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A B S T R A C T

To monitor patient-surface dose in intensity-modulated radiation therapy (IMRT), developed a novel capacitor
dosimeter with a disposable USB-A mini-substrate consisting of a 0.22 μF capacitor and a silicon X-ray diode (Si-
XD). The capacitor dosimeter consisted of a USB-A mini-substrate and a microcomputer dock. The capacitor in the
substrate was charged to 3.30 V using the dock before 4 MV X-ray irradiation. The charging voltage was reduced
by photocurrents flowing through the Si-XD during irradiation. After which the substrate was re-inserted into the
dock, and the discharging voltage was measured. A Farmer-type ionization chamber (N30013, PTW) was used to
convert the discharging voltages into absorbed dose (Gy). The IMRT study was performed using a custom-made
head-neck phantom. The decrease in the charging voltage was found to be proportional to the X-ray dose, and the
calibrated dose corresponded well to those obtained using the ionization chamber. The surface dose measured on
the head-neck phantom were equivalent to those obtained from a treatment planning system. An inexpensive
dosimeter with Si-XDs was developed, as a promising too. The results suggest for monitoring patient-surface dose
during radiation therapy.
1. Introduction

Ionization chambers are widely used to measure the absorbed dose in
radiation therapy. However, these chambers do not to monitor patient-
surface dose, which tend increase due to tumor shrinkage or weight
loss during therapy, and cause radiation damage to the skin [1–5].
Monitoring patient-surface dose is, therefore, required. Furthermore, the
influence of scattered radiation outside the irradiation field during
therapy is not well understood. Measurement of the surface dose outside
the field might be useful for monitoring cataract development in
head-neck treatment [6,7]. Several detectors are used to measure surface
dose during therapy, such as optically stimulated detectors, thermolu-
minescent dosimeters and radiochromic films. However, such dosimeters
are not as precise as those of commercially available ionization chambers
[8] and take relatively high cost. To monitor patient-surface dose during
radiation therapy, it is desirable to use a low-priced detector that can
show the results immediately.

Therefore, we have recently developed a low-priced capacitor
dosimeter incorporating a disposable USB-A mini-substrate with a
capacitor, and a silicon X-ray diode (Si-XD), which no needed cable
amaguchi).
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connection for dose measurement.
A preliminary study with industrial X-ray tube with low-energy X-ray

range was carried out and the result shows the decrease in the charging
voltage was proportional to the delivered dose [9,10]. The Si-XD detector
can also be used at high energy X-ray ranges, since scattered-low-energy
photons are produced by the ceramic substrate behind the Si and
detected by the Si diode [11].

In this study, we aim to conduct a feasibility study to monitor the
patient’s surface dose in radiation therapy using the developed capacitor
dosimeter and a medical linear accelerator (linac). A 4-MV X-ray beam
from a linac was used measure the surface dose with this capacitor
delivered to custom-made head-neck phantom. A typical intensity-
modulated radiation therapy (IMRT) process guided by a treatment
planning system (TPS) was applied.

2. Experimental methods

The dosimeter system used in this work is shown in Fig. 1. A USB-A
substrate and a microcomputer (mbed LPC11U24, NXP, Eindhoven,
Netherlands) dock were employed to measure the capacitor charging and
e 2020
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Fig. 1. Capacitor dosimeter consisting of a microcomputer dock and a substrate.
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discharging voltages. The substrate was designed to insulate the patient’s
skin from the electrical circuit, and had a 0.22-μF capacitor (RS No. 111-
0072, TDK, Tokyo, Japan), an Si-XD (S1087-01, Hamamatsu Photonics
K.K., Hamamatsu, Japan) with photosensitive dimensions of 1.3 � 1.3
mm2, and a 10-kΩ resistor. The photosensitive area was shaded using a
25-μm-thick aluminum tape, and the X-rays passing through the tape
were detected using the Si-XD.

The substrate was first inserted into the dock, and the capacitor in the
substrate was charged to 3.30 V. The capacitor charging voltage was
measured using an analog-to-digital converter (ADC). After charging, the
substrate was then removed from the dock and placed at the measure-
ment point. While the X-rays are irradiated with a linac, the capacitor
was discharged by the photocurrent flowing through the Si-XD diode.
The capacitor discharging voltage was measured by re-inserting the
2

substrate into the dock, and the voltage was measured with the ADC
located in the dock. The dock was connected to a personal computer (PC)
through a USB cable, to record the capacitor charging and discharging
voltages.

To convert the discharging voltage into a dose, a dose calibration
using a typically available ionization chamber and a phantom are
needed. In this study, a Farmer-type ionization chamber (N30013, PTW,
Freiburg, Germany), an electrometer (RAMTEC Smart, Toyo Medic,
Tokyo, Japan) and a solid-water phantom slab (WD, Kyoto Kagaku,
Kyoto, Japan) with a physical density of 1020 kg/m3 as a water-
equivalent phantom was used. The experimental setup for dose calibra-
tion using a substrate is shown in Fig. 2. A linac (Clinac iX, Varian
Medical Systems, Palo Alto, CA, USA) was used to produce a 4-MV X-ray
beam with outputs ranging from 25 to 250 monitor unit (MU) at a rate of



Fig. 2. Experimental setup around a solid-water phantom. 1020 kg/m3.
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250MU/min, with an irradiation-field of 100� 100mm2. The X-ray dose
was measured by placing the Si-XD surface of the 5-mm-thick substrate at
a depth of 0.1 m in the solid-water phantom slab, and the source-to-
surface distance (SSD) was set to 0.9 m. We used one substrate and
repeated the three times each measurement. Next, the standard-absolute
dose was measured with the Farmer-type ionization chamber under
conditions identical to those used with substrate measurements.

After the dose calibration, surface dose measurement was carried out
using a custom-made head-neck phantom, also with a physical density of
1020 kg/m3.

Fig. 3 shows the surface dose measurement methods. The dose dis-
tribution was calculated with an X-ray CT (Optima CT580, GE Health-
care, Chicago, USA), conducted with the head-neck phantom at a slice
thickness of 1.25 mm and a tube voltage of 120 kV. The treatment
planning system was the Eclipse (Ver. 11, Varian Medical Systems, Palo
Alto, CA, USA), and the anisotropic analytic algorithm (AAA) with a
matrix size of 2.5 mm was used to calculate the dose. Three planning
target volumes (PTVs) were virtually created in the TPS [Fig. 3(a)], and
nine fields at 4-MV X-ray beams with fixed gantry angles (75, 110, 130,
155, 180, 205, 230, 250, and 285�) were used for the IMRT planning. The
IMRT was planned with simultaneous-integrated boost (SIB). The pre-
scribed average dose of 30 fractions in PTV1, PTV2, and PTV3 were 66,
60, and 54 Gy, respectively.

Five substrates with Si-XD were placed at five different locations on
the head-neck phantom surface, and an X-ray CT was conducted at a slice
thickness of 1.25 mm and a tube voltage of 120 kV. A dose measurement
plan for one fraction was created from the IMRT plan by transferring the
beam data into the newly conducted X-ray CT. Fig. 3 (b) shows the dose
measurement plan using the head-neck phantom and Si-XD. S1–S5
indicate the five Si-XD locations determined with newly conducted X-ray
CT. The Si-XD contours were accurately determined from the position of
3

the 3D-CT image. The dose-volume histograms (DVHs) were calculated
by utilizing the TPS.

The DVHs at the five Si-XD locations are shown in Fig. 4, with S3
showing the highest dose among the five locations, since it was located in
PTV1. In comparison, S1 showed the lowest dose due to its location
outside the irradiation region. The S4 and S5 dose are lower than the S3
dose, since S5 was located near PTV1, and S4 was located in PTV2. The
S2 location displayed a lower dose than S4 and S5, since it is farther from
PTV1 and PTV2. In this study, the 2%-volume dose D2%, and the average
dose Dmean were calculated from the DVHs.

The five substrates were placed at each surface location andmeasured
three times. The dose difference Dd (%) was evaluated with the following
equation:

Dd ¼ ðDc � DaÞ
Da

� 100

where Dc is the TPS dose (D2%, Dmean) and Da is the substrate dose.
In addition, to measuring the dose in PTV1 region corresponding to

the dose of one fraction as a reference, a Farmer-type ionization chamber
(N30013, PTW, Freiburg, Germany) was inserted at 65 mm from iso-
center in the head direction and measured once.

3. Results

The standard absorbed dose measured at a depth of 0.1 m in the solid-
water phantom is shown in Fig. 5 (a). The measured dose was propor-
tional to the MU level, and the maximum dose at 250 MU was 1.82 Gy.
The absolute dose using the substrate was determined from this result.

The MU dependence on the capacitor charging voltages is presented
in Fig. 5 (b). The SDs is described on the right vertical axis in Fig. 5 (b).
The maximum SD was 4.0� 10�3 V. Therefore, the capacitor discharging
voltages were relatively stable, affirming that dose measurement could
be performed. The charging voltage decreased with increasing MU. It is
important to determine the initial charging voltage correctly before
capacitor discharging, because the initial voltage decreases slightly after
removing the substrate from dosimeter dock, due to the input impedance
of the ADC in the dock. In this experiment, the initial charging voltage at
0 MU was 3.27 V.

The converted dose calculated from the capacitor discharging volt-
ages with changes in the MU is shown in Fig. 5 (c). The absolute dose
value was determined by one-point calibration using a maximum value of
1.82 Gy at 250 MU. The dose increased in proportion to the increase in
MU, and the calibrated dose were almost equivalent to those shown in
Fig. 5 (a).

The relationship between the capacitor charging voltages, and the
dose using the capacitor dosimeter at five different locations on the head-
neck phantom are shown in Fig. 6 (a) and 6 (b), respectively. The
capacitor voltage decreased significantly on the neck portion, and the
dose was higher than on the head portion.

Table 1 shows the measured dose using the capacitor dosimeter, and
the calculated dose using TPS at five locations.

The dosimetric comparisons using Dd are shown in Fig. 7. The Dd
values exceeding 40% were at S1, because this location was outside the
irradiation field. Although the Dmean values of TPS were lower than the
measured dose, the D2% values were higher than the same at the S2 to S5
locations.

It has been reported that the dose-calculation accuracy for the outside
field is relatively low in the TPS [12,13]. In this study, the measured dose
at S1 in Fig. 7, around the eyes on the head-neck phantom were higher
than the calculated values from the TPS. Therefore, it may be useful to
monitor the dose around eye lenses using the substrates.

On the other hand, the measured dose at the S2 to S5 locations were
between the Dmean and D2% values in Fig. 7. Because the size of the Si-XD
is 1.3 � 1.3 mm2, slight changes in the substrate position caused differ-
ences from the TPS in the dose comparisons. In addition, the grid size



Fig. 3. Methods of surface dose measurement using a head-neck phantom: (a) Intensity-modulated radiation therapy (IMRT) plan, (b) dose measurement plan; S1 to
S5 indicate the five locations of the Si-XD on the surface of the head-neck phantom.

Fig. 4. Dose-volume histograms of the silicon X-ray diode at the locations of five substrates. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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influence on dose calculation by volume effect might be relevant. In this
experiment, 2.5 mm was selected as the matrix size for dose calculation,
which is as typically used in clinical facilities. This value also depends on
4

the dose calculation algorithm, and the required corrections [14–17].
It is necessary to consider the dose calibration method on the phan-

tom surface in order to measure dose with high accuracy. However,



Fig. 5. Relationship between the charging voltage and the dose. (a) MU
dependence of the dose measured using an ionization chamber. (b) Capacitor
charging voltages versus MU after X-ray irradiation and (c) MU dependence of
the dose determined by one-point calibration.

Fig. 6. Capacitor charging voltages and dose after X-ray irradiation to the head-
neck phantom by intensity-modulated radiation therapy at five locations. (a)
Capacitor charging voltages, and (b) dose calculated from the capacitor dis-
charging voltages using one-point calibration.

Table 1
Measured dose using the substrates and the head-neck phantom determined by
one-point calibration, and the calculated dose by the treatment planning system
at five locations.

Location Substrate Dose (Gy)
Average � SD

TPS(D2%)
Dose (Gy)

TPS(Dmean)
Dose (Gy)

S1 0.11 � 0.004 0.05 0.04
S2 0.69 � 0.002 0.72 0.56
S3 1.67 � 0.002 1.92 1.45
S4 1.47 � 0.004 1.62 1.18
S5 1.46 � 0.002 1.81 1.30

S. Yamaguchi et al. Physics Open 4 (2020) 100026
surface dosimetry using an ionization chamber is yet to be standardized;
therefore, further studies are needed to confirm a phantom surface-dose
calibration method using the substrate.

In general, the dose measured with the substrate and the Si-XD were
proportional to the MU for the 4-MV X-ray beam, and the calibrated dose
was almost equivalent to those measured with a Farmer-type ionization
5

chamber, with small SDs. Therefore, one-point calibration was optimal to
determine the dose in this study.

As a reference, a dose measurement was performed with a Farmer-
type ionization chamber placed inside the head-neck phantom. The



Fig. 7. Dosimetric comparisons using Dd at the indicated locations. Dd values exceeding 40% were seen at S1.
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measured dose was 2.23 Gy using the ionization chamber, and the
calculated dose in TPS was 2.27 Gy. Therefore, the Dd values was 1.83%;
the resulting dose difference was less than the differences between the
measurements on the phantom surface.

To prevent self-discharging of the capacitor, the dose should be
promptly measured after X-ray irradiation. Thus, the development of a
compact dock is useful for measuring the dose immediately and for
reducing the cost of the dosimeter. In addition, the sensitivity at the
planned dose can be optimized by the capacitance.

The bolus effect of the dosimeter alone, and its influence on the dose
distribution in the body, must be considered before using this dosimeter
in the irradiation field. Also, if the Si-XD height in the substrate is 5 mm,
it is difficult to measure the patient-skin dose directly using this sub-
strate. However, the measured dose using the substrate will be propor-
tional to the patient-skin dose; it will be useful to monitor the changing
skin dose during the course of radiation therapy.

4. Conclusions

A low-price capacitor dosimeter was developed, consisting of a
dosimeter dock, and a surface-mounted USB-A substrate with a Si-XD; the
cost of the substrate is about 10 US$. The decrease in the capacitor
charging voltage was shown to be proportional to the X-ray dose from a
medical linear accelerator, and the calibrated dose corresponded well to
that measured using a Farmer-type ionization chamber, with small
standard deviations. The results suggest that the capacitor dosimeter is
useful for monitoring patient-surface dose during radiation therapy.
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