mL of 

cycloheximide.  Cover slips were then fixed and stained with GPP130 as described 

above.  Images were quantified to generate the transport index.   

 

Brefeldin A recovery assay 

 NRK cells were grown at 37 °C on cover slips and were treated for 30 minutes 

with 2.5 µg/mL brefeldin A.  CPA-treated cells were switched to calcium-free 

DMEM/10%FBS with 0.3 mM EGTA and containing 10 µM CPA in the presence of 2.5 

µg/mL of BFA, while control cells were incubated for 15 extra minutes with 2.5 µg/mL 

BFA.  Cover slips were then washed twice with either calcium free DMEM/10%FBS or 

control medium to remove the BFA.  CPA-treated cells were then incubated in calcium 

free DMEM/10%FBS with 0.3 mM EGTA.  Throughout the experiment, the medium 

contained 10 µg/mL of cycloheximide.  Cells were then fixed as described above and 

stained using anti-Mannosidase II antibody (1/1000) followed by anti-FITC secondary 

antibody.  Because Golgi markers are diffuse throughout the cell after BFA treatment, the 
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maximum ER intensity was used instead of the maximum Golgi intensity to generate a 

transport index at the early time point.   

 

ATF-6 detection 

NRK cells were transfected with FLAG-ATF-6.  Two days after electroporation, 

cells were washed once with PBS and once with swell buffer (10 mM HEPES 7.4, 10 

mM KCl, 1.5 mM MgCl2, 0.5 mM EDTA, 0.5 mM EGTA, 1 mM DTT, and protease 

inhibitors (ALLN, PMSF, leupeptin, pepstatin, and aprotinin)).  Cells were then 

incubated on ice for 10 minutes in 1 mL swell buffer.  The plates were scraped and clles 

were passed through a syringe 15 times using a 22G needle.  After centrifugation at 1000 

x g for 10 minutes the pellet containing total membranes was collected and analyzed 

using SDS-PAGE electrophoresis (8.5% acrylamide) and Western blotting using anti-

FLAG and anti-calnexin antibodies.   

 

VSV-G trimer immunoprecipitation 

 NRK cells were transfected with VSV-G-myc or VSV-G-GFP and incubated for 

24 h at 40°C.  Cells were calcium depleted as described above and released in medium at 

32°C.  Cells were incubated with cold 25/125 buffer (25 mM HEPES, pH 7.2, 125 mM 

potassium acetate) with 1% TX-100, and protease inhibitors (pepstatin, leupeptin, 

aprotinin) and incubated for 10 minutes at 4°C.  After this, the cells were scraped and 

incubated end over end for at last 10 minutes at 4°C.  The insoluble fraction was removed 

by centrifugation at 15000 x g for 15 minutes.  The supernatant was then added to Protein 

A beads that had been incubated for at least 1 h with I14 hybridoma medium and then 
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had been washed at least 4 times with 25/125.  These were incubated for 2 h end over end 

at 4°C and washed three times with 25/125.  Samples were then analyzed using SDS-

PAGE electrophoresis and Western blotting for either GFP or myc.   

 

Antibodies 

Monoclonal anti-rbet1 antibodies were described previously (Hay et al., 1998).  

Affinity purified polyclonal anti-p24, -Sec23, and –βCOP from our laboratory were 

described previously (Bentley et al., 2006).  Anti-Sec31 was produced in rabbits against 

the synthetic peptide KLKEIDRTAMQAWSPAQNHPC and then affinity purified using 

a column of the immobilized peptide.  Anti-GM130 and anti-p115 were a gift from Dr. 

Martin Lowe (University of Manchester, Manchester, United Kingdom).  Anti-Sec16 

antibody (KIAA0310) was acquired from Novus Biologicals (Littleton, CO).  Anti-

GPP130 antibody (PRB144C) was purchased from Covance Research Products 

(Princeton, NJ).  Anti-Mannosidase II (MMS-11-R-200) antibody was purchased from 

Covance Research Products.  Anti-myc monoclonal antibody 9E10 was purified from 

hybridoma tissue culture supernatant.  Anti-GFP antibody (MMS-118P) was purchased 

from Covance Research products.  Anti-Syntaxin 5 antibody was previously described 

(Williams et al., 2004).  Anti-Calnexin (SPA-865) antibody was purchased from 

Stressgen (Ann Arbor, MI, USA).  Anti-FLAG antibody (F1804) was purchased from 

Sigma-Aldrich (St. Louis, MO, USA).  Secondary antibodies were FITC, Cy3, or Cy5-

conjugated and purchased from Jackson ImmunoResearch Laboratories (West Grove, 

PA).   
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Luminal calcium measurements 

Normal rat kidney (NRK) cells (~80% confluent) were transiently
 
transfected with 1.5–2 

µg of purified plasmid DNA
 
of the respective calcium sensor using TransFast (Promega, 

Vienna,
 
Austria) as described previously (Trenker et al., 2007).  Cells were used for 

experiments at 48 h after transfection.  YC3.6 (Nagai et al., 2004) and YC2.1 (Miyawaki 

et al., 1997) were used to monitor the free calcium concentration in the cytosol, and 

D1ER (Palmer et al., 2004) was used to monitor free calcium within the ER lumen (Malli 

et al., 2005; Osibow et al., 2006).  The fluorescence resonance energy transfer-based 

calcium sensor D1ER was excited at 440 ± 21 nm (440AF21; Omega Optical, 

Brattleboro, VT), and emission was collected simultaneously at 535 and 480 nm with a 

single camera using an optical beam splitter (535 and 480 nm, Dual-View MicroImager; 

Optical Insights, Visitron Systems, Puchheim, Germany).  [Ca
2+

]Cyto was 

calculated
 
from the normalized ratio values Ratioi

n
=  using the following 

equation:  [Ca
2+

] = KD·  µM (Osibow et al., 2006).  The KD value for 

YC3.6 was assumed to be 250 nM (Nagai et al., 2004).  For the calculation of [Ca
2+

]ER, 

the raw D1ER recordings (Ratio F
535

/F
480

) were corrected for bleaching using a 

calculated individual bleaching-function (R0) by subtracting R0 from the raw Ratio 

F
535

/F
480

.  From this curve the respective Ratioi, Ratiomin, and Ratiomax values were 

extracted and [Ca
2+

]ER was calculated using the equation above.  The KD value of D1ER 

in situ for calculating [Ca
2+

]ER was assumed to be 220 µM according to Rudolf et al., 

2006.  Ratiomin and Ratiomax were determined using 1 µM ionomycin in 1 mM EGTA and 

subsequently in 2 mM Ca
2+

-containing solution, respectively, for each single 

measurement (cytosolic Cameleons and D1ER).  Statistical data for calcium 
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measurements are presented as mean ± SEM. Analysis of variance and Scheffé's post hoc 

F test were used for evaluation of the statistical significance, with p < 0.05 defined as 

significant. 

 

Heterotrimerization fusion assay 

 COPII vesicle fusion experiments were carried out as described previously 

(Bentley et al., 2006; Cai et al., 2007b; Xu and Hay, 2004).  In brief, the vesicular 

stomatitis virus-glycoprotein (VSV-G)-myc expressing NRK and pulse radio-labeled 

VSV-G* containing cells were permeabilized by scraping with a rubber policeman and 

then washed and resuspended at ~170 µL per 10 cm plate in 50/90 buffer (50 mM 

HEPES, pH 7.2, and 90 mM potassium acetate).  A first stage (vesicle release) incubation 

to produce enough vesicles for a 24-point fusion assay contained 1.96 mL and consisted 

of 432 µL of water, 67.5 µL of 0.1 M magnesium acetate, 135 µL of ATP regenerating 

system, 40.5 µL of 1M HEPES, pH 7.2, and 270 µL of weak calcium buffer (20 mM 

Hepes, pH 7.2, 1.8 mM CaCl2, and 5 mM EGTA), 675 µL of dialyzed rat liver cytosol, 

and 337.5 µL of either of the permeabilized cell populations.  After incubation at 32°C 

for 30 minutes to allow vesicle release, cells were removed by centrifugation at 4000 x g 

for 1 minute followed by 14,000 x g for 1 minute.  The supernatant, which contains 

released COPII vesicles, was saved.  For the second stage fusion incubations each 

reaction totaled 200 µL and contained 72.5 µL of VSV-G-myc vesicles, 72.5 µL of VSV-

G* vesicles, and 55 µL of 25/125 buffer (25 mM Hepes, pH 7.2, 125 mM potassium 

acetate).  It was at this point that chelators such as BAPTA and EGTA were added.  After 

a 20 minute pre-incubation on ice with these test components, the reactions were 
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incubated at 32°C for 60 minutes to allow tethering, fusion, and heterotrimerization 

between VSV-G-myc and VSV-G* vesicles.  For measuring heterotrimers, the final 

vesicle suspensions were supplemented with 2% Triton X-100, incubated with agitation 

at 4°C for 20 minutes, and then centrifuged at 100,000 x g for 30 minutes.  The 100,000 x 

g supernatants containing solubilized VSV-G trimers were then processed for 

immunoprecipitation by using 5 µg of biotinylated anti-myc antibodies and 5 µL 

(packed) streptavidin Sepharose (GE Healthcare).  Immunoprecipitates were solubilized 

in SDS sample buffer, analyzed by SDS-polyacrilamide gel electrophoresis (PAGE; 8%), 

phosphorimaging, and co-precipitated VSV-G* was quantified.   
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Results 

 

Fast chelation of calcium during in vitro COPII vesicle fusion reveals a role for 

luminal calcium 

 To test the role luminal calcium may play in the early secretory pathway, I used 

an established cell-free reconstitution of homotypic COPII vesicle fusion (Bentley et al., 

2006; Xu and Hay, 2004).  COPII vesicles generated in vitro from permeabilized NRK 

cells possess or recruit all components necessary for efficient tethering and fusion to 

generate pre-Golgi intermediates resembling cellular vesicular tubular clusters (VTCs) 

(Xu and Hay, 2004).  Membrane fusion and contents mixing is scored biochemically by 

the heterotrimerization of radioactive VSV-G* with non-radioactive VSV-G-myc present 

initially in distinct COPII vesicle populations.  Heterotrimers are assayed by detergent 

solubilization of vesicles, followed by immunoprecipitation using a monoclonal anti-myc 

antibody.  Radioactive VSV-G* subunits are then detected by autoradiography.  Figure 6 

shows that the addition of the fast membrane-impermeant calcium chelator BAPTA 

resulted in stimulation of heterotrimer production.  The increase in heterotrimer 

formation is dependent on the amount of BAPTA added to the buffer.  At 6 mM BAPTA, 

the fusion increase is almost six fold.  Interestingly, addition of the chelator EGTA does 

not result in an increase in vesicle fusion.  EGTA and BAPTA have equal affinities for 

calcium; however, EGTA takes 1000 fold longer to reach equilibrium than BAPTA 

(Burgoyne and Clague, 2003).  This result suggests that the speed at which BAPTA 

sequesters the calcium may account for the difference.   
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The membrane permeant derivatives of BAPTA and EGTA, BAPTA/AM and 

EGTA/AM were used to test this hypothesis.  Both of these contain a hydrophobic 

amino-methoxy group that allows the molecule to pass through membranes.  Figure 7 

shows that addition of BAPTA/AM to the in vitro fusion assay results in a robust increase 

of heterotrimer formation.  Addition of EGTA/AM mimics the BAPTA/AM very closely 

(This experiment was conducted by Deborah Nycz though I did the preliminary work).  

This result implicates the ability of BAPTA to quickly neutralize a calcium gradient as 

being responsible for the increase of heterotrimer formation.  While EGTA/AM and 

BAPTA/AM inside the vesicle result in roughly equal fusion enhancement, only BAPTA 

can neutralize the calcium leaking out of the vesicle quickly enough before it interacts 

with machinery on the outside of the vesicle membrane.   

 To test whether the dramatic and unexpected effects of BAPTA on fusion were 

due to calcium chelation as opposed to some other direct action of BAPTA on proteins or 

membranes, I analyzed the BAPTA sensitivity of fusion in the presence of a different free 

calcium concentration in the buffer.  As shown by black squares in the graph in Figure 8, 

the presence of excess calcium shifted the BAPTA stimulation curve to the right, 

delaying stimulation until the BAPTA concentration significantly exceeded that of bulk 

added calcium.  This indicates that calcium-free BAPTA, but not calcium-saturated 

BAPTA, is an active species in the heterotrimer assay. This is consistent with BAPTA 

acting, at least in part, through calcium chelation.  Importantly, it rules out most 

nonspecific effects that could be caused by high concentrations of this molecule.   

 The results described are all compatible with the hypothesis that luminal calcium 

plays an important regulatory role in COPII vesicle fusion.  Chelation of the calcium 
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results in vesicles that are more fusogenic and produces a robust stimulation in the 

heterotrimer assay.   

 

Depletion of luminal calcium in intact cells results in an enlarged ER to Golgi 

intermediate compartment 

Because the in vitro experiments resulted in changes in COPII vesicle fusion 

caused by luminal calcium, I decided to develop a way to deplete luminal calcium in 

intact cells.  The calcium gradient between the ER and the cytoplasm is maintained by 

sarco/endoplasmic reticulum calcium ATPases (SERCA) in the ER membrane.  These 

maintain the gradient by constitutively pumping calcium into the lumen of the ER.  

Inhibition of these ATPases should result in an accumulation of calcium ions in the 

cytoplasm.  Plasma membrane ATPases can then remove the calcium and transport it into 

the medium.   

 I used the drug cyclopiazonic acid (CPA), which is a specific inhibitor of the 

SERCA pumps in the ER (Mason et al., 1991).  To deplete luminal calcium, NRK cells 

were treated with CPA for 15 minutes in calcium-free medium containing EGTA, 

followed by 15 minutes without CPA in calcium-free medium with EGTA.  The CPA 

treatment results in depletion of the luminal calcium, while the EGTA can sequester any 

calcium that is pumped out of the cells.  To confirm that the protocol achieved specific 

depletion of luminal calcium as intended, live cell imaging of luminal and cytosolic 

calcium were used.  Calcium concentrations were determined using transfected 

chameleon biosensors D1ER (Palmer et al., 2004) and YC3.6 (Nagai et al., 2004) that 

have optimal affinities for the free calcium concentrations in the respective 
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compartments.  Figure 9 shows that treatment with 10 µM CPA resulted in a severe 

depletion of ER luminal free calcium within 10 minutes, from 385 µM, a typical resting 

value for cultured mammalian cells (Malli et al., 2008; Osibow et al., 2006), to 23 µM 

(calibration of Foerster ratios not shown); this means that vesicular COPII-derived 

membranes generated from the ER after 10 minutes must also be depleted of vesicular 

calcium.  As expected, cytosolic calcium underwent an extreme increase as the luminal 

compartment was emptied, but this was cleared and restored to the resting value of 45-50 

nM 15 minutes after CPA was added (Figure 10).  These data show that by the end of the 

15 minute CPA treatment and the start of the chase period, luminal calcium is depleted by 

more than 90% and cytosolic calcium is at resting levels.  Furthermore, this condition 

seems to remain stable during the chase period after CPA washout.  (These experiments 

were conducted by Ismene Fertshai, Roland Malli, and Wolfgang Graier at the Medical 

University of Graz following my calcium depletion protocol.  For further experimental 

details on the calcium imaging, please refer to (Bentley et al., 2010))   

To observe the effects of luminal calcium depletion on the intermediate 

compartment, I decided to use the ER-to-Golgi SNARE rbet1, a type II integral 

membrane protein, as a marker.  If subtle changes in membrane flux between the ER and 

Golgi occurred, rbet1 distribution should be a sensitive indicator, because rbet1 rapidly 

cycles between the ER and Golgi and is largely localized to the ERGIC at steady state 

(Hay et al., 1998).  Figure 11 shows that CPA treatment results in a change in the 

distribution of rbet1.  Control cells exhibit strong rbet1 labeling in the perinuclear area 

surrounding the Golgi which is stained for GM130.  There are also fainter punctate 

structures in the peripheral cytoplasm that are not associated with the Golgi apparatus.  
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CPA-treated cells, in contrast, displayed relatively more intense punctate peripheral 

rbet1-positive objects compared with the perinuclear labeling.  This change did not result 

from a dispersal of Golgi into the peripheral cytoplasm, as indicated by the GM130 

labeling.  Also shown in Figure 11, the overall effect of CPA seemed similar to that when 

the cells were incubated at 15°C, which is a treatment that is commonly used to trap 

anterograde cargo and vesicle machinery in swollen, peripheral ERGIC structures 

(Saraste and Svensson, 1991).   

The increased peripheral rbet1 staining during CPA treatment can be observed 

quantitatively by measuring the average area of peripheral rbet1-positive objects over 

time (Figure 12).  The area of an average peripheral rbet1-positive structure more than 

doubled during the standard treatment condition of 15 minutes CPA plus 15 minutes 

calcium-free chase.  Most of the increase in rbet1 object size occurred during the chase 

period during which luminal calcium is depleted and cytosolic calcium has returned to 

resting levels.  A further 15 minutes of calcium-free chase resulted in a slight decrease in 

peripheral object size.  However, this apparent decrease is likely an artifact of the gross 

morphological change in the cells, which began to dissociate from the dish and round up 

during this interval.  I compared the effect of CPA treatment on peripheral object size to 

other treatment conditions (Figure 13).  While incubating the cells at 15°C resulted in a 

significant increase of peripheral object size, the change caused by CPA treatment was 

much more dramatic.  The 15°C treatment resulted in an about 50% increase of average 

object size.  CPA-mediated calcium depletion resulted in an increase of about 250%.  

Treating the cells with CPA and cycloheximide resulted in a comparable increase of 

average object size, indicating that synthesis of new protein is not the cause of the 
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increase in rbet1 staining, but rather a product of redistribution of already existing 

protein.  Cycloheximide also blocks the accumulation of unfolded proteins during ER 

luminal calcium depletion and Ire1-dependent transcriptional activation of ER stress 

response elements (Haze et al., 1999; Ruegsegger et al., 2001).  This makes stress 

responses related to the accumulation of unfolded proteins seem unlikely to be an 

important determinant of the rapid changes in ERGIC structure observed with CPA.  

Thapsigargin is a distinct and irreversible SERCA inhibitor.  Treating cells with 

thapsigargin for 30 minutes also resulted in a phenotype indistinguishable from CPA.  

This confirms the mechanism of the CPA effect.   

In order to observe subtle changes in size distribution, I binned peripheral rbet1 

objects according to size (Figure 14).  Objects were identified by drawing a mask on 

rbet1.  This mask included any rbet1 staining that exceeded four times the ER 

background level of staining.  Although the number of sub-resolution objects remained 

virtually unchanged in CPA-treated cells, CPA treatment clearly generates a new 

population of very large objects (>0.45um
2
).  Interestingly, the 15°C treatment resulted in 

a different distribution of object sizes than the luminal calcium depletion.  There is a 

large increase in very small objects during 15°C treatment, which exceeds both control 

and CPA-treated cells.  Although 15°C caused an overall increase in the number of 

objects, most of the increase was in the small and intermediate size objects (<0.45um
2
).  

This suggests that the two different treatments (CPA and 15°C) affect different steps of 

ER to Golgi trafficking.  For example, the CPA effect would be consistent with 

overactive fusion of COPII vesicles and VTCs, or with defective membrane sorting in the 
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ERGIC, while the 15°C phenotype would be more consistent with a buildup of vesicles 

or intermediate compartment objects due to a lack of microtubule-dependent transport.   

Total rbet1 labeling intensity increased significantly in the CPA and 15°C treated 

cells (Figure 15) while total rbet1, as assayed by Western blot, was not affected (Figure 

16).  This could indicate either that more rbet1 was present after these treatments or that 

the pool of rbet1 trapped in intermediate structures was more accessible for 

immunofluorescence labeling.  This increase was specific to the particular rbet1 

monoclonal antibody that was used (16G6).  The GM130 labeling intensity was 

unchanged in the same cells (Figure 17).  In addition, another ERGIC marker, p24, did 

not change significantly in intensity.  The 16G6 antibody that was used for the rbet1 

Western blot is a monoclonal antibody that binds the N-terminal domain of rbet1.  This 

suggests that the N-terminus of rbet1 is more accessible in the swollen structures, which 

might indicate changes in SNARE protein interactions.   

To test whether the luminal calcium depletion effect was specific to rbet1 or a 

general effect on the intermediate compartment, I examined the distribution of another 

ERGIC marker (Figure 18).  p24 rapidly recycles between the ER and the Golgi like 

rbet1, but is a cargo adaptor and not a SNARE (Belden and Barlowe, 1996; Schimmoller 

et al., 1995).  The distribution of p24 was quantified in the same way as for rbet1 above.  

Figure 18 shows that p24 also had an increased localization to Golgi-negative punctate 

peripheral objects upon luminal calcium depletion.  This change was reflected 

quantitatively by a dramatic increase in the number of large p24 objects (>0.45 µm
2
) 

(Figure 19).  However, unlike rbet1, there was no significant increase in p24 total 

integrated staining intensity (data not shown).  Taken together, the above results show 
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that multiple ERGIC markers rapidly accumulate in large peripheral structures upon 

luminal calcium depletion.   

 

ERES do not change their size in calcium-depleted cells 

The enlarged objects clearly represent pre-Golgi intermediates because they do 

not have any Golgi marker staining.  However, it is unclear whether they are part of the 

intermediate compartment or swollen ERES.  To see if there were any obvious changes to 

ERES, I stained calcium-depleted cells for the ERES marker Sec16.  Sec16 is a large 

protein that is involved in ERES formation, but, unlike the coats, it is not loaded onto 

COPII vesicles (Budnik and Stephens, 2009).  Figure 20 shows cells stained for rbet1 as 

well as Sec16.  While-calcium depleted cells have a significantly altered distribution of 

rbet1, Sec16 staining remains unchanged.  Figure 21 shows the quantification of the 

peripheral rbet1 and Sec16 objects in the same cell population.  While there is a 

significant increase of above threshold rbet1 objects, the number of Sec16 objects 

remains unchanged.   

If the swollen rbet1 structures were ERES, then the ERES marker Sec16 would 

likely change its distribution in a similar pattern.  Because Sec16 remains unchanged, it is 

likely that the swollen structures are post-budding objects.  However, if these are early 

objects in the intermediate compartment, they would still be closely associated with the 

ERES.  To identify how closely to the swollen rbet1 structures were associated with 

ERES, the five largest rbet1 structures in each cell, those most likely to be created as a 

specific result of calcium depletion, were analyzed in more detail.  In 98% of all cases 

these rbet1 objects overlapped by at least 50% of their area with a Sec16-positive object 
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(Table 1).  A similar experiment was carried out using rbet1 and β-COP.  β-COP is a 

subunit of COPI, which is the coat responsible for retrograde transport from the Golgi.  In 

73% of all cases, the largest peripheral rbet1 objects overlapped by at least 50% of their 

area with a β-COP positive object (Table 1).  Overlap with beta-COP is expected because 

COPI vesicles are formed at the ERGIC to retrieve wayward ER proteins.  The majority 

of all objects are positive for both COPI as well as ERES markers.   

Because of the lack of change to Sec16 and the presence of both COPI and ERES 

markers on the swollen structures, the most likely conclusion is that the large rbet1 

objects are post-budding, early intermediate compartment structures.   

 

VSV-G trafficking can be measured using intact cells and fluorescence microscopy 

The results described above indicate that luminal calcium plays a role in 

maintaining the structure and organization of the secretory pathway.  However, these 

experiments do not address whether the primary function of the secretory pathway, the 

trafficking of proteins, is dependent on luminal calcium.  It is conceivable that the 

changes in morphology do not affect trafficking of cargo through the system.  The more 

likely hypothesis however is that the changes we observed in secretory pathway 

morphology result in trafficking deficiencies.  In order to test this hypothesis, I developed 

a morphologically intact cell assay that allows the measurement of ER to Golgi transport 

kinetics.  As cargo, I used transiently transfected VSV-G-GFP.  After transfection VSV-

G remains confined to the ER by maintaining the cells at 40°C.  This allows VSV-G-GFP 

production to continue while it accumulates in the ER.  After a temperature shift to the 

permissive 32°C, VSV-G-GFP travels to the Golgi apparatus.  The cells are then fixed 
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and I measured the amount of VSV-G-GFP that had traveled from the ER and arrived at 

the Golgi by image analysis.  A region of interest in the ER, free of punctate staining was 

selected to generate a mean ER value.  After that, a mask was generated for the Golgi 

marker GM130.  The maximum VSV-G-GFP intensity for this mask was used together 

with the ER mean value to generate the transport index.  The ratio of Golgi maximum to 

ER mean provides a quantitative value representing the arrival of VSV-G-GFP in the 

Golgi apparatus.   

To confirm that the assay was capable of measuring changes in VSV-G 

trafficking, it was necessary to generate a cargo block that was independent of calcium.  

To impair ER to Golgi trafficking, I chose to knock down the ER to Golgi SNARE 

Syntaxin 5.  Syntaxin 5 is one of the four ER to Golgi SNARES.  Previous experiments 

in this laboratory have shown that addition of anti-Syntaxin 5 antibody to the COPII 

vesicle heterotrimer assay results in strong inhibition of the fusion signal (Bentley et al., 

2006).  To knock down Syntaxin 5, NRK cells were transfected with Syntaxin 5 siRNA.  

To confirm the absence of Syntaxin 5, cells were lysed in sample buffer and analyzed 

using SDS-PAGE gel electrophoresis followed by Western blotting.  Figure 22 shows 

that the Syntaxin 5 siRNA treatment resulted in a very efficient knockdown (KD) of the 

protein.  Equal amounts of protein were loaded in the Syntaxin 5 KD and the control 

lanes.  I also loaded different dilutions of mock transfected cells.  The Western blot 

shows that Syntaxin 5 was knocked down more than 90%, which should prove more than 

sufficient to register a trafficking effect.   

One day before the experiment both Syntaxin 5 knockdown and mock-treated 

populations were transfected with VSV-G-GFP.  Cells were incubated at 40°C to build 
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up VSV-G-GFP in the ER.  To allow VSV-G-GFP trimerization, but prevent COPII 

vesicle budding, cells were incubated at 10°C for one hour; this temperature is permissive 

for folding but not vesicle budding.  Before starting the time course, at 10°C the cargo is 

located diffusely throughout the ER and there is no morphological difference between 

control cells and Syntaxin 5 depleted cells.  After switching the temperature to 32°C the 

cargo is released from the ER and starts moving towards the Golgi.  Three minutes after 

release from the ER, VSV-G-GFP is beginning to arrive in the Golgi of control cells, but 

not in Syntaxin 5 depleted cells.  After 7 minutes some of the cargo has made it to the 

Golgi in both populations, but significantly more has accumulated in the control cells.   

For each cell a ―transport index‖ value was generated by using a ratio of Golgi 

maximum and ER mean.  These values are then averaged to generate a point on the graph 

in Figure 23.  The graph shows that this quantification method can sensitively measure 

kinetic changes in VSV-G-GFP transport to the Golgi.  Transport of VSV-G-GFP in the 

cells with knocked down Syntaxin 5 was significantly impaired when compared to mock 

transfected cells.   

To test the effect of luminal calcium depletion on VSV-G transport, cells were 

either mock-treated or CPA-treated at 10°C.  After that, VSV-G-GFP was released from 

the ER at 32°C.  While this experiment showed no effect of CPA treatment when 

compared to the mock (data not shown), it is possible that calcium depletion requires 

different conditions at 10°C.  Cells treated with CPA at 10°C did not show the 

morphological changes to the ERGIC structures.  There were no enlarged peripheral 

rbet1 structures in these cells.  Because I did not confirm whether the calcium depletion 

was effective, it is not easy to evaluate such data.  However, if the calcium depletion was 
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effective at 10°C, then any trafficking defect is dependent on the morphological changes 

to the ERGIC.   

 

VSV-G trafficking in intact cells is impaired at a post-folding stage by luminal 

calcium depletion 

To test kinetic effects of luminal calcium depletion on ER to Golgi transport cells 

were transfected with VSV-G-GFP and cultured at 40°C.  Calcium depletion was 

performed at 40°C, a temperature at which the treatment causes ERGIC expansion (not 

shown).  After the usual CPA treatment, cargo was released in calcium-free medium at 

32°C.  Cells were fixed and then VSV-G-GFP transport was evaluated as previously 

described.  Figure 24 shows the quantified results.  It very clearly shows that there is a 

retardation of transport in CPA-treated cells.  This result supports the hypothesis that 

luminal calcium plays an important role in the trafficking of cargo through the early 

secretory pathway.  However, this experiment does not rule out a slowdown caused by 

folding defects on ER to Golgi transport.  It is possible that the lack of luminal calcium 

results in slower formation of VSV-G trimers and that this causes a slowdown in 

transport.   

To assess this possibility, I measured the formation of VSV-G trimers.  Cells were 

transfected with VSV-G-myc.  After calcium-depletion cells were switched to 32°C and 

then lysed using 1% TX-100.  VSV-G trimers were immunoprecipitated using the trimer-

specific monoclonal antibody I14 (Nehls et al., 2000).  Trimers were then analyzed by 

SDS-PAGE electrophoresis and Western blotting.  Figure 25 shows the quantification of 

three such experiments.  After three minutes at 32°C, VSV-G in both CPA-treated and 
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control cells reaches its maximum folding level and remained constant.  This is consistent 

with VSV-G folding occurring rapidly, which has been observed previously by others (de 

Silva et al., 1990).  This result suggests that the kinetics of trimer formation are not 

affected by calcium depletion.  During luminal calcium depletion, the speed at which 

VSV-G folds into trimers is not any slower than it is in control cells.   However, the 

percentage of total VSV-G that folds into trimers seemed generally lower in calcium 

depleted cells, but was not statistically significant.  While it is likely that both populations 

have a pool of protein that remains unfolded in the ER for the duration of the experiment, 

it seems that more VSV-G moves into or remains in this pool during calcium depletion.  

This was also apparent in the total I14 immunofluorescence signal attained following a 

shift to 32°C (data not shown).  Nonetheless, the experiment in Figure 25 suggests that 

slower protein folding due to luminal calcium depletion is not responsible for the kinetic 

decrease of ER to Golgi transport.  However, this experiment does not rule out the 

possibility that an increased pool of VSV-G-GFP that is stuck in the ER is responsible for 

a higher mean ER value in the fluorescence based assay.  Because the quantification uses 

a denominator value derived from the ER, increasing the VSV-G-GFP that is stuck in the 

ER could result in a diminished transport index.  This would mean that the trafficking 

defect was simply an artifact of less VSV-G-GFP being released into the secretory 

pathway, rather than a true effect on the post-folding secretory machinery.   

To differentiate folding effects from an actual decrease of cargo transport, VSV-

G-GFP was transfected into NRK cells and the cells had their luminal calcium depleted 

as described previously.  After fixation, the cells were stained using the VSV-G trimer 

specific antibody I14.  Using this antibody removes any effects caused by unfolded VSV-
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G, as only folded VSV-G, which is going to traffic, is measured.  In addition, new trimers 

do not continue to form after the first few minutes (Figure 25).  Trimer transport was 

analyzed as before, both for VSV-G-GFP as well as for I14 staining.  In order to prevent 

effects of newly translated cargo, cycloheximide was added to the cells upon cargo 

release.  Figure 26 shows the quantification of transport of both VSV-G-GFP (Figure 26 

A) as well as VSV-G trimers (Figure 26 B) inside the same cells.  The VSV-G-GFP 

signal closely follows the previously observed trend.  The previous experiment showed 

that three minutes after release, all VSV-G is folded.  In this experiment, no VSV-G has 

made it to the Golgi yet after three minutes, shown by the equal transport indices.  Ten 

minutes after release, VSV-G is arriving in the Golgi, continuously increasing until 20 

minutes.  The trimer only quantification shows the same trend.  Both conditions are the 

same three minutes after release, but starting at ten minutes, VSV-G starts accumulating 

much faster in the Golgi in the control cells than in the calcium-depleted cells.  

Curiously, the maximal transport indices are much higher for the trimer-only analysis 

than they are for the GFP analysis.  This shows that a significant amount of VSV-G-GFP 

remains in the ER, even in untreated cells.  However, when using the I14 antibody, the 

ER values are reduced very close to background indicating that almost all trimerized 

VSV-G leaves the ER and moves to the Golgi.  Alternatively, it is possible that this 

difference in transport index is the product of a non-linear signal in the antibody binding.  

Because the amount of trimerized VSV-G remains constant after three minutes, this 

experiment shows that there is a significant retardation of ER to Golgi trafficking that is 

not an artifact generated by an increase of unfolded cargo remaining unfolded in the ER.   
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Golgi reformation after brefeldin A treatment is impaired in calcium depleted cells 

Because all trafficking experiments thus far are based on the same cargo, I used a 

different, non-folding dependent assay for ER to Golgi transport. Brefeldin A (BFA) is an 

antibiotic produced by a fungus that acts by collapsing the Golgi back into the ER 

(Lippincott-Schwartz et al., 1989).  BFA acts on the GEF for the  COPI GTPase ARF1.  

It prevents the budding of COPI vesicles from the Golgi.  This allows SNAREs on the 

Golgi to become exposed allowing whole Golgi cisternae to fuse with the ER (Nebenfuhr 

et al., 2002).  This does not affect the folding state of Golgi proteins, but takes already 

existing proteins and moves them to the ER.  Washing out BFA then allows these 

proteins to leave the ER and reform the Golgi.  For this experiment, cells were treated 

with 2.5 µg/mL of BFA for 45 minutes.  In the CPA-treated cells, luminal calcium was 

depleted for the final 30 minutes of BFA treatment.  BFA was then washed out and the 

cells were fixed at each time point.  After fixation the cover slips were stained for 

Mannosidase II, a Golgi-resident enzyme.  Treatment with cycloheximide throughout the 

experiment ensured that only already existing proteins were involved in the reformation 

of the Golgi.  The images were then analyzed similarly to previous experiments, with a 

Golgi maximum in the periphery that was compared to an ER mean.  A similar 

experiment had been previously conducted in the laboratory by Ting Wang, however the 

quantification methods had not been refined at that point.  At the zero minute point 

Mannosidase II is diffuse throughout the ER and there is no Golgi marker in the 

periphery to evaluate.  In that case, the maximum ER value was used.  The experiment is 

quantified in Figure 27.  The graph shows that the reformation of the Golgi is consistently 

slower in the CPA-treated cells than it is in the control cells.  Even after a full hour of 
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washout the Golgi reformation is still significantly lagging in the CPA-treated cells, 

while the control cells have a transport index value that is near the value of untreated 

cells, and supports the conclusion of the VSV-G trafficking experiments.   

 

Bulk soluble cargo transport in HeLa cells is not affected by luminal calcium 

depletion 

Both VSV-G and the BFA washout experiments relied on membrane protein 

trafficking to the Golgi.  To test a luminal cargo, HeLa cells stably expressing GFP 

attached to a conditional aggregation domain were used (Gordon et al., 2010; Rivera et 

al., 2000).  This domain clusters newly translated protein in the ER until a target drug is 

introduced that releases the cargo (Figure 28).  These cells were calcium depleted as 

above and showed a similar phenotype in which peripheral p24 staining puncta were 

enlarged (Figure 29).  After calcium depletion, cargo was released by introducing the 

drug and transport to the Golgi was measured by the same algorithm as before.  Figure 30 

shows that the kinetic trajectory of ER to Golgi transport for this cargo was not affected 

by the depletion of luminal calcium.  To confirm that luminal calcium depletion does not 

affect the rate of drug induced de-aggregation, ER intensities of GFP were measured in 

each cell.  The ratio of maximum ER to minimum ER was generated as a way of 

measuring aggregates.  Figure 31 shows that de-aggregation is rapid when compared to 

transport.  Therefore the transport index is not measuring de-aggregation.  That luminal 

calcium does not affect bulk flow transport is an intriguing result because it suggests that 

the previously observed effect is not as simple as a general slowdown in ER to Golgi 

trafficking.  Because soluble cargo does not seem to be affected by the CPA treatment, 
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but membrane proteins (Figure 23) or membrane compartments (Figure 14) are, it is 

possible that there is a effect on sorting in the ERGIC (see discussion).   

 

Luminal calcium depletion does not result in ATF-6 unfolded protein response 

activation 

 Because calcium plays an important role in protein folding inside the ER, it is 

possible that depletion of calcium results in activation of the unfolded protein response 

(UPR) (Malhotra and Kaufman, 2007).  In that case, signaling activated by the UPR 

could account for changes in trafficking between the ER and the Golgi.  This would be 

different from calcium directly affecting the fusion machinery.  One of the three major 

pathways that are activated by the UPR is the transcription factor activating transcription 

factor 6 (ATF-6).  Upon ER stress the 98kD ATF-6 gets transported to the Golgi 

apparatus.  Here, it is cleaved by two proteases, which results in a 60 kD size fragment.  

The cleaved form of ATF-6 then is transported to the nucleus where it activates 

transcription of stress related genes (Schroder, 2008).   

A previous paper in fact showed that VSV-G trafficking defects were caused by 

activated UPR (Amodio et al., 2009).  Two hours of thapsigargin treatment in the 

presence of normal extracellular calcium resulted in the accumulation of anterograde 

cargo in the ER and at ERES.  Those experiments also resulted in stress-induced 

morphological changes, such as Golgi fragmentation, that were not present in the studies 

described here.  The CPA conditions I used are relatively mild, because they would not 

have resulted in extremely high cytosolic calcium over a long timeframe.   
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In order to measure the activation of the UPR, FLAG tagged ATF-6 was 

transiently expressed in NRK cells.  The cells were treated with tunicamycin, DTT, or 

DMSO for two hours, as well as the standard conditions for CPA-mediated luminal 

calcium depletion for 15 minutes in calcium-free medium with CPA and 15 minutes in 

calcium-free medium only.  After that the cells were scraped and lysed.  An enriched 

membrane fraction was generated using differential centrifugation.  This fraction was 

then Western blotted for FLAG.  Figure 32 shows that full-length FLAG-ATF-6 is 

expressed in all treatment groups.  Because tunicamycin inhibits glycosylation in the ER, 

there are two separate bands of ATF-6 near 100 kD in that lane.  As expected, both 

tunicamycin and DTT produced cleavage products of ATF-6 near 60 kD.  CPA and 

DMSO, a negative control, both produced an extremely faint band of cleaved protein.  

Figure 32 shows the same lanes blotted for the ER resident protein calnexin.  This 

Western blot confirms that equivalent amounts of endogenous protein were loaded in 

each lane.  These results confirm that the conditions used for calcium depletion do not 

result in activation of the ATF-6 branch of the UPR.  While it is possible that prolonged 

treatment induces an ER stress response, 30 minutes are not enough to induce UPR 

activation.  Thus the trafficking effects that were observed with CPA are likely a result of 

calcium interacting directly with the fusion machinery and not the product of UPR 

signaling.   

  



53 

 

 
Figure 6 – BAPTA enhances COPII vesicle fusion in vitro.   

 

COPII vesicle fusion was measured by heterotrimerization as described in Materials and 

Methods.  Prior to 1 h fusion reactions, BAPTA or EGTA was added on ice for 20 

minutes.  Heterotrimers are expressed as a percentage of the 0 mM chelator reaction.  

Assay data are presented as means of duplicate determinations with error bars 

representing SE where larger than symbol size.  
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Figure 7 – Membrane permeant EGTA and BAPTA enhance homotypic COPII vesicle 

fusion 

 

Effects of aminomethoxy (/AM) derivatives of BAPTA and EGTA on homotypic COPII 

vesicle fusion.  Assay data are presented as means of duplicate determinations with error 

bars representing SE where larger than symbol size.  This experiment was performed by 

Deb Nycz.  Preliminary work for this experiment was carried out by Ashwini Joglekar 

(University of Michigan) and by myself.  
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Figure 8 – Additional calcium increases the amount of BAPTA required for stimulation 

of homotypic COPII vesicle fusion.  

 

COPII vesicle fusion was measured as described in Materials and Methods.  The white 

circles show standard assay conditions with 0.18 mM calcium in the buffer.  The black 

squares represent the addition of 1.5 mM calcium to the buffer.  0.5 mM EGTA is present 

throughout the assay.   
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Figure 9 – CPA treatment results in decreased luminal calcium.   

 

NRK cells were transiently transfected with the ER calcium sensor D1ER (Palmer et al., 

2004).  Foerster energy resonance transfer of the probe was measured.  This experiment 

was performed by Ismene Fertschai, Roland Malli, and Wolfgang Graier.   
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Figure 10 – Cytosolic calcium returns to normal levels after 15 minutes of CPA 

treatment.  

 

NRK cells were transiently transfected with the ER calcium sensors YC3.6 and YC2.1 

(Miyawaki et al., 1997; Nagai et al., 2004).  Foerster energy resonance transfer of the 

probes was measured.  This experiment was performed by Ismene Fertschai, Roland 

Malli, and Wolfgang Graier.   
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Figure 11 – Calcium depletion and 15°C treatment results in dramatic enlargement of 

ERGIC structures.   

 

NRK cells were either mock-treated, incubated at 15°C for 30 minutes, or treated with 

CPA to deplete luminal calcium 15 minutes followed by 15 minutes in calcium-free 

medium.  The cells were then fixed and immunostained for rbet1 and the Golgi marker 

GM130.  Shown are single focal planes from deconvolved widefield image stacks.   
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Figure 12 – Average rbet1 object size increases during luminal calcium depletion.   

 

Cells were treated with CPA for 15 minutes followed by incubation in calcium-free 

medium.  Peripheral rbet1 objects that were not associated with the Golgi were identified 

and measured by thresholding (see methods).  Values represent average object size for 

cell of objects derived from at least 20 randomly chosen cells. Error bars display standard 

error.    
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Figure 13—Average rbet1 object size increases with different calcium depleting drugs 

and is not dependent on new rbet1 synthesis.  

 

15°C cells were incubated at that temperature for 30 minutes.  CPA cells were treated for 

15 minutes with CPA and incubated for 15 minutes in calcium-free medium. CPA + CX 

cells were treated for 15 minutes with CPA and incubated for 15 minutes in calcium-free 

medium, all in the presence of cycloheximide.   Tg cells were treated for 30 minutes with 

thapsigargin in the presence of calcium free medium.  Values represent per cell means 

derived from at least 20 randomly chosen cells. Error bars display standard error.  

Selected p values from two-tailed Student’s t test are included.    
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Figure 14 –Luminal calcium and 15°C treatment result in distinct changes in rbet1 

distribution.   

 

Quantification of peripheral rbet1 objects in experiments such as those described in 

Figure 12.  Values represent per cell means derived from at least 20 randomly chosen 

cells.  Error bars display SE.  Only objects that fall within the size bins indicated above 

each plot are included in each panel.  Selected p values from two tailed Student’s t test 

are included.  Areas of objects were calculated assuming that one image pixel width 

calibrates to 224 nm in the cell.  Single-pixel objects are below resolution but were not 

eliminated from the size analysis; they did not contribute to the 0.2-0.45 µm
2
 and >0.45 

µm
2
 size bins.  
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Figure 15 – Total rbet1 immunofluorescence increases upon depletion of luminal calcium 

as well as incubation at 15°C.   

 

Cells were stained with monoclonal rbet1 antibody.  An ROI was drawn around the 

whole cell of one deconvolved focal plane.  Total rbet1 (16G6 antibody) 

immunofluorescence was measured.  Values represent per cell means derived from at 

least 20 randomly chosen cells. Error bars display standard error.  p value from two-tailed 

Student’s t test is included.    
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Figure 16 – Total rbet1 expression does not change significantly upon depletion of 

luminal calcium or incubation at 15°C.   

 

Cells were lysed and equal amounts of protein were analyzed by SDS-PAGE 

electrophoresis and Western blotting with a monoclonal rbet1 antibody (see Methods). 

Values represent per means derived from at least two separate experiments. Error bars 

display standard error.  p value from two-tailed Student’s t test is included.    
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Figure 17 – Total GM130 immunofluorescence remains constant during depletion of 

luminal calcium as well as incubation at 15°C.   

 

Cells were stained with GM130 antibody.  An ROI was drawn around the whole cell of 

one deconvolved focal plane.  Total GM130 immunofluorescence was measure.  Values 

represent per cell means derived from at least 20 randomly chosen cells. Error bars 

display standard error.   
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Figure 18 – Luminal calcium depletion results in the enlargement of p24-positive ERGIC 

structures.  

 

NRK cells were either mock-treated or treated with CPA to deplete luminal calcium, then 

fixed and immunostained for p24 and the Golgi marker mannosidase II.  Shown are 

single focal planes from deconvolved widefield image stacks.  
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Figure 19 –Luminal calcium depletion results in the production of p24 positive ERGIC 

structures of different sizes. 

 

Quantification of peripheral objects positive for p24.  Objects were organized in three 

size bins under the same experimental conditions as for Figure 15.  Values represent per 

cell means derived from at least 20 randomly chosen cells. Error bars display standard 

error.   
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Figure 20 – Sec16 ERES staining remains unchanged following luminal calcium 

depletion. 

 

Immunolabeling for rbet1 and Sec16 was performed using the same experimental 

conditions as described in Figure 19.   
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Figure 21 – Sec16 peripheral object abundance remains unchanged in cells depleted of 

luminal calcium.   

 

Quantification of rbet1 and Sec16 labeling from Figure 21.  All size bins were included in 

one analysis.  The rbet1 and Sec16 object data are from exactly the same set of double-

labeled NRK cells.  Values represent means derived from at least 20 randomly chosen 

cells.  Error bars display SE.  Selected p values from two-tailed Student’s t test are 

included.   
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Table 1 – Co-localization of large peripheral objects.  

 

The five largest peripheral rbet1 structures in each cell were analyzed for this table.  For 

each of these, co-staining for Sec16 and beta-COP was scored by generating a separate 

mask that was also thresholded at four times the cellular background.  Any overlap 

between the rbet1 mask and the Sec16 or beta-COP mask was counted as co-localization.   
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Figure 22 – Syntaxin 5 is knocked down more than 90% in NRK cells.   

 

Western blot of cell lysates.  The lanes labeled ―mock‖ and ―Syn5 KD‖ had equal 

amounts of protein loaded.  The remaining lanes each had a percentage of mock loaded.  

Both expected Syntaxin 5 isoforms at 44 kD and 36.6 kD are knocked down better than 

90%.   
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Figure 23 – VSV-G-GFP trafficking impairment due to Syntaxin 5 knockdown is 

measurable using the transport index ratio.  

 

Cells were mock-treated or treated with Syntaxin 5 siRNA.  After transfection with VSV-

G-GFP, the cargo was synchronized by incubating the cells at 10°C.  Cargo was released 

by shifting the cells to 32°C.  Arrival of VSV-G-GFP in the Golgi was then measured by 

fluorescence and quantified as described in the methods.  Values represent means derived 

from at least 20 randomly chosen cells.  Error bars display SE.   
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Figure 24 – Depletion of luminal calcium decreases ER to Golgi transport of VSV-G-

GFP.  

 

VSV-G-GFP expressing cells were CPA treated at 40°C.  Cargo was then released by 

shifting the cells to 32°C.  Arrival of VSV-G-GFP in the Golgi was measured as 

described in the methods. Values represent means derived from at least 20 randomly 

chosen cells.  Error bars display SE.   
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Figure 25 – VSV-G trimerizes maximally in three minutes.  

 

Cells expressing VSV-G-myc or VSV-G-GFP were kept at 40°C.  Following control or  

CPA treatment VSV-G was released from the ER at 32°C.  Cells were lysed and VSV-G 

trimer antibody I14 was used for immunoprecipitation of assembled trimers.  (A) 

Immunoprecipitated trimers were quantified by Western blot with anti-myc or anti-GFP 

antibody.  The graph was generated using three independent experiments.  Error bars 

display the standard error of the mean.  To prepare the graph the 0 minute value was 

subtracted from each data point.  Then each data point was expressed as a percentage of 

the maximum value.  (B) Example Western blot showing immunoprecipitated VSV-G 

trimers.    
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Figure 26 – VSV-G-GFP trimers are transported more slowly to the Golgi apparatus 

following luminal calcium depletion.   

 

VSV-G-GFP expressing cells were CPA-treated at 40°C.  Cargo was then released by 

shifting the cells to 32°C.  Cells were fixed and stained for VSV-G trimers using the I-14 

antibody.  Arrival of total VSV-G-GFP (A) or VSV-G trimers (B) was measured by 

immunofluorescence as described in the methods.  Cycloheximide was present during the 

32°C incubations.  Values represent means derived from at least 20 randomly chosen 

cells.  Error bars display SE.   
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Figure 27 – Golgi recovery after brefeldin A washout is impaired in cells depleted of 

luminal calcium.   

 

Golgis were dispersed using brefeldin A (BFA) for 45 minutes.  For calcium depletion, 

the usual CPA conditions were employed for the final 15 minutes of the BFA incubation.  

After the BFA washout (t = 0 on plot), CPA-treated cells were allowed to recover in 

calcium-free medium whereas control cells recovered in normal medium.  Untreated cells 

were grown in normal medium.  Cells were fixed and stained for Mannosidase II.  

Cycloheximide was present in the medium throughout the experiment.  Values represent 

means derived from at least 20 randomly chosen cells.  Error bars display SE.  This type 

of experiment was first performed by Ting Wang.   
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Figure 28 – Graphical representation of the conditional aggregation domain.  

 

A fusion protein containing a signal sequence, eGFP, and the aggregation domain was 

constructed and has been described previously (Gordon et al., 2010).  This construct was 

expressed stably in HeLa cells.  Cells build up cargo in the ER which cannot be exported 

due to the aggregates that they form.  Addition of the drug AP21998 frees the conditional 

aggregation domains and allows the protein to leave the ER.   
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Figure 29– Calcium depletion in HeLa cells results in an increase of large peripheral p24 

structures.   

 

HeLa cells were either mock-treated or treated with CPA to deplete luminal calcium, then 

fixed and immunostained for p24.  
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Figure 30 – Bulk cargo transport is not affected by the depletion of luminal calcium  

 

HeLa cells stably expressing GFP fused to a conditional aggregation domain were 

calcium depleted as described above.  After calcium depletion cargo aggregation was 

reversed by the addition of the drug AP21998.  Mean ER intensity and maximum Golgi 

intensity for GFP were then measured and the transport index was generated as described 

above.  Cycloheximide was added to the medium at the same time as AP21998.  Values 

represent means derived from at least 20 randomly chosen cells.  Error bars display SE.   
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Figure 31 – Cargo de-aggregation occurs at a rapid rate for control and CPA treated cells.  

 

The ER intensities of GFP for cells quantified in Figure 31 were measured.  For each cell 

a maximum ER and a minimum ER intensity were measured.  Values represent mean 

ratios derived from the same cells as measured in Figure 31.  Error bars display SE.   
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Figure 32 – ATF-6 is not activated by typical conditions for luminal calcium depletion.   

 

NRK cells were transfected with FLAG-ATF-6.  Lane 1: cells were treated with CPA for 

15 minutes followed by 15 minutes in calcium free medium as described above.  Lane 2: 

Cells were incubated in 0.5% DMSO for 2 hours.  Lane 3: 1 mM dithiothreitol (DTT) 

was added to cells for 2 hours.  Lane 4: 2 µg/mL tunicamycin (Tun) was added to cells 

for 2 hours.  Cells were lysed and an enriched membrane fraction was generated.  This 

was analyzed by SDS-PAGE electrophoresis followed by Western blotting for FLAG.  

Uncleaved ATF-6 is visible at 100 kD, whereas the cleaved ATF-6 product is visible at 

around 60 kD as expected.  A Western blot for calnexin confirms that comparable 

amounts of endogenous protein were loaded in each lane.   
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Discussion 

 

Major contributions of this thesis to the field 

The driving hypothesis for the work presented here is that luminal calcium acts as 

a regulator of membrane trafficking from the ER to the Golgi apparatus.  In these 

experiments, I have for the first time described several such roles for luminal calcium.  

Previous work used blunt manipulations to cells, for example using chelation of all 

cellular calcium using BAPTA/AM and EGTA/AM and low resolution assays that did 

not allow discrete analysis of particular trafficking steps (Chen et al., 2002).  The major 

contributions that arise out of my work are the following:  

1) In cell free in vitro experiments, luminal calcium suppresses the fusogenicity 

of COPII vesicles.  This result implies that calcium acts on the outside of the 

vesicle through a calcium sensor that interacts with the fusion machinery.  

This inhibition of the fusion machinery exerted by calcium may function as a 

way to target vesicles to fuse with the correct target compartment after they 

reach maturity and move away from the ERES.  Other work from the Hay 

laboratory has indentified the likely calcium sensor Apoptosis Linked Gene 2 

(ALG-2).  This protein is a penta-EF hand calcium sensing protein which 

interacts with the COPII subunit Sec31 and may be the sensor that interacts 

with leaking luminal calcium (Bentley et al., 2010).   

2) Luminal calcium regulates the morphology of the ER to Golgi intermediate 

compartment.  Specific inhibition of SERCA ATPases results in a dramatic 

expansion of the ERGIC and a concentration of recycling proteins in the 
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intermediate compartment.  These morphological changes suggest changes in 

the trafficking patterns between the ER and the Golgi apparatus.  This change 

is also distinct from the incubation of cells at 15°C, a manipulation commonly 

used to trap cargo in the ERGIC, which implies it involves a distinct 

mechanism.  The development of this luminal calcium depletion should be an 

important tool for studying further aspects of the intermediate compartment.   

3) Luminal calcium is required for optimal ER to Golgi trafficking of membrane 

proteins.  Specific luminal calcium depletion causes slowed ER to Golgi 

transport of VSV-G and mannosidase II.  These results show that the 

morphological changes of the ERGIC caused by depletion of luminal calcium 

affect cargo trafficking.  It is unclear whether these trafficking defects are a 

direct result of COPII vesicle fusogenicity changes (as observed during in 

vitro experiments in part 1) or whether other models could better explain the 

results as discussed below.   

 

Luminal calcium suppresses COPII vesicle fusion in vitro 

 A surprising result from this study is that calcium suppresses in vitro membrane 

fusion of COPII vesicles.  This is effect of calcium is opposite to other membrane fusion 

events including regulated exocytosis, endosomes fusion, and intra Golgi transport 

(Burgoyne and Clague, 2003).  In those cases calcium provides a stimulus that triggers 

membrane fusion, or a basal amount of calcium is required to proceed with membrane 

fusion.  It is possible that the unique calcium gradients in the very early secretory 

pathway provide an ideal opportunity for calcium to play a different regulatory role.  The 
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high calcium concentration in the ER, followed by low calcium concentrations in the 

ERGIC could be utilized as a measure of compartmental maturity.   

 ER free calcium is usually very high and is maintained by SERCA pumps in the 

membrane.  It is possible that, because SERCA pumps are not loaded onto COPII 

vesicles, a nonspecific calcium leak causes free luminal calcium in the secretory pathway 

to progressively decrease as vesicles mature.  Thus, the ever-changing calcium signature 

of ERGIC structures could be used in a manner not yet appreciated at other transport 

steps.  Vesicles that are loaded with high luminal calcium when they bud from the ER 

could be leaking calcium as they mature.  Early after vesicle budding the leaking calcium 

could act as a signal preventing fusion of the vesicle back with the donor compartment or 

with other immature transport vesicles.  This would be a signal independent of the protein 

machinery, which is present on both the donor compartment and the newly formed 

vesicle.  Simultaneously, the leaking calcium signal could act as a way of triggering 

preferential fusion of the COPII vesicle with target compartments that exhibit a lower 

calcium signature.  These would be mature ERGIC structures that are going to be 

trafficked towards the Golgi apparatus.  This signal would presumably act as a temporal 

regulator of the ERGIC lifecycle.  While the calcium will act early on after the vesicle is 

budded, the signal will be lost when the luminal calcium expires.   Any molecules that act 

in a calcium-dependent way on the outside of the vesicle will dissociate when the calcium 

levels inside the vesicles are too low to generate a signal to the outside of the vesicle.   

Additionally, in the absence of an already existing ERGIC structure, COPII 

vesicles could eventually be triggered to form nascent ERGIC structures by undergoing 

several steps of homotypic fusion after losing sufficient calcium.  This represents a 
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mechanism to dictate the biogenesis of nascent transport compartments when the existing 

ERGIC compartments are absent.  It is possible that mature ERGIC structures have lost 

their calcium gradient by the time they reach the Golgi apparatus.  At the Golgi, Golgi 

calcium ATPases are responsible for maintaining a high calcium concentration inside the 

Golgi cisternae (Wuytack et al., 2002).  Hence, the previously shown requirement for the 

fusion of pre-Golgi intermediates with the Golgi as well as the fusion within the Golgi 

would direct an ordered fusion of mature ERGIC structures with the appropriate, calcium 

rich target compartment (Beckers and Balch, 1989; Porat and Elazar, 2000).  The calcium 

leak on the vesicle could maintain a calcium puff on the outside of the membrane (Figure 

4).  This calcium cloud could interact very locally with machinery near the leak on the 

outside of the vesicle.  While it is possible for some amount of calcium ions to diffuse 

across the membrane, a sustained signal aimed at protein machinery attached to the 

membrane is likely linked to a specific leak channel.  However, there are no known 

calcium channels that are loaded onto COPII vesicles.  It is conceivable that small 

amounts of the ER calcium channels such as IP3Rs and RyRs are cycled through the 

ERGIC, but it is also possible that COPII vesicles contain a yet unidentified calcium leak 

channel.  Future studies will have to clarify the identity of leak channels on these 

vesicles.   

 The mechanism by which BAPTA affects COPII vesicles is unclear.  The 

functional selectivity of BAPTA over EGTA combined with the lack of difference 

between BAPTA/AM and EGTA/AM suggests that the calcium leaking from the lumen 

of the vesicle acts close to the site of membrane fusion.  However, neither BAPTA/AM 

nor EGTA/AM chelation could generate the same level of fusion stimulation as BAPTA 
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lacking the aminomethoxy group.  Hydrolysis of these aminomethoxy esters generates 

formaldehyde and acetic acid.  The release of these could have non-specific suppressive 

effects on COPII vesicle fusion.  Reproducing the increase of fusion in vitro using 

ionophores to release calcium has been unsuccessful (data not shown).  This result 

suggests that the functionally important pool of calcium is resistant to such treatment.  It 

is possible that this pool of calcium is bound on the outside of the vesicle near the 

membrane and that the hydrophobic rings on BAPTA allow this molecule to chelate close 

to the membrane, which EGTA cannot.  BAPTA is also a uniquely high ionic strength 

molecule, yet hydrophobic with the potential for non-selective extraction of peripheral 

membrane proteins.  Regardless what the exact mechanism of BAPTA activation is, it 

has lead to closer investigation of the role of luminal calcium in the early secretory 

pathway.   

 

Luminal calcium regulates the distribution of intermediate compartment elements 

 Specific depletion of luminal calcium using SERCA pump inhibitors 

results in enlarged peripheral structures that contain ERGIC markers.  However, it is 

unclear whether these structures are in fact larger ERGICs representing a fusion product 

of COPII vesicles.  It is also possible that the enlarged structures are an accumulation of 

unfused COPII vesicles or just an increased amount of vesicle buds.  Because of the 

resolution limits of standard light microscopy, it not possible to definitely say what 

exactly the large peripheral structures are.  Electron microscopy studies will be necessary 

to determine the exact nature of these structures.  It is also not clear that these structures 

are really increasing in size or whether they are just collecting more antibody labeling 
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under the staining conditions used.  The total rbet1 staining increases in CPA-treated 

cells, which could point towards an increase of labeling of these structures rather than 

expansion (Figure 15).  On the other hand, 15°C also caused a redistribution of rbet1 to 

the periphery without the appearance of large objects.  This implies that the apparent 

enlargement of ERGIC elements during CPA treatment may in fact signify a bona fide 

morphological change.   

 It is also not clear what the mechanistic differences between CPA treatment and 

15°C incubation are.  At 15°C, microtubules may begin to de-polymerize.  Therefore, 

intermediate structures might be trapped in the periphery, unable to transport to the Golgi 

apparatus.  However, the CPA effect must not have merely stranded ERGIC in the 

periphery because the effects on size distribution indicate that the two treatments produce 

distinct kinds of ERGIC structures.   

 

Luminal calcium is required for optimal ER to Golgi transport of membrane proteins 

 Depletion of luminal calcium results in dramatic changes in the structure of the 

ERGIC, severely impairs the trafficking of VSV-G to the Golgi apparatus, and decreases 

the speed of Golgi reformation after brefeldin A treatment (Figures 11, 24, 28).  There 

might be some decrease in trafficking due to effects on protein folding, however, the best 

interpretation of the data is that the majority of the kinetic decrease in trafficking is 

caused by direct effects on the trafficking machinery.  When looking only at the kinetics 

of already folded proteins, Golgi arrival of VSV-G is significantly impaired (Figure 27).  

While these experiments were designed to minimize the impact of folding effects caused 

by luminal calcium depletion the transport results still need to be interpreted cautiously.  
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All of the available kinetic assays that observe trafficking between the ER and the Golgi 

require cargo buildup in the ER and thus could in principle be affected by the status of 

ER folding chaperones.  Because calcium plays such an important role in protein folding 

in the ER it is extremely hard to distinguish calcium effects on folding rather than 

trafficking.   

While a previous study has claimed that UPR activation by thapsigargin causes 

kinetic defects in VSV-G trafficking, the experiments presented here show that the ATF-

6 pathway is not activated in cells with depleted luminal calcium using the CPA 

conditions I developed (Figure 31) (Amodio et al., 2009).  Amodio et al., 2009 

discovered that activation of the UPR results in a decrease of ER to Golgi trafficking 

kinetics as well as an accumulation of small ERGIC-53 positive vesicles.  However, their 

protocols would result in sustained high cytosolic calcium that complicates the 

interpretation of their data and comparison to my results.  ER stress also directly results 

in the transcription of the COPII subunit Sec23 in order to facilitate faster ER export 

(Saito et al., 2009).  While these studies show that UPR activation by itself appears to 

modify the secretory pathway, that effect is different from the effects caused by luminal 

calcium depletion that are presented here.  

The morphological changes that are observed in cells with luminal calcium 

depleted may impair the sorting efficiency in the ERGIC.  While VSV-G transport to the 

Golgi and Golgi reformation were both strongly affected by calcium depletion, a bulk 

cargo marker was not (Figure 30).  It is possibly that these seemingly conflicting results 

point to a specific defect in protein sorting in the ERGIC.  In the ERGIC wayward ER 

proteins are packaged into COPI vesicles and returned to the ER (Figure 33).  This results 
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in the concentration of proteins that are destined to a post-ERGIC compartment.  A 

deficiency in the accurate sorting of anterograde cargo versus ER proteins could delay the 

maturation of intermediate compartment structures.  Anterograde cargo that usually is 

excluded from retrograde vesicles may not be removed from these vesicles efficiently.  

This would cause the cargo to go through several rounds of trafficking.  Delaying this 

maturation would result in an increased time during which the ERGIC accepts COPII 

vesicles that continue to bud from the ER.  While ERGIC structures will still move away 

from the ERES at the same rate, only bulk flow cargo will maintain a constant transport 

rate.  Any cargo that normally benefits from exclusion from retrograde vesicles will 

traffic slower.  This would also result in an increase of VSV-G-GFP positive vesicles 

between the ERES and the ERGIC, as VSV-G-GFP would be sent back to the ER in 

COPI vesicles.  Because normal light microscopy is resolution limited, it is possible that 

this accumulation of VSV-G-GFP vesicles could look structurally like the large 

accumulations of rbet1 and p24 that are observable during luminal calcium depletion.   

The results presented here show that luminal calcium plays a regulatory role in 

the secretory pathway, but do not elucidate the precise mechanism.  The chelation 

experiments show that, at least in vitro, it is likely that calcium leaking out of the vesicle 

is responsible for a decrease in membrane fusion.  This conclusion implies the presence 

of calcium sensing machinery on the outside of the vesicle.  A possible calcium sensor 

for this machinery is the penta-EF-hand protein Apoptosis Linked Gene 2 (ALG-2).  

ALG-2 has been implicated in stabilizing Sec31 at ERES in a calcium-dependent manner 

(Shibata et al., 2007; Yamasaki et al., 2006).  Published results from the Hay laboratory 

show that ALG-2 is present on in vitro generated pre-Golgi intermediates (Bentley et al., 
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2010).  This interaction can be reversed by treatment with BAPTA.  In addition to 

releasing ALG-2, COPII component attachment to ERGIC membranes is lost upon 

treatment with BAPTA.  Conversely, treatment of intermediate structures with excess 

ALG-2 results in increased retention of COPII coat proteins.  These experiments suggest 

that ALG-2 is a likely candidate to be the calcium sensor and that it plays a role in coat 

retention on the vesicle.  It is possible that coat retention plays an important role in the 

sorting of cargo later in the secretory pathway.  Retaining coat on the early ERGIC could 

be one way of maintaining micro domains that can be excluded from retrograde COPI 

vesicles.  Any cargo that is not attached to the coat cannot be efficiently excluded from 

COPI buds, which results in return of the cargo molecule to the ER.  This model also 

explains the seeming discrepancy between the VSV-G experiment and the in vitro results.  

While coat removal may result in faster homotypic vesicle fusion, the sorting steps 

required for ER to Golgi transport in intact cells produce the counterintuitive result of 

slower transport.  Identifying the calcium sensor and its protein targets on the ERGIC 

membranes will provide insight into cargo sorting mechanisms that determine the fate of 

membrane cargoes.   
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Figure 33 – A model for cargo sorting in the ERGIC. 

 

Cargo is concentrated in COPII vesicles that bud from the ER.  ERGIC structures receive 

COPII vesicles.  ER proteins are concentrated in COPI vesicles that bud from the ERGIC 

while anterograde cargo is excluded from these vesicles.  During and after this process 

the ERGIC structure is moved towards the Golgi apparatus.   
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