
Annals of Physics 412 (2020) 168046

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Algebra andHilbert space structures induced by
quantumprobes
Go Kato a,∗, Masaki Owari b, Koji Maruyama c

a NTT Communication Science Laboratories, NTT Corporation, Atsugi-Shi, Kanagawa 243-0198, Japan
b Department of Computer Science, Shizuoka University, Hamamatsu 432-8011, Japan
c Department of Chemistry and Materials Science, Osaka City University, Osaka 558-8585, Japan

a r t i c l e i n f o

Article history:
Received 8 August 2019
Accepted 25 November 2019
Available online 5 December 2019

MSC:
81R05
22E70

Keywords:
Indirect control
Dynamical Lie algebra
Jordan algebra

a b s t r a c t

In the general setting of quantum controls, it is unrealistic to
control all of the degrees of freedom of a quantum system.
We consider a scenario where our direct access is restricted
to a small subsystem S that is constantly interacting with the
rest of the system E. What we investigate here is the funda-
mental structure of the Hilbert space that is caused solely by
the restrictedness of the direct control. We clarify the intrinsic
space structure of the entire system and that of the operations
which could be activated through S. The structures hereby re-
vealed would help us make quantum control problems more
transparent and provide a guide for understanding what we can
implement. They can be deduced by considering an algebraic
structure, which is the Jordan algebra formed from Hermitian
operators, naturally induced by the setting of limited access.
From a few very simple assumptions about direct operations,
we elucidate rich structures of the operator algebras and Hilbert
spaces that manifest themselves in quantum control scenarios.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Understanding the dynamics of many-body quantum systems under artificial control is by no
means easy. As the race towards the realization of quantum computer is growing in momentum, a
solid theoretical foundation is desired more than ever in order to tame complex quantum dynamics
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Fig. 1. A schematic view of the problem setting. A small subsystem S can be directly accessed, while the rest of the
system E is beyond direct artificial control. The intrinsic dynamics of S and E, including interactions between them, is
governed by the drift Hamiltonian h0 . Any operation in su(dimHS ) is applicable by modulating the Hamiltonians {hk}

acting on HS .

systematically. The principal difficulty is in the necessity of controlling exponentially many degrees
of freedom of a large quantum system through a limited number of controllable parameters.

Since it is unrealistic to control all such degrees of freedom, the number of the modulable
parameters is limited no matter what physical control scheme is employed. Thus, natural questions
would be what we can do to a given physical system under severe limitations on our artificial
control and how can it be done [1–3]. Although there has been a widely accepted control method
in the quantum information processing community, i.e., using a combination of one- and two-qubit
operations, its prospects still look rocky in terms of scalability. This hiatus of the development in
this direction encourages us to explore the problem from a more fundamental, or mathematical,
point of view.

A major obstacle when scaling up a quantum system is the noise induced to the system through
interactions with its environment. We thus consider a setting in which the system interacts with
its environment minimally; most of the system is insulated from its surroundings and only a small
subsystem is the subject of our direct control. The insulated part E is connected only with the
controllable subsystem S through the drift Hamiltonian h0, and any operation can be applied to
S at will. This type of scenario has recently been studied, mainly for systems of spins-1/2 [2–5].

The most noteworthy tool for analyzing the dynamics in such a setting is the dynamical Lie
algebra, which is a set of all realizable operators under the given condition [6–9]. It can be calculated
as the maximum set of independent operators that are generated by the drift Hamiltonian h0 and
Hamiltonians {hk} corresponding to modulable field parameters.

In order to make the setting realistic and mathematically tractable, we assume that {hk} forms
a Lie algebra su(dimHS) acting on HS , where HS is the Hilbert space for a small subsystem S of
dimension dimHS (Fig. 1). The S subsystem interacts through h0 with the rest of the system, E,
which we also assume is finite-dimensional.

It is clear that the dynamical Lie algebra does not necessarily span the Lie algebra su(dimHS ·

dimHE) for the entire Hilbert space of the system. The dynamical Lie algebra has mostly been
calculated and analyzed in an ad hoc fashion, depending on the specific physical system. In fact,
calculating the dynamical Lie algebra from a given set of Hamiltonians is hard; its complexity
is O(d8) for a d-dimensional system [10]. This makes it extremely difficult to discuss the general
properties of the controllability except in some special cases, such as XY or Heisenberg spin chains
that have high symmetry. When the dynamical Lie algebra does not coincide with a simple Lie
algebra on the whole Hilbert space, it is an unlucky case: the system is not fully controllable; thus,
the S part may need to be expanded, in the hope of making the controllable space larger.

Now we ask ourselves whether there are intrinsic structures in the dynamical Lie algebra when
artificial controls are applied only to a small subsystem of a many-body system? In other words,
what does the structure of the Hilbert space look like, especially when it is not fully controllable?
Also, what is the precise effect of expanding the accessible part S, namely, that of appending an
ancillary system HA to HS? Does it always help to enlarge the controllable space in HE?

In this paper, we classify the structure of the dynamical Lie algebra, which is induced by the
restricted access, as well as the Hilbert space structure that manifests itself accordingly. We then
find that there is a clear distinction between the cases of dimHS = 2 and dimHS ≥ 3. On the one
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hand, when dimHS ≥ 3, there appear only direct sums of su(·). On the other hand, a structure of
formally real Jordan algebra explicitly emerges in the dynamical Lie algebra if dimHS = 2. Although
the Jordan algebra was introduced by Jordan et al. [11] as a mathematical formulation of quantum
mechanics, it has attracted relatively little attention in the quantum community.

Further, we can see how the structures of these two cases correspond to each other, when an
additional dimension(s) is appended to S. Looking into this correspondence allows us to answer
the question about the effect of ancilla: enlarging HS does enhance the controllability of quantum
state of E if dimHS = 2, while it does not otherwise. This is a somewhat unexpected result; one
may envision that appending an ancilla to S would not be of use at all because what is interacting
with E is still only the original S itself. One’s intuition may be opposite to such a view; as reported
in [12], the size of the ancillary system could help make the probable subspace in E larger. Our
result proves that these ideas are over-naive.

Investigating spatial structures will also have direct and important consequences with respect
to the system identifiability. There has been intensive research on the problem of quantum system
identification under limited access [13–21], since the knowledge of the system Hamiltonian is
crucially important for control. A number of identification schemes have been discovered so far, and
at the same time it is becoming clearer that there may exist limitations on what we can observe
through S. The Hilbert space structures we elucidate here will provide a useful toolbox to address
all these key issues systematically.

2. Main results

The physical setup we consider is as follows. We suppose there is a quantum system HS , on
which arbitrary control can be applied at will, that interacts with an external system HE coherently.
The dynamics of HE , including the interaction with HS , are described by the drift Hamiltonian h0,
and HE is not subject to our direct control (see Fig. 1). That is, we can access HE only indirectly
through HS . Also, we assume that the Hilbert spaces HE and HS are both finite dimensional.

The dynamical Lie algebra L is crucial in the analysis of the controllability of a quantum system.
It is a Lie algebra generated by ih0 and a set {IdE}⊗ su(dimHS) of operators. Here, IdE is the identity
operator on HE , {IdE} is a one-dimensional space generated by IdE , and su(dimHS) is the set of all
traceless skew-Hermitian operators acting on HS , thus representing a set of arbitrary controls. A
direct product of the operator sets S1 ⊗ S2 is a set of s1 ⊗ s2 for all sb ∈ Sb (b = {1, 2}), and iS
means the set of elements i · s for all s ∈ S.

We now present five central theorems about the structure of the dynamical Lie algebra, as well
as that of the space HE . Before presenting them, let us introduce a few terms.

• The connected algebra Lc is the smallest ideal1 of L which includes {IdE} ⊗ su(dimHS), i.e.

Lc := L({[· · · [[g ′, g1], g2], . . . , gn]|n ∈ Z≥1 ∧ gm ∈ L ∧ g ′
∈ {IdE} ⊗ su(dimHS)}), (1)

where L(S) indicates a set of all real linear combinations of the elements in S.
• The disconnected algebra Ld is the set of all skew-Hermitian operators which commute with

any element in Lc , i.e.

Ld := {g|g ∈ u(dimHE · dimHS) ∧ ∀g ′
∈ Lc, [g, g ′

] = 0}, (2)

where u(dimHE dimHS) is the set of all skew-Hermitian operators on HE ⊗ HS . From the
Jacobi relation, we can verify that Ld is also a Lie algebra.

That our direct access is restricted to HS necessarily imposes a nontrivial structure on the
dynamical Lie algebra. Let us summarize the rough ideas behind the main theorems before pre-
senting them in a rigorous manner. Throughout this paper, the structure of the Hilbert space HE
is the structure in the context of quantum control; namely it is what we shall ‘‘see and control’’
through S.

1 The ideal L′ of a Lie algebra L is a subspace of L such that it cannot be expanded by taking commutators between
L′ and L, i.e. L′

⊇ [L, L′
].
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Theorem 1: Any element in the dynamical Lie algebra L is a sum of two elements, one of which is
controllable from operations on S and the other is uncontrollable.2 These two are the
elements of subalgebras Lc and Ld, respectively.

Theorem 2: When dimHS ≥ 3, the Hilbert space HE can have a direct sum structure with
subspaces, each of which may be a direct product of two spaces, HR and HB. The
dynamics on HR are driven by Lc , while those on HB are driven by Ld. Thus, HB cannot
be controlled through operations on HS . In other words, the limitedness of direct
access to S induces a natural basis structure in E.

Theorem 3: When dimHS = 2, HE has a direct sum structure, similarly to the case of dimHS ≥ 3;
however, there may be a restriction on Lc .

Theorem 4: The algebraic structures shown in Theorems 2 and 3 are sufficient conditions for L to
be a Lie algebra that contains su(dimHS).

Theorem 5: This theorem shows how the space structure changes when an additional dimension(s)
is appended to a two-dimensional HS .

The theorems are not restricted to the setting with a single drift Hamiltonian ih0. This is because
we do not impose any specific constraints on the combination of physical Hamiltonians to obtain
the dynamical Lie algebra, that is, there could be multiple drift Hamiltonians {ih(p)

0 }p, instead of one.
What we classify is the structure of the dynamical Lie algebra L, which contains Id⊗ su(dimHS), so
the theorems are valid for such cases as well.

2.1. Induced structure of the dynamical Lie algebra L

The following three theorems describe the precise structure of the Hilbert space of E as well as
that of the dynamical Lie algebra L, and how it depends on the dimensionality of HS .

Theorem 1. The algebra L is a subspace of the direct sum of Ld and Lc :

L ⊆ L(Ld ∪ Lc), (3)
Ld ∩ Lc = {0}. (4)

This, together with the relation Lc ⊆ L, implies L = L((Ld ∩ L) ∪ Lc).

Theorem 2. When dimHS ≥ 3, the space HE has the structure of a direct sum of subspaces, each of
which is a direct product of two spaces,

HE =

⨁
j

HEj =

⨁
j

HBj ⊗ HRj , (5)

and the precise nature of these subspaces depends on L.
In accordance with the decomposition (5), Ld and Lc are written as direct sums of subalgebras as

Ld =

⨁
j

u(dimHBj ) ⊗ {IdRj ⊗ IdS} and (6)

Lc =

⨁
j

{IdBj} ⊗ su(dimHRj · dimHS). (7)

Moreover, this intrinsic structure stays the same, even if an ancillary space HS′ is appended to HS
to enlarge the directly accessible space. That is, if we let L′ be the ‘expanded’ Lie algebra generated by
{Id}⊗su(dimHS ·dimHS′ ) and ih0⊗IdS′ , where h0 is the drift Hamiltonian, the corresponding connected
and disconnected algebras, L′

c and L′

d, are u(dimHBj ) ⊗ {IdRj ⊗ IdS ⊗ IdS′}, and {IdBj} ⊗ su(dimHRj ·

dimHS · dimHS′ ), respectively.

2 Even in the case where L is equal to su(dimHE · dimHS ), the disconnected algebra Ld can formally be identified as
a one-dimensional Lie algebra {i · Id}. The connected algebra Lc is then equal to L.
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Theorem 3. When dimHS = 2, the space HE has the structure of a direct sum of subspaces H∗

Ej
, i.e.

HE =

⨁
j

H∗

Ej , (8)

such that the disconnected and connected algebras, Ld and Lc , can be written as direct sums of
subalgebras, each of which acts on a subspace H∗

Ej
⊗ HS . Similarly to Theorem 2, the detail of each

subspaces in Eq. (8) is determined by L.
Further, these subalgebras of Ld and Lc have the forms,

iĴj ⊗ {IdS} and (9)

L(iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS)), (10)

respectively, where the triple of the operator sets (Jj, J̄j, Ĵj) is equal to one of the following three types:
(R, R̄, R̂), (M(k)

γ , M̄(k)
γ , M̂(k)

γ ) or (Sn, S̄n, Ŝn). Depending on the type of Jj among R,M(k)
γ , and Sn, H∗

Ej
has a finer structure shown below in Eq. (11).

The notations for the sets, R, M(k)
γ , and Sn, are after [11], and their details will be given later in

this section (from Eqs. (25) to (30)). The indices γ , k, and n that specify the structure of operator
sets M(k)

γ , Sn are integers such that γ ≥ 3, k ∈ {1, 2, 4} and n ≥ 3. Also, we will introduce sets with
accent signs, •̂ and •̄, in Eqs. (31)–(42), which are defined in correspondence to each of R, M(k)

γ , and
Sn.

The subspaces HEj or H∗

Ej
have a fine structure depending on the type of Jj:

H∗

Ej =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HAj when Jj = R

HAj ⊗ HQj when Jj = M(k)
γ for k ∈ {1, 2}

HAj ⊗ HQ (1)
j

⊗ HQj when Jj = M(4)
γ

HAj ⊗ HQ (⌈n/2⌉−1)
j

⊗ HQ (⌈n/2⌉−2)
j

⊗ · · · ⊗ HQ (1)
j

when Jj = Sn

(11)

where dimHAj ≥ 1, dimHQj = γ , and all other spaces, HQ (1)
j

, HQ (2)
j

, · · ·, are two-dimensional.

If Jj = S2n′ or M(2)
γ for n′

∈ N>1, there appears a Hermitian operator Z∗

j in the representations of
(S2n′ , S̄2n′ , Ŝ2n′ ) and (M(2)

γ , M̄(2)
γ , M̂(2)

γ ) (see Eqs. (25)–(42)). The operators Z∗

j acting on the space
HAj have eigenvalues +1 and/or −1. The dimensions of HAj and HQj , as well as the precise form of
Z∗

j , may differ for each j, even if Jj could be of the same type for all j, e.g., Jj = M(2)
γ (∀j).

Theorem 1 states that, we can uniquely divide any drift Hamiltonian h0, which describes the
(unmodulable) interaction between the systems E and S, into two parts hd ∈ Ld and hc ∈ Lc . This
division is done such that the hd part has no effect on the dynamics in the space HS , and the other
part hc represents the interaction between HS and HE .

Theorem 2 conveys a somewhat strong message. It claims that, when dimHS ≥ 3, even if we
attach an additional quantum system S ′ to S, intending to enlarge the effective work space, it does
not expand the set of executable operations for HE . That is, if we let L′ denote the Lie algebra
generated by L⊗{IdS′} and {IdE}⊗ su(dimHS · dimHS′ ), the set of all generators in E and S that are
possible under the expansion S ′ is still the same as L;

{g|g ⊗ IdS′ ∈ L′
} = L. (12)

One common message from Theorems 2 and 3 is that, regardless of the dimension of the system
S, the system E would have a direct sum structure as in Eqs. (5) and (8). Thus, the quantum dynamics
cannot make a state jump between different subspaces in the sum, which is already a significant
consequence of the limited access. Theorems 2 and 3 then state further that there are substantial
differences in the fine structures of each subspace, depending on whether dimHS is larger than or
equal to 2.
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2.2. Sufficient conditions required for L, Ld, and Lc

Next, we give sufficient conditions for the operator sets L, Ld and Lc to be a Lie algebra,
disconnected and connected algebras for the Lie algebra L, respectively. As a matter of fact, having
the structures stated in Theorems 1 and 2, as well as the rather trivial property of L ∩ Ld being
closed under the commutator, are sufficient for them to have the necessary properties mentioned
with Eqs. (1) and (2).

Theorem 4. Suppose that dimHS ≥ 3 and HE can be decomposed into HB̃j
⊗ HR̃j

such that HE =⨁
j HB̃j

⊗ HR̃j
. Also, define L̃d and L̃c according to this space decomposition as

L̃d :=

⨁
j

u(dimHB̃j
) ⊗ {IdR̃j ⊗ IdS}, (13)

L̃c :=

⨁
j

{IdB̃j} ⊗ su(dimHR̃j
· dimHS). (14)

If the set of operators L̃ on
(⨁

j HB̃j
⊗ HR̃j

)
⊗ HS satisfy

L̃ := L
(
L̃′

d ∪ L̃c
)

, (15)

L̃′

d ⊆ L̃d, (16)

such that L̃′

d is closed under the commutator, then so is L̃, and L̃d and L̃c are the disconnected and the
connected algebras for L̃.

If dimHS = 2 and HE can be decomposed into H⋄

Ẽj
, i.e., HE =

⨁
j H

⋄

Ẽj
, the above statement still holds

with the following modifications to the definitions of L̃d and L̃c . Namely,

L̃d :=

⨁
j

iĴj ⊗ {IdS}, (17)

L̃c :=

⨁
j

L
(
iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS)

)
, (18)

where (Jj, J̄j, Ĵj) is equal to one of the triples of operator sets, (R, R̄, R̂), (M(k)
γ , R̄(k)

γ , R̂(k)
γ ) and (Sn, S̄n,

Ŝn). Naturally, L̃ in Eq. (15) should be considered to be an operator set acting on
(⨁

j H
⋄

Ẽj

)
⊗ HS .

Theorem 4 reveals the structure of the dynamical Lie algebra L, which contains arbitrary
generators on the space HS . It implies that the structure of the space in HE may not be trivial
at all. By a trivial structure, we mean that HE is a simple direct product of two spaces HE1 and HE2 ,
i.e., HE = HE1 ⊗ HE2 . If the Hamiltonian had the form, h0 = IdE1 ⊗ hE2 ⊗ hS , then obviously the
space HE1 cannot be accessed from HS , while HE2 can. What is claimed above is, however, that the
accessible and inaccessible spaces in HE would have more complex and rich structure because of
the restrictedness of our physical access.

2.3. Relation between structures when dimHS = 2 and dimHS ≥ 3

From the quantum control perspective, one might naively think of enlarging the controllable
space in E by introducing an additional system S ′ that interacts with S. We have mentioned above
that this is not possible when dimHS ≥ 3, but what happens if we append an ancillary system
S ′ when dimHS = 2? The following theorem depicts the transition that occurs when an ancillary
system S ′ (obviously, dimHS′ ≥ 2) is added to the two-dimensional S.
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Theorem 5. Let L′ be an expanded Lie algebra generated by h0⊗IdS′ and {IdE}⊗su(dimHS ·dimHS′ ). The
expansion of the accessible space from S to S ′ causes a change in the structure of HE from that of Eq. (8)
to Eq. (5). (Below, primed indices are for the spaces after expanding dimHS = 2 to dim(HS ⊗HS′ ) ≥ 3.)

If Jj in Eq. (10) is equal to one of R, M(1)
γ , M(4)

γ or S2n′−1 with n′
∈ N>1, there is a one-to-one

correspondence between j and j′ such that

H∗

Ej = HEj′ = HBj′ ⊗ HRj′ .

If Jj is equal to either M(2)
γ or S2n′ , the subspace HEj splits into a direct sum of two direct products:

H∗

Ej = HEj′+ ⊕ HEj′−

= (HBj′+ ⊗ HRj′+ ) ⊕ (HBj′− ⊗ HRj′− )

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(HA(+1)

j
⊗ HQj ) ⊕ (HA(−1)

j
⊗ HQj ), when Jj = M(2)

γ

(HA(+1)
j

⊗ H
Q (n′−1)
j

⊗ · · · ⊗ HQ (1)
j

)

⊕(HA(−1)
j

⊗ H
Q (n′−1)
j

⊗ · · · ⊗ HQ (1)
j

), when Jj = S2n′

where HA(±1)
j

are the eigenspaces of the Z∗

j operator on HAj corresponding to its eigenvalues ±1, and

j′± are the indices for distinguishing these subspaces.

The structures of H∗

Ej
in Eq. (11) are related to those in Eq. (5) as follows:{

HBj′ = HAj , when Jj = R,M(1)
γ ,M(4)

γ ,S2n′−1 (n′ > 1),

HBj′± = HA(±1)
j

, when Jj = M(2)
γ ,S2n′ ,

(19)

HR′
j
or HRj′± =

⎧⎪⎪⎨⎪⎪⎩
HQj when Jj = R,M(k)

γ k ∈ {1, 2},

HQ (1)
j

⊗ HQj when Jj = M(4)
γ ,

HQ (⌈n/2⌉−1)
j

⊗ HQ (⌈n/2⌉−2)
j

⊗ · · · ⊗ HQ (1)
j

when Jj = Sn,

(20)

for b ∈ {+1, −1}. When Jj = R, we consider HAj to be a direct product of itself and a
one-dimensional space HQj .

Also, the connected algebra L′
c of L′ after appending S ′ will be of the form in Eq. (7),

i.e., su(dimHRj · dimHS) on each block subspace, and the disconnected algebra L′

d is related to the
original Ld as

L′

d = Ld ⊗ {IdS′}. (21)

2.4. Physical examples

Expansion of the controllable space is a topic in the study of quantum controllability of specific
physical systems. For example, in [2], indirect control was discussed for a one-dimensional chain of
N spin-1/2 particles whose dynamics are governed by the drift Hamiltonian

ihXX
0 =

i
2

N∑
k=1

ck[(1 + γ )XkXk+1 + (1 − γ )YkYk+1] + bkZk, (22)

where the last term represents the Zeeman interaction with a static magnetic field in the z-direction
and γ is the anisotropy parameter. Despite what it may imply, the order of the spin spaces is the
opposite to our convention, e.g., that in Eq. (6) or (11); the S subsystem is spin 1, which is at the
left end, while in Eq. (11), it is assumed to be attached to the right end.

The Hamiltonian Equation (22) describes the so-called XX-type interaction between neighboring
spins, and the paper [2] presented a specific and efficient scheme to control the entire chain through
S containing two end spins, i.e., those labeled as k = 1 and 2 (see Fig. 2). The inclusion of two spins
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Fig. 2. A one-dimensional spin chain considered for control in [2]. The two spins at the chain end are in the directly
accessible subsystem, and the rest of the chain, E, only evolves through the drift Hamiltonian hXX

0 of Eq. (22). Spins 1
and 0 are labeled S and S ′ in line with the description of algebra expansion in the main text. Any su(4) operation can
be applied to spins 0 and 1; this applicability of arbitrary su(4) operations is achieved by assuming the same hXX

0 -type
interaction between them in [2].

in S is necessary, since having direct controllability of only one spin at the chain end does not lead
to full controllability over the entire chain with the above drift Hamiltonian ihXX

0 . More precisely,
with ihXX

0 and su(dimHS) = su(2) for spin 1, the connected algebra is equal to

Lc = L(iS̄2N−1 ⊗ {IdS} ∪ S2N−1 ⊗ su(dimHS)),

with the Hilbert space structure

HE = HQ (N−1) ⊗ · · · ⊗ HQ (1) , (23)

where each HQ (n) is a two-dimensional space corresponding to each spin from k = 2 to N . This can
be verified by looking at the specific structure of the algebras Jj in Eqs. (25)–(30). There is only a
single j in this case; thus it is omitted in Eq. (23). Note that in our space structure notation, the
S space interacts with the rightmost one, HQ (1)

j
, and because dim(dimHA) = 1 in this case, it is

omitted in Eq. (23). If an extra spin, say, spin 0, is attached as S ′ to spin 1, the algebra on HE , which
is determined by the dynamical Lie algebra L, changes. Namely, the connected algebra Lc becomes
that of Eq. (7), i.e., the full su(·) algebra on HE .

A simple example in which the split of HA can be observed is a chain of three spins-1/2, whose
Hamiltonian is

ihXX′

0 = X1X2 + Y1Y2 + X2X3, (24)

which may be regarded as a special case of the XX Hamiltonian. Then, with the spin 1 being the S
subsystem, this ihXX′

0 is of the type S4, and there is a Z∗ operator acting on HA, which is X3 on spin
3 in the basis used above (see Eq. (30)). The Hilbert space structure under ihXX′

0 and su(2) (for spin
1) is the one in Eq. (11), namely,

H∗

E = HA ⊗ HQ (1) ,

where the subscript j is again omitted since there is only one element in the direct sum. Here,
HA and HQ (1) are the Hilbert spaces for spins 3 and 2, respectively. If we add another controllable
spin-1/2 to S so that any su(4) operation becomes available in this subsystem, the space HA splits
into two parts as HA(+1) ⊕ HA(−1) . The overall E space then becomes

HE = (HA(+1) ⊗ HQ (1) ) ⊕ (HA(−1) ⊗ HQ (1) ),

which is in the form of Eq. (5) for the case dimHS ≥ 3.

2.5. Representations of triple (Jj, J̄j, Ĵj)

Before concluding this section, we show below explicit representations of candidates for the
triple (Jj, J̄j, Ĵj). Although they look rather complex, they will be of use for understanding how the
controls on S affect E indirectly.

First, the forms of the operator sets for J are obtained in Lemma 5, as a consequence of the anti-
commutation relations required for operators in the algebra, which stems from the limited access
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to the system (shown in Lemmas 1–4). Their specific types are denoted as R, M(k)
γ , and Sn and are

given as follows:

R := {IdA}, (25)
M(1)

γ := L({IdA ⊗ Xk,q, IdA ⊗ |k⟩⟨k|}k̸=q∈{0,1,...,γ−1}), (26)

M(2)
γ := L({IdA ⊗ Xk,q, IdA ⊗ |k⟩⟨k|, Z∗

⊗ Yk,q}k̸=q∈{0,1,...,γ−1}), (27)

M(4)
γ := L({IdA ⊗ IdQ (1) ⊗ Xk,q, IdA ⊗ IdQ (1) ⊗ |k⟩⟨k|,

IdA ⊗ W ⊗ Yk,q}W∈{X,Y ,Z}, k̸=q∈{0,1,...,γ−1}), (28)

S2n′−1 := L({

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y ,

Id ⊗ · · · ⊗ Id}W∈{X,Z},m∈{1,2,...,n′−1}), (29)

S2n′ := L({

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y , Id ⊗ · · · ⊗ Id,

Z∗
⊗

n′
−1  

Y ⊗ · · · ⊗ Y }W∈{X,Z},m∈{1,2,...,n′−1}), (30)

where the generalized Pauli operators, Xj,k := |j⟩⟨k| + |k⟩⟨j|, Yj,k := −i|j⟩⟨k| + i|k⟩⟨j|, Zj,k :=

|j⟩⟨j| − |k⟩⟨k|, X := X0,1, Y := Y0,1, and Z := Z0,1, are used, and {|j⟩}j∈{0,1,...} represents a basis for
each space. The operator Z∗ is the one mentioned after Eq. (11), namely, it is a Hermitian operator
which satisfies Z∗2

= IdA and characterizes subalgebras. We have omitted the index j, indicating the
subspace of HE or H∗

E , for both spaces and operators, for simplicity. We shall do so in the following
as well, as long as there is no risk of confusion.

Second, as for those with a bar, R̄, M̄(k)
γ , and S̄n, we define them as Eqs. (31)–(36). They are

determined so that they satisfy the relation, J̄ = iL([J, J]), which is proved in Lemma 6, for the
corresponding J given in Eqs. (25)–(30).

R̄ := {0}, (31)
M̄(1)

γ := L({IdA ⊗ Yk,q}k̸=q∈{0,1,...,γ−1}), (32)

M̄(2)
γ := L({IdA ⊗ Yk,q, Z∗

⊗ Xk,q, Z∗
⊗ Zk,q}k̸=q∈{0,1,...,γ−1}), (33)

M̄(4)
γ := L({IdA ⊗ IdQ (1) ⊗ Yk,q, IdA ⊗ W ⊗ Xk,q,

IdA ⊗ W ⊗ |k⟩⟨k|}W∈{X,Y ,Z},k̸=q∈{0,1,...,γ−1}), (34)

S̄2n′−1 := L({

n′
−m2  

Id ⊗ · · · ⊗ Id⊗W ⊗

m2−m1−1  
Y ⊗ · · · ⊗ Y

⊗W ′
⊗

m1−1  
Id ⊗ · · · ⊗ Id }W ,W ′∈{X,Z},m1<m2∈{1,2,...,n′−1}

∪{

n′
−m  

Id ⊗ · · · ⊗ Id⊗Y ⊗

m−1  
Id ⊗ · · · ⊗ Id}m∈{1,2,...,n′−1}), (35)

S̄2n′ := L({

n′
−m2  

Id ⊗ · · · ⊗ Id⊗W ⊗

m2−m1−1  
Y ⊗ · · · ⊗ Y

⊗W ′
⊗

m1−1  
Id ⊗ · · · ⊗ Id }W ,W ′∈{X,Z},m1<m2∈{1,2,...,n′−1}

∪{

n′
−m  

Id ⊗ · · · ⊗ Id⊗Y ⊗

m−1  
Id ⊗ · · · ⊗ Id,

Z∗
⊗

n′
−m−1  

Y ⊗ · · · ⊗ Y ⊗W ⊗

m−1  
Id ⊗ · · · ⊗ Id }W∈{X,Z},m∈{1,2,...,n′−1}). (36)
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Finally, the operator sets with a hat, R̂, M̂(k)
γ , and Ŝn, are those that commute with the

corresponding J , i.e., [Ĵ, J] = 0 (Lemma 8). Their forms are:

R̂ := {h}h∈i·u(dimHA), (37)

M̂(1)
γ := {h ⊗ IdQ }h∈i·u(dimHA), (38)

M̂(2)
γ := {h ⊗ IdQ }h∈i·u(dimHA)∗ , (39)

M̂(4)
γ := {h ⊗ Id ⊗ Id}h∈i·u(dimHA), (40)

Ŝ2n′−1 := {h ⊗ Id ⊗ · · · ⊗ Id}h∈i·u(dimHA), (41)

Ŝ2n′ := {h ⊗ Id ⊗ · · · ⊗ Id}h∈i·u(dimHA)∗ . (42)

where u(dimHA)∗ is the set of all elements in u(dimHA) that commute with Z∗.

3. Properties of the algebra L

Before giving the proofs of the above theorems, let us study the properties of the algebra L. We
shall use a number of lemmas to prove propositions in what follows, and the proofs of those lemmas
are given in the supplementary material. Let g be any operator in L, then g can be written uniquely,
regardless of dim(HS), as

g = gId ⊗ IdS +

∑
W∈HS

gW ⊗ W , (43)

where gId and gW are skew-Hermitian operators acting on the space HE , and HS is the basis of
i·su(dimHS) consisting of operators Xk,q, Yk,q and Zk,k+1 for k, q ∈ {0, 1, . . . , dimHS − 1} (k < q).
Defining two operator sets by

G(0)
:= {gId}g∈L (44)

G(1)
:= L({gW }g∈L,W∈HS ), (45)

we can show

L = L(G(0)
⊗ {IdS} ∪ iG(1)

⊗ su(dimHS)) (46)

(See Lemma 1.) We shall call the pair of sets G(0) and G(1) the identifiers of the dynamical Lie
algebra L.

These identifiers are shown to satisfy the following (anti-)commutation relations in Lemma 2:[
G(b),G(b)]

⊆ G(0), (47)[
G(0),G(1)]

⊆ G(1), (48)

i
{
G(1),G(1)}

⊆ G(1), (49)

for b ∈ {0, 1}. Further, only when dimHS ≥ 3, another commutation relation[
G(1),G(1)]

⊆ G(1) (50)

is required (Lemma 2).
Since iG(1) is closed under the anti-commutator, iG(1) is a Jordan algebra, and is formed by

Hermitian operators, including the identity operator, IdE . Then, as shown in Lemma 5, iG(1) can
be written as a direct sum of simple Jordan algebras Jj regardless of dimHS ,

G(1)
=

⨁
j

iJj, (51)

and Jj has to have one of the structures in Eqs. (25)–(30). Lemma 5 also proves that the structure
of H∗

Ej
in Eq. (11) is then obtained in accordance with that of Jj. The explicit representations of Jj

obtained thereby then allow us to have those of Ĵ in Eqs. (37)–(42) and J̄ in Eqs. (31)–(36), with the
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help of the commutation relations shown in Lemma 6. Also, from Eqs. (47) and (51), and i[Jj, Jj] ⊆ J̄j
from Lemma 6, we obtain⨁

j

iJ̄j ⊆ G(0). (52)

These relations allow us to express HE as a direct sum of the spaces H∗

Ej
, such that any element in

J̄j and Jj is an operator on H∗

Ej
.

Since the identity operator is in all simple Jordan algebras, the projection operator PEj onto

H∗

Ej
is in iG(1). It then follows from Eq. (48) that an operator

[
g, PEj′

]
(∀g ∈ G(0)) must be

block diagonalized into the subspaces H∗

Ej
. Thus, any element in G(0) is also block diagonalized

accordingly, and we let G(0)
j be the set of block elements of g ∈ G(0) whose action is restricted

to the subspace H∗

Ej
. From Eq. (48), we see

[
G(0)
j , Jj

]
⊆ Jj, and this condition enforces G(0)

j to be

a subset of iL(Ĵj ∪ J̄j), where (Ĵj, J̄j) is equal to one of the pairs (R̂, R̄), (M̂(k)
γ , M̄(k)

γ ), and (Ŝn, S̄n),
depending on whether Jj = R or M(k)

γ or Sn, respectively. This is because, as shown in Lemma 7,
iL(Ĵj ∪ J̄j) turns out to be the maximum set J ′ of Hermitian operators that satisfy i[J ′, Jj] ⊆ Jj, namely,
L(Ĵj ∪ J̄j) = {h|h ∈ i · u(dimHEj ) ∧ ∀h′

∈ Jj, i[h, h′
] ∈ Jj}.

Combining these results, we arrive at

G(0)
⊆

⨁
j

G(0)
j ⊆

⨁
j

iL(Ĵj ∪ J̄j), (53)

and Eqs. (50)–(53) imply a relation⨁
j

L(iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS)) ⊆ L

⊆

⨁
j

L(iĴj ⊗ {IdS} ∪ iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS)). (54)

All these relations (except for Eq. (50)) hold, regardless of dimHS .

4. Proofs of theorems

We now show the proofs of Theorems 1–5 by using the relations we have given in the last
section, as well as the specific representations of (Jj, J̄j, Ĵj). Since much of the mathematical argument
in the proofs, which is mainly about the structure of the formally real Jordan algebra, is quite
involved, we shall only delineate the proofs here to help readers grasp the picture, relying on the
lemmas shown in the following section. Those lemmas are devoted to explaining the mathematics
behind the proofs of the theorems.

We shall start with the proof of Theorem 2, and then go on to show in the order of Theorems 3,
1, 4, and 5.

Proof of Theorem 2. When dimHS ≥ 3, Eqs. (50) and (51) lead to the condition i[
⨁

j Jj,
⨁

j Jj] ⊆⨁
j Jj, which is equivalent to requiring i[Jj, Jj] ⊆ Jj for all j. This enforces us to choose R, M(2)

γ and S4
with Z∗

j = IdAj or −IdAj as possible structures of Jj among those in Eqs. (25)–(30). It is not hard to
verify that others in these equations, such as M(4)

γ , do not fulfill the above condition. Note that the
structures of Jj and H∗

Ej
, Eqs. (25)–(30) and (11), are derived in Lemma 5. In this case of dim(HS) ≥ 3,

H∗

Ej
are relabeled as HEj in Theorem 2.

When Jj is equal to R = {IdA}, HEj is as simple as a single subspace HAj (see Eq. (11)). Thus, by
regarding HBj = HAj and dimHRj = 1, HEj in Eq. (5) has a structure HBj ⊗ HRj . If Jj is equal to M(2)

γ

or S4, HEj takes the form of HAj ⊗ HQj or HAj ⊗ HQ (1)
j

, respectively, according to Eq. (11). It is then
obvious that HEj has a structure of Eq. (5), by assigning the first and the second subspaces in the
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tensor product to be HBj and HRj . Thus, HE can be written
⨁

j HBj ⊗ HRj , irrespective of the form
of Jj.

Having identified the subspaces of HE , the algebra on HE ⊗HS , i.e., L(iJ̄j⊗{IdS}∪ Jj⊗su(dimHS)),
turns out to be {IdBj} ⊗ su(dimHRj · dimHS). As a result, the relation (54) is reduced to⨁

j

{IdBj} ⊗ su(dimHRj · dimHS) ⊆ L

⊆

⨁
j

L(u(dimHBj ) ⊗ {IdRj ⊗ IdS} ∪ {IdBj} ⊗ su(dimHRj · dimHS)), (55)

which, according to Lemma 10, implies that the disconnected and the connected algebras are given
by

Ld =

⨁
j

u(dimHBj ) ⊗ {IdRj ⊗ IdS}, and (56)

Lc =

⨁
j

{IdBj} ⊗ su(dimHRj · dimHS). (57)

Hence, Theorem 2 is proved. Note that the last statement in Theorem 2 can be verified rather
straightforwardly, since the Lie algebra L′ generated by L ⊗ {IdS′} and {IdE} ⊗ su(dimHS · dimH′

S)
satisfies the relation⨁

j

{IdBj} ⊗ su(dimHRj · dimHS · dimHS′ ) ⊆ L′

⊆

⨁
j

L(u(dimHBj ) ⊗ {IdRj ⊗ IdS ⊗ IdS′}

∪{IdBj} ⊗ su(dimHRj · dimHS · dimHS′ )). (58)

Proof of Theorem 3. The statement of Theorem 3 is nothing but the consequence of Lemma 9,
which states that when dimHS = 2 Eq. (54) implies

Ld =

⨁
j

iĴj ⊗ {IdS}, and (59)

Lc =

⨁
j

L(iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS)). (60)

Proof of Theorem 1. When dimHS ≥ 3, we see from Eqs. (56) and (57) that Ld and Lc do not have
an overlap, thus Ld∩Lc = {0}, which is Eq. (4). Also, the inclusion relation of the right side of Eq. (55)
together with Eqs. (56) and (57) imply L ⊆ L(Ld ∪ Lc) in Eq. (3).

When dimHS = 2, Eqs. (59) and (60) and the explicit expressions of (Jj, J̄j, Ĵj) guarantee the
relation in Eq. (4). Also, these expressions and the inclusion relation on the right of Eq. (54) leads
to Eq. (3).

Proof of Theorem 4. That L̃ := L(L̃′

d ∪ L̃c) is closed under the commutator can be seen as

[L̃, L̃] = [L(L̃′

d ∪ L̃c),L(L̃′

d ∪ L̃c)]

⊆ L([L̃′

d, L̃
′

d] ∪ [L̃′

d, L̃c] ∪ [L̃c, L̃c])

= L([L̃′

d, L̃
′

d] ∪ [L̃c, L̃c])

⊆ L(L̃′

d ∪ L̃c) = L̃. (61)

The second inclusion relation stems from the bilinearity of the commutator. The equality in the
third line is due to the commutation relation [L̃′

d, L̃c] ⊆ [L̃d, L̃c] = {0}, which is verified with
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the definitions of L̃d and L̃c , i.e., Eqs. (13) and (14). Since L̃′

d is assumed to be closed under the
commutator and so is L̃c by Eq. (14), we verify the inclusion relation in the fourth line.

Lemma 10 tells that if Eq. (61) and

L̃c ⊆ L̃ ⊆ L(L̃d ∪ L̃c), (62)

which is trivially obtained from Eqs. (15) and (16), hold, then L̃d and L̃c are the disconnected and
the connected algebras. Therefore, the first half of Theorem 4 is justified.

The second half of Theorem 4, which is for the case of dimHS = 2, can be proved in a similar
manner. Although Eq. (61) can be shown to be true, the relations [L̃d, L̃c] = {0} and [L̃c, L̃c] ⊆ L̃c
need a bit different reasonings. The former is justified by Eq. (A.74) shown in Lemma 6. We can also
check [L̃c, L̃c] ⊆ L̃c by using i[J̄j, J̄j] ⊆ J̄j, i[Jj, Jj] ⊆ J̄j, i[J̄j, Jj] ⊆ Jj, and {Jj, Jj} ⊆ Jj, which are from Eqs.
(A.72) and (A.73) in Lemma 6. (Lemma 3). With Eq. (62), which holds when dimHS = 2 as well, and
Lemma 9, we can show that L̃d and L̃c in Eqs. (17) and (18) are the disconnected and the connected
algebras.

Proof of Theorem 5. Given an expanded dynamical Lie algebra L′, there must be its identifier
(G(0)′,G(1)′), such that L′

= L(G(0)′
⊗{IdS ⊗ IdS′} ∪ iG(1)′

⊗ su(dimHS · dimHS′ )) (Lemma 1). These sets
satisfy

G(1)
=

⨁
j

iJj ⊆

⨁
j

iJ ′j ⊆ G(1)′, and (63)⨁
j

[J ′j , J
′

j ] ⊆ G(0)′, (64)

where the first equality in Eq. (63) is from Eq. (51). Each algebra J ′j is equal to one of the following:

R′
:= {IdA}, (65)

M′(1)
γ := i{IdA} ⊗ u(dimHQ ), (66)

M′(2)
γ := iL(({IdA(+1)} ⊕ {IdA(−1)}) ⊗ u(dimHQ )), (67)

M′(4)
γ := i{IdA} ⊗ u(dimHQ (1) · dimHQ ), (68)

S′

2n′−1 := i{IdA} ⊗ u(dimHQ (n′−1) · dimHQ (n′−2) · · · dimHQ (1) ), (69)

S′

2n′ := iL(({IdA(+1)} ⊕ {IdA(−1)})

⊗u(dimHQ (n′−1) · dimHQ (n′−2) · · · dimHQ (1) )). (70)

There is a one-to-one correspondence between these primed algebras and the non-primed ones in
Eqs. (25)–(30). For example, if one of the Jj was M(1)

γ when dimHS = 2, then appending an ancillary
space HS′ makes it change to M′(1)

γ .

The right-most inclusion in Eq. (63) can be justified by the following three facts: First, L⊗{IdS′} ⊆

L′, since L′ is a Lie algebra generated by L⊗{IdS′} and IdE ⊗su(dimHS ·dimHS′ ). Second, as Lemma 2
tells, G(1)′ must be closed under two binary operations [·, ·] and i{·, ·} since dimHS ·dimHS′ is more
than 2. Third, iJ ′j in Eqs. (65)–(70) are the smallest skew-Hermitian operator sets which contain the
corresponding iJj and are closed under the binary operations (Lemma 11). Eq. (64) is simply due to
Eq. (47) for L′, [G(1)′,G(1)′

] ⊆ G(0)′.
Since L′

= L(G(0)′
⊗ {IdS ⊗ IdS′} ∪ G(1)′

⊗ su(dimHS · dimHS′ )), together with Eqs. (63) and (64),
we obtain⨁

j

L([J ′j , J
′

j ] ⊗ {IdS ⊗ IdS′} ∪ J ′j ⊗ su(dimHS · dimHS′ )) ⊆ L′. (71)

On the other hand, we can verify the relation

L′
⊆

⨁
j

L(iĴj ⊗ {IdS ⊗ IdS′} ∪ [J ′j , J
′

j ] ⊗ {IdS ⊗ IdS′} ∪ J ′j ⊗ su(dimHS · dimHS′ )), (72)
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using the explicit expressions of J ′j in Eqs. (65)–(70), together with Eqs. (37) and (59)∼(42); that is,
we can readily see that the set on the RHS of Eq. (72) is closed under the commutator and contains
all generators in L ⊗ {IdS′} and {IdE} ⊗ su(dimHS · dimHS′ ). By redefining the structure of HE as
HE =

⨁
j′ HBj′ ⊗ HRj′ as in Theorem 5, Eqs. (71) and (72) can be rewritten as⨁

j′

{IdBj′ } ⊗ su(dimHRj′ · dimHS · dimHS′ )

⊆ L′
⊆

⨁
j′

L(Ld ⊗ {IdS′} ∪ {IdBj′ } ⊗ su(dimHRj′ · dimHS · dimHS′ )), (73)

where Ld =
⨁

j′ u(dimHBj′ ) ⊗ {IdRj′ ⊗ IdS}. This relation then implies, according to Lemma 10, that
the disconnected algebra L′

d and the connected algebra L′
c for L′ are

L′

d = Ld ⊗ {IdS′}, (74)

L′

c =

⨁
j′

{IdBj′ } ⊗ su(dimHRj′ · dimHS · dimHS′ ). (75)

Hence, Theorem 5 is justified.

5. Conclusion

We have revealed the structures of the Hilbert space and the Lie algebra from only a few
very simple assumptions, in the context of indirect quantum control. The restrictedness of our
artificial operations imposes constraints on what can be controlled in the large entire system. An
interesting finding includes that there is a clear distinction depending on the dimension of the
directly accessible subsystem S (Theorems 2 and 3). While E, which only interacts with S through
the drift Hamiltonian h0, is virtually a direct sum of fully controllable subspaces, not all operations
are necessarily possible when dimHS = 2.

There have been studies [22,23] in a similar direction, which have analyzed the ‘controllability’
issue depending on dimHS . Though there are differences in meaning of some terms, e.g. controllabil-
ity, our analysis can be used to prove their results as well; the details are given in the supplementary
material.

The present analysis can be applied to the study of physical situations where we wish to
control a large quantum system with minimal access. Such scenarios have been discussed under
the motivation of suppressing unnecessary interactions between the quantum system and its
environment. As briefly mentioned after Theorem 5, control problems have been addressed in [2]
for a one-dimensional XX spin chain through direct control of two end spins. Also, closely related
is the problem of quantum system identification under limited access, which has been discussed
intensively in the last decade [13–16,19]. From the system identification perspective, in which
the main task is to identify the drift Hamiltonian h0, what we have clarified in this paper can
be understood as the very fundamental structure of what we may be able to identify through S,
regardless of the physical system.

The structures of the space and the algebra we have clarified can be used to further investigate
the possibility of indirect control of large systems. In this context, for example, a significant
consequence of indirect control is the existence of equivalence classes, within which any distinct
physical configurations of E and its Hamiltonians cannot be distinguished by any operations on S.
While it has already been studied in the literature, such as [24] and [12], our results would shed
more light on this issue in a consistent way.

There should still be a lot of ground to explore in front of us. One practically important issue we
have not discussed here is the time optimality or time dependence of the operation on the system
size. This problem has been studied quite actively (see, e.g., some recent studies [4,5,25–27] and
references therein). In addition, we still have very little insight into how to obtain the specific profile
of the control pulses [28]. It appears, however, that it is likely that we have to rely on numerical
optimization methods for it.
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Despite all this, the framework of indirect control under limited access is promising for realistic
large-scale quantum control. Our attempt would be of use to acquire deeper insights into the physics
of quantum control systematically and will hopefully be one of the guiding principles in building
the future quantum control methodology.
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Appendix A. Supplementary material: Proofs of lemmas

Here, we prove those lemmas used for proving theorems in the main text. The proofs of some
lemmas below are rather involved, so this whole section may be browsed quickly or even skipped if
readers’ interest is in grasping the picture of what our main theorems claim. However, it should be
interesting to see how the Jordan algebra, which might not be particularly common among quantum
physicists despite its origin, plays a central role in the study of indirect quantum control.

The first lemma shows the fundamental structure of the Lie algebra of our principal interest.

Lemma 1 (Proved in [22]). Let L be the Lie algebra of skew-Hermitian operators acting on HE ⊗ HS ,
which contains all elements in {IdE} ⊗ su(dimHS). Then L can be written in the form

L(G(0)
⊗ {IdS} ∪ iG(1)

⊗ su(dimHS)) (A.1)

with appropriate linear spaces G(0) and G(1) of skew-Hermitian operators acting on HE .

Proof. Using the basis HS = {Xk,q, Yk,q, Zk,k+1} of the linear space i · su(dimHS), any operator g ∈ L
can be uniquely written in the form

g = gId ⊗ IdS +

∑
W∈HS

gW ⊗ W , (A.2)

where gId and gW are skew-Hermitian operators on HE . Let G(0) and G(1) be sets of these operator
components:

G(0)
:= {gId}g∈L, (A.3)

G(1)
:= L({gW }g∈L,W∈HS ). (A.4)

This definition indicates L ⊆ L(G(0)
⊗ {IdS} ∪ iG(1)

⊗ su(dimHS)) =: L0. Note that the set G(0) is a
linear space since the set L is a linear space.

Now, we show the inclusion of the opposite direction L ⊇ L0, i.e., for any element g ∈ L, gId ⊗ Id
and gW ⊗ h are in L for arbitrary h ∈ i · su(dimHS) and W ∈ HS . To this end, we show the
following:

∀g ∈ L, ∀W ∈ HS, ∃h′
∈ su(dimHS), such that gW ⊗ h′

∈ L. (A.5)

If this is fulfilled, gW ⊗ h is in L for any elements h ∈ i · su(dimHS) since su(dimHS) is a
simple algebra. That is, for any nonzero h′

∈ su(dimHS), generators obtained by repeatedly taking
commutators with elements gm in su(dimHS) will span the whole su(dimHS):

su(dimHS) = iL({[· · · [[h′, g1], g2], . . . , gn]|n ∈ Z≥1 ∧ gm ∈ su(dimHS)}). (A.6)
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Since the relation gId ⊗ IdS = g −
∑

W∈HS
gW ⊗W guarantees that gId ⊗ IdS is in L, showing Eq. (A.5)

is sufficient to prove L ⊇ L0.
We pick an arbitrary element g =: gId ⊗ IdS +

∑
W∈HS

gW ⊗ W ∈ L. From the relation

1
(dimHS − 1)2

[[g,
∑
p̸=k

iIdE ⊗ Zk,p],
∑
p̸=q

iIdE ⊗ Zp,q]

= gXk,q ⊗ Xk,q + gYk,q ⊗ Yk,q =: g ′

k,q, (A.7)

g ′

k,q is in L since all operators in the LHS of Eq. (A.7) are in L. Therefore, a linear combination g and
g ′

k,q,

g −

dimHS−2∑
k=0

dimHS−1∑
q=k+1

g ′

k,q = gId ⊗ Id +

dimHS−2∑
k=0

gZk,k+1 ⊗ Zk,k+1 =: g ′ (A.8)

is also in L. Taking commutators between g ′

k,q, g
′ and generators in {IdE} ⊗ su(dimHS) ∈ L, we can

obtain gXk,q ⊗ Zk,q, gYk,q ⊗ Zk,q and gZk,k+1 ⊗ Xk,k+1, as follows:

−
1
2
[g ′

k,q, iIdE ⊗ Yk,q] = gXk,q ⊗ Zk,q, (A.9)

1
2
[g ′

k,q, iIdE ⊗ Xk,q] = gYk,q ⊗ Zk,q, (A.10)

dimHS−2∑
q=0

µ̄k,q[g ′, iIdE ⊗ Yq,q+1] =

dimHS−2∑
q,p=0

µ̄k,qµq,pgZp,p+1 ⊗ Xp,p+1

= gZk,k+1 ⊗ Xk,k+1, (A.11)

where µ̄k,q is the (k, q)th element of the inverse of (dimHS − 1)-dimensional matrix M whose
(k, q)th element is µk,q := 2δk,q −δ|k−q|,1, where 0 ≤ k, q < dimHS −1. The existence of the inverse
matrix is guaranteed from detM = dimHS + 1. Eqs. (A.9)–(A.11) mean that the condition (A.5) is
satisfied, and hence L ⊇ L0. □

Next, we consider a sufficient condition for a pair of sets G(0) and G(1) to be the identifier of the
Lie algebra.

Lemma 2. If L = L(G(0)
⊗{IdS}∪iG(1)

⊗su(dimHS)) is a Lie algebra, G(0) and G(1) satisfy Eqs. (47)–(49).
If dimHS ≥ 3, then another commutation relation [G(1),G(1)

] ⊆ G(1) is also required.

Proof. For any gb, g ′

b ∈ G(b), we can construct equalities[
g0, g ′

0

]
⊗ IdS =

[
g0 ⊗ IdS, g ′

0 ⊗ IdS
]
, (A.12)[

g1, g ′

1

]
⊗ IdS =

1
d − 1

dimHS−2∑
k=0

dimHS−1∑
q=k+1

[
g1 ⊗ Xk,q, g ′

1 ⊗ Xk,q
]
, (A.13)

[g0, g1] ⊗ Z0,1 =
[
g0 ⊗ IdS, g1 ⊗ Z0,1

]
, and (A.14)

i
{
g1, g ′

1

}
⊗ Z0,1 =

[
g1 ⊗ X0,1, g ′

1 ⊗ Y0,1
]
. (A.15)

From the assumption, any operator in the RHSs, e.g., g0⊗IdS and g ′

0⊗IdS , is contained in L. Therefore,
each operator in the LHSs should also be contained in L. Looking at the operator on HS of these
relations, Eqs. (47)–(49) can be justified.

When dimHS ≥ 3, we can have equalities such as[
g1, g ′

1

]
⊗ Z1,2 =

[
g1 ⊗ X0,1, g ′

1 ⊗ X0,1
]
−
[
g1 ⊗ X0,2, g ′

1 ⊗ X0,2
]
, (A.16)

which means [G(1),G(1)
] ⊆ G(1). Note that if dimHS = 2 there is only a single X operator, X0,1

(obviously the same for Y and Z), thus the commutation relation for G(1) does not necessarily
hold. □
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The next lemma is for the necessary condition for a pair of sets G(0) and G(1) to be the identifier
of the Lie algebra.

Lemma 3. Suppose that G(0) and G(1) are sets of linear operators, and L = L(G(0)
⊗ {IdS} ∪ iG(1)

⊗

su(dimHS)). If G(0) and G(1) satisfy Eqs. (47)–(49) and if dimHS = 2, the operator space L is closed
under the commutator, hence L forms a Lie algebra. The same can be said for the case of dimHS ≥ 3, if
Eq. (50), [G(1),G(1)

] ⊆ G(1), is satisfied in addition to Eqs. (47)–(49).

Proof. Let us define a basis of L by a set of operators, each of which has the form g0 ⊗ IdS or ig1 ⊗h
with gb ∈ G(b) and h ∈ HS . Therefore, it is sufficient if we check that commutators between any two
elements of such are in L. For any gb, g ′

b ∈ G(b) and h, h′
∈ HS , we have the commutation relations,[

g0 ⊗ IdS, g ′

0 ⊗ IdS
]

=
[
g0, g ′

0

]
⊗ IdS, (A.17)

[g0 ⊗ IdS, g1 ⊗ h] = [g0, g1] ⊗ h, (A.18)[
g1 ⊗ h, g ′

1 ⊗ h′
]

=
1
2

[
g1, g ′

1

]
⊗
{
h, h′

}
−

1
2
i
{
g1, g ′

1

}
⊗ i

[
h, h′

]
. (A.19)

Due to Eqs. (47) and (48), the RHSs of Eqs. (A.17) and (A.18) are in L. As for Eq. (A.19), when
dimHS = 2, Eqs. (47) and (49) guarantee that its RHS is in L, since {h, h′

} ∝ IdS holds for any
basis elements h, h′

∈ HS in this case. If dimHS ≥ 3, {h, h′
} can be written as a linear combination

of elements in HS and IdS , and obviously i[h, h′
] is again in HS (if not zero). Thus, the RHS of Eq. (A.19)

is also in L because of Eqs. (47), (49), and (50). □

If the pair of operator sets (G(0),G(1)) is the identifier of a Lie algebra L, iG(1) is a set of Hermitian
operators which is closed under the anti-commutator. That is, iG(1) is a formally real Jordan algebra,
which is defined as a linear space closed under the commutative bilinear operator such that

{x, y} = {y, x},
{{{x, x}, y}, x} = {{x, x}, {y, x}},∑
j

{xj, xj} = 0 ⇒ xj = 0.

The following lemmas about the structure of the Jordan algebra are useful for classification of Lie
algebras that include all elements in i{IdE} ⊗ su(dimHS).

Lemma 4 (Theorems 14, 16 and 17 in the paper [11]). For any formally real Jordan algebra J, a basis
{eρ}ρ∈{0,1,...,ρ0−1} ∪ {s(ρ,σ )

µ }(ρ,σ ,µ)∈Ω can be constructed, where ρ0 is an integer that can be determined
when a specific J is given. The indices ρ, σ , and µ are in the range Ω = {(ρ, σ , µ)|ρ < σ ∧ ∃j, ρ, σ ∈

Γj ∧ µ ∈ {0, 1, . . . , χj − 1}}, where {Γj}j are a non-overlapping decomposition of {0, 1, . . . , ρ0 − 1},
i.e.,

⨁
j Γj = {0, 1, . . . , ρ0 − 1}, and χj are positive integers indexed by j. The basis elements {eρ} and

{s(ρ,σ )
µ } satisfy the following three anti-commutation relations:

{eρ, eσ } = 2δρ,σ eρ, (A.20)

{s(ρ,σ )
µ , s(ρ,σ )

ν } = 2δµ,ν(eρ + eσ ), (A.21)

{eρ, s(σ ,τ )
µ } = (δρ,σ + δρ,τ )s(σ ,τ )

µ . (A.22)

As a quick consequence of Eqs. (A.20)–(A.22) in this lemma, let us show three useful relations.
The first one is

eρeσ =
1
2
{eρ, eρ}eσ

= eρ{eρ, eσ } −
1
2
{{eρ, eσ }, eρ} +

1
4
{{eρ, eρ}, eσ }

= 2δρ,σ e2ρ − 2δρ,σ eρ + δρ,σ eρ

= δρ,σ (2{eρ, eρ} − eρ)

= δρ,σ eρ, (A.23)
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where Eq. (A.20) is used in the first, third and the last equalities, while the second and the fourth
equalities can be verified just by the definition of the anti-commutator. The second is, for ρ < σ ,

s(ρ,σ )
µ = {eρ, {eσ , s(ρ,σ )

µ }}

= eρs(ρ,σ )
µ eσ + eσ s(ρ,σ )

µ eρ, (A.24)

where Eq. (A.22) has been used recursively in the first equality, and Eq. (A.23) in the second line.
The last one we show here is

eρs(ρ,σ )
µ eσ s(ρ,σ )

ν eρ + eρs(ρ,σ )
ν eσ s(ρ,σ )

µ eρ

= eρ{eρs(ρ,σ )
µ eσ + eσ s(ρ,σ )

µ eρ, eρs(ρ,σ )
ν eσ + eσ s(ρ,σ )

ν eρ}eρ

= eρ{s(ρ,σ )
µ , s(ρ,σ )

ν }eρ

= 2δµ,νeρ, (A.25)

where Eqs. (A.23) and (A.24) have been applied in the first and the second equalities. In the last
step, Eqs. (A.21) and (A.23) are used.

Although Lemma 4 has been known since [11], we shall give a proof of these relations in order
to make this paper self-contained. As we are interested in the (Jordan) algebra, which is expressed
on a Hermitian operator space, our discussion is automatically restricted to the formally real Jordan
algebra.

Proof. Let us start with a simple proposition about the Jordan algebra with Hermitian operators.
That is, for any element h of the algebra, projection operators onto the eigenspace of h for any non-
zero eigenvalue are in the algebra. To prove this, pick an arbitrary element h in the Jordan algebra
and let vk and hk for k ∈ {1, 2, . . . , n0} be its non-zero eigenvalues and projection operators onto
the corresponding eigenspaces. Then, define a matrix M such that its (q, k)-element µq,k is equal to
(vk)q−1 for k, q ∈ {1, 2, . . . , n0}. Similarly, we define µ̄q,k as the (q, k)-element of the inverse M−1.
The existence of the inverse matrix is guaranteed by the fact that detM =

∏
k>k′ (vk − vk′ ) ̸= 0.

Using µq,k and µ̄q,k, the projection operator hk can be written as

hk =

∑
q,k′

µ̄k,qµq,k′hk′

=

∑
q

µ̄k,qhq−1. (A.26)

Because {hn, h} = 2hn+1 for all n ∈ N>0, the above equation implies that the projection operator
onto an eigenspace hk is also an element in the algebra.

Next, we shall define a set {eρ}ρ in the following way and look into its properties. First, let a
set J (0) be J . For ρ ≥ 0, eρ is defined from a subset J (ρ) of J such that eρ is a non-zero operator
which has the smallest rank in the set J (ρ) whose largest eigenvalue is 1. Then, J (ρ+1) is defined
as a set of elements of J (ρ) that anti-commute with eρ , i.e., J (ρ+1)

= {h|{h, eρ} = 0, h ∈ J (ρ)}. As
we have seen in the above argument, e0 is a projection operator, and, for any element h ∈ J (1),
he0 =

1
2 ({e0, h} + {e0, h}e0 − e0{e0, h}) = 0 holds. Thus, for any elements h, we see h′

∈ J (1),
{{h, h′

}, e0} = {h, {h′, e0}} + {h′, {h, e0}} + 2(he0)h′
+ 2(h′e0)h = 0, and this means that J (1) is also

a Jordan subalgebra of J . Iterating this process for larger ρ, we can state that eρ is a projection
operator, any element in J (ρ

′) anti-commutes with eρ if ρ ′ > ρ, thus {eρ, eρ′} = 0 as eρ′ ∈ J (ρ
′).

Therefore, Eq. (A.20), as well as Eq. (A.23), can be justified. The sets {J (ρ)} clearly have the inclusion
relations J (0) ⊋ J (1) ⊋ · · ·. Since the entire space is finite dimensional, there exists a number ρ0 such
that · · · J (ρ0−1) ⊋ J (ρ0) = {0}.

In order to show other properties of {eρ} and {s(ρ,σ )
µ }, let us now define linear spaces Eρ :=

{eρheρ |h ∈ J} and S(ρ,σ )
:= {eσheρ + eρheσ |h ∈ J} for ρ ̸= σ . Any elements in Eρ and S(ρ,σ ) are in J

since, using Eq. (A.23), their elements can be written as

eρheρ =
1
2
{{h, eρ}, eρ} −

1
2
{h, eρ} (A.27)
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eσheρ + eρheσ = {{h, eρ}, eσ }. (A.28)

An immediate consequence of this definition of Eρ is that any element in Eρ is proportional to
eρ . Let us prove it by contradiction. Suppose that there exists an operator h in Eρ which is not
proportional to eρ . We pick a projection operator eh onto an eigenspace of h that corresponds to a
nonzero eigenvalue. Since h ∈ Eρ , eρheρ = h holds due to Eq. (A.23), thus the range of h is not larger
than eρ . Because the range of eh is smaller than h by assumption, the range of eh is smaller than
eρ . This implies eρeheρ = eh and rank eh < rank eρ . Meanwhile, eh is not only in J (since h ∈ J), but
also in J (ρ) because {eρ′ , eh} = eρ′eρeheρ + eρeheρeρ′ = 0 for ρ ′

̸= ρ. The existence of a projection
eh ∈ J (ρ) such that rank eh < rank eρ contradicts with the definition of eρ , that is, eρ must have the
smallest rank in J (ρ).

Let us now prove Eqs. (A.21) and (A.22), the equalities concerning s(ρ,σ )
µ in the set S(ρ,σ ). We shall

consider only the case where all elements of S(ρ,σ ) are nonzero. By defining an inner product fρ,σ

on the linear space S(ρ,σ ) as

fρ,σ (h, h′) =
Trhh′

Tr(eρ + eσ )
, (A.29)

we can construct a normalized orthogonal basis with respect to fρ,σ , and we shall let s(ρ,σ )
µ be such

a basis.
Eq. (A.22), thus Eq. (A.24) as well, can be verified rather straightforwardly with the definition of

S(ρ,σ ) and Eq. (A.23). In order to prove Eq. (A.21), let us note that eτ {s(ρ,σ )
µ , s(ρ,σ )

ν }eτ = a(ρ,σ ,τ )
µ,ν eτ ,

where a(ρ,σ ,τ )
µ,ν is a real number. This is because eτ {s(ρ,σ )

µ , s(ρ,σ )
ν }eτ is in the set Eτ , thus it is

proportional to eτ and we let a(ρ,σ ,τ )
µ,ν denote the proportionality constant. Then, together with Eqs.

(A.23) and (A.24), we can see the following relations hold:

a(ρ,σ ,ρ)
µ,ν eρ = eρ{s(ρ,σ )

µ , s(ρ,σ )
ν }eρ

= (eρs(ρ,σ )
µ eσ )(eρs(ρ,σ )

ν eσ )† + (eρs(ρ,σ )
ν eσ )(eρs(ρ,σ )

µ eσ )†, (A.30)

a(ρ,σ ,σ )
µ,ν eσ = eσ {s(ρ,σ )

µ , s(ρ,σ )
ν }eσ

= (eρs(ρ,σ )
ν eσ )†(eρs(ρ,σ )

µ eσ ) + (eρs(ρ,σ )
µ eσ )†(eρs(ρ,σ )

ν eσ ), (A.31)

a(ρ,σ ,ρ)
µ,ν eρ + a(ρ,σ ,σ )

µ,ν eσ = {s(ρ,σ )
µ , s(ρ,σ )

ν }. (A.32)

Complex conjugates are included in the first two equations simply for the convenience for the next
step, recalling that the algebra J consists of only Hermitian operators. By setting ν = µ in Eqs. (A.30)
and (A.31), we have

a(ρ,σ ,ρ)
µ,µ eρ = 2(eρs(ρ,σ )

µ eσ )(eρs(ρ,σ )
µ eσ )†, (A.33)

a(ρ,σ ,σ )
µ,µ eσ = 2(eρs(ρ,σ )

µ eσ )†(eρs(ρ,σ )
µ eσ ). (A.34)

Since s(ρ,σ )
µ is a Hermitian operator and has the form (A.24), the operator eρs(ρ,σ )

µ eσ is not equal
to zero. This fact and the above two relations guarantee that the rank of eρ is equal to that of eσ ,
thus

Treρ = Treσ . (A.35)

It is clear from the RHSs of Eqs. (A.30) and (A.31) that their traces are equal, i.e.,

a(ρ,σ ,ρ)
µ,ν Treρ = a(ρ,σ ,σ )

µ,ν Treσ . (A.36)

Eq. (A.32) and the orthogonality of {s(ρ,σ )
µ } imply

a(ρ,σ ,ρ)
µ,ν Treρ + a(ρ,σ ,σ )

µ,ν Treσ = Tr{s(ρ,σ )
µ , s(ρ,σ )

ν }

= 2Trs(ρ,σ )
µ s(ρ,σ )

ν

= 2δµ,νTr(eρ + eσ ). (A.37)
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It then follows from Eqs. (A.35), (A.36), and (A.37) that a(ρ,σ ,ρ)
µ,ν = a(ρ,σ ,σ )

µ,ν = 2δµ,ν , hence we obtain
Eq. (A.21) from Eq. (A.32). As described above (before the proof of this lemma), Eq. (A.21) also leads
to Eq. (A.25).

It still has to be shown that {eρ}ρ ∪ {s(ρ,σ )
µ }ρ<σ,µ forms a basis of J . From Eqs. (A.23), (A.24),

and that {s(ρ,σ )
µ }µ are orthogonal to each other, we can check that these elements are linearly

independent. As shown above, {eρ} and {s(ρ,σ )
µ }µ are the bases of Eρ and S(ρ,σ ), respectively, and

any elements in Eρ and S(ρ,σ ) are in J . Therefore, all we have to check is that every element in J can
be expressed as a linear combination of {eρ}ρ ∪ {s(ρ,σ )

µ }ρ<σ,µ. Let h be an element in J and define
I =

∑
ρ eρ ∈ J . Noting Eq. (A.23), which implies I2 = I , and that I and h are Hermitian, we can see

the following relations:

{I, h} − IhI − h =
3
2
{h, I} − h −

1
2
{{h, I}, I}, (A.38)

(hI − IhI)(hI − IhI)† = −{{h, h}, I} +
3
2
{{h, I}, h} +

1
4
{{{h, I}, {h, I}}, I}

+
1
4
{{{h, h}, I}, I} − {{h, I}, {h, I}}. (A.39)

The RHSs contain only anti-commutators of elements in J , thus they are in J . Since eρ I = Ieρ = eρ ,
the LHSs of Eqs. (A.38) and (A.39) anti-commute with eρ for any ρ. By definition of eρ , such operators
should be equal to 0, i.e., {I, h} − IhI − h = 0 and hI − IhI = 0. Then, obviously

{I, h} − IhI − h − (hI − IhI) − (hI − IhI)† = IhI − h = 0 (A.40)

holds, that is, IhI = h. Resubstituting I =
∑

ρ eρ , we see

h = IhI =

∑
ρ

eρheρ +

∑
σ>ρ

(eρheσ + eσheρ), (A.41)

which means that h is in the space spanned by Eρ and S(ρ,σ ).
Next, we focus on the dimension χρ,σ of the space S(ρ,σ ), and will show that if χρ,σ ̸= 0, χρ,τ

is not larger than χσ ,τ for mutually distinct σ , ρ and τ . Due to the symmetry with respect to the
permutation of σ , ρ, τ , this means that if χρ,σ ̸= 0 and χρ,τ ̸= 0, these two and χσ ,τ are equal to
each other. To this end, let us pick a basis {s(ρ,τ )

µ }µ of S(ρ,τ ) and a normalized element s(ρ,σ )
0 in S(ρ,σ ).

Defining s′(σ ,τ )
µ := {s(ρ,σ )

0 , s(ρ,τ )
µ } ∈ J for µ ∈ {0, . . . , χρ,τ − 1}, we see

eσ s′(σ ,τ )
µ eτ + eτ s′(σ ,τ )

µ eσ

= eσ (s
(ρ,σ )
0 s(ρ,τ )

µ + s(ρ,τ )
µ s(ρ,σ )

0 )eτ + eτ (s
(ρ,σ )
0 s(ρ,τ )

µ + s(ρ,τ )
µ s(ρ,σ )

0 )eσ

= eσ s
(ρ,σ )
0 eρs(ρ,τ )

µ eτ + eτ s(ρ,τ )
µ eρs

(ρ,σ )
0 eσ

= (eσ s
(ρ,σ )
0 eρ + eρs

(ρ,σ )
0 eσ )(eρs(ρ,τ )

µ eτ + eτ s(ρ,τ )
µ eρ)

+ (eρs(ρ,τ )
µ eτ + eτ s(ρ,τ )

µ eρ)(eσ s
(ρ,σ )
0 eρ + eρs

(ρ,σ )
0 eσ )

= {s(ρ,σ )
0 , s(ρ,τ )

µ } = s′(σ ,τ )
µ . (A.42)

In the second and the fourth equalities, Eqs. (A.23) and (A.24) are used, and the third equality can
be verified by expanding the RHS, using Eq. (A.23). Eq. (A.42) implies that s′(σ ,τ )

µ is an element in
S(σ ,τ ). In addition, the following relation can also be verified in a similar manner:

{s′(σ ,τ )
µ , s′(σ ,τ )

ν }

= {{s(ρ,σ )
0 , s(ρ,τ )

µ }, {s(ρ,σ )
0 , s(ρ,τ )

ν }}

= s(ρ,σ )
0 s(ρ,τ )

µ s(ρ,σ )
0 s(ρ,τ )

ν + s(ρ,σ )
0 s(ρ,τ )

ν s(ρ,σ )
0 s(ρ,τ )

µ + s(ρ,τ )
µ s(ρ,σ )

0 s(ρ,τ )
ν s(ρ,σ )

0

+ s(ρ,τ )
ν s(ρ,σ )

0 s(ρ,τ )
µ s(ρ,σ )

0 + s(ρ,τ )
µ s(ρ,σ )

0 s(ρ,σ )
0 s(ρ,τ )

ν + s(ρ,τ )
ν s(ρ,σ )

0 s(ρ,σ )
0 s(ρ,τ )

µ

+ s(ρ,σ )
0 {s(ρ,τ )

ν , s(ρ,τ )
µ }s(ρ,σ )

0
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= s(ρ,τ )
µ (eρ + eσ )s(ρ,τ )

ν + s(ρ,τ )
ν (eρ + eσ )s(ρ,τ )

µ + 2δµ,νs
(ρ,σ )
0 (eρ + eτ )s

(ρ,σ )
0

= eτ s(ρ,τ )
µ eρs(ρ,τ )

ν eτ + eτ s(ρ,τ )
ν eρs(ρ,τ )

µ eτ + 2δµ,νeσ s
(ρ,σ )
0 eρs

(ρ,σ )
0 eσ

= 2δµ,ν(eσ + eτ ). (A.43)

This means that the operators {s′(σ ,τ )
µ }µ∈{0,1,...,χρ,τ −1} are all non-zero and linearly independent. Thus,

the number of linearly independent s′(σ ,τ )
µ is larger than or equal to χρ,τ , i.e., χρ,τ ≤ χσ ,τ . Hence,

χρ,σ = χρ,τ = χσ ,τ as mentioned above.
The above argument, χρ,σ = χρ,τ = χσ ,τ if χρ,σ ̸= 0 and χρ,τ ̸= 0, shows that the set

{0, 1, . . . , ρ0 − 1} can be decomposed into non-overlapping subsets Γj, i.e., {0, 1, . . . , ρ0 − 1} =⨁
j Γj. Grouping for each Γj is done so that χρ,σ ̸= 0 if and only if both ρ and σ are in a single set

Γj. Within the same Γj, all χρ,σ are the same, namely, χρ,σ = χρ′,σ ′ for any ρ, σ , ρ ′, σ ′
∈ Γj. To prove

this statement, we define an equivalence relation ∼ such that the relation ρ ∼ σ holds if and only
if χρ,σ ̸= 0 or ρ = σ . The reflexivity and the symmetry relations hold trivially, and the transitivity
relation is guaranteed by the above argument, where we have seen (ρ ∼ σ ) ∧ (ρ ∼ τ ) ⇒ σ ∼ τ .
Noting the fact (ρ ∼ σ ) ∧ (ρ ∼ τ ) ⇒ χσ ,τ = χρ,σ = χρ,τ , we can group the indices that are
connected with the equivalence relation ‘‘∼’’ as {Γj}j. Then, by rewriting χj := χρ,σ for ρ, σ ∈ Γj,
all properties of the basis stated in Lemma 4 about the formally real Jordan algebra have been
derived. □

The relations between the basis vectors shown in Lemma 4 imply a very unique structure of the
formally real Jordan algebra. They then allow us to obtain explicit expressions of J on the space of
Hermitian operators with an appropriate basis.

Lemma 5. Suppose that J is a representation of the Jordan algebra on a Hermitian-operator space that
includes the identity operator, i.e. J is a linear space of Hermitian operators such that {J, J} ⊆ J and
Id ∈ J . Then, J is a direct sum of simple Jordan algebras, each of which has one of the forms (25)–(30)
with an appropriate basis.

We assign the characters R, M(k)
γ and Sn to the possible simple Jordan algebras, following the

notations in [11].

Proof. From Lemma 4, we can choose a basis {eρ}ρ∈{0,1,...,ρ0−1} ∪{s(ρ,σ )
µ }(ρ,σ ,µ)∈Ω which satisfies Eqs.

(A.20)–(A.22).
First, we show that

∑
σ eσ is equal to the identity. Since Id ∈ J , Id can be expressed as a

linear combination of the basis vectors. This fact and the relations (A.23) and (A.24) indicate that
(
∑

σ eσ )Id = Id. On the other hand, obviously (
∑

σ eσ )Id = (
∑

σ eσ ) also holds, thus these lead to∑
ρ

eρ = Id. (A.44)

From the properties (A.23) and (A.44), we can define a basis {|k, ρ⟩} of the complex linear space
HE such that |k, ρ⟩ is the kth basis vector in the space projected by eρ , where the range of the
parameter k is {0, 1, . . . , rankeρ−1}. Next, we define a j-dependent subspace HEj as a space spanned
by {|k, ρ⟩}ρ∈Γj,k. Since ⊕jΓj = {0, 1, . . . , ρ0 − 1}, the space HE can be expressed as a direct sum of
HEj , i.e. ⊕jHEj = HE . The basis of J can also be divided into subsets, each of which is characterized
by j, that is, {eρ}ρ∈Γj ∪{s(ρ,σ )

µ }ρ<σ∈Γj,µ∈{0,1,...,χj−1}. From the relations (A.23) and (A.24), we can check
that any range of elements in the subset {eρ}ρ∈Γj ∪ {s(ρ,σ )

µ }ρ<σ∈Γj,µ∈{0,1,...,χj−1} is in the space HEj .
Therefore, J has a direct sum structure, and all we have to check is that a subalgebra generated by
{eρ}ρ∈Γj ∪ {s(ρ,σ )

µ }ρ<σ∈Γj,µ∈{0,1,...,χj−1} has one of the structures (25)∼(30) on the space HEj . In the
following, we consider a certain j, so that we can omit the index j, and relabel the indices ρ and σ

for simplicity such that Γj = {0, 1, . . . , γj − 1}.
If γ = 1, the subalgebra consists of only the projection operator e0. Therefore, this situation

corresponds to Eq. (25), i.e. the corresponding simple Jordan algebra has the structure R. We now
assume γ ≥ 2.
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Due to Eq. (A.35), the range of the parameter k is independent of ρ in a subalgebra for a fixed j.
This implies that the space spanned by {|k, ρ⟩}k,ρ can be regarded to have a direct product structure,
i.e., {|k⟩ ⊗ |ρ⟩}k,ρ . We can show that there exists a unitary transformation U that connects these
two structures, such that

Us(ρ,ρ+1)
0 U†

= Id ⊗ Xρ,ρ+1, (A.45)

UeρU†
= Id ⊗ |ρ⟩⟨ρ|. (A.46)

Eq. (A.24) indicates that we can write s(ρ,ρ+1)
0 as Aρ+A†

ρ where Aρ is an element in the space spanned
by {|k, ρ + 1⟩⟨k′, ρ|}k,k′ . By setting µ = ν = 0 and σ = ρ+1 in Eq. (A.22), i.e., (s(ρ,ρ+1)

0 )2 = eρ +eρ+1,
we have

A†
ρAρ = eρ, (A.47)

AρA†
ρ = eρ+1. (A.48)

Therefore, we can define U as U :=
∑γ−1

ρ=0 Id⊗|ρ⟩⟨0|A†
0 · · · A†

ρ−2A
†
ρ−1, with which we can derive Eqs.

(A.45) and (A.46).
Now, we focus on the structure of {s(0,1)µ }µ∈{0,1,...,χ−1}. We will show that an isometry U can be

constructed such that, in addition to Eqs. (A.45) and (A.46), the following are satisfied:

Us(ρ,ρ+1)
0 U†

= Id ⊗

⌊
χ−1
2 ⌋  

Id ⊗ · · · ⊗ Id⊗Xρ,ρ+1, (A.49)

Us(0,1)2n′−1U
†

= Id ⊗

⌊
χ−1
2 ⌋−n′  

Id ⊗ · · · ⊗ Id⊗Z ⊗

n′
−1  

Y ⊗ · · · ⊗ Y ⊗Y0,1

for ⌊
χ − 1

2
⌋ ≥ n′

≥ 1, (A.50)

Us(0,1)2n′ U†
= Id ⊗

⌊
χ−1
2 ⌋−n′  

Id ⊗ · · · ⊗ Id⊗X ⊗

n′
−1  

Y ⊗ · · · ⊗ Y ⊗Y0,1

for ⌊
χ − 1

2
⌋ ≥ n′

≥ 1, (A.51)

Us(0,1)χ−1U
†

= Z∗
⊗

⌊
χ−1
2 ⌋  

Y ⊗ · · · ⊗ Y ⊗Y0,1 when χ is even, (A.52)

UeρU†
= Id ⊗

⌊
χ−1
2 ⌋  

Id ⊗ · · · ⊗ Id⊗|ρ⟩⟨ρ|, (A.53)

where Z∗ is a Hermitian matrix whose eigenvalues are 1 or −1 only. As seen in these equations, the
space of the image of U has a direct product structure consisting of a single arbitrary dimensional
space, ⌊ χ−1

2 ⌋ of 2-dimensional spaces, and a single γ -dimensional space. The basis is now denoted
as {|a⟩ ⊗ |b

⌊
χ−1
2 ⌋−1⟩ ⊗ · · · ⊗ |b0⟩ ⊗ |ρ⟩}, where the ranges of indices are a ∈ {0, 1, . . . , a0 − 1}, bm ∈

{0, 1}, ρ ∈ {0, 1, . . . , γ − 1} with a certain integer a0.
We shall give a proof of the existence of U by induction in terms of χ . When χ = 1, Eqs. (A.49)

and (A.53) are simply a paraphrase of Eqs. (A.45) and (A.46).
Assume that the proposition holds when χ is an odd number 2n − 1, and consider the case of

χ = 2n. By this assumption, even if χ = 2n, there exists an isometry U for the first 2n − 1 s(0,1)µ ’s,
i.e., for µ ∈ {0, 1, ..., 2n − 2}, such that Eqs. (A.49)–(A.51) and (A.53) hold. Then, we attempt to
show that Eq. (A.52) also holds for the remaining basis, s(0,1)2n−1.

Because s(0,1)χ−1 has nonzero entries for the (0, 1)th and the (1, 0)th off-diagonal blocks due to
Eq. (A.24), Us(0,1)χ−1U

† should have X0,1 and/or Y0,1 components for the rightmost space spanned by
|ρ⟩. Thus, it can be written as a linear combination of terms, each of which has the form

V ⊗ Wn−1 ⊗ · · · ⊗ W1 ⊗ Y0,1 or V ⊗ Wn−1 ⊗ · · · ⊗ W1 ⊗ X0,1, (A.54)
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where Wm ∈ {Id, X, Y , Z}, and V is an arbitrary Hermitian operator. Eq. (A.21) for ρ = 0, σ = 1,
µ = 0 and ν = χ − 1, i.e., {s(0,1)0 , s(0,1)χ−1} = 0, guarantees that the second type in Eq. (A.54) must be
0. Similarly, {s(0,1)µ0

, s(0,1)χ−1} = 0 for 0 < µ0 < χ − 1 implies that the terms of the form

V ⊗ Wn−1 ⊗ · · · ⊗ W µ0+3
2

⊗ Z ⊗

µ0−1
2  

Y ⊗ · · · ⊗ Y ⊗Y0,1 or (A.55)

V ⊗ Wn−1 ⊗ · · · ⊗ W µ0
2 +2 ⊗ X ⊗

µ0
2 −1  

Y ⊗ · · · ⊗ Y ⊗Y0,1 (A.56)

have no contributions to Us(0,1)χ−1U
† when µ0 is odd or even, respectively. Therefore, Us(0,1)χ−1U

† must
have the form

V ⊗

n−1  
Y ⊗ · · · ⊗ Y ⊗Y0,1. (A.57)

Further, another relation
(
s(0,1)χ−1

)2
= e0 + e1, which is also obtained from Eq. (A.21), requires that

the square of Eq. (A.57) be equal to U(e0 + e1)U†, which means V 2
= Id, thus V can be taken to be

Z∗. Therefore, Eq. (A.52) holds for χ = 2n.
Let us now prove the remaining step for induction. Assume that the proposition holds when χ is

an even number 2n, and show that it also does when χ = 2n+ 1. Let us rewrite Eqs. (A.49)–(A.53)
for clarity for the case χ = 2n. Since ⌊

χ−1
2 ⌋ = n − 1, the assumption is that an isometry U exists,

such that the following hold for the subset of sµ’s and eρ ’s,

Us(ρ,ρ+1)
0 U†

= Id ⊗

n−1  
Id ⊗ · · · ⊗ Id⊗Xρ,ρ+1, (A.58)

Us(0,1)2n′−1U
†

= Id ⊗

n−n′
−1  

Id ⊗ · · · ⊗ Id⊗Z ⊗

n′
−1  

Y ⊗ · · · ⊗ Y ⊗Y0,1

for n − 1 ≥ n′
≥ 1, (A.59)

Us(0,1)2n′ U†
= Id ⊗

n−n′
−1  

Id ⊗ · · · ⊗ Id⊗X ⊗

n′
−1  

Y ⊗ · · · ⊗ Y ⊗Y0,1

for n − 1 ≥ n′
≥ 1, (A.60)

Us(0,1)2n−1U
†

= Z∗
⊗

n−1  
Y ⊗ · · · ⊗ Y ⊗Y0,1, (A.61)

UeρU†
= Id ⊗

n−1  
Id ⊗ · · · ⊗ Id⊗|ρ⟩⟨ρ|. (A.62)

Then we will show the existence of an isometry U ′ that transforms s(0,1)2n to Eq. (A.51) with n′
= n,

i.e., Id⊗X ⊗ Y ⊗· · ·⊗ Y ⊗ Y0,1, while other relations (A.49)–(A.53) for n′ < n are also satisfied with
U ′ instead of U .

Similarly as above, due to Eq. (A.24), Us(0,1)χ−1U
† can be written as a linear combination of terms in

Eq. (A.54). Also, it follows from the χ −2 relations, Eq. (A.21) with ρ = 0, σ = 1, 0 ≤ µ < χ −2 and
ν = χ − 1, that Us(0,1)χ−1U

† should have the form of (A.57). The relation (A.21) with ρ = 0, σ = 1 and
µ + 1 = ν = χ − 1 leads to Z∗V + VZ∗

= 0. This means that V can be written as A+ A†, where the
kernel of A is not smaller than the eigenspace of Z∗ corresponding to the eigenvalue −1, while the
range of A is not larger than the same eigenspace. Eq. (A.21) for ρ = 0, σ = 1 and µ = ν = χ − 1,

i.e.,
(
s(0,1)χ−1

)2
= e0 + e1, indicates V 2

= Id, thus A†A =
1
2 (Id + Z∗) and AA†

=
1
2 (Id − Z∗). Therefore,

the dimensions of the eigenspaces of Z∗ for eigenvalues ±1 are equal, and the space on which Z∗

acts has an even dimension k0.
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Now we consider an isometry UZ∗ from the k0-dimensional space to a product of two spaces,
which are k0/2- and 2-dimensional spaces. It transforms an eigenvector of Z∗, corresponding to
the eigenvalue b = ±1, to the k0/2-dimensional subspace with the eigenvalue being encoded
in the second (2-dim) subspace as |(1 − b)/2⟩. With UZ∗ , we can consider a unitary operator

U♯
:= (Id ⊗ X)UZ∗A + (Id ⊗ |1⟩⟨1|)UZ∗ , so that a new isometry U ′

= (U♯
⊗

n  
Id ⊗ · · · ⊗ Id)U

transforms the space spanned by {|k, ρ⟩}k,ρ to the one spanned by {|k⟩ ⊗ |bn⟩ ⊗ · · · ⊗ |b0⟩ ⊗

|ρ⟩}
k∈{0,1,... k02 −1},bm∈{0,1},ρ∈{0,1,...,γ−1}

. We can directly check that Eqs. (A.49)–(A.51) and (A.53) hold

after replacing U with U ′, noting the effect of U♯, e.g., U♯U♯†
= Id⊗Id and U♯VU♯†

= U♯(A+A†)U♯†
=

I ⊗X , where the second space on the right is two-dimensional. Now that the induction is complete,
an isometry U exists such that Eqs. (A.49)–(A.53) as well as Eqs. (A.45) and (A.46) for any positive
integer χ .

Eqs. (A.49)–(A.53) can be generalized to arbitrary combinations of ρ and σ , leading to the
justification of Eqs. (26)–(30). Let us see how this can be done.

If γ = 2, the algebra will look like either S2n′−1 in Eq. (29) or S2n′ in (30), depending on whether
χ is odd or even, respectively. That is, the corresponding simple Jordan algebra has the structure
of Sχ+2.

When γ ≥ 3, recall that the linear space J spanned by {UeρU†
}ρ∈Γ ∪{Us(ρ,σ )

µ U†
}ρ<σ∈Γ ,µ∈{0,1,...,χ−1}

is closed under anti-commutation, and all the generators are linearly independent, for {eρ}ρ∈Γ and
{s(ρ,σ )

µ }ρ<σ∈Γ ,µ∈{0,1,...,χ−1} are a basis of the space. Since any other s(ρ,σ )
µ -type basis generators can

be obtained by taking anti-commutators as

s′(0,1)µ := s(0,1)µ , (A.63)

s′(ρ,σ )
0 := {· · · {s(ρ,ρ+1)

0 , s(ρ+1,ρ+2)
0 }, . . . , s(σ−1,σ )

0 }, (A.64)

s′(1−b,σ )
µ := {s(0,1)µ , s′(b,σ )

0 }, (A.65)

s′(σ ,τ )
µ := {{s(0,1)µ , s′(0,σ )

0 }, s′(1,τ )0 }, (A.66)

with b ∈ {0, 1}, ρ, σ , τ ∈ Γ , µ ∈ {0, . . . , χ − 1} and ρ + 1 < σ < τ , we can see their structures,
following Eqs. (A.49)–(A.52),

Us′(ρ,σ )
0 U†

= Id ⊗

⌊
χ−1
2 ⌋  

Id ⊗ · · · ⊗ Id⊗Xρ,σ , (A.67)

Us′(ρ,σ )
2n′−1U

†
= Id ⊗

⌊
χ−1
2 ⌋−n′  

Id ⊗ · · · ⊗ Id⊗Z ⊗

n′
−1  

Y ⊗ · · · ⊗ Y ⊗Yρ,σ

for ⌊
χ − 1

2
⌋ ≥ n′

≥ 1, (A.68)

Us′(ρ,σ )
2n′ U†

= Id ⊗

⌊
χ−1
2 ⌋−n′  

Id ⊗ · · · ⊗ Id⊗X ⊗

n′
−1  

Y ⊗ · · · ⊗ Y ⊗Yρ,σ

for ⌊
χ − 1

2
⌋ ≥ n′

≥ 1, (A.69)

Us′(ρ,σ )
χ−1 U†

= Z∗
⊗

⌊
χ−1
2 ⌋  

Y ⊗ · · · ⊗ Y ⊗Yρ,σ when χ is even. (A.70)

By construction, {eρ}ρ∈Γ ∪{s′(ρ,σ )
µ }ρ<σ∈Γ ,µ∈{0,1,...,χ−1} is the set of linearly independent operators,

the number of which is equal to the dimension of J , thus this set is a basis of J .
When χ = 1 or 2, it is straightforward to see that J has a structure of M(χ )

γ in Eqs. (26) or (27),
respectively, due to Eqs. (A.49), (A.52), and (A.53).
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Let us consider the remaining cases of γ ≥ 3 and χ ≥ 3. From Eqs. (A.68) and (A.69), we see
that

{s′(0,1)1 , s′(0,2)2 } = U†(Id ⊗

⌊
χ−1
2 ⌋−1  

Id ⊗ · · · ⊗ Id⊗{Z ⊗ Y0,1, X ⊗ Y0,2})U

= U†(Id ⊗

⌊
χ−1
2 ⌋−1  

Id ⊗ · · · ⊗ Id⊗Y ⊗ Y1,2)U (A.71)

should be in J , thus this must be written as a linear combination of {eρ}ρ∈Γ ∪{s′(ρ,σ )
µ }ρ<σ∈Γ ,µ∈{0,1,...,χ−1}.

Nevertheless, since Eq. (A.71) can be obtained from {s′(ρ,σ )
µ } in Eqs. (A.67)–(A.70) only by setting

χ = 4 and Z∗
= Id in Eq. (A.70), the explicit forms of the algebra J indicate that such a requirement

holds only when χ = 4 and Z∗
∝ Id. Therefore, the corresponding simple Jordan algebra has the

structure M(4)
γ in Eq. (28).

In conclusion, when it is spanned by the basis {eρ}ρ∈Γ and {s(ρ,σ )
µ }ρ<σ∈Γ ,µ∈{0,1,...,χ−1} that satisfy

(A.20)∼(A.22) and (A.44), the space must have one of the structures in Eqs. (25)∼(30). □

Other linear spaces we have seen in Section 2, namely J̄ and Ĵ , satisfy simple algebraic relations
as follows.

Lemma 6. Let a triple (J, J̄, Ĵ) be equal to either one of the three combinations; (R, R̄, R̂), (M(k)
γ , M̄(k)

γ ,

M̂(k)
γ ), and (Sn, S̄n, Ŝn), where γ ≥ 3, k ∈ {1, 2, 4} and n ≥ 3. Then the following relations

iL([J̄, J̄]) ⊆ J̄ = iL([J, J]), (A.72)
iL([J̄, J]) ⊆ J = {J, J}, (A.73)

i[Ĵ, J] = i[Ĵ, J̄] = {0} (A.74)

hold.

Proof. Eq. (A.74) can be verified straightforwardly by using the definition of J̄ and Ĵ . Lemma 5 leads
to {J, J} ⊆ J , and {J, J} ⊇ J also holds because 1

2 Id ∈ J . Thus, J = {J, J} as in Eq. (A.73).
The equality of iL([J, J]) = J̄ , which is in Eq. (A.72), turns out to be a sufficient condition for the

remaining two inclusion relations in Eqs. (A.72) and (A.73). An inclusion

L(i[i[J, J], J]) ⊆ L({J, {J, J}}), (A.75)

can be obtained because of the identity

i[i[j1, j2], j3] = −{j1, {j2, j3}} + {j2, {j1, j3}}. (A.76)

The LHS of Eq. (A.75) is equal to iL([J̄, J]) if iL([J, J]) = J̄ . Also its RHS must be a subset of J since
{J, J} = J , hence, iL([J̄, J]) ⊆ J . Similarly, we have

L(i[i[J, J], J̄]) ⊆ L(i[i[J, J̄], J]), (A.77)

due to

i[i[j1, j2], j3] = i[i[j1, j3], j2] − i[i[j2, j3], j1]. (A.78)

Thanks to the condition iL([J, J]) = J̄ and its consequence iL([J̄, J]) ⊆ J , Eq. (A.77) implies
iL([J̄, J̄]) ⊆ J̄ , which is the first inclusion relation in Eq. (A.72).

The proof of iL([J, J]) = J̄ is straightforward from the explicit forms of J and J̄ , albeit rather
tedious. In the following, we use trivial symmetries Xk,q = Xq,k and Yk,q = −Yq,k without mentioning.
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Let us consider the six cases of J being R,M(1)
γ ,M(2)

γ ,M(4)
γ ,S2n′−1, and S2n′ .

(i) J = R. Trivially, [J, J] = {0} = R̄.
(ii) J = M(1)

γ . For k ̸= q and k′
̸= q′, the commutators

i[Id ⊗ Xk,q, Id ⊗ Xk′,q′ ]

=

{
−Id ⊗ Yq,q′ if k = k′ and q ̸= q′,
0 if k = k′ and q = q′ or both k and q are neither k′ nor q′,

i[Id ⊗ Xk,q, Id ⊗ |k′
⟩⟨k′

|] = (δ(k, k′) − δ(q, k′))Id ⊗ Yk,q,

i[Id ⊗ |k⟩⟨k|, Id ⊗ |k′
⟩⟨k′

|] = 0, (A.79)

imply iL([J, J]) ⊆ L(J̄). The inclusion in the opposite direction is guaranteed by

Id ⊗ Yk,q =
1
2
i[Id ⊗ Xk,q, Id ⊗ |k⟩⟨k| − Id ⊗ |q⟩⟨q|]. (A.80)

(iii) J = M(2)
γ . For k ̸= q and k′

̸= q′,

i[Id ⊗ Xk,q, Z∗
⊗ Yk′,q′ ]

=

{ Z∗
⊗ Xq,q′ if k = k′ and q ̸= q′,

−2 Z∗
⊗ Zk,q if k = k′ and q = q′,

0 if both k and q are neither k′ nor q′,
i[Z∗

⊗ Yk,q, Id ⊗ |k′
⟩⟨k′

|] = (−δ(k, k′) + δ(q, k′))Z∗
⊗ Xk,q,

i[Z∗
⊗ Yk,q, Z∗

⊗ Yk′,q′ ]

=

{
−Id ⊗ Yq,q′ if k = k′ and q ̸= q′,
0 if k = k′ and q = q′ or both k and q are neither k′ nor q′, (A.81)

and Eqs. (A.79) imply iL([J, J]) ⊆ L(J̄). The inclusion in the opposite direction can be shown
by

Z∗
⊗ Xk,q = −

1
2
i[Z∗

⊗ Yk,q, Id ⊗ |k⟩⟨k| − Id ⊗ |q⟩⟨q|], (A.82)

Z∗
⊗ Zk,q = −

1
2
i[Id ⊗ Xk,q, Z∗

⊗ Yk,q], (A.83)

and Eq. (A.80).
(iv) J = M(4)

γ , where γ ≥ 3. Let k ̸= q, k′
̸= q′ and (W ,W ′) be equal to either of (X, Y ), (Y , Z) or

(Z, X), then

i[Id ⊗ Xk,q,W ⊗ Yk′,q′ ]

=

⎧⎨⎩
W ⊗ Xq,q′ if k = k′ and q ̸= q′,
−2 (W ⊗ |k⟩⟨k| − W ⊗ |q⟩⟨q|) if k = k′ and q = q′,
0 if both k and q are neither k′ nor q′,

i[W ⊗ Yk,q, Id ⊗ |k′
⟩⟨k′

|] = (−δ(k, k′) + δ(q, k′))W ⊗ Xk,q,

i[W ⊗ Yk,q,W ⊗ Yk′,q′ ]

=

{
−Id ⊗ Yq,q′ if k = k′, q ̸= q′,
0 if k = k′ and q = q′ or both k and q are neither k′ nor q′,

i[W ⊗ Yk,q,W ′
⊗ Yk′,q′ ]

=

⎧⎨⎩
W ′′

⊗ Xq,q′ if k = k′, q ̸= q′ and W = W ′,
−(W ′′

⊗ |k⟩⟨k| + W ′′
⊗ |q⟩⟨q|) if k = k′ and q = q′,

0 if both k and q are neither k′ nor q′,
(A.84)
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can be shown for W ′′ being equal to either of the Pauli operators, X , Y and Z , when the pair
(W ,W ′) is equal to either of (Y , Z), (Z, X) or (X, Y ), respectively. These relations and Eqs.
(A.79) lead to iL([J, J]) ⊆ L(J̄). The one in the opposite direction can be verified by

W ⊗ Xk,q = −
1
2
i[W ⊗ Yk,q, Id ⊗ |k⟩⟨k| − Id ⊗ |q⟩⟨q|], (A.85)

W ⊗ |k⟩⟨k| =
1
2
(i[W ′

⊗ Yq,r ,W ′′
⊗ Yq,r ] − i[W ′

⊗ Yk,q,W ′′
⊗ Yk,q]

− i[W ′
⊗ Yk,r ,W ′′

⊗ Yk,r ]), (A.86)

where r ∈ {0, 1 · · · , γ − 1} is a number different from k and q, as well as Eq. (A.80).
(v) J = S2n′−1. For m ≥ m′

∈ {1, 2, . . . , n′
− 1} and W ,W ′

∈ {X, Z},

i[

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y , Id ⊗ · · · ⊗ Id] = 0,

i[

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y ,

n′
−m′  

Id ⊗ · · · ⊗ Id⊗W ′
⊗

m′
−1  

Y ⊗ · · · ⊗ Y ]

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2s

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−m′
−1  

Y ⊗ · · · ⊗ Y ⊗W
′

⊗

m′
−1  

Id ⊗ · · · ⊗ Id when m > m′,

−2s

n′
−m  

Id ⊗ · · · ⊗ Id⊗Y ⊗

m−1  
Id ⊗ · · · ⊗ Id when m = m′, W ̸= W ′,

0 when m = m′, W = W ′,

(A.87)

can be shown for (W
′

,W ′, s) being equal to either (X, Z, 1) or (Z, X, −1). These relations
imply the inclusion iL([J, J]) ⊆ L(J̄). That in the opposite direction can be derived from

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−m′
−1  

Y ⊗ · · · ⊗ Y ⊗W ′
⊗

m′
−1  

Id ⊗ · · · ⊗ Id

= −
s
2
i[

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y ,

n′
−m′  

Id ⊗ · · · ⊗ Id⊗W
′

⊗

m′
−1  

Y ⊗ · · · ⊗ Y ],

n′
−m  

Id ⊗ · · · ⊗ Id⊗Y ⊗

m−1  
Id ⊗ · · · ⊗ Id

=
1
2
i[

n′
−m  

Id ⊗ · · · ⊗ Id⊗X ⊗

m−1  
Y ⊗ · · · ⊗ Y ,

n−m  
Id ⊗ · · · ⊗ Id⊗Z ⊗

m−1  
Y ⊗ · · · ⊗ Y ], (A.88)

where m ̸= m′.
(vi) J = S2n′ . For m ∈ {1, 2, . . . , n′

− 1} and W ∈ {X, Z},

i[Z∗
⊗

n′
−1  

Y ⊗ · · · ⊗ Y , Id ⊗ · · · ⊗ Id]

= i[Z∗
⊗

n′
−1  

Y ⊗ · · · ⊗ Y , Z∗
⊗

n′
−1  

Y ⊗ · · · ⊗ Y ] = 0,

i[

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y , Z∗

⊗

n′
−1  

Y ⊗ · · · ⊗ Y ]

= 2s

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Id ⊗ · · · ⊗ Id (A.89)

can be shown for (W ,W , s) being equal to either (X, Z, 1) or (Z, X, −1). These relations and
Eqs. (A.87) indicate iL([J, J]) ⊆ L(J̄). The inclusion in the opposite direction is verified by
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using the following commutator

Z∗
⊗

n′
−m−1  

Y ⊗ · · · ⊗ Y ⊗W ⊗

m−1  
Id ⊗ · · · ⊗ Id

= −
s
2
i[

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y , Z∗

⊗

n′
−1  

Y ⊗ · · · ⊗ Y ] (A.90)

as well as Eq. (A.88). □

We now give two algebraic relations below, whose proofs are simple, but rather lengthy. The
first one states that, for a simple Jordan algebra J , the maximum set G of operators that satisfies
[G, J] ⊆ J can be written in a compact form. In the following Lemma 7, the triple (J, J̄, Ĵ) is assumed
to be equal to either one of the three, (R, R̄, R̂), (M(k)

γ , M̄(k)
γ , M̂(k)

γ ), and (Sn, S̄n, Ŝn), where γ ≥ 3,
k ∈ {1, 2, 4} and n ≥ 3, as in Lemma 6. Also, H denotes the range of the largest projection operator
in J .

Lemma 7. Let iG̃(0) be the maximal set of Hermitian operators that satisfies [iG̃(0), J] ⊆ J . Then, it is
equal to iL(Ĵ ∪ J̄), namely,

iG̃(0)
:= {h̃|h̃ ∈ i · u(dimH) ∧ ∀h ∈ J, i[h̃, h] ∈ J} = L(Ĵ ∪ J̄). (A.91)

Proof. From Lemma 6, i[Ĵ, J] = {0} ⊆ J and i[J̄, J] ⊆ J hold, thus L(Ĵ ∪ J̄) ⊆ iG̃(0).
So, let us focus on the proof of the opposite inclusion, L(Ĵ∪ J̄) ⊇ iG̃(0). We will prove this relation

for each form of J , one by one.

(i) J = R. We can easily identify iG̃(0) to be i · u(dimH), because it is equal to R̂, thus L(Ĵ ∪ J̄) ⊇

iG̃(0) holds trivially.
(ii) J = M(1)

γ . Any element in the set iG̃(0) should be expanded with respect to the basis on the
second space as

h̃ :=

γ−1∑
k=0

⎛⎝h̃|k⟩⟨k| ⊗ |k⟩⟨k| +

γ−1∑
q=k+1

(
h̃Xk,q ⊗ Xk,q + h̃Yk,q ⊗ Yk,q

)⎞⎠ . (A.92)

From the requirement i[h̃, Id ⊗ |k⟩⟨k|] ∈ M(1)
γ for k ∈ {0, 1, . . . , γ − 1}, we have h̃Xk,q = 0

and h̃Yk,q ∝ IdA. Using these and i[h̃, Id ⊗ Xk,k+1] ∈ M(1)
γ for k ∈ {0, 1, . . . , γ − 2}, we see

h̃|k⟩⟨k| = h̃|k+1⟩⟨k+1|. Therefore, h̃ must have the form

h̃|0⟩⟨0| ⊗ IdQ +

γ−2∑
k=0

γ−1∑
q=k+1

yk,qIdA ⊗ Yk,q (A.93)

with an appropriate yk,q ∈ R. Since h̃|0⟩⟨0| ⊗ IdQ ∈ M̂(1)
γ and IdA ⊗ Yk,q ∈ M̄(1)

γ , h̃ ∈ L(Ĵ ∪ J̄) is
guaranteed.

(iii) J = M(2)
γ . Again, any element in the set iG̃(0) can be written as Eq. (A.92). Because i[h̃, Id ⊗

|k⟩⟨k|] ∈ M(2)
γ for k ∈ {0, 1, . . . , γ − 1}, which is the condition for iG̃(0), h̃Xk,q ∝ Z∗ and

h̃Yk,q ∝ Id should hold. From these and i[h̃, Id ⊗ Xk,k+1] ∈ M(2)
γ for k ∈ {0, 1, . . . , γ − 2}, we

have h̃|k⟩⟨k| − h̃|k+1⟩⟨k+1| ∝ Z∗. Then, using these relations and i[h̃, Z∗
⊗ Y0,1] ∈ M(2)

γ , we also
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obtain [h̃|0⟩⟨0|, Z∗
] = 0, i.e., h̃|0⟩⟨0| ∈ u(dimHA)∗. Thus, the form of h̃ is reduced to

γ−2∑
k=0

⎛⎝zkZ∗
⊗ Zk,k+1 +

γ−1∑
q=k+1

(
xk,qZ∗

⊗ Xk,q + yk,qIdA ⊗ Yk,q
)⎞⎠

+ (h̃|0⟩⟨0| − z0Z∗) ⊗ IdQ (A.94)

for appropriate xk,q, yk,q, zk ∈ R. Since (h̃|0⟩⟨0| − z0Z∗) ⊗ IdQ ∈ M̂(2)
γ as h̃|0⟩⟨0| ∈ u(dimHA)∗ and

Z∗
⊗ Xk,q, Z∗

⊗ Zk,q, IdA ⊗ Yk,q are all in M̄(2)
γ , Eq. (A.94) means h ∈ L(Ĵ ∪ J̄).

(iv) J = M(4)
γ . In accordance with the structure of M(4)

γ in Eq. (28), any element in the set iG̃(0)

should be written as

h̃ :=

∑
W∈{X,Y ,Z,Id}

γ−1∑
k=0

(
h̃W ,|k⟩⟨k| ⊗ W ⊗ |k⟩⟨k| +

γ−1∑
q=k+1

(h̃W ,Xk,q ⊗ W ⊗ Xk,q + h̃W ,Yk,q ⊗ W ⊗ Yk,q)
)

. (A.95)

Similarly as the previous cases, since i[h̃, Id⊗ Id⊗|k⟩⟨k|] ∈ M(4)
γ for k ∈ {0, 1, . . . , γ − 1}, we

obtain h̃Id,Xk,q = h̃W ,Yk,q = 0, h̃W ,Xk,q ∝ Id, and h̃Id,Yk,q ∝ Id, where W ∈ {X, Y , Z}. In addition to
these, because i[h̃, Id⊗ Id⊗ Xk,k+1] ∈ M(4)

γ should hold for k ∈ {0, 1, . . . , γ − 2}, we can have
h̃Id,|k⟩⟨k| = h̃Id,|k+1⟩⟨k+1| and h̃W ,|k⟩⟨k| − h̃W ,|k+1⟩⟨k+1| ∝ Id, where W ∈ {X, Y , Z}. These relations,
together with another condition, i[h̃, Id ⊗ W ⊗ Yk,k+1] ∈ M(4)

γ for k ∈ {0, 1, . . . , γ − 2} with
W ∈ {X, Y , Z}, imply h̃W ,|k⟩⟨k| ∝ Id. Since

∑
k h̃Id,|k⟩⟨k| ⊗ Id ⊗ |k⟩⟨k| = h̃Id,|0⟩⟨0| ⊗ Id ⊗ Id ∈ M̂(4)

γ

and the remaining terms in Eq. (A.95) are in M̄(4)
γ , we can conclude h̃ ∈ L(Ĵ ∪ J̄).

(v) J = Sn. Since it is rather hard to consider a general form of Hermitian operators h̃ that fulfill
i[h̃,Sn] ⊆ Sn, we shall define a larger set Sn′,n′′ , and attempt to show h̃ of the form of
Eq. (A.97) will satisfy i[h̃,Sn] ⊆ Sn′n′′ . Then, we will tighten the condition for h̃ later to make
it satisfy i[h̃,Sn] ⊆ Sn.
Let us define the set Sn′,n′′ by

Sn′,n′′ := L({

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y ∪Id ⊗ · · · ⊗ Id

∪U ⊗

n′′  
Y ⊗ · · · ⊗ Y }W∈{X,Z},U∈u(dimH′),m∈{0,1,...,n′−1}), (A.96)

where n′
= ⌈

n
2⌉ and H′ is a direct product of the first n′

− n′′ spaces. We now show by
induction that any Hermitian operator h̃, which satisfies i[h̃,Sn] ⊆ Sn′,n′′ for 0 ≤ n′′ < n′

=

⌈
n
2⌉, has the form:

h̃ := h̃Id ⊗

n′′  
Id ⊗ · · · ⊗ Id

+

∑
W ,W ′∈{X,Z}

∑
m1<m2∈{1,...,n′′}

h̃W ,W ′,m1,m2 ⊗

n′′
−m2  

Id ⊗ · · · ⊗ Id

⊗ W ⊗

m2−m1−1  
Y ⊗ · · · ⊗ Y ⊗W ′

⊗

m1−1  
Id ⊗ · · · ⊗ Id
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+

∑
W∈{X,Z}

∑
m∈{1,...,n′′}

h̃W ,m ⊗

n′′
−m  

Y ⊗ · · · ⊗ Y ⊗W ⊗

m−1  
Id ⊗ · · · ⊗ Id

+

∑
m∈{1,...,n′′}

h̃m ⊗

n′′
−m  

Id ⊗ · · · ⊗ Id⊗Y ⊗

m−1  
Id ⊗ · · · ⊗ Id, (A.97)

where h̃Id, h̃W ,W ′,m1,m2 , h̃W ,m, and h̃m are the operators acting on H′.
When n′′

= 0, because Sn′,0 contains all unitaries U ∈ u(dimH′), i[h̃,Sn] ⊆ Sn′,n′′ does
not impose any condition on h̃. Thus, it can also be arbitrary unitary and it is of the form of
Eq. (A.97). Assume that the proposition holds for n′′

= n′′

0 −1, then the general form of h̃ that
satisfies i[h̃,Sn] ⊆ Sn′,n′′

0−1 should have the form of

h̃ = h̃′

Id ⊗

n′′
0  

Id ⊗ · · · ⊗ Id

+

∑
W ,W ′∈{X,Z}

∑
m1<m2∈{1,...,n′′

0}

h̃′

W ,W ′,m1,m2
⊗

n′′
0−m2  

Id ⊗ · · · ⊗ Id

⊗ W ⊗

m2−m1−1  
Y ⊗ · · · ⊗ Y ⊗W ′

⊗

m1−1  
Id ⊗ · · · ⊗ Id

+

∑
W∈{X,Z}

∑
m∈{1,...,n′′

0}

h̃′

W ,m ⊗

n′′
0−m  

Y ⊗ · · · ⊗ Y ⊗W ⊗

m−1  
Id ⊗ · · · ⊗ Id

+

∑
m∈{1,...,n′′

0}

h̃′

m ⊗

n′′
0−m  

Id ⊗ · · · ⊗ Id⊗Y ⊗

m−1  
Id ⊗ · · · ⊗ Id

+

∑
W∈{X,Y ,Z}

∑
W ′,W ′′∈{X,Z}

∑
m1<m2∈{1,...,n′′

0−1}

∆h̃W ,W ′,W ′′,m1,m2

⊗ W ⊗

n′′
0−m2−1  

Id ⊗ · · · ⊗ Id⊗W ′
⊗

m2−m1−1  
Y ⊗ · · · ⊗ Y ⊗W ′′

⊗

m1−1  
Id ⊗ · · · ⊗ Id

+

∑
W∈{X,Z}

∑
m∈{1,...,n′′

0−1}

∆h̃Id,W ,m ⊗ Id

⊗

n′′
0−m−1  

Y ⊗ · · · ⊗ Y ⊗W ⊗

m−1  
Id ⊗ · · · ⊗ Id

+

∑
W∈{X,Y ,Z}

∑
m∈{1,...,n′′

0−1}

∆h̃W ,m ⊗ W

⊗

n′′
0−m−1  

Id ⊗ · · · ⊗ Id⊗Y ⊗

m−1  
Id ⊗ · · · ⊗ Id, (A.98)

where we have split the operator for the left-most space in Eq. (A.97) into two parts

according to the tensor product structure of Sn. Since one of the spaces thereby split is two-
dimensional, it can be spanned by the basis {Id, X, Y , Z}. Thus, the h̃ operators in Eq. (A.97)
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can be written as tensor products as follows.

h̃Id = h̃′

Id ⊗ Id + h̃′

n′′
0
⊗ Y +

∑
W∈{X,Z}

h̃′

W ,n′′
0
⊗ W , (A.99)

h̃W ,W ′,m1,m2 = h̃′

W ,W ′,m1,m2
⊗ Id +

∑
W ′′∈{X,Y ,Z}

∆h̃W ′′,W ,W ′,m1,m2 ⊗ W , (A.100)

h̃W ,m = h̃′

W ,m ⊗ Y + ∆h̃Id,W ,m ⊗ Id +

∑
W ′∈{X,Z}

h̃′

W ′,W ,n′′
0 ,m ⊗ W ′, (A.101)

h̃m = h̃′

m ⊗ Id +

∑
W∈{X,Y ,Z}

∆h̃W ,m ⊗ W . (A.102)

Due to the inclusion Sn′,n′′+1 ⊆ Sn′,n′′ , any Hermitian operator h̃ which satisfies i[h̃,Sn] ⊆

Sn′,n′′
0
should also have the form of Eq. (A.98). Further, i[h̃,Sn] ⊆ Sn′,n′′

0
imposes additional

conditions that are of help to get rid of some terms in Eq. (A.98). Since i[h̃,

n′
−n′′

0  
Id ⊗ · · · ⊗ Id⊗X⊗

n′′
0−1  

Y ⊗ · · · ⊗ Y ] ∈ Sn′,n′′
0
, we can have ∆h̃W ,W ′,W ′′,m1,m2 = ∆h̃Id,W ′,m = ∆h̃W ,m = 0 for

W ∈ {Y , Z} and W ′,W ′′
∈ {X, Z}. Similarly, i[h̃,

n′
−n′′

0  
Id ⊗ · · · ⊗ Id⊗Z ⊗

n′′
0−1  

Y ⊗ · · · ⊗ Y ] ∈ Sn′,n′′
0

implies ∆h̃X,W ,W ′,m1,m2 = ∆h̃X,m = 0 for W ,W ′
∈ {Y , Z}.

Let us now consider the case where n is an odd number. Since S2n′−1 ⊆ Sn′,n′−1, any
Hermitian operator h̃ which satisfies i[h̃,S2n′−1] ⊆ S2n′−1 can be written as Eq. (A.97) for

n′′
= n′

− 1. Because i[h̃,

n′
−m−1  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y ] ∈ S2n′−1 for m ∈ {1, 2, . . . , n′

− 1}
and W ∈ {X, Z}, both h̃W1,W2,m1,m2 and h̃m are proportional to Id and h̃W ,m = 0. Therefore,
such Hermitian operators h̃ are in L(Ĵ, J̄).
When n is even, any Hermitian operator h̃ satisfying i[h̃,S2n′ ] ⊆ S2n′ has the form of

Eq. (A.97) for n′′
= n′

− 1, because S2n′ ⊆ Sn′,n′−1. The condition i[h̃,

n′
−m−1  

Id ⊗ · · · ⊗ Id⊗W ⊗
m−1  

Y ⊗ · · · ⊗ Y ] ∈ S2n′ for m ∈ {1, 2, . . . , n′
− 1} then implies h̃W1,W2,m1,m2 ∝ Id, h̃m ∝ Id and

h̃W ,m ∝ Z∗, where W ,W1,W2 ∈ {X, Z}. Another one, i[h̃, Z∗
⊗

n′
−1  

Y ⊗ · · · ⊗ Y ] = 0, leads to
[h̃Id, Z∗

] ⊆ S2n′ . Hence, such Hermitian operators h̃ are in L(Ĵ ∪ J̄), and the proposition of the
lemma has been proved. □

The next lemma demonstrates that, we can easily express a set of all the Hermitian operators
that commute with a simple Jordan algebra.

Lemma 8. Suppose that a pair (J, Ĵ) of sets of Hermitian operators on H is equal to (R, R̂), (M(k)
γ , M̂(k)

γ )
or (Sn, Ŝn) for γ ≥ 3, k ∈ {1, 2, 4} and n ≥ 3. If we define J ′ to be the set of all the Hermitian operators
that commute with the simple Jordan algebra J, i.e.,

J ′ := {h′
|h′

∈ i · u(dimH) ∧ ∀h ∈ J, [h′, h] = 0}, (A.103)

then J ′ is equal to Ĵ .

Here, H is again the support of the largest projection operator in J .

Proof. It is straightforward to verify [Ĵ, J] = {0} by using the explicit forms of these algebras,
Eqs. (37)–(42) and Eqs. (25)–(30), thus Ĵ ⊆ J ′. So, in the following, we show the inclusion of the
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opposite direction, that is, if a Hermitian operator h′ commute with any operator in J , then h′
∈ Ĵ .

Let us examine each case, depending on the type of J . Below, the range of k is {0, 1, . . . , γ − 1},
unless it is for the Pauli operators for which its range is {0, 1, . . . , γ − 2}.

(i) J = R. Any operator commutes with IdA, so J ′ is u(dimH), which is the same as R̂. Thus,
Ĵ ⊇ J ′.

(ii) J = M(1)
γ or M(2)

γ . any element in the set J ′ can be written as

h′
:= h′

Id ⊗ Id +

γ−2∑
k=0

⎛⎝h′

Zk,k+1
⊗ Zk,k+1 +

γ−1∑
q=k+1

(
h′

Xk,q ⊗ Xk,q + h′

Yk,q ⊗ Yk,q

)⎞⎠, (A.104)

where h′

W is a Hermitian operator on the first space that makes a pair with the operator W
on the second space. Because of the condition, [h′, Id⊗|k⟩⟨k|] = 0, we have h′

Xk,q
= h′

Yk,q
= 0.

With this and another condition, [h′, Id ⊗ Xk,k+1] = 0, we obtain 2h′

Zk,k+1
= h′

Zk−1,k
+ h′

Zk+1,k+2
,

where we set h′

Z−1,0
= h′

Zγ−1,γ
= 0. This is enough to conclude h′

Zk,k+1
= 0, and thus we have

h′
= h′

Id ⊗ Id. Therefore, in the case of J = M(1)
γ , h′

∈ Ĵ = M̂(1)
γ holds. When J = M(2)

γ , an
additional condition, [h′, Z∗

⊗ Y0,1] = 0, leads to [h′

Id, Z
∗
] = 0, and thus h′

∈ M̂(2)
γ .

(iii) J = M(4)
γ . Any element in the set J ′ can be written as

h′
:=

∑
W∈{X,Y ,Z,Id}

(
h′

W ,Id ⊗ W ⊗ Id +

γ−2∑
k=0

(
h′

W ,Zk,k+1
⊗ W ⊗ Zk,k+1

+

γ−1∑
q=k+1

(
h′

W ,Xk,q ⊗ W ⊗ Xk,q + h′

W ,Yk,q ⊗ W ⊗ Yk,q

) )⎞⎠ , (A.105)

where h′

W ,W ′ is a Hermitian operator on the first space that makes a tensor product with W
and W ′. The commutation condition [h′, Id⊗ Id⊗|k⟩⟨k|] = 0 implies h′

W ,Xk,q
= h′

W ,Yk,q
= 0 for

W ∈ {Id, X, Y , Z}. Together with this and [h′, Id ⊗ Id ⊗ Xk,k+1] = 0, we get 2h′

W ,Zk,k+1
=

h′

W ,Zk−1,k
+ h′

W ,Zk+1,k+2
, where we set h′

W ,Z−1,0
= h′

W ,Zγ−1,γ
= 0. These allow us to obtain

h′

W ,Zk,k+1
= 0. Further, another commutation, [h′, Id ⊗ W ⊗ Yk,k+1] ∈ M(4)

γ for W ∈ {X, Y , Z},
as well as the relations obtained above, lead to h′

W ,Id = 0 for W ∈ {X, Y , Z}. Therefore, the
remaining term is only h′

Id,Id ⊗ Id ⊗ Id and this is obviously in M̂(4)
γ .

(iv) J = Sn. As in the proof of Lemma 7, instead of considering the general form of operators in
J ′, we first define a larger set Sn′,n′′ , and find the form of h′ that commutes with any operator
in Sn′,n′′ . Then, we will tighten the condition to have the set of h′ that meets the condition
[h′, h] = 0 for all h ∈ Sn′,n′′ .
Let us define

Sn′,n′′ := L({

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y }W∈{X,Z},m∈{0,1,...,n′′}), (A.106)

where n′
= ⌈

n
2⌉. We prove by induction that any Hermitian operator h′ that satisfies [h′, h] =

0 for any h ∈ Sn′,n′′ has the following form:

h′
:= h′

Id ⊗

n′′  
Id ⊗ · · · ⊗ Id, (A.107)

where h′

Id is a Hermitian operator acting on the direct product of the first n′
− n′′ spaces and

0 ≤ n′′ < n′.

When n′′
= 0, Sn′,n′′ =

n′  
Id ⊗ · · · ⊗ Id, thus the proposition trivially holds. Assume that h′ has

the form of Eq. (A.107) when n′′
= n′′

0 − 1. When n′′
= n′′

0 , any Hermitian operator h′ that
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commutes with any h ∈ Sn′,n′′
0
should have the following form:

h′
:= h′′

Id ⊗

n′′
0  

Id ⊗ · · · ⊗ Id+

∑
W∈{X,Y ,Z}

∆h′

W ,Id ⊗ W ⊗

n′′
0−1  

Id ⊗ · · · ⊗ Id . (A.108)

Comparing with Eq. (A.107), we see

h′

Id = h′′

Id ⊗ Id +

∑
W∈{X,Y ,Z}

∆h′

W ,Id ⊗ W . (A.109)

While [h′′

Id ⊗

n′′
0  

Id ⊗ · · · ⊗ Id,

n′
−n′′

0  
Id ⊗ · · · ⊗ Id⊗W ⊗

n′′
0−1  

Y ⊗ · · · ⊗ Y ] = 0 for W ∈ {X, Z}, in order for

[
∑

V ∆h′

V ,Id ⊗ V ⊗

n′′
0−1  

Id ⊗ · · · ⊗ Id,

n′
−n′′

0  
Id ⊗ · · · ⊗ Id⊗W ⊗

n′′
0−1  

Y ⊗ · · · ⊗ Y ] to be zero, ∆h′

V ,Id = 0 for
any V ∈ {X, Y , Z}. We now consider the case of odd n = 2n′

− 1. Any Hermitian operator
h′ that commutes with any h ∈ S2n′−1 can be written as Eq. (A.107) for n′′

= n′
− 1 since

S2n′−1 ⊇ Sn′,n′−1, which means that such an operator h′ is in Ŝ2n′−1.
Similarly, for even n = 2n′, an operator h′ that commutes with any h ∈ S2n′ should have the
form of Eq. (A.107) with n′′

= n′
−1, since S2n′ ⊇ Sn′,n′−1. Due to the commutation condition,

[h′, Z∗
⊗

n′
−1  

Y ⊗ · · · ⊗ Y ] = 0, we have a constraint [h′

Id, Z
∗
] = 0. Therefore, h′

∈ Ŝ2n′ . □

When dimHS = 2, it is not hard to specify the largest and the smallest possible Lie algebras
for a given Jordan algebra iG(1). It can be done thanks to Lemmas 7 and 8, as well as the inclusion
relations that identifiers iG(0) and iG(1) fulfill. This fact is of help for identifying the disconnected
and connected algebras, as stated in the following lemma.

Lemma 9. Suppose that a triple (Jj, J̄j, Ĵj) of algebras on HEj is equal to either one of the following three;
(R, R̄, R̂), (M(k)

γ , M̄(k)
γ , M̂(k)

γ ) or (Sn, S̄n, Ŝn), where γ ≥ 3, k ∈ {1, 2, 4} and n ≥ 3 (for each j,). When
dimHS = 2, if the relation⨁

j

L(iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS))

⊆ L ⊆

⨁
j

L(iĴj ⊗ {IdS} ∪ iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS)) (A.110)

holds and L is a Lie algebra, the disconnected and the connected algebras can be written as

Ld =

⨁
j

iĴj ⊗ {IdS} (A.111)

Lc =

⨁
j

L(iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS)) (A.112)

Proof. For the sake of convenience, we let L̃d and L̃c denote the RHSs of Eqs. (A.111) and (A.112),
respectively. From the definition of the connected Lie algebra, we see

Lc ⊇ L([{IdE} ⊗ su(dimHS), L])

⊇ L([{IdE} ⊗ su(dimHS),
⨁

j

Jj ⊗ su(dimHS)])

⊇

⨁
j

Jj ⊗ su(dimHS). (A.113)
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In the second inclusion, we have used the first relation of the assumption Eq. (A.110). Using this,
and since Lc is a linear space that is closed under the commutator, we have

Lc ⊇ L([Lc, Lc])

⊇ L([
⨁

j

Jj ⊗ {iX},
⨁

j

Jj ⊗ {iX}]),

=

⨁
j

iJ̄j ⊗ {Id} (A.114)

where we have used iL([Jj, Jj]) = J̄j (Lemma 6). Eqs. (A.113) and (A.114) imply Lc ⊇ L̃c .
The inclusion of the opposite direction Lc ⊆ L̃c can be shown as follows.

[L̃c, L] ⊆ [L̃c,
⨁

j

L(iĴj ⊗ {IdS} ∪ iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS))]

⊆

⨁
j

L([J̄j, Ĵj] ⊗ {IdS} ∪ i[Jj, Ĵj] ⊗ su(dimHS) ∪ [J̄j, J̄j] ⊗ {IdS}

∪i[Jj, J̄j] ⊗ su(dimHS) ∪ [Jj, Jj] ⊗ {IdS} ∪ {Jj, Jj} ⊗ su(dimHS))

=

⨁
j

L(iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS)) = L̃c (A.115)

The first inclusion is simply from Eq. (A.110). The second inclusion is due to a generic inclusion
[A⊗su(dimHS), B⊗su(dimHS)] ⊆ L([A, B]⊗{Id}∪{A, B}⊗su(dimHS)), which is valid for arbitrary
operator sets A and B when dimHS = 2. The third relation comes from the results of Lemma 6,
namely, [J̄j, Ĵj] = [Jj, Ĵj] = {0}, i[J̄j, J̄j] ⊆ iL([Jj, Jj]) = J̄j, and i[Jj, J̄j] ⊆ {Jj, Jj} = Jj. Eq. (A.115) and
L̃c ⊆ L imply that L̃c is an ideal of L, which means Lc ⊆ L̃c . Hence, Eq. (A.112) is proved.

Next, we show Eq. (A.111), which is about the disconnected algebra Ld. It is straightforward to
verify [L̃d, Lc] = {0} by noting [J̄j, Ĵj] = [Jj, Ĵj] = {0} (Lemma 6), thus we have L̃d ⊆ Ld. The opposite
is shown as follows:

Ld ⊆ {g|g ∈ u(dimHE dimHS) ∧ ∀g ′
∈ (
⨁

j

Jj) ⊗ su(dimHS), [g, g ′
] = 0}.

= i{h|h ∈ i · u(dimHE) ∧ ∀h′
∈

⨁
j

Jj, [h, h′
] = 0} ⊗ {IdS}.

=

⨁
j

i{h|h ∈ i · u(dimHEj ) ∧ ∀h′
∈ Jj, [h, h′

] = 0} ⊗ {IdS}.

=

⨁
j

iĴj ⊗ {IdS} = L̃d (A.116)

The first relation is a paraphrase of the definition of Ld, and the second and the third equalities are
justified since IdE is in

⨁
j Jj and IdEj ∈ Jj, respectively. The fourth is due to Lemma 8. □

In the case of dimHS ≥ 3, the structure of G(1) is simple. Therefore, as in the case of dimHS = 2,
the largest and smallest Lie algebras for a given G(1) can be obtained, and this constraint enables us
to identify the disconnected and connected algebras as follows.

Lemma 10. When dimHS ≥ 3, if the relation⨁
j

{IdBj} ⊗ su(dimHRj · dimHS}

⊆ L ⊆

⨁
j

L(u(Bj) ⊗ {IdRj ⊗ IdS} ∪ {IdBj} ⊗ su(dimHRj · dimHS}) (A.117)
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holds and L is a Lie algebra, the disconnected and the connected algebras can be written as

Ld =

⨁
j

u(Bj) ⊗ {IdRj ⊗ IdS}, (A.118)

Lc =

⨁
j

{IdBj} ⊗ su(dimHRj · dimHS}. (A.119)

Proof. We shall let L̃, L̃d, and L̃c denote the RHSs of Eqs. (A.117), (A.118), and (A.119), respectively,
to simplify the notations for the proof. From the definition of the connected Lie algebra, we have

Lc ⊇ L([{IdE} ⊗ su(dimHS), L])

⊇ L([{IdE} ⊗ su(dimHS),
⨁

j

i{IdBj} ⊗ u(dimHRj ) ⊗ su(dimHS)])

⊇

⨁
j

i{IdBj} ⊗ u(dimHRj ) ⊗ su(dimHS). (A.120)

In the second line, we have used the first relation of Eq. (A.117). Since, Lc is closed under the
commutator and is a linear space,

Lc ⊇ L([Lc, Lc])

⊇ L([
⨁

j

i{IdBj} ⊗ u(dimHRj ) ⊗ {iX0,1},
⨁

j

i{IdBj} ⊗ u(dimHRj ) ⊗ {iX0,1}])

=

⨁
j

i{IdBj} ⊗ su(dimHRj ) ⊗ {i(|0⟩⟨0| + |1⟩⟨1|)}. (A.121)

We have used Eq. (A.120) in the second inclusion relation, and the fact iL([u(N), u(N)]) = su(N) in
the last step.

From Eqs. (A.120) and (A.121) and the fact that Lc is a linear space, we know Lc ⊇ L̃c . The opposite
inclusion, Lc ⊆ L̃c , is also guaranteed by the fact that L̃c includes the set {IdE} ⊗ su(dimHS), and
that L̃c is an ideal of L, i.e. [L̃c, L] ⊆ [L̃c, L̃] ⊆ L̃c . As a result, Eq. (A.119) is derived.

Next, let us turn to Ld. Recall the definition of Ld in Eq. (2), viz., Ld := {g|g ∈ u(dimHE ·dimHS)∧
∀g ′

∈ Lc, [g, g ′
] = 0}. Then, from the definition of L̃d, which is the RHS of Eq. (A.118), we have

[L̃d, Lc] = {0}, thus L̃d ⊆ Ld. The opposite inclusion is shown as follows.

Ld ⊆ {g|g ∈ u(dimHE · dimHS)

∧ ∀g ′
∈ (
⨁

j

{IdBj} ⊗ u(dimHRj )) ⊗ su(dimHS), [g, g ′
] = 0}

= {g|g ∈ u(dimHE) ∧ ∀g ′
∈

⨁
j

{IdBj} ⊗ u(dimHRj ), [g, g ′
] = 0} ⊗ {IdS}

=

⨁
j

{g|g ∈ u(dimHBj · dimHRj ) ∧ ∀g ′
∈ {IdBj} ⊗ u(dimHRj ), [g, g ′

] = 0} ⊗ {IdS}

=

⨁
j

u(dimHBj ) ⊗ {IdRj ⊗ IdS} = L̃d. (A.122)

The second and the third inclusions are results of IdS ∈ u(dimHS) and IdRj ∈ u(dimHRj ),
respectively. □

As we have seen in Theorems 2 and 3, the space HE can have a structure of either Eq. (5) or
Eq. (8), when dimHS ≥ 3 or = 2, respectively. Let us now consider the situation in which an
additional space S ′ is attached to 2-dimensional S. While HE has a structure of Eq. (8) because
dimHS = 2, it can also have a structure of Eq. (5) if we regard SS ′ as a single space whose
dimensionality is higher than 4 (because dimHS′ ≥ 2). This means that these two structures coexist
in this case we can give two structures for HE depending on an operator H acting on HE ⊗HS when
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dimHS = 2. The following lemma is useful for understanding the relation between the two types
of structures of HE , and thus for proving Theorem 5.

Lemma 11. Consider pairs of algebras, (J, J ′), each of which is taken from Eqs. (25)–(30) and Eqs.
(65)–(70) so that there is a correspondence in the type of algebras, such as (M(4)

γ ,M′(4)
γ ). Then, J ′ is

the smallest set of Hermitian operators that is closed under commutator and anticommutator, while
containing the set J .

For the sake of clarity, let us re-list Eqs. (25)–(30) and (65)–(70) here again:

R := {IdA}, (A.25)
M(1)

γ := L({IdA ⊗ Xk,q, IdA ⊗ |k⟩⟨k|}k̸=q∈{0,1,...,γ−1}), (A.26)
M(2)

γ := L({IdA ⊗ Xk,q, IdA ⊗ |k⟩⟨k|, Z∗
⊗ Yk,q}k̸=q∈{0,1,...,γ−1}), (A.27)

M(4)
γ := L({IdA ⊗ IdQ (1) ⊗ Xk,q, IdA ⊗ IdQ (1) ⊗ |k⟩⟨k|,

IdA ⊗ W ⊗ Yk,q}W∈{X,Y ,Z}, k̸=q∈{0,1,...,γ−1}), (A.28)

S2n′−1 := L({

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y ,

Id ⊗ · · · ⊗ Id}W∈{X,Z},m∈{1,2,...,n′−1}), (A.29)

S2n′ := L({

n′
−m  

Id ⊗ · · · ⊗ Id⊗W ⊗

m−1  
Y ⊗ · · · ⊗ Y , Id ⊗ · · · ⊗ Id,

Z∗
⊗

n′
−1  

Y ⊗ · · · ⊗ Y }W∈{X,Z},m∈{1,2,...,n′−1}), (A.30)

and

R′
= {IdA}, (A.65)

M′(1)
γ = i{IdA} ⊗ u(dimHQ ), (A.66)

M′(2)
γ = iL(({IdA(+1)} ⊕ {IdA(−1)}) ⊗ u(dimHQ )), (A.67)

M′(4)
γ = i{IdA} ⊗ u(dimHQ (1) · dimHQ ), (A.68)

S′

2n′−1 = i{IdA} ⊗ u(dimHQ (n′−1) · dimHQ (n′−2) · · · dimHQ (1) ), (A.69)
S′

2n′ = iL(({IdA(+1)} ⊕ {IdA(−1)})
⊗ u(dimHQ (n′−1) · dimHQ (n′−2) · · · dimHQ (1) )). (A.70)

Proof. It is almost trivial to see J ⊆ J ′, i[J ′, J ′] ⊆ J ′, and {J ′, J ′} ⊆ J ′, from the definitions above.
Therefore, to prove the lemma, it is enough if we check that any element of the basis of J ′ can be
generated by J . We will verify below that this proposition holds for all instances of (J, J ′).

(i) J = R. This case is trivial because R = R′.
(ii) J = M(1)

γ . Clearly, Xk,q and |k⟩⟨k| in the Q space are sufficient to span u(dimHQ ) in Eq. (66).
(iii) J = M(2)

γ . Note that {Z∗
⊗ Xk,q, Z∗

⊗ |k⟩⟨k|, IdA ⊗ Yk,q} are in M(2)
γ , since

Z∗
⊗ Xk,q = i[IdA ⊗ |k⟩⟨k|, Z∗

⊗ Yk,q],

Z∗
⊗ |k⟩⟨k| = −

1
4
{i[IdA ⊗ Xk,q, Z∗

⊗ Yk,q], IdA ⊗ |k⟩⟨k|},

IdA ⊗ Yk,q = i[IdA ⊗ Xk,q, IdA ⊗ |k⟩⟨k|]. (A.198)

It follows from Eqs. (A.198) and (27) that it is possible to span M′(2)
γ by elements in M(2)

γ .
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(iv) J = M(4)
γ . Similarly, we see that

IdA ⊗ W ⊗ Xk,q = i[IdA ⊗ IdQ (1) ⊗ |k⟩⟨k|, IdA ⊗ W ⊗ Yk,q],

IdA ⊗ W ⊗ |k⟩⟨k| = −
1
4
{i[IdA ⊗ IdQ (1) ⊗ Xk,q, IdA ⊗ W ⊗ Yk,q], IdA ⊗ IdQ (1) ⊗ |k⟩⟨k|},

IdA ⊗ IdQ (1) ⊗ Yk,q = i[IdA ⊗ IdQ (1) ⊗ Xk,q, IdA ⊗ IdQ (1) ⊗ |k⟩⟨k|] (A.199)

with W ∈ {X, Y , Z} are in M(4)
γ , thus, together with Eq. (28), M′(4)

γ can be spanned by elements
in M(4)

γ .
(v) J = S2n−1. To prove that S′

2n−1 can be generated by S2n−1, let us define sets of operators on
H labeled by integer 0 ≤ n′ < n as

Mn′ := {IdA ⊗

n−n′
−1  

IdQ (n−1) ⊗ · · · ⊗ IdQ (n′+1) ⊗Wn′ ⊗ Wn′−1 ⊗ · · · ⊗ W1}Wm∈{X,Y ,Z,Id}, (A.200)

and prove that, when m < n, Mm ⊂ Mn and any element in Mm can be generated by Mm−1
and S2n−1.
As the basis, we see that M0 contains only one element IdE . For the inductive step, suppose
that any h ∈ Mm−1 can be generated from S2n−1 for m < n. Then, by taking anti-commutators
of elements in S2n−1, we see

Id1 ⊗ W ⊗ Id2 =
1
2
{Id1 ⊗ W ⊗ Y2, Id1 ⊗ IdQ (m) ⊗ Y2}, (A.201)

h · (Id1 ⊗ W ′
⊗ Id2) =

1
2
{h, Id1 ⊗ W ′

⊗ Id2}, (A.202)

where

Id1 := IdA ⊗ IdQ (n−1) ⊗ IdQ (n−2) ⊗ · · · ⊗ IdQ (m+1) ,

Id2 := IdQ (m−1) ⊗ IdQ (m−2) ⊗ · · · ⊗ IdQ (1) ,

Y2 :=

m−1  
Y ⊗ · · · ⊗ Y ,

W ∈ {X, Z},

W ′
∈ {X, Y , Z},

h ∈ Mm−1.

Note that Id1 ⊗W ⊗ Y2 is in S2n−1, and Id1 ⊗ IdQ (m) ⊗ Y2 is in Mm−1. In addition, Id1 ⊗ Y ⊗ Id2
is obtained by taking a commutator of elements in S2n−1. Therefore, Eqs. (A.201) and (A.202)
mean that, when m < n, we can generate any element in Mm = {h · (Id1 ⊗W ′′

⊗ Id2)}, where
h ∈ Mm−1,W ′′

∈ {Id, X, Y , Z}, by Mm−1 and S2n−1. Combining this fact and the assumption as
well as IdE ∈ S2n−1, we can conclude that any element in Mm can be generated from S2n−1
where 0 ≤ m ≤ n − 1. Since Mn−1 is a basis of S′

2n−1, we have proved that S′

2n−1 can be
generated by S2n−1.

(vi) J = S2n. Since S2n−1 is a subspace of S2n, any element in Mn−1 can be generated from S2n,
where Mm is the set defined in Eq. (A.200). The following equalities

Z∗
⊗ Id3 =

1
2
{Z∗

⊗ Y3, IdA ⊗ Y3},

h · Z∗
⊗ Id3 =

1
2
{Z∗

⊗ Id3, h}, (A.203)

where

h ∈ Mn−1

Id3 := IdQ (n−1) ⊗ IdQ (n−2) ⊗ · · · ⊗ IdQ (1)



38 G. Kato, M. Owari and K. Maruyama / Annals of Physics 412 (2020) 168046

Y3 :=

n−1  
Y ⊗ · · · ⊗ Y ,

indicate that h ·Z∗
⊗ Id3 can be generated from Mn−1 and S2n. Since Mn−1∪{h ·Z∗

⊗ Id3}h∈Mn−1
is a basis of S′

2n, S
′

2n can be generated by S2n. □

Appendix B. Relation with other investigations about indirect control

There has been a paper [22], whose results appear to be similar to ours at the first sight. Although
nothing is conflictive and their paper is very significant in its own right, we find it instructive to
describe their main results in our language and elucidate the generality of our results.

Let us prove the central results in [22], namely, its Theorems 2 and 3, with our theorems and
lemmas. We shall keep using our notations for the sake of consistency, although [22] uses a set of
different notations.3

They make several assumptions for the Lie algebra L on HE ⊗ HS :

(i) The set L contains at least one element which is nonzero in L(su(dimHE) ⊗ su(dimHS)). (the
condition (A-a) therein)

(ii) Generators of any control on the space HS are in the algebra L, that is, {IdE} ⊗ su(dimHS) ∈ L.
(the condition (A-b))

(iii) All elements in L are traceless.

Let us reexpress those theorems in our notation before proving them by using our results under
these assumptions.

Theorem 2 in [22]. When dimHS ≥ 3, for any density matrix ρS on HS , i.e., any positive
semi-definite operator with unit trace,

L = su(dimHE · dimHS) ⇐⇒ ∀U, ∃g ∈ L, ∀ρE, TrSegρE ⊗ ρSe−g
= UρEU† (B.1)

where ρE and U are a density operator and a unitary operator on HE , respectively.

Theorem 3 in [22]. When dimHS = 2, different structures occur for the dynamical Lie algebra L,
depending on the rank of the density matrix ρ ′

S . If ρ ′

S is of rank-2 on HS , the same proposition as
(B.1) holds:

L = su(dimHE · dimHS) ⇐⇒ ∀U, ∃g ∈ L, ∀ρE, TrSegρE ⊗ ρ ′

Se
−g

= UρEU†. (B.2)

If rankρS = 1, namely, ρS = |φS⟩⟨φS |,

∃J̄, J ⊆ i · u(dimHE),
L = L(iJ̄ ⊗ {IdS} ∪ J ⊗ su(dimHS)) ∧ iL(J̄ ∪ J) = u(dimHE)

⇐⇒ ∀U, ∃g ∈ L, ∀ρE, TrSegρE ⊗ |φS⟩⟨φS |e−g
= UρEU†. (B.3)

The right arrows in (B.1) and (B.2) are trivial. The right arrow in (B.3) can be justified as follows.
From the condition in the LHS of (B.3), for any unitary operator U on HE , there is an element
g = α1 ⊗ Id + α2 ⊗ (|φS⟩⟨φS | − |φ⊥

S ⟩⟨φ⊥

S |) ∈ L such that eg = U ⊗ |φS⟩⟨φS | + V ⊗ |φ⊥

S ⟩⟨φ⊥

S |,
where U = eα1+α2 and V = eα1−α2 are unitary operators on HE .

So, it is sufficient to prove the left arrows in these propositions to obtain the theorems. To this
end, the following two additional lemmas will be useful to use our result for them.

Lemma 12. If a positive matrix ρE is non-zero and not proportional to the identity operator,

∀U, ∃g ∈ L, TrSegρE ⊗ ρSe−g
∝ UρEU†

H⇒ u(dimHE) = {TrS g̃}g̃∈Ad∞
L (ρE⊗ρS ), (B.4)

3 For instance, the systems S and A in [22] correspond to E and S in the present paper.
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where L is a set of skew-Hermitian operators, ρS is a positive semi-definite operator, and U is a unitary
operator on HE . Also,

Ad∞

L (ρ) := lim
j→∞

AdjL(ρ),

Ad0L (ρ) := {iρ},

AdjL(ρ) := L(Adj−1
L (ρ) ∪ [Adj−1

L (ρ), L]) for j ≥ 1.

Here, we just sketch an outline of its proof, while it was proved in the paper [23] as Theorem 1.

Proof. The ⇒ in Eq. (B.4) can be shown as

u(dimHE) ⊇ {TrSg}g∈Ad∞
L (ρE⊗ρS )

⊇ iL({TrSegρE ⊗ ρSe−g
}g∈L) ⊇ iL({UρEU†

}U ) = u(dimHE). (B.5)

Each inclusion in the above expression can be justified as follows: The first inclusion is guaranteed
by definition of Ad∞

L (ρ). The second one is a result of ∀g ∈ L, egρe−g
∈ iAd∞

L (ρ), which can be seen
by using the Taylor expansion of eg and e−g for egρe−g . The third one comes from the LHS of (B.4)
and the fact that TrSegρE ⊗ ρSe−g

̸= 0. The last equality is due to the assumption for ρE . □

Lemma 13. If ρ ′

S is a full rank positive operator,

∀ρE, TrSegρE ⊗ ρ ′

Se
−g

= UρEU†
H⇒ ∀ρE, TrSegρE ⊗ IdSe−g

∝ UρEU†, (B.6)

where g is a skew-Hermitian operator, U is a unitary operator on HE , and ρE is a density matrix on HE .

Proof. In can be shown directly by following the chain of relations:

∀ρE, TrSegρE ⊗ ρ ′

Se
−g

= UρEU† (B.7)

H⇒ ∀|φE⟩, TrSeg |φE⟩⟨φE | ⊗ ρ ′

Se
−g

= U |φE⟩⟨φE |U† (B.8)

H⇒ ∀|φS⟩, ∀|φE⟩, TrSeg |φE⟩⟨φE | ⊗ |φS⟩⟨φS |e−g
= U |φE⟩⟨φE |U† (B.9)

H⇒ ∀|φE⟩, TrSeg |φE⟩⟨φE | ⊗ IdSe−g
∝ U |φE⟩⟨φE |U† (B.10)

H⇒ ∀ρE, TrSegρE ⊗ IdSe−g
∝ UρEU† (B.11)

The first and the third arrows are trivial, and others can be justified as follows. The second one can
be seen by decomposing ρ ′

S as ρ ′

S = ρ ′′

S + δ|φS⟩⟨φS | with any |φS⟩, a positive operator ρ ′′

S and an
appropriate positive number δ. Therefore, if the relation (B.8)

TrSeg |φE⟩⟨φE | ⊗ ρ ′

Se
−g

= TrSeg |φE⟩⟨φE | ⊗ ρ ′′

S e
−g

+ δTrSeg |φE⟩⟨φE | ⊗ |φS⟩⟨φS |e−g

= U |φE⟩⟨φE |U† (B.12)

holds, both terms in the middle must be proportional to U |φE⟩⟨φE |U† since they are both positive
and U |φE⟩⟨φE |U† is of rank 1. Combining this and the fact that U and eg are unitary operators, we
know that TrSeg |φE⟩⟨φE | ⊗ |φS⟩⟨φS |e−g must be U |φE⟩⟨φE |U†. The last arrow holds simply because
any positive operator ρE can be written as a linear combination of rank 1 projection operators. □

Now, we can give a simple proof for the left arrow of (B.1). Consider a density operator ρE that is
proportional to IdB1 ⊗|0⟩R1R1⟨0|, where the tensor product structure is the one shown in Theorem 2,
i.e.,

⨁
j HBj ⊗HRj . Then, if the RHS of Eq. (B.1) holds, ρE cannot be the identity operator in HE . This is

because if ρE ∝ IdE there exists a single j, say 1, in the direct sum above and the dimension of R1 is
one. This implies, due to Theorem 2, that L is a subset of L(i ·u(dimHE)⊗{IdS}∪ i · IdE ⊗ su(dimHS)),
and this contradicts with the assumption (i) above. Therefore, from the condition in the RHS of (B.1)
and Lemma 12, u(dimHE) = {TrSg}g∈Ad∞

L (IdB1⊗|0⟩R1 R1 ⟨0|⊗ρS ) must hold. This relation and the structure
of L, i.e., L = L(L′

d ∪
⨁

j{IdBj} ⊗ su(dimHRj · dimHS)) with L′

d ⊆ Ld =
⨁

j u(dimHBj )⊗ IdRj ⊗ IdS , tell
us that the index j can take only one value 1 and dimHB1 = 1. Further, the assumption (iii), stating
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that all elements are traceless, implies that L′

d can contain only 0. Hence, the left arrow of (B.1) is
verified.

Next, let us give a simple proof for the left arrow in (B.2). From the condition in the RHS of (B.2)
and Lemma 13,

∀U, ∃g ∈ L, ∀ρE, TrSegρE ⊗ IdSe−g
∝ UρEU† (B.13)

must hold. From Theorems 1 and 3, we know that L has a structure such that

L = L(L′

d ∪

⨁
j

L(iJ̄j ⊗ {IdS} ∪ Jj ⊗ su(dimHS))), (B.14)

L′

d ⊆

⨁
j

iĴj ⊗ {IdS} (B.15)

where candidates of the triple (Jj, J̄j, Ĵj) are given in Eqs. (25)–(42). From the assumption (iii), we
can pick a density matrix ρE proportional to IdE1 +h where h is an element in the set J̄1 so that ρE is
not proportional to IdE . Therefore, from (B.13) and Lemma 12, u(dimHE) = {TrSg}g∈Ad∞

L ((IdE1+h)⊗IdS )
must hold. Since i(IdE1 + h) ⊗ IdS is in L(L ∪ i{IdE1 ⊗ IdS}) and the latter is obviously closed under
the commutation relation, the relation Ad∞

L ((IdE1 + h)⊗ IdS) ⊆ L(L∪ i{IdE1 ⊗ IdS}) holds. These two
relations allow us to have

u(dimHE) = {TrSg}g∈L(L∪i{IdE1⊗IdS }). (B.16)

This relation and the structure of L written above enforce us that the index j can take only one value
1. Then, we can define a set Ĵ ′1 such that Ĵ ′1 ⊆ Ĵ1 and L′

d = iĴ ′1 ⊗ {IdS}. Eq. (B.16) now implies

iĴ ′1 ∪ iJ̄1 ∪ {iIdE1} = u(dimHE1 ) = u(dimHE), (B.17)

which means that the dimension of HA1 is equal to 1. Thus, J ′1 ⊂ L({IdE1}), and J̄1 must be
sandwiched as u(dimHE1 ) ⊇ J̄1 ⊇ su(dimHE1 ), from which we can deduce Ĵ1 should be either Ŝ4

or M̂(2)
γ with an appropriate integer γ ≥ 3. Note that the case of J1 = R is ruled out from the

assumption (i). Moreover, the assumption (iii) indicates that L′

d can contain only 0, and thus the left
arrow in (B.2) is shown.

Finally, we give a simple proof for the left arrow in (B.3). Similarly to the above case, we pick a
density matrix ρE ∝ IdE + h where h is an element in the set

⨁
j J̄j so that ρE is not proportional to

IdE . From the right relation in (B.3) and Lemma 12, the relation

u(dimHE) = {TrSg}g∈Ad∞
L ((IdE1+h)⊗|φS ⟩⟨φS |) (B.18)

must hold. Here, we recycle the definitions of L and L′

d in Eqs. (B.14) and (B.15). Since any element
in L and (IdE1 + h) ⊗ |φS⟩⟨φS | is block diagonalized into the subspaces HEj ⊗ HS , in order to satisfy
the above relation, the index j can take only a single value 1. Since h is in J̄1, its form is one of those
in Eqs. (31)–(36). Together with other forms of operators, i.e., Eqs. (37)–(42) and (25)–(30), it can
be shown that the components of Ad∞

L ((IdE1 + h) ⊗ |φS⟩⟨φS |) in the space HA1 should be either Id
or Z∗. Since both Id and Z∗ are obviously diagonalized in HA1 , Eq. (B.18) means that dimHA1 must
be 1 so that {TrSg} can span u(dimHE), which then implies L′

d ⊆ i{IdE ⊗ IdS}. Taking the assumption
(iii) into account, we can conclude L′

d = {0}.
With the help of forms of J and Ĵ in Eqs. (25)–(30) and (37)–(42), we can now verify whether each

type of J in Eqs. (25)–(30) satisfies the requirement Eq. (B.18). First, let us have a look at J1 = S2n′−1.
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The set iAd∞

L ((IdE1 +h)⊗|φS⟩⟨φS |) of operators on H
Q (n′−1)
1

⊗H
Q (n′−2)
1

⊗· · ·⊗HQ (1)
1

⊗HS = HE1 ⊗HS =

HE ⊗ HS can be written as

L({Id⊗∆1 ⊗ W1 ⊗ Y⊗∆2 ⊗ W2 ⊗ Id⊗∆3 ⊗ W3

⊗Y⊗∆4 ⊗ W4 ⊗ Id⊗∆5}Wk∈{X,Z},∆k∈Z≥0 s.t.
∑5

k=1 ∆k=n′−4,

∪{Id⊗∆1 ⊗ W1 ⊗ Y⊗∆2 ⊗ Id ⊗ Y⊗∆3 ⊗ W2 ⊗ Id⊗∆4 ,

Id⊗∆1 ⊗ Y ⊗ Id⊗∆2 ⊗ W1 ⊗ Y⊗∆3 ⊗ W2 ⊗ Id⊗∆4 ,

Id⊗∆1 ⊗ W1 ⊗ Y⊗∆2 ⊗ W2 ⊗ Id⊗∆3 ⊗ Y ⊗ Id⊗∆4 ,

Id⊗∆1 ⊗ W1 ⊗ Y⊗∆2 ⊗ W2 ⊗ Id⊗∆3 ⊗ W3 ⊗ Y⊗∆4}Wk∈{X,Z},∆k∈Z≥0 s.t.
∑4

k=1 ∆k=n′−3,

∪{Id⊗∆1 ⊗ Y ⊗ Id⊗∆2 ⊗ Y ⊗ Id⊗∆3 , Id⊗∆1 ⊗ Y ⊗ Id⊗∆2 ⊗ W1 ⊗ Y⊗∆3 ,

Id⊗∆1 ⊗ W1 ⊗ Y⊗∆2 ⊗ Id ⊗ Y⊗∆3 ,

Id⊗∆1 ⊗ W1 ⊗ Y⊗∆2 ⊗ W2 ⊗ Id⊗∆3}Wk∈{X,Z},∆k∈Z≥0 s.t.
∑3

k=1 ∆k=n′−2,

∪{Id⊗∆1 ⊗ Y ⊗ Id⊗∆2 , Id⊗∆1 ⊗ W ⊗ Y⊗∆2}W∈{X,Z},∆k∈Z≥0 s.t.∆1+∆2=n′−1

∪{Id⊗n′

}) =: Σ . (B.19)

Here, we have omitted the space HA1 since its dimension is 1. We can see from Eq. (B.19) that
Eq. (B.18) cannot be satisfied when n′

≥ 3. Thus, J1 = S2n′−1 is not allowed when n′
≥ 3.

Second, we repeat a similar check for J1 = S2n′ . The set iAd∞

L ((IdE1 + h) ⊗ |φS⟩⟨φS |) can now be
written as

L({Y⊗∆1 ⊗ W1 ⊗ Id⊗∆2 ⊗ W2 ⊗ Y⊗∆3 ,

Y⊗∆1 ⊗ W1 ⊗ Id⊗∆2 ⊗ Y ⊗ Id⊗∆3}Wk∈{X,Z},∆k∈Z≥0 s.t.
∑3

k=1 ∆k=n′−2,

∪{Y⊗∆1 ⊗ Id ⊗ Y⊗∆2 , Y⊗∆1 ⊗ W ⊗ Id⊗∆2}W∈{X,Z},∆k∈Z≥0 s.t.∆1+∆2=n′−1

∪{Y⊗n′

} ∪ Σ). (B.20)

From this, we again see that the requirement (B.18) cannot be fulfilled when n′
≥ 4. Therefore,

J1 = S2n′ is ruled out for n′
≥ 4.

Combining all these results, we can conclude that L should have the form L = L(iJ̄1 ⊗ {IdS} ∪

J1 ⊗ su(dimHS)), where dim(HA1 ) = 1 and (J̄1, J1) is equal to either (Ŝn,Sn) or (M̄(k)
γ ,M(k)

γ ) with
n ∈ {3, 4, 6}, k ∈ {1, 2, 4} and γ ∈ Z≥3. Also, it is straightforward to check L(J̄1 ∪ J1) = u(dimHE)
for any choice of (J̄1, J1). Note, however, that the choice (J̄1, J1) = (R̄,R) is ruled out because of the
assumption (ii). Hence, the left arrow in (B.3) is proved.
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