
Annals of Physics 412 (2020) 168003

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Anyons from three-body hard-core interactions
in one dimension
N.L. Harshman a,∗, A.C. Knapp b

a Department of Physics, American University, Washington, DC, USA
b Department of Mathematics and Statistics, American University, Washington, DC, USA

a r t i c l e i n f o

Article history:
Received 9 November 2018
Accepted 15 October 2019
Available online 5 November 2019

Keywords:
Anyon
Hard-core interaction
One-dimensional gas

a b s t r a c t

Traditional anyons in two dimensions have generalized exchange
statistics governed by the braid group. By analyzing the topology
of configuration space, we discover that an alternate generaliza-
tion of the symmetric group governs particle exchanges when
there are hard-core three-body interactions in one-dimension.
We call this new exchange symmetry the traid group and
demonstrate that it has abelian and non-abelian representa-
tions that are neither bosonic nor fermionic, and which also
transform differently under particle exchanges than braid group
anyons. We show that generalized exchange statistics occur
because, like hard-core two-body interactions in two dimen-
sions, hard-core three-body interactions in one dimension create
defects with co-dimension two that make configuration space
no longer simply-connected. Ultracold atoms in effectively one-
dimensional optical traps provide a possible implementation for
this alternate manifestation of anyonic physics.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Particle exchange statistics are normally described by the symmetric group SN of particle
permutations and indistinguishable particles are classified as bosons or fermions. However, there
are more exotic possibilities for particle exchange statistics in low-dimensional particle models with
hard-core interactions. The most famous examples are: (1) hard-core two-body interactions in one
dimension, which leads to the ‘fermionization’ of hard-core bosons [1]; and (2) hard-core two-body
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interactions in two dimensions, which allows for particles that are neither fermions nor bosons
called anyons [2].

Both of these manifestations of generalized exchange statistics can be understood topologi-
cally [3]. The removal of two-body coincidences like xi = xj from configuration space reduces its
connectivity, and so does identifying points in configuration space that represent indistinguish-
able configurations. In one dimension, the defects introduced by hard-core two-body interactions
prevent particles from passing through each other. This divides configuration space into sectors
with fixed order that are disconnected from each other. The relative phases among different
sectors are unobservable, and therefore the exchange symmetry of indistinguishable particles is
equivalent to a gauge symmetry [4]. In two dimensions, the defects caused by hard-core two-body
interactions leave the configuration space connected but not simply-connected [5]. Exchanges of
indistinguishable particles acquire different topological phases (or more general path-dependent
transformations) depending on how they wind around these defects, leading to anyons with
generalized exchange statistics governed by the fundamental group of configuration space, called
the braid group BN [6].

Besides these two famous examples, there is only one other case where local hard-core interac-
tions lead to a not simply-connected configuration space: hard-core three-body interactions in one
dimension [7]. Consider the N-body Hamiltonian in one-dimensional free space with the form

H =

N∑
i=1

(
−

h̄2

2m
∂2

∂x2i
+ V (xi)

)
+ g

N∑
⟨ijk⟩

W (ρ2
ijk), (1)

where V (x) is a finite one-body trapping potential, the second sum is over all triplets of particles
⟨ijk⟩, the quadratic form ρ2

ijk = x2i + x2j + x2k − xixj − xjxk − xkxi is the square of the three-body
hyperradius for the triplet ⟨ijk⟩, and W (ρ2) is some repulsive three body potential with finite range.
Since the range of the interaction will not affect topological properties, a mathematically convenient
choice for W (ρ2

ijk) has support at ρijk = 0 and nowhere else

W (ρ2
ijk) = δ(xi − xj)δ(xj − xk). (2)

In the limit g → ∞ in (1), the three-body potential becomes hard-core and therefore the two-
dimensional coincidence manifolds defined by xi = xj = xk are excluded from the N-dimensional
configuration space.

There are several proposals to create tunable effective three-body interactions in the control of
ultracold atoms in optical traps [8–15]. These proposals are driving sustained theoretical interest
in the dynamical and thermodynamical properties of such models [16–31]. Two-body interactions
could also be added to (1) without affecting the connectivity, as long as they are not also hard-core.

Hard-core three-body interactions in one dimension disrupt the connectivity of configuration
space in a similar way to two-body coincidences in two-dimensions. In both cases the excluded
coincidences create co-dimension d̃ = 2 defects (see Table 1) around which paths realizing
particle exchanges can wind and tangle. Because the configuration space is not simply connected,
particle models with co-dimension d̃ = 2 defects also possess anyonic solutions. Unlike fermionic
and bosonic solutions, but similar to braid group anyons, these multi-valued solutions possess
generalized exchange statistics realized by topological (or Berry) phases that depend on the path
taken by the particle exchange. However, instead of obeying the familiar braid group exchange
statistics, the anyonic solutions of Hamiltonians like (1) obey generalized winding rules described
by a group we call the traid group. Like the braid group, the traid group is an extension of the
symmetric group and its elements can be represented as strand diagrams; see Fig. 1.

Although the original physical motivation for this study is engineered three-body interactions
in ultracold atoms, real indistinguishable atoms are either bosons or fermions. For the anyonic
solutions to be experimentally relevant, the one-dimensional particles of the model Hamiltonian (1)
would themselves need to be quasiparticles with an internal structure, perhaps at a faster time scale,
which provides the effective path-dependent exchange phase of traid anyons. Although it seems
unlikely that there are ‘natural’ systems with low-energy dynamics given by a one-dimensional
quasiparticle model with effective hard-core three-body interactions, the surprising applicability of
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Table 1
The entries of this table are the co-dimension d̃ of the
defect created when k-body coincidences are removed from
the configuration space of N particles in d dimensions. The
formula for the co-dimension d̃ = d(k−1) counts the number
of equations necessary to establish a k-body coincidence in d
dimensions and is therefore independent of N . When d̃ = 1,
the defect is like a line in a plane or a plane in a space and it
divides configuration space into dynamically isolated sectors.
When d̃ = 2, the defect is like a point in a plane or a line
in a space. Configuration space remains connected, but not
simply-connected and topological phases are possible. When
d̃ > 2, configuration space remains simply connected and
generalized exchange statistics are not possible.

k = 2 k = 3 k = 4

d = 1 1 2 3
d = 2 2 4 6
d = 3 3 6 9

Fig. 1. This figure compares the braid group BN and traid group TN using strand diagrams. Both groups can be expressed
in terms N−1 generators, bi and ti respectively, that exchange the ith and the (i+1)th strands. For the braid group, bi and
b−1
i are different, i.e. strands must go over or under each other, whereas for the traid group (like the symmetric group)

two-particle exchanges t2i = 1 are square-trivial and there is no distinction between over and under. Another contrast,
for the traid group any rearrangement of strands that requires moving through a triple point is not allowed, whereas for
the braid group shift one can pass through a triple point to show that the arrangements bibi+1bi and bi+1bibi+1 of three
adjacent strands are equivalent.

braid anyons to the fractional quantum Hall effect provides inspiration for the exploration of this
novel form of generalized exchange statistics. Even without physical instantiations of traid anyons,
their mathematical structure possesses that delightful combination of simple to express but rich
in expression that begs further investigation, if only as a clarifying contrast to the more famous
exchange statistics given by the symmetric group and the braid group.

The article has the following structure: In Section 2, we introduce notation and terminology for
describing the homotopy of configuration space by briefly presenting the braid group and braid
group anyons. Using these results, we introduce the traid group and draw contrasts between traid
anyons and previous results for braid anyons in one and two dimensions. Next, in Section 3 we
describe the geometrical and topological properties of configuration spaces for N distinguishable
and indistinguishable particles in d dimensions with hard-core k-body interactions and analyze
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its topology in the case of hard-core three-body interactions in one dimension. One technical
challenge, and an important difference with the braid group, is that the configuration space whose
properties determine the generalized traid group exchange statistics is not a manifold. Instead it is
an orbifold, and in Section 4 (and the Appendix) we explain this difference and the generalization
of fundamental groups that applies to orbifolds. In Section 5 we give the abstract presentations
of the traid group and pure traid group and compare them to the symmetric and braid groups.
Some representations of the traid groups corresponding to anyonic solutions and an application to
three harmonically-trapped abelian traid anyons are given in Section 6. Summary and outlook are
provided in Section 7.

2. Background and connections

Generalized exchange statistics can occur when the configuration space of a particle model is not
simply connected [3,32,4,33]. In generalized exchange statistics, the transformation of the N-body
wave function depends not just on which particles were exchanged, but also on how they were
exchanged. Particle exchanges are considered as paths through configuration space, and when the
configuration space is not simply connected, there are inequivalent paths representing the same
particle exchange. The fundamental group of the configuration space describes the equivalence
classes of exchange paths and the representations of the fundamental group determine whether
generalized exchange statistics are possible.

In the most famous example of generalized exchange statistics, the group describing particle
exchanges is the braid group BN [34–37]. The braid group BN is an infinite, discrete group that
generalizes the symmetric group SN . Generalized exchange statistics obeying the braid group occur
when two-body coincidences are excluded from the configuration space of N indistinguishable
particles in two-dimensional Euclidean space [5]. One reason to remove these points from configu-
ration space is because hard-core two-body interactions exclude those coincidences. Alternatively,
whenever particles have relative angular momentum in two dimensions, the 1/r2 singularity of the
centrifugal barrier also prevents two-body coincidences. Either way, the removed points form what
we call the two-body coincidence structure VN,2,2. This structure is the union of N(N−1)/2 two-body
coincidence manifolds Vij, one manifold for each pair of particles. Each manifold Vij is a hyperplane
with co-dimension d̃ = 2, i.e. there are two dimensions perpendicular to it, like a point in R2 or a
line in R3. Because the two-body coincidence manifolds Vij are co-dimension d̃ = 2 defects, they
disrupt the simple connectivity of configuration space, allowing the wave function to get ‘wound
up’ when particles exchange.

After the two-body coincidence structure VN,2,2 is removed, the remaining configuration space
for N indistinguishable particles is XN,2,2/SN , where XN,2,2 = R2N

− VN,2,2 is the configuration
space of N distinguishable particles. In the quotient space XN,2,2/SN , all points in XN,2,2 that differ
only by a permutation of particle coordinates are identified as the same point. The fundamental
group π1(XN,2,2/SN ) is the braid group BN and describes the generalized exchange statistics of
indistinguishable particles, and the fundamental group π1(XN,2,2) is a subgroup called the pure braid
group PBN and describes the generalized exchange statistics of distinguishable particles. The one-
dimensional representations of the braid group have fractional exchange statistics governed by a
phase that varies from θ = 0 for bosons to θ = π for fermions. Quasiparticles obeying abelian
braid statistics are central to the understanding of the fractional quantum Hall effect [38–40,6,41–
43]. Non-abelian anyons carry multi-dimensional representations of the braid group [44–46] and
provide a model for quantum computing with topological error protection [47,48].

Besides two-body hard-core interactions in two dimensions, the only other case where local
hard-core few-body interactions make configuration space not simply-connected and lead to any-
onic physics is the much less studied case of three-body hard-core interactions in one dimension.1

1 There is also a non-local four-body interaction in one-dimension that creates co-dimension d̃ = 2 defects. This
non-local hard-core interaction excludes formation of more than one pair so that the coincidence manifolds defined by
two two-body coincidences like xi = xj and xk = xl are excluded from configuration space. Although not discussed in this
article, this also leads to novel generalized exchange statistics distinct from those given by the braid or traid group. We
refer to this group as the ‘fraid’ group; Khovanov has named this the triplet group [49].
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Fig. 2. The pure braid group PBN and the pure traid group PTN apply to distinguishable particles and therefore group
elements correspond to strand diagrams where all particles start and end at the same place. Here we depict the strand
diagrams for the generators of PB2 (top) and PT3 (bottom). The configuration spaces for three particles with hard-core
three-body interactions in one dimension X3,1,3 and for two particles with hard-core two-body interactions in two
dimensions, X2,2,2 are homotopy equivalent to the circle S1 . Their fundamental groups PT3 and PB2 are both isomorphic
to Z and generated by a choice of loop which starts at an arbitrary base point x0 ∈ S1 and travels around the circle once.

The simultaneous coincidence of three particles in one-dimension xi = xj = xk defines a linear
subspace with co-dimension d̃ = 2, and the union of these is the three-body coincidence structure
VN,1,3. When these forbidden coincidences are removed from the configuration space for N particles
in one-dimension, the remaining space XN,1,3 = RN

− VN,1,3 is not simply connected, nor (in a
generalized sense described below) is the quotient XN,1,3/SN . Identifying the topological properties
of XN,1,3 and XN,1,3/SN is the main technical result of this article.

In analogy with the pure braid group, we define the pure traid group PTN as the fundamental
group of the configuration space XN,1,3. We define the traid group TN as the orbifold fundamental
group [50] of XN,1,3/SN . Like the braid groups, the traid groups are infinite non-abelian groups that
have an intuitive diagrammatic representation in terms of weaving strands, see Figs. 1 and 2, but
the weaving rules are different. Like the symmetric group, both the braid group BN and the traid
group TN can be defined by the relations among N − 1 generators corresponding to exchanging
adjacent particles. We show below that BN and TN can be understood as two different ways of
‘loosening’ SN symmetry: for BN the generators are no longer self-inverses; and for TN the generators
no longer satisfy the Yang–Baxter relation (aka the braid relation or the third Reidemeister move).
Breaking the Yang–Baxter relation allows for abelian and non-abelian representations of TN that
exhibit generalized exchange statistics different from braid anyons. As we show below, TN is a
linear hyperbolic Coxeter group [51,52] with N − 1 generators connected by infinitesimal angles,
sometimes denoted [∞

N−1
]. The lowest traid group T3 is isomorphic to the infinite dihedral group

D∞ ∼ [∞] and the lowest pure traid group PT3 (like B2 and PB2) is isomorphic to the group of
integers.

In the large literature on anyons there are other generalizations of braid groups and their
representations, e.g. [33,53–56], but the groups PTN and TN are distinct from any other groups
analyzed in the context of generalized exchange statistics to the best of our knowledge. Relevant
mathematical analysis was initiated by Björner and Welker [57]. Motivated by the complexity
theory of graphs, they analyzed the topology of configuration spaces for one-dimensional XN,1,k
and two-dimensional systems XN,2,k with k-body coincidences removed. Subsequent work by
mathematicians investigated the fundamental groups of these spaces and their quotients by the
symmetric group. In this previous work, the traid groups TN and pure traid group PTN have been
called the twin group and pure twin group [49,58,59] or the planar braid group and pure planar
braid group [60]. Interestingly, our results were anticipated by the earliest studies of the topological
phase acquired in the adiabatic Born–Oppenheimer solutions of planar triatomic molecules [61–63].
Restrictions on the configuration space make this an effectively one-dimensional system with a
singular three-body coincidence. As such, it provides an example of a system carrying a non-trivial
representation of PT3.

Despite occasional claims that anyons can only occur in two dimensions, there is a large body
of previous work on one-dimensional anyons. This previous work has relied on one or more
analogies to two-dimensional braid anyons, including: (1) obeying braid exchange statistics [4,64–
69,11,20,70,15,22]; (2) obeying generalized exclusion statistics [71–73,64,67,74–76]; or (3) having
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wave functions with either Laughlin (abelian braid anyons [77]) or Pfaffian (non-abelian braid
anyons [44,46]) forms [72,4,9,78,17].

Note that all of these manifestations of braid anyon behavior appear naturally in the one-
dimensional two-body hard-core Calogero-type models [4,73,64,69]. One-dimensional models with
fractional exchange statistics can also be constructed ‘by hand’, i.e. inserting the phase eiθ into
the commutation relations of creation and annihilation operators [65]. But to emphasize, fractional
exchange statistics are characteristic of abelian representations of the braid group and do not occur
for the traid group, in which two-particle exchanges must be square-trivial. The abelian traid anyons
we conjecture would obey a different form of generalized exchange statistics than the braid anyons.

Intriguingly, fractional exchange statistics occur ‘naturally’ in some one-dimensional free-space
models and lattice models with competing two-body and three-body interactions, like the Kundu
model [66] and the anyon-Hubbard model [9,11,17,20,15,22]. The Kundu model has highly-singular
two-body and three-body interactions. For a certain balance of interaction strengths, the system
can be transformed into an equivalent model with only two-body delta-interactions and ‘twisted’
boundary conditions. This model is integrable and solvable by Bethe-ansatz [66,74,75]. This is
somewhat surprising, because generally three-body interactions break the Yang–Baxter relation (as
in the traid group) and prevent integrability [64,79]. In the anyon-Hubbard model, effective three-
body interactions are created by occupation-number dependent hopping amplitudes [11,15] and the
wave function has a Pfaffian form [9,17]. Solutions that have a Pfaffian from exhibit non-abelian
braid statistics, and they can also be understood as the eigenstates of effective k-body hard-core
interactions [80,81,8,78].

However, no one has considered how the connectivity of the underlying configuration space for
the Kundu or anyon-Hubbard models is disrupted by the co-dimension d̃ = 2 defects created by
the addition of three-body interactions. Whether any of this previous work on one-dimensional
anyons with three-body interactions can be reinterpreted in terms of traid groups remains an open
question for future work. Additionally, implementing models with traid statistics in tight-binding
lattice models with occupation-number dependent tunneling is an intriguing possibility.

3. Configuration space

The possibility for generalized exchange statistics is determined by the fundamental groups
of two related spaces: (1) the configuration space XN,d,k for N distinguishable particles in d
dimensions with k-body hard-core interactions; and (2) the configuration space XN,d,k/SN for N
indistinguishable particles. When there are no interactions, the free configuration space of N
distinguishable particles in Euclidean space is the manifold RdN

=
{
(x1, . . . , xN ) ∈ Rd

× · · · × Rd
}
.

For indistinguishable particles, the free configuration space is the orbifold XN,d,k/SN , the quotient of
the free configuration space by the symmetric group on N objects. Configurations in RdN that differ
by only a permutation of particle positions are identified by the same point in RdN/SN [3,50].

The hard-core k-body interactions create impenetrable defects and complicate the topology
of configuration space. Since the exact functional form of an interaction does not affect the
connectivity, we can model the defects as zero-range, contact interactions without loss of generality.
Then the defects are described by the coincidence structure VN,d,k, defined as the union of all

(N
k

)
linear subspaces formed by coincidences of k distinct particles xi1 , . . . , xik in d-dimensions. Each
linear subspace in the coincidence structure VN,d,k corresponds to xi1 = · · · = xik and has a co-
dimension d̃ = d(k − 1). Note that coincidence structures for higher-body interactions are nested
inside lower-body interactions, i.e. when k′ > k then VN,d,k′ ⊂ VN,d,k. The geometry and symmetries
of these structures are analyzed in [7].

Removing the coincidence structure VN,d,k from the free configuration space RdN gives the
configuration space XN,d,k = RdN

− VN,d,k. Analyzing the connectivity of XN,d,k is made simpler
by using two symmetries to trivialize two degrees of freedom. First, XN,d,k is invariant under
translation in the d-dimensional linear subspace where all particles coincide x1 = · · · = xN , i.e.
translations along the coincidence structure VN,d,N = Rd corresponding to the center-of-mass degree
of freedom are a symmetry of XN,d,k. Second, the coincidence structure VN,d,k is constructed from
linear subspaces that are scale invariant, and so the space XN,d,k is also scale invariant. Combining
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Fig. 3. From top left, X 4,1,3 with 3-coincidence loci as the intersection of S2 with rays from the origin (black). Next, brown
regions are X 4,1,2; formed by cutting S2 along circles of V 4,1,2 . Finally, their mutual stereographic projection shows the 4!
fundamental regions of the symmetric group action. Note that not all intersections of the 2-coincidence locus correspond
to 3-coincidences; some correspond to commuting generators t1 and t3 of the traid group T4 . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

these two symmetries, the configuration space can be factored into a reduced configuration space
XN,d,k and two other terms XN,d,k = XN,d,k ×R+

×Rd. Similarly, the free configuration space factors
into RdN

= Sd(N−1)−1
× R+

× Rd. Since R+ and Rd are homotopically trivial, XN,d,k and XN,d,k are
homotopy equivalent; i.e. they have the same connectivity and in particular they have isomorphic
fundamental groups.

The reduced coincidence structure VN,d,k can be defined by projection in the almost same way,
as long as VN,d,N is added back in by hand VN,d,k =

(
VN,d,k × R+

× Rd
)

∪ VN,d,N . For N > k the
space VN,d,k is an arrangement of

(N
k

)
copies of spheres Sd(N−k)−1 contained inside the reduced free

configuration space Sd(N−1)−1. These results agree with Theorem. 1.3 of [57], which analyzes the
topology of VN,1,k and VN,2,k and proves they are homotopically equivalent to the wedge product of
spheres.

As a relevant example, consider four particles in one dimension with hard-core two-body or
three-body interactions. The spaces X 4,1,2 and X 4,1,3 are depicted in Fig. 3. The reduced free
configuration space is the sphere S2. The two-body reduced coincidence structure V 4,1,2 is six
intersecting great circles S1 on the sphere. Because these circles have co-dimension d̃ = 1, they
segment the reduced configuration space X̄4,1,2 into 24 disconnected sectors corresponding to a
specific orders of particles in one dimension. In the orbifold space X 4,1,2/S4, these 24 sectors are
identified with each other into a single sector representing configurations of four indistinguishable
particles. The three-body reduced coincidence structure V 4,1,3 is four copies of S0 (i.e. two points)
and the reduced configuration space X 4,1,3 is therefore a sphere S2 with eight points missing
like holes. By imagining stretching one hole out to infinity, flattening the sphere to a disk, and
then contracting the space between the remaining seven holes, one can demonstrate that X 4,1,3 is
topologically equivalent to the wedge product of seven circles, i.e. seven loops that share a single
point.
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Fig. 4. The Coxeter-Dynkin diagram for TN has N − 1 nodes arranged linearly with all labels equal to ∞. Any of the
finite-labeled linear Coxeter groups on N − 1 generators can be considered a quotient of TN . When the finite labels are
multiples of 3, the quotient is a normal subgroup contained within PTN .

4. Fundamental groups

The space XN,d,k is a manifold for any N , d and k, and the usual definition of the fundamental
group can be applied to describe its topology [82]. As stated before, only XN,2,2 and XN,1,3 have
non-trivial fundamental groups PBN = π1(XN,2,2) and PTN = π1(XN,1,3). The lowest possible
manifestations of the two groups are isomorphic PB2 = PT3 = Z, but they are different groups
after that. The next traid group PT4 = π1(X4,1,3) = π1(X 4,1,3) = F7, the free group with seven
generators. The number of generators of PTN is at least 2N−3(N2

− 5N + 8) − 1, the Betti number
for XN,1,3 [57,83]. For N ≥ 6, the existence of disjoint triplets of particles imply PTN is no longer a
free group.

Similar to the relation between the pure braid group and braid group, the pure traid group is
the subgroup of the traid group that contains by all elements that do not permute the particles. The
traid group TN has a much simpler structure than PTN and only N−1 generators for all N . Ideally we
would like to define TN as the fundamental group of XN,1,3/SN and use it to analyze the subgroup
PTN . However, a complicating factor is that the quotient space XN,d,k/SN is only a manifold when
k = 2. When k = 2, the action of any non-trivial element of SN takes some open neighborhood
of any point entirely off of itself. Therefore there is no problem defining the braid group BN as the
fundamental group of XN,2,2/SN . However, when k > 2 the configuration space contains points with
a repeated coordinate. For these points, there are non-trivial elements of the symmetric group which
fix the point and act on open neighborhoods by a reflective symmetry. Therefore XN,d,k/SN is not
a manifold and taking the quotient naïvely loses important topological information. For example,
X 3,1,3/S3 is a closed line segment and X 4,1,3/S4 is a triangle missing two corners. To preserve the
topological information, we must regard the quotient as an orbifold and define a generalization of
the fundamental group called the orbifold fundamental group [50]. For details, see Appendix.

With this generalized definition, the orbifold fundamental group TN = π1(XN,1,3/SN ) is the
semidirect product TN = PTN ⋉ SN of the pure traid group PTN and the symmetric group SN . The
corresponding short exact sequence is 1 → PTN ↪→ TN ↠ SN → 1.

5. Presentations

The group TN is generated by elementary moves which pass pairs of adjacent particles through
each other; these correspond to paths in the configuration space XN,1,3 which return the individual
particles to their original positions as a set and which cross VN,1,2 at a single generic point. In
contrast with the braid group, there is no over/under crossing information. Since two-particle
coincidences are allowed, each of the elementary swaps are square trivial and are thus their own
inverse; see Fig. 1. Further, the braid group allows the third Reidemeister move (a Yang–Baxter
relation from knot theory) as shown in Fig. 1, which would introduce a triple point in our context.
It follows that the traid group TN has a presentation with generators, t1, . . . , tN−1, and relations:

t2i = 1 ∀i

titj = tjti ∀|i − j| > 1. (3)

Each of the N − 1 generators correspond to trades of the ith and (i + 1)th elements. As in the braid
group, all sufficiently distant generators commute. The first defining relation of the traid group
t2i = 1 for all i means that the traid group is generated by reflections. Combined with the second
defining relation of the traid group, which can be rewritten to (titj)2 = 1 for all |i − j| > 1, mean
that TN is a linear Coxeter group, i.e. it does not branch or loop. See Fig. 4.
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It is interesting to note the relationships between the presentations of the traid, symmetric, and
braid groups on N strands. We have two slightly different presentations for the symmetric group.
The first has generators s1, . . . , sN−1 and relations

s2i = 1 ∀i
sisj = sjsi ∀|i − j| > 1

(si+1si)3 = 1 ∀i < N − 1

The traid group is then the group which is obtained by erasing the triple point relation (si+1si)3 = 1.
The other symmetric group presentation rewrites the triple point relation into the Yang–Baxter
relation:[

(si+1si)3 = 1
]

→

[
sisi+1si = si+1sisi+1

]
The braid group has a presentation with generators b1, . . . , bN−1 and relations

bibj = bjbi ∀|i − j| > 1
bibi+1bi = bi+1bibi+1 ∀i < N − 1

which omits only the s2i = 1 relation from the symmetric group. As with the traid group, we get
a homomorphism BN ↠ SN induced by bi ↦→ si whose kernel is the pure braid group PBN . The
preservation of the Yang–Baxter relation is important and is related to the realization of BN as the
mapping class group of an N-fold marked disc. The traid groups have no such realization as an
automorphism of the underlying space.

As the pure traid group is precisely the kernel of the homomorphism TN ↠ SN given by ti → si
on the generators, the pure traid group PTN can be seen to be normally generated in TN by the
elements of the form (ti+1ti)3. For example, PT3 is a copy of Z generated by (t2t1)3. The next pure
traid group PT4 is somewhat more complicated to express in terms of traid group generators. One
possible presentation of PT4 has eight generators γ1, . . . , γ8 and one relation

γ8γ7γ6γ5γ4γ3γ2γ1 = 1.

The eight generators of PT4 can be constructed as products of the three generators of T4:

γ1 = (t2t1)3 γ5 = t3t2t1(t2t3)3t1t2t3
γ2 = t2t1(t3t2)3t1t2 γ6 = t3(t1t2)3t3
γ3 = t2t3(t2t1)3t3t2 γ7 = t1(t2t3)3t1
γ4 = (t3t2)3 γ8 = t1t2t3(t1t2)3t3t2t1

(4)

The order of the traid group generators ti can be inferred from the pattern of paths in Fig. 5.

6. Representations

Because t2i = 1 for each of the generators, the abelian representations of TN are easily classified.
Any representation ρ : TN → U(1) must have ρ(ti) = ±1 for all i, and then all other constraints
of the presentation (3) are satisfied. Consequently, there are 2N−1 abelian representations of TN
corresponding to all binary choices of signs for each generator.2 The simplest two are when ρ(ti) =

+1 for all i (this is equivalent to the bosonic representation of SN ) and when ρ(ti) = −1 for all i
(this is equivalent to the fermionic representation of SN ). Novel abelian representations of TN that
cannot be factored through SN representations occur when there are mixed signs.

For an example where there are wave functions that transform like these mixed representations,
consider the simplest case of three identical particles in a one-dimensional harmonic trap with

2 In this paper, we have not considered projective representations of the traid group, only unitary representations.
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Fig. 5. This figure depicts eight loops γ1 through γ8 that provide generators for the presentation of PT4 described in
Eqs. (4). The purple star is an arbitrarily chosen base point in X4,1,3 (see Fig. 3) where all loops start and end and the
direction of all loops travel out from the base point, then go counterclockwise around the triple coincidence point, and
then return back along the same path. The colored circles correspond to the two-particle coincidences, but here they are
colored by the elements of the traid group. The red arcs correspond to t1 (i.e. exchanging the first and second particle,
no matter which particle they are), the green are t2 , and the blue are t3 . For example, loop γ1 crosses red, green, red,
green, red and then green, and so γ1 = t2t1t2t1t2t1 = (t2t1)3 . Loop γ2 crosses green, red, green, blue, green, blue, green,
blue, red, then finally green again and so γ2 = t2t1(t3t2)3t1t2 . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

zero-range hard-core three-body interactions. The Hamiltonian for this system can be expressed in
scaled particle coordinates as

H =
h̄ω
2

3∑
i=1

(
−

∂2

∂x2i
+ x2i

)
+ gδ(x1 − x2)δ(x2 − x3) (5)

in the limit g → ∞. Transforming to Jacobi polar relative coordinates ρ and ϕ [84]

ρ2
=

2
3

(
x21 + x22 + x23 − x1x2 − x2x3 − x3x1

)
tanϕ =

√
3(x1 − x2)

x1 + x2 − 2x3
, (6)

the relative Hamiltonian becomes

Hrel =
h̄ω
2

[
−

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
−

1
ρ2

∂2

∂ϕ2 + ρ2
]

+ gδ(2)(ρ) (7)

(again in the limit g → ∞). Note that this has the same functional form as the relative Hamiltonian
for two-particles with zero-range hard-core two-body interactions in a two-dimensional harmonic
trap, a perennial test-bed for studying fractional exchange statistics, cf. [3,2,43]. The energy spec-
trum for the relative Hamiltonian (7) is Erel = h̄ω(2ν + λ + 1), where ν is a non-negative integer
counting the radial nodes and λ is the relative ‘angular momentum’. The spectrum of allowed
values of λ depends on the boundary conditions implied by the particle statistics. For bosonic
ρ(t1) = ρ(t2) = +1 and fermionic ρ(t1) = ρ(t2) = −1 representations, the magnitude of the
three-body relative ‘angular momentum’ λ is restricted to values that are positive integer multiples
of 3 [84]. However, states with relative angular momenta λ = 3/2, 9/2, etc. satisfy the exchange
statistics governed by the mixed abelian representations of T3 where ρ(t1) = −ρ(t2). These wave
functions are double-valued on X3,1,3, but they give single-valued, anyonic wave functions on the
orbifold X3,1,3/S3 (see Fig. 6). The states have lower energy than the lowest energy fermionic and
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Fig. 6. Subfigures a and b are contour plots of the relative wave function of the lowest energy eigenstates of Hrel (7) with
λ = 3 for bosons ρ(t1) = ρ(t2) = +1 and fermions ρ(t1) = ρ(t2) = −1, respectively. Subfigures c and d depict the relative
wave function of the lowest energy eigenstates of Hrel with λ = 3/2 and anyonic symmetry in the abelian representations
ρ(t1) = −ρ(t2) = +1 and ρ(t1) = −ρ(t2) = −1, respectively. The solid arrows correspond to the boundaries defined by
the t1 generators and the dashed arrows to boundaries the t2 generators. The red horizontal line in subfigures c and d
is the branch cut arising from the double-covering created by fractional angular momentum; the wave function changes
sign when crossing this branch.

bosonic states. Extending these preliminary results and comparing to the case of braid anyons and
gauge transformations is ongoing work.

Any representation of TN gives a representation of PTN by restriction. Mixed abelian representa-
tions of TN restrict to non-trivial representations of PTN in which a cyclic exchange of distinguishable
particles leads to a sign change of the wave functions. Additionally, there are representations of PTN
which do not extend to representations of TN . For example, PT3 ∼ Z and so has infinitely many
abelian representations ρθ (n) = einθ parametrized by θ ∈ [0, 2π ), similar to the fractional exchange
statistics. Further, PT4 has an abelian representation for any assignment ρ(γk) = eiθk with

∑8
k=1 θk =

0 mod 2π . In other words, unlike abelian representations of BN , not all generators must have
the same phase. In general, abelian representations of PTN must factor through the abelianization
and are parametrized by the first cohomology of the configuration space with coefficients in U(1),
H1(XN,1,3;U(1)). The integer versions of these groups have been calculated in [57]. In particular, as
the first homology is non-trivial for N ≥ 3, PTN always has many abelian representations.

Non-abelian representations of TN and PTN are a seemingly rich topic. As shown in Fig. 4, the
group TN ∼ [∞

N−1
] may be considered a kind of ‘universal object’ in the category of Coxeter groups
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with linear Coxeter-Dynkin diagrams. In other words, for every irreducible representation of any
linear Coxter group with N − 1 generators, one can induce an irreducible representation of TN . As
an example, consider the case when N = 4 and define K [m,n] as the normal subgroup of T4 generated
by (t2t1)m and (t3t2)n and their conjugates by elements of T4. Note that this means that the normal
subgroup includes the terms generated by inequivalent conjugates like those found in (4). Then the
quotient group T4/K [m,n] is the linear Coxeter group [m, n]. Examples include

• the finite Coxeter groups [3, 3] ≡ A3 ∼ S4, [4, 3] ≡ C3, and [5, 3] ≡ H3,
• the affine Coxeter groups [4, 4] ≡ C̃2 and [6, 3] ≡ G̃2, and
• the hyperbolic Coxeter groups [p, q] with 2(p + q) < pq.

Using the homomorphism T4 → [m, n], one can construct a representation of T4 from any
irreducible representation of [m, n] by pullback, including multi-dimensional, non-abelian repre-
sentations. In particular, note that the special case K [3,3]

= PT4 leads to the symmetric group
[3, 3] ≡ A3 ∼ S4. This method extends to any N , but at this point, it is not known whether the
irreducible representations constructed this way exhaust the irreducible representations of TN .

As for non-abelian representations of PTN for N > 3, we similarly expect there to be many. The
groups PT4 and PT5 are free and so homomorphisms to any group exist and the generators of the
PTN ’s may be sent to arbitrary values. When N ≥ 6, there are additional commutation relations
among the generators which need to be satisfied, but we have not yet determined the full set of
relations.

7. Summary and outlook

In summary, the anyonic physics that derives from the not-simply-connected configuration space
of N particles with three-body hard-core interactions in one-dimension has some similarities but
also intriguing differences from the more familiar hard-core two-body interactions in two dimen-
sions. Similarities include: (1) the braid group BN and the traid group TN are both generalizations
of the symmetric group SN with one defining relation removed; (2) both BN and TN have ‘pure’
subgroups describing distinguishable particles; (3) representations of both groups give abelian and
non-abelian generalized exchange statistics; and (4) unlike fermionic and bosonic wave functions,
anyonic wave functions cannot be built from the tensor product of one-particle states.

Differences between braid anyons and traid anyons include: (1) in the traid group, the Yang–
Baxter relation is broken instead of the square-trivial relation as in the braid group; (2) the traid
group does not have an interpretation in terms of diffeomorphisms of the underlying space; and (3)
the traid group derives from the orbifold fundamental group of the identical particle configuration
space instead of the more familiar notion of the fundamental group.

Two extensions of this work immediately suggest themselves. First, the representation theory of
the traid groups is far from developed, and that will be necessary before model-building and analysis
can elucidate the differences from braid anyons more clearly and before implementations and
observables can be suggested for experiments with ultracold atoms. For example, another difference
between braid anyons and traid anyons worth more exploration is what happens when parity
reflections are included. Traid anyons in a parity symmetric trap should either be parity-symmetric
or come in doublets that mix under parity. In contrast, braid anyons do not respect parity [43].
The mixing of traid group representations under supersymmetry also appears to be an interesting
question. Second, for braid anyons, the generalized exchange statistics can be incorporated into
an interaction derived from a gauge field [2,6,85,43]. The preliminary results for traid anyons in a
one-dimensional harmonic trap mentioned above suggest that a similar transmutation of statistics
into non-local few-body interactions is possible.
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Appendix. Orbifolds and orbifold fundamental groups

In order to be self-contained, we begin with a review of some basic constructions of algebraic
topology with a view toward explaining their less frequently encountered orbifold generalizations.

A.1. Fundamental groups

Suppose that X is a locally path connected space and that we have selected a base point x ∈ X .
The fundamental group, π1(X, x), is the group of homotopy classes of paths γ : [0, 1] → X which
begin and end on x, i.e. γ (0) = γ (1) = x. Two such paths γ0, γ1 are considered homotopic
when they can be continuously deformed to one another. More precisely, there should exist a map
H : [0, 1] × [0, 1] → X such that H(0, t) = γ0(t), H(1, t) = γ1(t), and H(s, 0) = H(s, 1) = x. The
space of based loops naturally splits into connected components by homotopy equivalence.

Multiplication in π1(X, x) is the concatenation operation. That is, γ1γ0 is the path which runs
through γ0 on [0, 1/2] and through γ1 on [1/2, 1], each twice as fast as originally. Associativity
does not hold ‘on the nose’, but up to parametrization of [0, 1] realizable as a homotopy. Similarly,
γ −1 can be identified with a copy of γ given the reversed parametrization.

Although the base point x is necessary for the definition of π1(X, x), the isomorphism type of the
fundamental group is independent of x whenever X is path connected. In particular, if we are given
two base points x0, x1 and a path γ∗ from x0 to x1, we can explicitly describe the isomorphism of
π1(X, x0) → π1(X, x1) as being induced by the map on paths γ → γ∗γ γ −1

∗
. (If x0 = x1, this gives an

action of π1(X, x0) on itself by conjugation.) When the base point is not of fundamental importance,
we will sometimes omit it and simply write π1(X).

The fundamental group is covariantly functorial in the sense that, if we are given a map of
pointed spaces f : (X, x) → (Y , y), we get a homomorphism f∗ : π1(X, x) → π1(Y , y). Further,
homotopy equivalent spaces have isomorphic groups.

There are several techniques for computing the fundamental group of a space. Some can be
computed by considering group actions and covering spaces (see below). In particular, we can
determine π1(S1) ∼= Z this way. Also, we can form the wedge sum of pointed spaces (X, x) and
(Y , y) in which we take a copy of X and a copy of Y and identify their base points x and y. The
resulting pointed space (X ∨ Y , x = y) has fundamental group π1(X ∨ Y , x = y) equal to the free
product π1(X, x) ∗ π1(Y , y). This is a specific case of the more general van-Kampen Theorem [82].

Now consider the set π1(X, x0, x1) of homotopy types of paths from x0 ∈ X to x1 ∈ X .
Equivalently, π1(X, x0, x1) is the set of connected components (π0) of the same space of paths.
This space of paths shows up as the domain of integration for the path integral, so it is of some
importance. In particular, when π1(X, x0, x1) is non-trivial, the domain of the path integral splits
into several connected components. So we have some interest in determining its structure.

Perhaps unsurprisingly, as a set π1(X, x0, x1) is in bijective correspondence with π1(X, x). More
strongly, π1(X, x0, x1) is affine equivalent to π1(X) in the sense that if we choose any γ∗ ∈

π1(X, x0, x1), we get a map π1(X, x0, x1) → π1(X, x0) by γ → γ −1
∗

γ .

A.2. Covering groups

Suppose that we are given two topological spaces, X and Y , and a map between them, p : X → Y .
We say that X covers Y via p if every point y ∈ Y has some neighborhood Uy for which p−1(Uy) is
the disjoint union of sets, each of which is mapped homeomorphically onto Uy via p. (In particular,
if either of X or Y are manifolds, then so is the other.)

A classic set of examples are the map iR → U(1) = S1 given by the exponential and the nth
power maps U(1) → U(1) given by z ↦→ zn.

A common source of covering spaces is group actions. That is, suppose that some group G acts
on X by homeomorphisms. Then the quotient map p : X → X/G defines a covering space exactly
when, for every point x ∈ X , the action of g ∈ G either acts as the identity on a neighborhood of x or
takes some neighborhood of x entirely off of itself, i.e. a properly discontinuous group action. From



14 N.L. Harshman and A.C. Knapp / Annals of Physics 412 (2020) 168003

the standpoint of the covering, G acts by deck transformations of p : X → Y . i.e. homeomorphisms
D : X → X for which p ◦ D = p.

An example of such a group action comes from the SN action on the configuration spaces XN,d,2.
Since the locus VN,d,2 of two coincidences has been removed, each of the coordinates xi ∈ Rd

in x = (x1, . . . , xN ) occurs at most once. Thus every non-identity element of SN will take some
neighborhood of x completely off of itself. We return to this example in the section on orbifolds,
below.

The set of deck transformations form a group in any case, but when the (injective) image p∗π1(X)
is a normal subgroup of π1(Y ), the quotient π1(Y )/p∗π1(X) is isomorphic to the group of deck
transformations. Such coverings are called normal (or regular) coverings.

Thus, for normal coverings X → Y , we have an exact sequence of groups

0 → π1(X) → π1(Y ) → D → 0

where D is the group of deck transformations. Equivalently, π1(Y ) is a semidirect product of π1(X)
and D.

To provide eventual contrast between covering spaces and orbifolds, we explore the map
π1(Y ) → D. Suppose that we choose y ∈ Y and let p−1(y) = {x1, . . . , xN}. As every point y′

∈ Y has
a neighborhood Uy′ for which p−1(Uy′ ) is simply a collection of disjoint copies of Uy′ , we have what
is called the unique lifting property. That is, given any contractable set (C, c) and f : (C, c) → (Y , y),
there is a unique lift f̃ : (C, c) → (X, xi) for each xi ∈ p−1(y). More concretely, every loop in π1(Y , y)
lifts uniquely to a path in X between points of p−1(y), once you say where it begins. Further, every
homotopy of paths lifts uniquely under the same conditions.

This determines a group action of π1(Y , y) on the fiber p−1(y) by permutations. In other words,
given γ ∈ π1(Y , y) the action of the permutation s on xi is given by lifting γ with starting point
xi and observing where the other end point is. The loops of p∗π1(X) lift to closed loops and induce
trivial permutations of p−1(y).

The deck transformation group acts similarly on p−1(y) and the map π1(Y ) → D is the one which
identifies the element of π1(Y ) with its corresponding permutation.

A.3. Orbifolds

Before defining orbifolds, let us revisit hard-core configuration spaces in the case k = 2. For the
space XN,d,2, the SN group action is properly discontinuous and so XN,d,2 → XN,d,2/SN is a covering
space. As the locus VN,d,2 is a co-dimension d set, its removal affects π0 when d = 1, π1 when d = 2,
and higher homotopy groups when d > 2. When d = 2, the map XN,2,2 → XN,2,2/SN is that which
passes from the configuration space of the pure braid group to that of the braid group. The induced
map on π1 is the inclusion PBN ↪→ BN .

When d = 1, we see that XN,1,2 is a collection of N! disconnected contractable sets each
labeled with a permutation of the set {1, . . . ,N}. The connected components of XN,1,2 are open
N − 2 simplices. The action of SN is simply the permutation action on the labels, so the covering
XN,1,2 → XN,1,2/SN is the trivial covering of the base by a number of disjoint copies of itself.

Now let us consider the k = 3 case. Since VN,d,k′ ⊂ VN,d,k for k′ > k, XN,d,k ⊂ XN,d,k′ . Thus
XN,d,2 ⊂ XN,d,3 and we should consider XN,d,3 as being formed by taking XN,d,2 and adding in the
co-dimension 2d two-but-not-three coincidence locus VN,d,2 − VN,d,3.

The key observation is that the SN action, and the quotient by it, no longer correspond to a
covering space. The points of VN,d,2 − VN,d,3 have at least one repeated coordinate and elements of
the symmetric group which are transpositions of those two coordinates fix those points but do not
act as the identity in any neighborhood of those points.

In fact, something very bad happens to the naïve topology. As an instructive example, consider
X 3,1,3 as shown in Fig. 7. A loop going around the circle once describes the generator of PT3 ∼= Z
and corresponds to the choreography of 3 particles seen in Fig. 2 of the main text. The quotient
map is diagrammed in Fig. 8. Of particular note is that, as a bare topological space, the quotient is
an interval and the fundamental group is trivial.
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Fig. 7. The reduced configuration space X 3,1,3 with 2-coincidence locus in V3,1,2 colored in red and blue. Labels on the
2-coincidences correspond to generators of the traid group T3 . In purple, 3! base points which are identified under the
S3 action. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 8. The quotient map X 3,1,3 → X 3,1,3/S3 with 2-coincidence locus in red and blue. In purple, 3! base points which
are identified under the S3 action. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

To retain the topological information we found in XN,1,3, we will need to consider the quotient
space XN,1,3/SN to be an orbifold. Orbifolds are generalizations of manifolds where every point has
a neighborhood which is modeled on Rn but these charts may come equipped with a possibly
non-trivial group of enforced symmetries.

For XN,1,3, generic points (corresponding to XN,1,2) have usual manifold charts with only the
identity as a symmetry. The points of XN,1,3 ∩ VN,1,2, however, come with one or more additional
symmetries: a reflective symmetry for each pair of coincident particles. (These are commonly
known as orbifold points as opposed to the trivial-symmetry points which are called manifold
points.) As each pair of coincident particles must be disjoint (it would be in VN,1,3 otherwise) these
symmetries commute. This type of intersection can be seen in Fig. 3 of main text, at the two-fold
intersections of the circles of V 4,1,2.
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Generally, we hope to get a orbifold version of the covering space construction and its algebraic
implications. Unfortunately, we cannot hope to simply copy the covering space material above
mutatis mutandis. The issue is that, due to the presence of orbifold points, we cannot hope to get
the unique lifting property. As an example, consider the quotient map in Fig. 8. The quotient space
has exactly two orbifold points, in red and blue. Suppose that we were to take a path which starts
at x, goes to the red orbifold point and then returns to x. How are we to lift it to a path in X 3,1,3
starting at x̂123? There are now two options:

• we can lift it to a path which starts at x̂123, goes through the red point, and proceeds to x̂213,
or

• we can lift it to a path which starts at x̂123, touches the red point, and returns to x̂123.

In order to properly generalize the notion of π1 to orbifolds, we would need to use a groupoid,
which is a type of group-like object where multiplication is only partially defined. However, for the
type of orbifold given by XN,1,3/SN , i.e. the global quotient of a manifold by a finite group acting by
diffeomorphisms faithfully on an open dense set, we can assign an group in the following way: Let
x be a point of XN,1,3 at which SN acts faithfully (a point of XN,1,2), so that if p : XN,1,3 → XN,1,3/SN
is the quotient projection, then p−1(x) is a full set of N! points, i.e. the stabilizer of x is trivial.
We choose an arbitrary point in p−1(x) and label it by the trivial permutation x̂1···N ; the other
points x̂s = sx̂1···N are then identified with their corresponding permutations s ∈ SN . Let the
orbifold fundamental group π1(XN,1,3/SN , x) be defined as the set of maps γ : [0, 1] → XN,1,3
with γ (0) = x̂1···N and γ (1) ∈ p−1(x), modulo boundary-relative homotopy.

The multiplication on this group is defined as follows: Suppose that γ , γ ′
∈ π1(XN,1,3, x) so

that γ , γ ′ begin at x̂1···N but end at x̂s, x̂s′ ∈ p−1(x), respectively. Then γ ′γ is defined to be the
concatenation of sγ ′ and γ , a path which begins at x̂1···N and ends at x̂s′s.

Similar to the theory of covering spaces, we can naturally regard the orbifold fundamental group
TN = π1(XN,1,3/SN , x) as a semidirect product of the fundamental group PTN = π1(XN,1,3, x̂1···N ) and
SN . Correspondingly, there is a short exact sequence

1 → PTN ↪→ TN ↠ SN → 1. (8)
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