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A black string is a solution of the four-dimensional general
relativity in cylindrical symmetric anti-de Sitter (AdS) spacetime
pioneered by Lemos (1999). We obtain an exact rotating black
string surrounded by quintessence matter in anti-de Sitter (AdS)
spacetime and analyse its properties. The solution has an ad-
ditional parameter Nq due to background quintessence matter
and it also depends on quintessence state parameter wq. Our
rotating solution encompasses the Lemos black string Lemos
(1999), which can be recovered in the absence of background
matter (Nq = 0). The special case of rotating charged black
string (wq = 1/3) has both Cauchy and event horizons. We
find that thermodynamic quantities mass, temperature, entropy
and heat capacity get corrected due to quintessence background.
The counterterm method is utilized to calculate the associated
conserved quantities to conclude that the first law of thermody-
namics is satisfied. The cloud of strings background (wq = −1/3)
has been included as a special case.
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1. Introduction

The cosmic censorship conjecture [1] states that singularities formed from gravitational collapse
with regular initial surfaces must always be hidden behind an event horizon, which means no
light rays breathe out of singularity, i.e., singularity is never naked. Despite almost more than
50 years of effort, it still remains an open problem (for reviews and references, see [2]). On the
other hand, several investigations of the gravitational collapse, particularly in cylindrical symmetry
are motivated by Thorne’s hoop conjecture [3]. The gravitational collapse will lead to a black
hole if a mass M is compacted into a region whose circumference in all direction C ≤ 4πM [1].
Thus, the gravitational collapse of planar or cylindrical matter will not form a black hole (black
plane or black string) [1]. Thus, a naked singularity may form in planar or cylindrical relativistic
collapse if it results into C > 4πM in some direction violating cosmic censorship conjecture,
but not the hoop conjecture [4]. However, the hoop conjecture was formulated for spacetime
with a zero cosmological term and it is possible that in the presence of a cosmological term
situation may change drastically. Indeed, Lemos [5] has investigated the gravitational collapse of
a planar or cylindrical matter distribution (null fluid) in an anti-de Sitter (AdS) space–time to
show that black plane or black string form rather than naked singularity, violating in this way the
hoop conjecture but not cosmic censorship conjecture. Here, as in the BTZ black holes, negative
cosmological constant plays a crucial role as in the final fate of the gravitational collapse. The
Black string may be regarded as counterpart of spherically symmetric Schwarzschild black holes in
cylindrical symmetric AdS spacetimes. Lemos [5–7] pioneered research on the black string and soon
its charged and rotating [8] counterpart were also discovered by him. These black string solutions
in four dimensions are asymptotically anti-de Sitter in both the transverse and the string directions.
Horowitz and Strominger [9] have shown that black string solution in the transverse direction of
asymptotically flat spacetime does not exist. Subsequently, there has been intense activities in the
investigation of the black string [10–15], and more recently on rotating black strings [16–20].

Recent cosmological observations indicate that besides the baryonic and dark matter, there
exists a dark energy candidate, which is responsible for the accelerated expansion of the observed
Universe, whose origin and nature is still unknown [21]. One possible candidate to explain nature
of the dark energy is the quintessence field that is characterized by the equation of state pq = wqρq,
where pq and ρq are, respectively, the pressure and energy density of quintessence field, and wq is
the equation of state parameter lies in the interval −1 < wq < −1/3. The first black hole solution in
the quintessence background was obtained by Kiselev [22], and its charged solution was obtained
in a Ref. [23]. Further, Kiselev’s solution has been extended to higher dimensions [24], and later
in five-dimensional Einstein–Gauss–Bonnet gravity [25], and Lovelock gravity [26]. The rotating
counterpart of Kiselev solution has been also obtained [27,28]. The thermodynamics of black holes
in the quintessence background has been also investigated [29–32], and so is the quasinormal
modes [33–35].

The aim of this paper is to construct an exact rotating black string surrounded by quintessence
matter in Anti-de Sitter (AdS) spacetime. We discuss the horizon structure and also examine the
thermodynamic aspects of the solutions to discuss the effect of surrounding quintessence matter.
We also analyse the thermal stability of the black hole solutions by performing the study of heat
capacity. It may be mentioned that the investigation of the black hole/string solutions in AdS
space has primary relevance for the AdS/CFT correspondence [36–39]. The structure of this paper
is as follows. The Section 2 is devoted to find the solution of rotating black string surrounded
by a quintessence matter. We use the counterterm method to calculate the conserved quantities
associated with the solution in Section 3. The thermodynamics of the black string is the subject of
Section 4, and in this section, we also include a special case of the cloud of strings background. We
complete the paper by concluding remarks in Section 5.

2. Rotating black string solution

The effective action, in the presence of a cosmological constant, reads [7,18]

SG = −
1

16π

∫
M

d4x
√

−g(R − 2Λ) −
1
8π

∫
∂M

d3x
√

−βϑ + Sf , (1)
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where R is Ricci scalar, Λ = −3l−2 is a cosmological constant, β is a trace of the induced metric, ϑ
is extrinsic curvature defined on the boundary ∂M, and Sf is the action related to the matter field.
Varying action (1) with respect to gµν , we obtain the following field equations

Rµν −
1
2
gµν(R − 2Λ) = Tµν, (2)

where Tµν is the energy–momentum tensor, which for the quintessence matter [22] is given by

T t
t = T r

r = −ρq,

Tφ
φ = T z

z =
1
2
ρq
(
3wq + 1

)
. (3)

Thus, the quintessence matter obeys the equation of state

p =
1
2
ρq(3wq + 1), (4)

where ρq is the energy density and wq is the equation of state parameter for the quintessence field.
Obviously, T t

t = −ρq = T r
r = pr , T

φ

φ = pφ , and T z
z = pz , and the fluid is anisotropic as pr ̸= pφ . Our

main interest is to obtain an exact rotating black string solution surrounded by the quintessence
matter. We begin with a general static black string metric in (t, r, φ, z) coordinates [7]

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dφ

2
+

r2

l2
dz2. (5)

The 2-dimensional space t = r = constant has a topology R × S1 such that −∞ < t < ∞,
0 ≤ r < ∞, 0 ≤ φ < 2π , −∞ < z < ∞. Using Eqs. (2), (3), and (5), we obtain the following
Einstein’s field equations

f ′(r)
r

+
f (r)
r2

− 3l−2
= −ρq,

f ′′(r)
2

+
f ′(r)
r

− 3l−2
= p. (6)

On using equation of state (4), we get

r2f ′′
+ 3rf ′(r)

(
wq + 1

)
+ f (r)

(
3wq + 1

)
− 9r2l−2 (wq + 1

)
= 0. (7)

Eq. (7) can be integrated to get

f (r) =
r2

l2
−

2m
r

+
Nq

r3wq+1 , (8)

where m and Nq are integration constants, and l is the curvature radius of AdS. Using Eqs. (6) and
(8), the density parameter ρq of the quintessence field reads

ρq =
Nq

2
3wq

r3(wq+1) , (9)

which is always positive. Since for quintessence wq ≤ 0, then Nq is restricted to be negative.
Next, we discuss the validity of the black string solution in the framework of tetrad formalism.

The basis vectors of the local observer and the basis vectors of the metric (5) are related by

e(a) = eµ

(a)∂µ, gµν
= η(a)(b)eµ

(a)e
ν
(b), (10)

where η(a)(b)
= diag(−1, 1, 1, 1). In the coordinates (t, r, φ, z) to describe static solutions (5) with

metricfunction f (r) given in Eq. (8), we introduce the basis vectors

e(a)µ = diag(

√
r2

l2
−

2m
r

+
Nq

r3ωq+1 ,
1√

r2
l2

−
2m
r +

Nq

r3ωq+1

, r,
r
l
). (11)
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The components of the energy–momentum tensor in the orthonormal basis are written as

T (a)(b)
= e(a)µ e(b)ν Gµν, (12)

which equivalently are written as

G(a)(b) = eµ

(a)e
ν
(b)Tµν . (13)

The orthonormal tetrads together with the energy–momentum tensor are evaluated to be

G(t)(t) = −G(r)(r) = −3/l2 +
3Nqωq

r3(ωq+1)
, G(φ)(φ) = G(z)(z) = 3/l2 +

3Nqωq(3ωq + 1)

2r3(ωq+1)
. (14)

Hence we can write

ρ = −pr = −3/8π l2 +
3Nqωq

8πr3(ωq+1)
, pφ = pz = 3/8π l2 +

3Nqωq(3ωq + 1)

16πr3(ωq+1)
. (15)

Therefore, we can see that the resulting fluid in neither a perfect nor it is isotropic. Following [40],
the average pressure of the resulting fluid is evaluated to be

p =
pr + pφ + pz

3
= 3/8π l2 +

3Nqωq

8πr3(ωq+1)
,

p
ρ

=

1/l2 +
Nqω2

q

r3(ωq+1)

−1/l2 +
Nqω2

q

r3(ωq+1)

. (16)

Such average pressure is also not resulted into the perfect fluid equation, instead it has dependence
on the radial coordinate because of the presence of the 1/l2-term. If we put 1/l2 = 0, we are
landing with situation when black string solution does not exist as it demands the presence of
the cosmological constant term. Further to be more specific about the pressure, we calculate the
pressure ratio and pressure anisotropy as follows

pφ

pr
=

l2 +
Nqωq(3ωq+1)

2r3(ωq+1)

l2 −
Nqωq

r(ωq+1)

, δ =
pr − pφ

p
=

3
2

Nqωq
(
ωq + 1

)
r3(ωq+1)/l2 + Nqωq

. (17)

We see that the ratio pt/pr and the relative pressure anisotropy δ are position dependent and
therefore the identification of the black string as perfect and isotropic solution is lost. Hence, the
black string solution is imperfect and anisotropic and the demand of the article [40] that ‘‘The Kiselev
solution is neither perfect fluid, nor it is quintessence" is identically hold good. Thus, the metric (5) with
(8) represents an exact non-rotating static black string surrounded by an anisotropic quintessence
matter. The Kretschmann scalar for the metric (5) with (8) is

RµναβRµναβ
=

24Nq

l4
+

48m2Nq

r6
−

24(3wq + 2)(wq + 1)mNq

r3wq+6 −
wq(3wq − 1)Nq

l4r3wq+3

+
(27w4

q + 54w3
q + 51w2

q + 20wq + 4)Nq

r6wq+6 . (18)

It is seen that for Nq ̸= 0, m ̸= 0, the Kretschmann scalar diverges at r = 0. The metric (5) admits
three Killing vectors, ∂/∂t , ∂/∂z, and ∂/∂φ, respectively, correspond to time-translation along t-
axis, translation symmetry along z-axis, and rotational symmetry around the φ-axis. The rotating
counterpart of metric (5) can be obtained by using the transformations [5]

t = Ξ t − aφ, φ = Ξφ −
a
l2
t, (19)

where Ξ =
√
1 + a2/l2 and a is the rotation parameter. Substituting (19) and (8) into (5), we obtain

ds2 = −

(
r2

l2
−

2m
r

+
Nq

r3wq+1

)
(Ξdt − adφ)2 +

dr2(
r2
l2

−
2m
r +

Nq

r3wq+1

)
+

r2

l4
(
adt − Ξ l2dφ

)2
+

r2

l2
dz2. (20)
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Fig. 1. Plots showing the horizons of rotating black string sorrounded by quintessence for various values of Nq in units
of l3wq+1 . Here the radial coordinate r is written in units of l.

Fig. 2. Plots showing the horizons of for string cloud background (left), and charged case (right) for various values of Nq
in units of l3wq+1 . Here the radial coordinate r is written in units of l.

The metric (20) represents a rotating stationary black string surrounded by quintessence matter,
which solves field Eqs. (2). The metric encompasses vacuum black string [5] as a special case when
Nq = 0. Also, for wq = −1, it again goes over to vacuum black string but with an effective
cosmological constant

1/l2eff =
(
1/l2 + Nq

)
. (21)

The charged black string [8,18] can be obtained by choosing wq = 1/3, and the black string
surrounded by cloud of strings for wq = −1/3. The metric (20) has many properties similar to the
Kerr metric on equatorial plane [8]. For Nq = −1/l2, the cosmological constant term disappears from
the solution and we get no black string. However, for Nq > 0 one could expect an anti-quintessence
effect with the negative energy density (ρq < 0). Subsequently a bare cosmological constant could
be built up if one set Nq = 1/l2 for the state parameter wq = −1.

The horizon of the solution (20) can be obtained by solving g rr
= 0, i.e.,

r3wq+3
− 2ml2r3wq + l2Nq = 0. (22)

Solving Eq. (22) numerically for appropriate values of parameters is shown in Fig. 1. One can see that
the radius of horizon decreases as the value of parameter Nq increases, and for wq, horizon radius
increases with an increase in wq. The horizon for the cloud of strings (wq = −1/3) background is

r+ =

(
27l2m +

√
729l4m2 + 27l6N3

q

)2/3
− 3l2Nq

3
(
27l2m +

√
729l4m2 + 27l6N3

q

)1/3 . (23)
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It is clear that for negative values of wq there exist a single horizon (cf. Figs. 1 and 2). Thus, the
horizon structure of rotating black string in quintessence background is different from the Kerr
black hole. However, for wq = 1/3 the charged black string solution admitting two horizons

r± =
12l2Nq + y2/3

3y1/3
±

√ 4ml2√
12l2Nq+y2/3

3y1/3

−
12l2Nq + y2/3

3y1/3
, (24)

where y = 54m2l4 +

√
1296m4l8 − 1728l6N3

q . The ‘‘+" sign in Eq. (24) denotes the event horizon r+
whereas the ‘‘ − " sign represents the Cauchy horizon rc , respectively. The horizons of the charged
rotating black string are depicted in Fig. 2. We have two horizons when r+ > r−, the degenerate
horizons for r+ = r−, and no black string when the Eq. (24) corresponds to no real root. Thus,
only the charged black strings in (A)dS universe has two horizons viz., Cauchy horizon and event
horizon. However, in the black string surrounded by quintessence backgrounds, the Cauchy horizon
disappears and it has just a single horizon. Thus, Cauchy horizons are unstable.

Next, we comment on the orthonormal basis of the rotating quintessence black string in which
the energy–momentum tensor is diagonal. The orthonormal tetrads are written as

e(a)µ =

⎛⎜⎜⎝
√
f (r)Ξ 0 −

√
f (r)a 0

0 1
√
f (r) 0 0

a r
l2

0 −rΞ 0
0 0 0 r

l

⎞⎟⎟⎠ . (25)

The components of the energy–momentum tensor in the orthonormal frame read

T (a)(b)
= e(a)µ e(a)ν Gµν . (26)

Fortunately, while calculating for the rotating quintessence black string we end with same calcula-
tions for density ρ and pressure (pr , pφ, pz) as in the nonrotating case.

3. Conserved quantities associated with black string

Here, we calculate the conserved quantities associated with the rotating black string by coun-
terterm approach [41]. The gravitational action for four-dimensional asymptotically AdS spacetime
M in the presence of some field [18] reads

Stot = SG −
1
4π

∫
∂M

d3x
√

−β

(
−

1
l

)
, (27)

Following the counter formalism and varying the action (27), we can write the divergence free
boundary energy–momentum tensor as

T ab
=

1
8π

(ϑab
− (ϑ + 2l−2)βab). (28)

To calculate the conserved charges of the spacetime, one should choose a spacetime surface B in
∂M with metric σij and write the metric in Arnowitt–Deser–Misner (ADM) [18] form

βabdxadxb = −N2dt2 + σij(dφi
+ V idt)(dφj

+ V jdt). (29)

Here the coordinates φi are the angular variables at the hypersurface of constant r around the origin.
Here N and V i are the lapse and shift functions, respectively. We define a Killing vector field ξµ on
the boundary, the conserved quantities related to the energy–momentum tensor of Eq. (29) reads

Qξ =

∫
B
d2x

√
σTabnaξ b, (30)

where σ is the determinant of the metric σij, and na is the associated unit normal vector on the
boundary B. The boundary includes both the time-like Killing vector ξ

µ

(t) and a rotational Killing
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vector ξ
µ

(φ) fields. The conserved quantities associated with these two conserved fields are

M =

∫
B
d2x

√
σTabnaξ b

t ,

J =

∫
B
d2x

√
σTabnaξ b

φ . (31)

One can find the quasilocal mass and the angular momentum per unit length of the string when
the boundary B goes to infinity as

M =
1

16π l
(3Ξ 2

− 1)m,

J =
3

16π l
Ξma. (32)

where m is the mass of the black string. For a = 0, the angular momentum vanishes from Eq. (32).

4. Thermodynamics of rotating black string

Next, we calculate the thermodynamic quantities of the rotating black string. It is well known
that the universal area law equally is applicable in all black objects in Einstein gravity [42–46].
Therefore the entropy per unit length of the black string reads

S+ =
πΞ r2

+

4l
. (33)

The entropy of the black string surrounded by quintessence matter still obeys the area law which
states that the entropy of the black hole is a fourth of the event horizon area. The rotating black
string with axial symmetry admits two Killing vectors, namely, ξ

µ

(t) corresponding to the time-
translational symmetry along t-axis and ξ

µ

(φ) corresponding to the rotational symmetry about φ-axis.
These two Killing vectors generate a Killing field χµ

= ξ
µ

(t)+w+ξ
µ

(φ), where w+ is the angular velocity
at the event horizon. Using the analytic continuation method, we obtain the angular velocity and
related temperature of the black string at the event horizon. The Euclideanizing the Lorentzian
metric by the transformation t → iτ , and a → ia, in such a way that for regular behaviour of
the coordinates at r = r+ demands that τ → τβ+ and φ → φ + iw+β+, where β+ is the inverse
Hawking temperature. For rotating black string the Hawking temperature is written as

T+ = β−1
+

=
3

4πr+Ξ

(
r2
+

l2
−

Nqwq

r3wq+1
+

)
. (34)

It can be seen that the temperature (34) is always positive when −1 < wq < −1/3. We plot the
Hawking temperature in terms of horizon radius in Fig. 3 for different values of a, wq and Nq. For a
fixed value of the state parameter wq, the temperature shifts towards the higher values when the
value of quintessence parameter Nq increases. When Nq = 0, the temperature becomes

T+ =
3r+

4πΞ l2
. (35)

Thus, the temperature behaves like a straight line passing through the origin (c.f. Fig. 3). The angular
velocity Ω+ is calculated to be

Ω+ =
a

Ξ l2
. (36)

We are now in a position to check the first law of black hole thermodynamics. The Smarr type
relation for a rotating black string in the presence of quintessence can be written as

M = 2T+S+ + 2Ω+J+ − (3wq + 1)NqΘq, (37)
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Fig. 3. Plots showing the behaviour of temperature T+ with horizon radius r+ for rotating black string sorrounded by
quintessence for various values of Nq in units of l3wq+1 . Here the horizon radius r+ is written in units of l and temperature
is written in units of 1/l.

where Θq is the quantity conjugate to Nq. The Hawking temperature, angular velocity, and pressure
Θq can be written as

T+ =

(
∂M
∂S

)
J,Nq

, Ω+ =

(
∂M
∂ J

)
S,Nq

, Θq =

(
∂M
∂Nq

)
S,J

. (38)

The first law of thermodynamics has the following form

dM = T+dS + Ω+dJ + ΘqdNq. (39)

Now, we focus on the thermodynamic stability of the solution (8). The black string is thermody-
namically stable/unstable according to the heat capacity is positive/negative. The expression for the
heat capacity of a thermodynamic system is written as

C+ =

(
dm
dT

)
(r=r+)

. (40)

The mass of the black hole in the quintessence background can be calculated from Eq. (8) and given
in terms of event horizon radius as

m+ =
r+
2

(
r2
+

l2
+

Nq

r3wq+1
+

)
. (41)
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Fig. 4. Plots showing the behaviour of mass function m+ with horizon radius r+ for rotating black string sorrounded by
quintessence for various values of Nq in units of l3wq+1 . Here both the horizon radius r+ and mass m+ are written in
units of l.

Fig. 5. Plots showing the behaviour of heat capacity C+ with horizon radius r+ for rotating black string sorrounded by
quintessence for various values of Nq in units of l3wq+1 . Here the horizon radius r+ is written in units of l and C+ in units
of l2 .

The behaviour of mass m is shown in Fig. 4. One can see that mass of the black string is ever
increasing function of horizon radius r+. The heat capacity for the metric (8) is

C+ =

2πr2
+
Ξ

(
r2
+

l2
−

Nqwq

r
3wq+1
+

)
(

r2
+

l2
+

(3wq+2)Nqwq

r
3wq+1
+

) . (42)

One can see the behaviour of the heat capacity from Fig. 5 for various values of quintessence
parameter Nq, state parameter wq, and rotation parameter a. It turns out that for a given set of
parameters, there exist a critical radius rc , when C+ → ∞. The critical radius rc can be written as

rc =
[
−(3wq + 2)wqNql2

] 1
3wq+3 . (43)

The critical radius has positive values when (3wq + 2)wq > 0, which leads to two different
possibilities such that

i. (3wq + 2) < 0 and wq < 0,

ii. (3wq + 2) > 0 and wq > 0.
The condition (i) implies wq < −2/3, while the condition (ii) implies wq > −2/3 or wq > 0,
which is unphysical. Thus we discard the condition (ii), and therefore the range of wq lies between
−1 < wq < −2/3. Thus, the heat capacity C+ < 0(> 0), respectively, when r < rc(> rc) and hence
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the black string is always thermodynamically stable when r > rc . The heat capacity for Nq = 0
turns out to be

C+ = 2πΞ r2
+
, (44)

which is a parabola and thus the black string is thermodynamically stable with positive heat
capacity.

4.1. Cloud of strings

Here, we consider a special case of black string solution (20), when wq = −1/3. In this sur-
rounding matter is a cloud of strings, which is defined as an arrangement of one-dimensional strings
and could be effective in the strong gravity regions such as black holes. The strings are assumed
to be fundamental objects in nature which encourages us to analyse its consequences on various
gravitational theories. The black string solutions in the string theory are the one-dimensional
extended objects surrounded by the event horizon. Letelier obtained the first solution of the black
string in the background of a cloud of strings [47]. After that many other solutions have been
obtained [48–52], and the thermodynamics have been discussed [53,54]. In this energy–momentum
tensor reads

T t
t = T r

r =
α

r2
, Tφ

φ = T z
z = 0, (45)

where Nq = −α. The metric (20) simplifies to

ds2 = −

(
r2

l2
−

2m
r

− α

)
(Ξdt − adφ)2+

dr2(
r2
l2

−
2m
r − α

)+
r2

l4
(
adt − Ξ l2dφ

)2
+

r2

l2
dz2. (46)

The quasilocal mass and the angular momentum using the (3 + 1) formalism have been calculated
for the quintessence background. Now we can write these conserved quantities for the cloud of
string background

M =
r+

32π l

(
3Ξ 2

− 1
) ( r2

+

l2
− α

)
,

J =
3Ξar+
32π l

(
r2
+

l2
− α

)
. (47)

The entropy, the Hawking temperature, and the heat capacity for the cloud of strings background
are given by

S+ =
πΞ r2

+

4l
, (48)

T+ =
1

4πr+Ξ

(
3
r2
+

l2
− α

)
, (49)

C+ =

2πr2
+
Ξ

(
3 r2

+

l2
− α

)
(
3 r2

+

l2
+ α

) . (50)

The temperature of the black string in the cloud of strings background is positive, zero, and negative,
respectively, when r2

+
> αl2/3, r2

+
= αl2/3, and r2

+
< αl2/3. The heat capacity can be positive

or negative depending on the values of the horizon radius. If r2
+

> αl2/3, then it is positive and
the solution is thermodynamically stable. On the other hand when r2

+
< αl2/3, the black string

solution is thermodynamically unstable and it decays through the Hawking radiation. The Hawking
temperature and the heat capacity for the rotating black string in the cloud of strings background
have been depicted in Fig. 6. The heat capacity is negative for small values of r therefore indicates
that the black string with a smaller radius is thermodynamically unstable. For large values, it is
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Fig. 6. Plots showing the behaviour of temperature T+ (left) and heat capacity C+ (right) for string cloud background for
various values of α. Here the horizon radius r+ , the temperature T+ , and the heat capacity C+ are written, respectively,
in units of l, 1/l, and l2 .

always positive. Therefore, the black string with a larger horizon radius do not evaporate through
Hawking radiation and becomes thermodynamically stable. However, when the horizon radius
r2
+

= αl2/3, the heat capacity changes its sign from negative to positive values.

5. Conclusions

The first exact spherically symmetric black hole solution of the vacuum Einstein equations was
obtained by Schwarzschild [55], and five decades later, in 1963, the solution of a rotating black hole
was discovered by Kerr [56]. If one considers cylindrical symmetric Schwarzschild like solutions in
AdS, it describes a black string [6] and similarly, the Kerr spacetime turns into a rotating black
string [5]. We obtained a static cylindrically symmetric black string solution with quintessence
matter, which is asymptotically anti-de Sitter and investigated their thermodynamic properties. Our
rotating black string solution encompasses the Lemos’ black string [7] which can be recovered in
the absence of quintessence matter (Nq = 0). Further, the charged black string [8] is a special in
the limit wq = 1/3 and black string surrounded by clouds of string matter is obtained as a special
case for wq = −1/3. Interestingly, even in the absence of the cosmological constant (1/l2 = 0),
one can obtain a black string solution when quintessence state parameter wq = −1. It turns out
that, unlike Kerr black hole, the rotating black string (20) admits just one horizon except for the
charge black string. Thus, the extremal black string with degenerate horizons is possible only for the
charged black string. Indeed, we obtained mass and angular momenta of the black string surrounded
by quintessence background via the counterterm method. The thermodynamic quantities, the
entropy, the Hawking temperature, and the angular velocity of the rotating black string have been
obtained. The entropy of a black string is not affected by the background quintessence matter,
which still obeys the area law. The thermodynamical stability is performed using the heat capacity
of the rotating black string. In the special case when wq = −1/3, the rotating black string is
thermodynamically stable for r2

+
> αl2/3 with positive capacity, unstable when r2

+
< αl2/3 with

negative heat capacity. Finally, we concluded that the conserved and thermodynamic quantities
obey the first law of thermodynamics.
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