
Annals of Physics 412 (2020) 168015

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Classes of topological qubits from
low-dimensional quantum spin systems
Dong-Sheng Wang
Institute for Quantum Computing and Department of Physics and Astronomy, University of
Waterloo, Waterloo, Canada

a r t i c l e i n f o

Article history:
Received 3 December 2018
Accepted 28 October 2019
Available online 4 November 2019

Keywords:
Valence-bond solid
Topological qubit
Quantum computation
Geometric phase
Bosonization

a b s t r a c t

Topological phases of matter is a natural place for encoding
robust qubits for quantum computation. In this work we extend
the newly introduced class of qubits based on valence-bond
solid models with SPT (symmetry-protected topological) order to
more general cases. Furthermore, we define and compare various
classes of topological qubits encoded in the bulk ground states
of topological systems, including SSB (spontaneous symmetry-
breaking), TOP (topological), SET (symmetry-enriched topologi-
cal), SPT, and subsystem SPT classes. We focus on several features
for qubits to be robust, including error sets, logical support, code
distance and shape of logical gates. In particular, when a global
U(1) symmetry is present and preserved, we find a twist operator
that extracts the SPT order plays the role of a topological logical
operator, which is suitable for global implementation.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Qubits are the building blocks for quantum computers to be built in the near future. Qubits
and quantum gates have been realized in many systems, including superconductors, trapped ions,
photons, etc [1]. Without passive protection, the coherence time is limited and active quantum error
correction is necessary [2–4]. Physical encodings with a certain passive protection are also pursued,
such as the cat code in optical system [5], and encodings via superconductors [6]. In the setting of
quantum many-body system, topological states provide promising candidate for robust qubits, such
as the well-known toric code [7].
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Table 1
Table of classes of ‘topological’ qubits we study encoded in degeneracy of ground subspace. For SSB, SPT, and SSPT qubits,
the GSD come from SSB order. For TOP and SET qubits, the GSD come from TOP order. We will study the last three classes
in more detail since the SSB qubits, which are topologically trivial, and TOP qubits are well known. Here L denotes the
system size. For the specification of errors, ‘local’ means the errors are local instead of being global, ‘TOP’ (’sym’) means
the errors respect the topology (symmetry). Please refer to discussion in the main text for details.
qubits SSB TOP SPT SET SSPT

Logical shape point,bulk string bulk bulk/string string,bulk
Logical support 1 1 L 1

√
L

Logical distance 1
√
L L

√
L

√
L

Errors local TOP local/sym TOP/sym local/sym

In this work we define and compare various classes of topological qubits, given the profound
progress of topological phases of matter in recent years [8,9]. Topological qubits are usually defined
in purely topological systems, while recently a class of topological qubits with symmetry protection
is proposed [10,11]. Therefore, it is important to compare the features of different classes of
topological qubits. We focus on qubits encoded in the bulk ground states manifold of translationally
invariant gapped systems, although other kinds also exist, such as encoding based on edge modes
or extrinsic defects [12]. Phases of matter can be roughly classified according to what the symmetry
is, whether and how the symmetry is broken or preserved. In this work, the symmetry we consider
can be global, local or intermediate, continuous or discrete. The phases of matter we consider
include gapped phases of spontaneous symmetry-breaking (SSB) of a global symmetry, purely
topological (TOP), symmetry-protection of a global symmetry (SPT) or subsystem symmetry (SSPT).
The classification of TOP and SPT phases is relatively well understood using group cohomology,
cobodism, and tensor category [13–17], compared with the SSPT phases [18–20]. Note that systems
with subsystem symmetry, such as ‘fracton’ orders [21], also rely on geometry and play more
intriguing roles in 3D spatial dimension. In this work, we focus on 1D and 2D cases as the starting
point for the comparison of qubits. For simplicity, we define the qubits considered as ‘topological’,
although there might be geometrical features. As the ground-state degeneracy (GSD) required to
encode a qubit can come from SSB or TOP order, we define five classes of qubits that each rely on
SSB, TOP, SPT and SSB, SPT and TOP (also known as SET), SSPT and SSB orders. See Table 1 for a
brief summary of topological qubits in dimension less than three we study and their main features.

For encoding we use whole gapped phases instead of a few states that are representative points
in certain phases. The encoding we consider is physical or on the hardware level, i.e., the encoded
system is not only described by quantum states, but also by other objects, such as Hamiltonian.
This is along the line of encoding a classical bit by the Ising model, which does not require a
fine-tuning of parameters such as temperature below the critical point, see Fig. 1. As a result, the
errors that should be considered are not abstract or ‘digital’, instead they are analog errors that are
allowed by the system. For instance, if a global symmetry is preserved, the natural errors should be
symmetry-preserving, e.g., excitations of the system.

When there is a preserved global U(1) symmetry, a twist operator can be defined and serves as
a topological logical operator. The twist can be understood in many ways, and one of them is as a
flux insertion inducing a topological geometric phase [22], which is protected by the gap. The flux is
a sum of local flux terms that can be nonuniform, showing robustness against local perturbations.
We consider valence-bond solid (VBS) models with global SU(N) symmetry as a seminal class of
SPT qubits, previously termed as VBS qubits for a special model [10]. This class of qubits can also
support logical gates that are on higher levels of the Clifford hierarchy [1]. The twist utilizes a U(1)
subgroup of the global SU(N) symmetry, and can also be viewed as a way to extract the SPT order
of the system. We use gapped phases for encoding since the twist works differently for gapless
phase [23–25] without a gap protection.

For a logical qubit, we find the two non-commuting logical operators (X̄- and Z̄-type rotations)
can be realized by topological or global operations. For the SPT qubits, Z̄ is the global twist due to the
SPT order, X̄ is the generator of the broken symmetry. In the case of TOP qubits, logical operators are
all from Wilson loops [26,27]. Note here we call all loop operators as Wilson loops for simplicity.
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Fig. 1. (Left) Phase diagram for 2D Ising model to encode a classical bit. The disordered phase is the high-temperature
phase, and the ordered phase is the low-temperature phase that has SSB of a global Z2 symmetry. The critical point λc
is a finite-temperature phase transition. (Right) Phase diagram used to encode a topological qubit. The ‘other’ phase can
be gapped or gapless. The qubit is encoded in a gapped phase.

Also Wilson loops can be viewed as the so-called ‘1-form’ symmetry operators [28,29], and TOP
degeneracy can be viewed as the consequence of the SSB of 1-form symmetry [30]. Recall that a
q-form symmetry acts on a (D − q)-dimensional manifold MD−q in a system of spatial dimension
D. A global symmetry is 0-form regardless of D, for instance. In the case of SET qubits, a topological
twist is equivalent to a corresponding Wilson loop operation. For code properties, the Wilson loop
determines the code distance, hence plays more strict role than the twist. However, the twist can
be realized by external global fields, hence benefits practical implementations without the need of
local addressability.

In this work, we extend the construction of VBS qubits [10], which are SPT qubits with global
continuous symmetry, to more general SPT qubits that also allow global or subsystem discrete
symmetry. We compare features, mainly as quantum memory, of SPT qubits with SET qubits and
the more conventional TOP qubits, treating all of them on the equal footing as candidates for
topological qubits and topological quantum computing. Our study is model-based and certainly
far from complete, yet we believe our technique and the main features of these classes of qubits
are generic. This work is organized as follows. In Section 2, encoding of topological qubits and the
framework we employ are discussed. In Section 3 the class of SPT qubits is introduced, and the 1D
VBS qubits, i.e., 1D SPT qubits with global U(1) symmetry, are studied in great detail. SPT qubits
with discrete symmetry are deferred to the Appendix. In Section 4 features of different classes of
qubits are analyzed and compared. We conclude in Section 5 with perspectives.

2. Preliminary

2.1. Encoding of qubits

Here we study primary defining features for robust qubits with topological protection. We take a
hybrid point of view as the combination of physical robustness and error-correction codes. Namely,
we take the qubits as a scheme of physical hardware encoding with natural error-resilience. As the
physical systems we consider are still abstract models instead of actual systems, the well-known
time scales, T1 for relaxation and T2 for dephasing, usually involved as the character of a qubit, are
not studied in our setting. Also we do not study active error-correction in depth as we currently
focus on the error-resilience from the system itself.

Here we lay out our method for encoding of qubits. Given a Hamiltonian H(λ⃗) of a model, if in the
parameter space of λ⃗ there is a gapped phase that breaks a certain symmetry, then a logical qubit
(or qudit) can be encoded in its bulk ground states. The ground state degeneracy (GSD) determines
the dimension of the logical space. We do not require edge modes for encoding in particular. This
applies to the qubits that are studied in this work, see Fig. 1, including classical bits based on Ising
models, and qubits for models that show SPT or TOP orders. A logical state is a state from the ground
subspace, and a logical basis is a set of orthonormal states that spans the qubit (or qudit) space, in
the large system-size limit if necessary. A logical operator, X̄ or Z̄ for instance, is defined to be the
effective operation of an operator acting on logical states. The same logical operator can be realized
by many actual operators on the system. The weight of a logical operator, or code distance of it,
is defined to be the minimal weight of those operators. The weight of an operator is the size of
the nontrivial support of it on the system. Logical code distance, or logical distance for brevity, is
defined as the minima of the minimal weight of logical X̄ and Z̄ , or X̄- and Z̄-type rotations that are
provided in the system. We also use dx (dz) to refer to the X̄- (Z̄-)type code distance. Logical support



4 D.-S. Wang / Annals of Physics 412 (2020) 168015

is defined as the minimal overlap of the supports of logical X̄ and Z̄ , or X̄- and Z̄-type rotations that
are provided in the system. Logical shape of a logical operator is defined as the geometric support
embedded in the system, which could be a point, segment, string, or bulk etc.

Physical errors, or errors for short, are operations that lead to excited states of H or operations
that are from the commutant of H . These include the symmetry of H and excitations of H , for
instance, and they are analog errors that are specific to a model H and may not be arbitrary. For
instance, if a global symmetry is preserved, the natural errors should be symmetry-preserving. A
correctable set of analog errors {Ei} is defined such that the error-correction condition PCE

†
i EjPC =

CijPC is satisfied, PC is the projector to the code space, and {Cij ∈ C} form a hermitian matrix [2].
For models that are not exactly solvable, such as valence-bond solids, we will study approximate
excitations that are well understood.

To define a good qubit, there are many other features studied in literature, for instance, the
disjointness [31], pieceable fault-tolerance [32] of stabilizer codes, and perturbative instability of
the models [33,34]. In this work, we limited ourselves to the primary features listed above, and we
also leave fault-tolerant computation for future study.

In our framework of encoding, a whole gapped phase is used for logical qubits. A whole phase is
used instead of a few representative points in it, so the encoding is stable against perturbations of
parameters λ⃗. Furthermore, the employed phase needs to be gapped since it can provide a certain
symmetry-breaking leading to degeneracy required for encoding qubits, along with well-defined
logical gates. The symmetries, either global or local, broken or preserved, determine the properties
of the logical qubits, and also put constraints on the errors that are natural for a system. We also
note that, although not studied in the present work, the symmetries also play central roles to realize
quantum gates and computation.

2.2. SSB qubit: Ising model

To illustrate the framework followed in this work we recall the scheme of encoding a robust
classical bit in the 2D classical Ising model on a square lattice, which is perhaps the most primary
model for using spin systems as qubits. To put it in the quantum setting, it is well known that it
can be viewed as the 1D quantum Ising model in a transversal magnetic field

H = −

∑
n

Xn − λ
∑
n

ZnZn+1. (1)

There is a phase transition at λc = 1, and large (small) λ corresponds to low (high) temperature
in the classical picture. The critical point is identified by a notable self-duality of the system [35,36].
Define X̃n = ZnZn+1, Z̃n =

∏
m<n Xm on the dual lattice, which satisfies the Pauli algebra {X̃n, Z̃n} = 0

and others. The Ising model becomes

H = −λ
∑
n

X̃n −

∑
n

Z̃nZ̃n+1. (2)

It is clear that at λc = 1 the model is self-dual, and the order parameter ⟨
∑

n Zn⟩ = 0, disorder
parameter ⟨

∑
n Z̃n⟩ ̸= 0 for the high-temperature phase (λ < 1), and ⟨

∑
n Zn⟩ ̸= 0, ⟨

∑
n Z̃n⟩ = 0 for

the low-temperature phase (λ > 1).
The low-temperature ordered phase is usually used to encode a classical bit, see Fig. 1 (left). This

bit is said to be self-correcting, or thermally stable, as it is protected by a finite-temperature phase
transition from the disordered phase. The ordered phase has SSB of a global Z2 symmetry, which
provides the two-fold degeneracy for the whole spectrum. The essential fact is that the encoding of
the classical bit employs the whole ordered phase, which not only includes ground states but also
excited states with a finite total magnetization in the classical picture. The logical X̄ is the generator
of the broken Z2 symmetry, and can be realized by an external global magnetic field. The logical Z̄ (if
treated as a qubit) is from the preserved 1-local symmetry, which is a gauge symmetry, and Z̄ = Zn
on any single site n.

When there is SSB for spatial dimension less than three, the broken symmetry is finite due to
Mermin–Wagner theorem, and the generator of the broken symmetry will be one logical operator,
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and its code distance will be linear with the system size. We observe that there is a trade-off for the
support of X̄ and Z̄ when there is a SSB of a global symmetry without other nontrivial symmetry
preservation. The support of X̄ , as the generator of the broken symmetry, is the whole system, while
the support of Z̄ is a constant. Therefore, the logical support, defined as the overlap for the support
of X̄ and Z̄ , is a constant. We will see qubits with logical support that scales with the system size
later on.

There is no need for active error correction as this can be simply done by lowing the temperature
to keep the system in the ordered phase. In the classical picture, the excitations are from local flips
of spins, hence the errors include local bit flips by Xn and phase flips by Zn. The bit is robust against
these local bit flips, but not global ones which can lead to X̄ . The bit is not robust against phase
flips, which is the reason for it being a good classical bit instead of a quantum one. To design good
qubits, we have to employ more sophisticated models as studied in the following sections.

3. 1D VBS qubits

In this section we study symmetry-preserving orders and VBS qubits. This is a generalization of
the previous work on 1D code via SU(N) VBS [10], where a topological twist operation and code
properties were studied. Here we broad our study to more general VBS, and define VBS qubits
and logical operations that are beyond the standard stabilizer codes. We find VBS qubits behave
quite differently from SPT qubits with discrete symmetries, examples of which can be found in the
Appendix. We first study the physics of twist operator in Section 3.1, and then we analyze in detail
the spin-1/2 case, the simplest VBS qubit, in Section 3.2. We then generalize to higher-spin cases
in Section 3.3 and SU(N) cases in Section 3.4. Previously VBS and SPT models have been studied
for the purpose of measurement-based quantum computing [37–40], here our work demonstrate
a different way of using them. For 1D system, we require periodic boundary condition (PBC). Also
note that some authors may make a distinction between valence-bond crystal and VBS, which may
be necessary in settings of condensed matter, while here we find this is unnecessary and use VBS
referring to models of these kinds.

3.1. Twist and logical operators

When there is a U(1) global symmetry that is respected by the ground state(s), a twist operator
along a periodic direction can be defined

F ({θn}, θ ) := ⊗
L
n=1e

iθngn , (3)

with ∑
n

(θn − θn−1) = θ, θn − θn−1 ∈ O(1/L), θ ∈ [0, 2π ], (4)

for n as the site label, L as the length of the periodic direction. The case θ = 2π is called a full
twist F ({θn}, 2π ), and the case θn − θn−1 = ∆θ,∀n is called a uniform twist F (θ ). We will often use
twist F as the uniform full twist, for which ∆θ = 2π/L := ℓ. The operator g is the generator of the
utilized U(1) global symmetry, e.g., we use g = Sz for SU(2) case. The order parameter λ(G) of a
ground state |G⟩ is defined as

λ(G) := ⟨G|F ({θn}, 2π )|G⟩. (5)

It turns out there are multiple ways to look at the twist (3). It is not hard to see that it is the
exponent of a geometric phase Ω such that eiΩ = λ(G) and

Ω = −i
∮ 2π

0
⟨Gθ |∂θ |Gθ ⟩dθ (6)

for |Gθ ⟩ := F ({θn}, θ )|G⟩. Due to the geometric phase interpretation, the twist can be understood as
a flux insertion, hence the notation ‘F’. For 1D system with PBC, there is only one twist. This can be
implemented by an external electric field for the SU(2) case [23–25], which is realized by putting a
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Fig. 2. Implementation of twist by inserting a radial electric field. The 1D case (left) can be generalized to 2D case on a
cylinder (middle) or a disc (right). The black line indicates the grouped sites treated as a single site for the twist operator.
For the case of disc, however, the sites in a grouped site along a radial direction do not obtain the same phase due to
the twist operator.

constant electrical charge Q at the center of the ring, see Fig. 2. Flipping the sign of the charge will
flip the sign of the induced phase. The electric field induces a global gauge transformation on the
model. Given the usual exchange interaction

h = S⃗r · S⃗r+1 = (S+

r S−

r+1 + S−

r S+

r+1)/2 + Szr S
z
r+1, (7)

the twisted exchange interaction htw(θ ) := F †(θ )hF (θ ) and

htw(θ ) = (eiθ/LS+

r S−

r+1 + e−iθ/LS−

r S+

r+1)/2 + Szr S
z
r+1 (8)

contains a phase factor for each hopping term. Furthermore, the phase θ
L is the Aharonov–Casher

(AC) phase [41], which is the geometric phase of a magnetic moment µ⃗ moving in electric field E⃗,
and

θ ∝ LS
∫ a

0
d⃗l · (e⃗z × E⃗ (⃗l)) = LSE(R) (9)

for spin S, the unit vector e⃗z along z-direction orthogonal to the system plane, and lattice spacing
a. The field E⃗ ∝

Q
r2
, and E(R) is the field strength at the radius R = L/2π . We see that, for the full

twist θ = 2π , Q ∝ L/S, which means in order to induce the desired twist operation, the magnitude
of charge is proportional to the system size while inversely to the magnitude of spin. To make it
size-independent, an infinite line of charge can be used instead of a single charge, and it is not hard
to see the charge density ρ ∝ 1/S.

Alternatively, the effect of the twist can be understood as a spin–orbit coupling in the context
of Dzyaloshinskii–Moriya (DM) interaction [42]. In general, DM term takes the form

Hdm =

∑
ij

D⃗ij · (S⃗i × S⃗j). (10)

To realize the twist, we only need the z-component of Di,i+1 ∝ sin 2π/L. It turns out atomic
quantum simulators using cold atoms in optical lattice [43] can realize the model (8) as a special
case.

In our encoding scheme, the logical states are the singlet ground states of a certain VBS model.
They are not orthogonal if the system size is finite, but become orthogonal when the thermodynamic
limit is approached. For SU(2) case, the broken symmetry is lattice translation, and the encoding is
for a single qubit. For SU(N) case the broken symmetry can be lattice translation or other symmetry
such as parity, and the encoding can be a qubit or qudit. We find the logical Z-type rotation Z̄(ωN )
is the twist operator F , and the logical bit flip operator X̄ is the generator of the broken symmetry.
When the broken symmetry is lattice translation T , on a ground state |G⟩ it holds

TFT †
|G⟩ = ei2πgLF |G⟩, (11)

and ei2πgL is proportional to identity up to a factor as a certain order of ωN . The two logical
operators are Pauli X̄ and Z̄ . When the broken symmetry is parity Π about a link, which is complex
conjugation for SU(N) case, it holds

ΠFΠ†
= F †. (12)
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Table 2
Examples of SU(3) and SU(4) 1D VBS qubits. In the table, ‘unique’ means the ground state is unique, and an encoding
with excited states or edge states is inevitable. ‘T’ is a lattice translation operator, ‘Π ’ is a parity operator that exchanges
irreps N ↔ N̄, ‘R’ is a reflection about a site and R = TΠ . ‘H term’ refers to the basic term in a parent Hamiltonian. Pn

(λ)

refers to a projector onto all other irreps except λ acting on n neighboring sites, and Pn,A(B)
(λ) refers to that when the first

site is in sublattice A (B). The ‘‘uc-size’’ refers to the unit-cell size, which is the minimal number of sites such that the
congruence class is [0].
System Types uc-size Ground states H term Codes

SU(3), 3 II 3 P {4}
(3,6̄)

qutrit, ⟨X̄ = T , Z̄ = F⟩

SU(3), 6 II 3 P {4}
(3̄,6,1̄5)

qutrit, ⟨X̄ = T , Z̄ = F⟩

SU(3), 10 II 1 P {2}
(1̄0,27)

unique

SU(3), 8 I 1 P {2}
(3̄⊗3)

qubit, ⟨X̄ = Π, Z̄(ω3) = F⟩

SU(3), 27 I 1 P {2}
(3̄⊗3⊗3̄⊗3)

qubit, ⟨X̄ = Π, Z̄(ω3) = F⟩

SU(3), (3, 3̄) III 2 P {3,A}

(3) , P {3,B}
(3̄)

qubit, ⟨X̄ = R, Z̄(ω3) = F⟩

SU(3), (6, 6̄) III 2 P {2}
(3̄⊗3)

unique

SU(3), (10, 1̄0) III 2 P {3,A}

(3⊗3⊗3) , P
{3,B}
(3̄⊗3̄⊗3̄)

qubit, ⟨X̄ = R, Z̄(ω3) = F⟩

SU(4), 4 II 4 P {5}
(4,2̄0)

4-level, ⟨X̄ = T , Z̄ = F⟩

SU(4), 6 I 2 P {5}
(20⊗2̄0)

4-level, ⟨X̄ = T , Z̄ = F⟩

SU(4), 10 II 2 P {2}
(20′,45) unique

SU(4), 15 I 1 P {2}
(4̄⊗4)

qubit, ⟨X̄ = Π, Z̄(ω4) = F⟩

SU(4), 20′ I 1 P {2}
(4̄⊗4⊗4̄⊗4)

qubit, ⟨X̄ = Π, Z̄(ω4) = F⟩

SU(4), 35 II 1 P {2}
(4⊗4⊗6⊗6⊗6) unique

SU(4), (4, 4̄) III 2 P {3,A}

(4) , P {3,B}
(4̄)

qubit, ⟨X̄ = R, Z̄(ω4) = F⟩

SU(4), (10, 1̄0) III 2 P {2}
(4̄⊗4)

unique

Due to the global SU(N) symmetry, it can be shown that FN
∝ 1, leading to the logical operators

X̄ =

(
0 1
1 0

)
, Z̄(ωN ) :=

(
ωN 0
0 ω∗

N

)
, ωN := ei2π/N , (13)

and for each qubit the value of N > 2 is fixed. For parity about a site, denoted by R = TΠ , it is also
straightforward to obtain the logical operators above. Some examples can be found in Table 2.

3.2. Dimer-phase qubit

Here we study a ‘dimer-phase’ qubit for spin-1/2 VBS model in detail. For PBC with even number
of sites L, the Majumdar–Ghosh (MG) model [44]

Hmg =

L∑
j=1

S⃗j · S⃗j+1 +
1
2
S⃗j · S⃗j+2 (14)
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has two ground states |L⟩ and |R⟩, and |L⟩ = |s⟩⊗L/2, for singlet state |s⟩ =
1

√
2
(|01⟩−|10⟩) formed by

two neighboring spins, and |R⟩ is the same with |L⟩ after one lattice site translation. A dimer is also
known as a valence bond, or singlet. The two ground states have SSB of the translation symmetry
of the Hamiltonian Hmg.

We define logical |0̄⟩ as |L⟩, and |1̄⟩ as |R⟩. The logical X̄ is from the lattice translation by one
site T , or a Wilson loop: firstly create a pair of spinons by breaking one singlet bond, and then shift
one of them around the system and annihilate the pair again. In addition, it is easy to prove that
no local unitary operations of the form U =

⨂
r Ur can serve as X̄ . Instead, X̄ can also be realized

by a sequence of swap operations of local sites, which cannot spread out or copy noises on a local
site to more.

The gap protection of twist can be seen from

⟨0̄|F (θ )|0̄⟩ = (cos
θ

2L
)L/2 → 1, (15)

⟨1̄|F (θ )|1̄⟩ = (cos
θ

2L
)L/2−1 cos(

θ

2
(1 −

1
L
)) → cos

θ

2
.

As a result, for the full twist ⟨1̄|F |1̄⟩ = −1, and the minus sign comes from the fact that ei2πS
z
= −1.

Also, for general value of θ ∈ (0, 2π ), |cos θ2 | < 1, which means the system will be excited, and the
value −1 from the full twist is protected by the gap of the system.

By grouping two sites, the two ground states of MG model belong to different SPT phases
protected by symmetry SO(3) [13]. For one ground state, say, |0̄⟩, the two spin-1/2 for each grouped
site forms a singlet, so there is no bond dimension and it belongs to the trivial phase of the
cohomology H2(SO(3),U(1)). For the other ground state |1̄⟩, however, there is one singlet bond
between each two grouped sites, so the bond dimension is two. This state can be written as a
matrix-product state (MPS) [45] with the set of matrices at each site as Pauli matrices {σi} for on-
site basis |i⟩ formed by singlet and triplets. The nontrivial twist factor −1 is the SPT index of |1̄⟩.
However, without grouping of sites the assignment of SPT index becomes relative. Also it seems
the two ground states are distinguishable locally, e.g., by identifying the two-local configuration to
be singlet or triplet, yet this breaks the global SU(2) symmetry. Instead, the twist is the topological
operation that respects the symmetry and extracts the different SPT indices of them.

More generally, we consider

HD =

L∑
j=1

S⃗j · S⃗j+1 + J S⃗j · S⃗j+2 + B
L∑

j=1

Szj . (16)

Hmg is a special case of HD. For variables J and B in a certain range there is a dimer phase, i.e., ground
states are product of singlet pairs from nearest-neighbor sites [46]. The essential properties we use
are that there is a double-degeneracy of the spectrum of HD, and there is a global U(1) symmetry
(rotation along z-direction). The double-degeneracy provides a two-dimensional space for our
logical qubit, and the global U(1) symmetry allows a flux insertion (twist) that plays the role of
a logical operator.

Now we discuss robustness of qubit against noises and excitations. The well-studied excitations
are spinons, also known as solitons [47]. The solitons form domain walls between the two ground
states. The solitons are deconfined as they can move without causing a net energy cost. Bit-flip type
errors will be spinon drift, and they are correctable except the Wilson loop. The logical X̄ is a global
operation so it is not straightforward to mimic by thermal noises. Furthermore, an energy barrier
for X̄ can also be introduced from the Hamiltonian via spin-Peierls mechanism [48], which may due
to spin-phonon interactions and usually introduces the staggered terms (1− δ(−1)r )S⃗r · S⃗r+1, which
explicitly breaks the lattice translation symmetry by odd number of sites, and induces a confining
force between spinon pairs.

The twist F is based on a geometric phase. In our case, the geometric phase is topological as it
is proportional to the winding number around the spin ring. Due to the topological feature of F , it
is robust against thermal noise, i.e., it is hard for the thermal noise to induce a logical Z̄ operation.
For random unitary U = ⊗nUn with Un ∈ SU(2), the full-twist condition and the global symmetry
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are violated, and bonds are actually broken and the system is destroyed. So we shall only consider
noises that almost respect the global symmetry. Now for random unitary U = ⊗nRz

n with Rz
n ∈ SU(2)

and close to identity, hence almost respect the global symmetry, the full-twist condition (θ = 2π )
is violated in general. This close-to-identity error (noise) is correctable as it has null action on the
code subspace.

At low temperature βth, the solitons will on average distribute evenly on the system with density
ρ ∝ Le−βth∆ for ∆ as the gap of a single soliton. The total magnetization M is a thermal average
M =

∑
i pimi for pi = ⟨ψi|ρth|ψi⟩ as Boltzmann distribution, mi as the magnetization of eigenstate

|ψi⟩. For eigenstate |e⟩, if its magnetization is m, ⟨e|e−iℓ
∑

n Szn |e⟩ = eiℓm ≃ 1 if m ≪ L. We verify that,
for lattice translation T and the twist F ,

{T , F} = 0, T 2
= F 2

= 1, (17)

holds for the low-lying spectrum and the whole dimer phase [49,50]. The relation (17) is the basic
for taking a whole dimer phase at finite low temperatures as a stable logical qubit. This means we
can encode logical qubit into low-lying spectrum, and the whole Hilbert space has a junk part

H ⊖ K = H0 ⊕ H1. (18)

For a fixed number of density of solitons, there is a trade-off between the system size and the
value of temperature. Proper choices of them would affect the practical performance of a qubit. At
low temperature, no active error correction is required as the Hamiltonian itself provides a passive
protection of the qubit against noises, although the lifetime of the qubit is still finite. This also
encourages an effective description of the qubit by quantum field theory.

It is well developed that the long-wavelength behavior of 1D Heisenberg spin chain close to
phase transition is described by a Wess–Zumino–Witten model [51–54], which is further equiv-
alent to a sine-Gordon model [55,56]. To describe the qubit, we start with a simple sine-Gordon
Hamiltonian

HsG =

∫
dx

1
2
[Π2

+ (∂xφ)2] + g cosβφ (19)

with variables g and β . Note here φ,Π are field operators, and they are φ(x),Π (x) in full notation
and satisfy [φ(x),Π (y)] = iδ(x−y). The dual field of φ is θ such thatΠ = ∂xθ . The scaling dimension
of the nonlinear term cosβφ is d =

β2

4π , which, in the sense of renormalization group, is relevant if
d < 2, irrelevant if d > 2, and marginal if d = 2. The model HsG depends on β significantly [53,54]:
it is gapped for β2 < 8π , and becomes gapless otherwise. The gapped phase is dimerized due to
breaking of lattice translation symmetry.

To make a connection with the original spin picture, we note that

Szx ∝ c1∂xφ + c2(−1)x sinβφ/2 (20)

for constants c1, c2. The dimer order parameter is the real part of the vertex operator z := eiβφ/2,
which is pinned to the value ±1 for the two dimer ground states. The field φ is periodic φ =

φ+ 4πn/β for integer n, and the lattice translation by one site T acts as T : φ → φ+ 2π/β , which
flips the sign of the dimer order parameter. A staggering δ can induce an additional term cosβφ/2
for explicit dimerization, while the 2nd-nearest neighboring interaction affects the term cosβφ for
spontaneous dimerization [46,53,57]. The explicit dimerization induces the confinement of spinons
to form bound states, which will reduce the probability of the logical X̄ error for the qubit.

For the gapless phase, the vertex operator can be interpreted as an operator that pumps a fermion
between the two brunch of the Fermion surface, and it is known that the value of z = 0. This is
similar to the twist operator, which will create a spin-wave excitation. For the gapped phase, due to
the exponentially decaying spin correlation function the twist operator does not create a spin wave,
instead the twist will induce a nontrivial action (logical Z̄) on the ground subspace. Again this is
similar to the vertex operator which is pinned to fixed values for the two ground states. Indeed, it
has been argued that the twist operator is equivalent to the vertex operator z [58,59]. Therefore,
we identify F ≡ eiβφ/2 and TFT †

= −F holds for low-lying spectrum. This is just the two logical
operators X̄ = T , Z̄ = F defined before. From sine-Gordon model, we can use (φ, θ ) as the polar
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Fig. 3. The Bloch sphere and Bloch vector to represent the logical qubit state. (φ, θ ) are the field operators in sine-Gordon
field theory. The low-lying states of the dimer phase correspond to the Bloch vector pointing towards the positive or
negative z-direction.

coordinates of the Bloch vector of the logical qubit, see Fig. 3. Note here φ and θ are field operators
instead of c-numbers. The ground states of the dimer phases (related by translation T ) correspond
to the Bloch vector pointing to the z direction or its negative. This can be viewed as a spontaneous
breaking of Z2 symmetry, which is the lattice translation by one site.

3.3. 1D SU(2) VBS qubits

In this section we study 1D SU(2) VBS model for general spin values S, which could be half
integers or half odd-integers. We find the 1D parent Hamiltonian [44,60,61] could include three-
local interactions, and its ground states may break translation symmetry by one lattice site. For the
encoded qubit, we find the X̄ is the generator of the broken translation symmetry, and Z̄ is the twist.
Different from the spin-1/2 case, the ground states are more complicated, and there are more types
of excitations. Despite this, the universal features can be characterized by effective field theories,
similar with the spin-1/2 case. The field theories also apply to the SU(N) cases, while we defer this
for a separate study. We find one of the merits of higher-spin VBS qubits is that spinons can be
confined, hence reducing the probability of making logical errors.

A valence bond is a SU(2) singlet formed by two spin-1/2. We denote a valence bond state as
|Ξmn⟩ for m + n = 2S, and integers m, n ≥ 0 [59,62]. The on-site spin-S is a projection from 2S
spin-1/2, and there are m (n) bonds to the left (right) of this site. Alternatively, m bonds can be
treated as a single bond of two spin-m/2. For PBC there are even number of sites.

Each |Ξmn⟩ as a MPS can be expressed as

|Ξmn⟩ =

∑
i1,...,iL

tr(Ai1Bi2 · · · AiL−1BiL )|i1 · · · iL⟩ (21)

with two types of matrices Ai of size (n + 1) × (m + 1) and Bi of size (m + 1) × (n + 1) [59,63]. We
will also study a convenient fermion representation later on. In our setting the MPS is also known
as valence-bond states due to the global continuous symmetry, which provide a concise description
for the generic features of the Heisenberg interactions

H =

L∑
r=1

S⃗r · S⃗r+1. (22)

For instance, for spin-1 the ground states of Heisenberg model and AKLT model are in the
same phase, the well-known Haldane phase [61,64,65]. States |Ξmn⟩ can be used to study phase
transitions. A common way to induce energy differences among |Ξmn⟩ is the spin-Peierls effects, as
the spin-1/2 case. We find there are generic features for the energy of states |Ξmn⟩ as a function
of staggering δ. In Fig. 4 we plot the expectation value of the sum of two neighboring interaction
terms on VBS states for spins up to 3. We can see that the slope is proportional to |m − n|, and
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Fig. 4. The expectation value of the sum of two neighboring interaction terms on VBS states |Ξmn⟩ for different spins as
a function of spin-Peierls staggering δ. The spins are S = 1/2 (black), S = 1 (cyan), S = 3/2 (blue), S = 2 (green), S = 5/2
(magenta), S = 3 (red). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

there is no slope when m = n as the staggering effects cancel out. At δ = 0 for integer spin S, the
uniform VBS |ΞSS⟩ always has lower value of energy than other states.

To take certain states |Ξmn⟩ as exact ground states, parent Hamiltonian can be constructed from
projectors [61]. With the projector Ps′ (i, i + 1, i + 2) to spin s′ sectors on three neighboring sites,
the following Hamiltonian

H =

∑
i

3S∑
s′=S+1

Ps′ (i, i + 1, i + 2) (23)

takes all states |Ξmn⟩ as ground states, i.e., the GSD is 2S + 1. Furthermore, a pair of VBS |Ξmn⟩ and
|Ξnm⟩ can be selected out to be the ground states of a parent Hamiltonian. For the generic case,
both two-local and three-local terms are needed. Given m, n, w.l.o.g. let m > n, then the projector∑m′

s=m+1 Ps(i, i + 1) lifts up the energy of states |Ξm′n′⟩ and |Ξn′m′⟩ for m′ > m, and the projector∑(m−n)/2−1
s=(m′−n′)/2 Ps(i, i + 1, i + 2) lifts up the energy of states |Ξm′n′⟩ and |Ξn′m′⟩ for m′ < m. Now we

find the parent Hamiltonian of |Ξmn⟩ and |Ξnm⟩ takes the form

H =

∑
i

3S∑
s′=S+1

Ps′ (i, i + 1, i + 2)

+

|m−n|/2−1∑
s′=0

Ps′ (i, i + 1, i + 2)

+

2S∑
s′=max(m,n)+1

Ps′ (i, i + 1).

(24)

The Hamiltonian can be simplified for special cases. For integer spin S, only two-local interactions

H =

∑
i

2S∑
s′=S+1

Ps′ (i, i + 1) (25)
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are needed for the state |ΞSS⟩ as the unique ground state as it does not break the translation
symmetry. For the fully dimerized states |Ξ2S,0⟩ and |Ξ0,2S⟩, its parent Hamiltonian is

H =

∑
i

P(S)(i, i + 1, i + 2), (26)

and P(S) denotes the projection to all spin sectors except S.
We now identify the logical operators X̄ and Z̄ . It is not hard to see that in the large system size

limit

⟨Ξmn|F |Ξmn⟩ = (−1)n, ⟨Ξnm|F |Ξnm⟩ = (−1)m. (27)

We will compute this via fermion representation later on. For VBS with half-integer spins, we can
always choose two VBS states with opposite SPT index as degenerate ground states to encode a
qubit. From

TFT †
= Fe−iℓ

∑
n Sznei2πS

z
1 , (28)

for half-integer spin, ei2πS
z
1 = −1. For phases with singlet ground states, it holds TFT †

= −F . Now
it is clear to see that the logical operators are

Z̄ = F , X̄ = T . (29)

We know that X̄ can also be done using Wilson loop, namely, firstly create a pair of domain walls
by breaking singlet bonds, and then shift one of them around the system and annihilate the pair
again.

For errors on the system, we can understand the generic properties from excitations. Excitations
of VBS models are usually described as solitons and pseudo-solitons [47]. Solitons, which by
definition separate ground states, are in general deconfined, hence can induce logical bit flip error
if they can move around the system, forming a Wilson loop. However, this process is very unlikely
and suppressed by the system size since a soliton can drift either towards or away from the other
one, or by the spin-Peierls effects. Pseudo-solitons, which by definition separate a ground state
from an excited state, are in general confined, hence will not cause logical errors. When pseudo-
solitons dominate over solitons, which require lowering the temperature and other mechanism, the
performance of a logical qubit would be better.

We remark on a difference between integer and half odd-integer spins, which has been a notable
point in spin systems [64]. Recall that n + m = 2S. Integer spin-S is a linear rep of SO(3). For this
case, if n is odd, then the virtual spin-n/2, and also spin-m/2, is a nontrivial projective rep of SO(3).
If n is even, then m is also even and the order is trivial. For half odd-integer spin S, n is odd if m is
even, and vice versa, and they cannot both be even or odd. That is to say, if |Ξmn⟩ has trivial order,
then |Ξnm⟩ has nontrivial order. The on-site rep becomes linear if two sites are grouped together,
and the virtual rep is spin n/2 or m/2, and it is clear only one of them is a nontrivial projective rep
of SO(3). This agrees with the phase classification by projective representation method [13]. For VBS
models with integer spins, the ground state can be unique without breaking the lattice translation
symmetry. Excited states or edge states have to be used to encode a qubit [66,67], which slightly
deviates from the main encoding scheme using ground states, so we do not study this further.

3.4. 1D SU(N) VBS qubits

In this section, we study qubits using various 1D SU(N) VBS models [68]. Difference from SU(2)
case, there are more degree of freedoms and, as a result, non-standard (i.e., non-Clifford [1]) logical
operations exist naturally, and we find there are three types of encodings, see Table 2.

For SU(2), irreps are classified into two classes: integer spins as linear reps of SO(3) = SU(2)/Z2,
half-integer spins as projective reps of SO(3). Tensor product of two half-integer spins leads to
a direct sum of integer spins. For SU(N), irreps are classified into N classes according to their
congruence classes [69]. Let [λ] be the congruence class of a rep λ, then [λ] ∈ {[0], [1], . . . , [N−1]}.
For example, for SU(3), irrep 3 belongs to the class [1], irrep 3̄ belongs to the class [2], irrep 8 belongs
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to the class [0]. A simple way to find the congruence class of an irrep is that it is the number of
boxes in its Young tabular modular N .

The SU(N) VBS states are constructed with linear reps of PSU(N) = SU(N)/ZN , which then allows
N different SPT phases labeled by ω[λ]

N for [λ] as a label of the congruence class of its virtual reps. If
the on-site irrep is of class [λ] which is not linear, i.e., class [0], then we can group r nearest sites
together such that ωr[λ]

N = 1 for the smallest integer r . Furthermore, even when [λ] is a linear rep, it
can be complex, such as the rep 10 of SU(3), so a SU(N) VBS system can be non-translation-invariant
by one lattice site.

The algorithm to construct a SU(N) VBS system, including its ground states and parent Hamilto-
nian, is as follows. For translation-invariant (TI) system, given the on-site irrep λ, find the minimal
integers x and y as the number of virtual N and N̄, respectively, the product of which leads to λ. Next
form singlet bond from N irreps N (or N irreps N̄ ), then a VBS state is constructed. In terms of MPS,
the set of matrices for each site follows from Clebsch–Gordon (CG) coefficient of x · N ⊗ y · N̄ → λ.
The SPT order is determined by its edges. The parent Hamiltonian contains at most (N + 1)-local
terms.

For non-TI (NTI) system, there are two sublattices a and b. Given the on-site irrep λ and λ̄, find
the minimal integers x and y as the number of virtual N and N̄, respectively, the product of which
leads to λ. Next form singlet bond from N and N̄, then a VBS state is constructed. In terms of MPS, the
set of matrices for each a (b) site follows from CG coefficient of x·N⊗y·N̄ → λ (y·N⊗x·N̄ → λ̄). The
SPT order is determined by its edges. The parent Hamiltonian contains at most three-local terms.

For an irrep of SU(N) with m boxes in its Young diagram, its generators can be expressed with
the set of N2 operators

Sαβ := ψ†αcψβc − δαβ
m
N

(30)

for fermionic operator ψ†αc as the creation operator of a state with flavor α and color c and
{ψ†αa, ψβb} = δαβδ

a
b [70]. Their possible values are α = 1, 2, . . . ,N , and c = 1, 2, . . . , p for p as the

number of columns in its Young diagram. Einstein’s summation role is assumed. The total number
of boxes is m = ψ†αcψαc , and the set Sαβ satisfies Sαα = 0.

For SU(N) irreps, as there can be multiple rows, we can also use ‘hole’ operator ψ̄†
β := ψβ ,

which corresponds to a column of N − 1 boxes in Young diagram. For the fundamental irrep N, we
have Sαβ = ψ†αψβ − δαβ

1
N , and ψ

†αψα = 1. For its conjugate N̄, we have Sαβ = ψ†αψβ − δαβ
N−1
N ,

and ψ†αψα = N − 1. Using hole operator, it can also be expressed as Sαβ = −ψ̄
†
βψ̄

α
+ δαβ

1
N , and

ψ̄†
αψ̄

α
= 1. For the adjoint irrep N2−1, we have Sαβ = ψ†αψβ − ψ̄

†
βψ̄

α , which is the combination of
a particle and a hole.

For the twist operator, we first notice that there exists an operator Oλ in the Cartan subalgebra
such that

ei2πOλ = ω
[λ]
N 1, ωN = ei2π/N , (31)

as the analog of that of SU(2) case. For the SU(3) example, we can choose O = T 3
+

1
√
3
T 8 and it is

easy to see that it satisfies the relation above. The choice of Oλ is not unique; however, as we can see
below with the MPS picture or the fermion representation, there exists a simple way to choose it.

Now we first study the twist for SU(2) VBS. For SU(2) irreps, there is only one row in its Young
diagram, and for p boxes, we have p = 2S for S the spin value. As there are only two flavors, we
let a†c

:= ψ†1c , b†c
:= ψ†2c , c = 1, 2, . . . , p. The z-component of spin is Sz = (a†cac − b†cbc)/2, the

ladder operator is S+
= a†cbc . Using fermion operators, a VBS defined in Eq. (21) can be expressed as

|Ξmn⟩ =

n∏
c=1

∏
r∈odd

Bc,r

m∏
c=1

∏
r∈even

Bc,r |Ω⟩ (32)

for |Ω⟩ as vacuum state, Bc,r := a†c
r ac,r+1 + b†c

r bc,r+1. The action of twist F on site n is

a†c
r → eiℓr/2a†c

r , b†c
r → eiℓr/2b†c

r . (33)
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Recall that ℓ := 2π/L. Now the twist depends on whether the last site has n or m bonds to its
right. Then we find ⟨Ξmn|F |Ξmn⟩ = (−1)n in the large-L limit. Note that the action of twist can
be equivalently treated as a†c

r → a†c
r , b

†c
r → eiℓrb†c

r , i.e., only one flavor is affected, but with an
additional global phase accumulated from each bond, which can be absent by modifying the form
of twist, e.g., change Szr to Szr − 1/2 or others. As the operator Szr is natural for SU(2) case, we will
use it for the twist which is suitable for implementation by external field, while for SU(N) case we
also use twist that only affects one flavor.

Now, for SU(N) VBS, we distinguish three types: I) TI system with on-site real irrep. The GSD
comes from SSB of parity (reflection about a link). II) TI system with on-site complex irrep. The
GSD comes from SSB of lattice translation. III) NTI system with complex irrep λ on odd sites and λ̄
on even sites. The GSD comes from SSB of parity (reflection about a site).

The singlet formed by N and N̄ from two nearest neighboring sites is

|ω⟩ =
1

√
N

N−1∑
i=0

|īi⟩ (34)

for {|i⟩} as a basis of N and {|ī⟩} as the corresponding basis of N̄. The singlet formed by N product
of irreps N from neighboring sites, which is a so-called n-mer, or extended valence bond [71], is

|s⟩ =
1

√
N

N−1∑
i1,i2,...,iN

εi1,i2,...,iN |i1, i2, . . . , iN⟩ (35)

for symmetric tensor εi1,i2,...,iN , known as Levi-Civita symbol. An SU(N) VBS can be expressed as a
product of singlet |ω⟩ or |s⟩.

For type-I, suppose λ is from a minimal of η product of N and N̄. Then there are in total ηL bonds.
A bond can be a left (right) bond if N is to the left (right) of N̄. Let the number of left and right bonds
be ηLL and ηRL, then η = ηL + ηR. Now a VBS is a product of ηLL left bonds and ηRL right bonds,
denoted as |ΞηLηR⟩. The twist operator only induces a phase factor for one flavor, say, i, with

ψ̄
†
i ψ

†i
→ eiℓψ̄†

i ψ
†i, (36)

and then a phase e−iℓ/N on a left bond, eiℓ/N on a right bond. Then

⟨ΞηLηR |F |ΞηLηR⟩ = ei2π (ηR−ηL)/N . (37)

For instance, for the two degenerate ground states of SU(N) VBS with on-site adjoint irrep [10], we
get the phases e±i2π/N as ηR − ηL = ±1, and for its fully dimerized excited states, we get the trivial
phase as ηR = ηL.

For type-II, the on-site complex irrep λ can be from a product of N, denote the minimal number
as η. As a result, there are only irreps N as the virtual particles, and they can form a n-mer. To
study the twist effect, first notice that there will be a factor ω[λ]

N on the last site. The twist effect
will be similar to that on SU(2) VBS, namely, the nontrivial phase depends on the edge structure,
and there is no phase accumulation from the bonds in the bulk in the large-L limit. As there are η
n-mer attached to the last site, the formula of the nontrivial phase is more complicated than the
SU(2) case; however, it can be easily computed case by case. We can see this from our examples.

For type-III, if irrep λ is from a product of minimal η irreps N, then λ̄ is from a product of minimal
η irreps N̄. The twist effect will be a combination of the effects from type-I and type-II models.
Namely, suppose η = ηL + ηR, then there will be a factor ei2π (ηR−ηL)/N from the bonds in the bulk,
and there is also a factor ωx

N from the last site, for x as a certain function of [λ]. Notice that for the
twist on NTI system, it takes the form

F ({θn}, θ ) = ⊗
L
n=1e

i(−1)nθngn . (38)

The reason is that the even and odd sites are the conjugate of each other. We present examples for
SU(3) and SU(4) cases in Table 2. The GSD can be seen from the edge structure of a unit cell. Note
we use P(λ) as the projector onto all other irreps except λ, which can be easily understood from the
construction of VBS models. Many VBS models have been constructed before [70–72].



D.-S. Wang / Annals of Physics 412 (2020) 168015 15

Fig. 5. Equivalence between twist (flux insertion) and Wilson loop. Up-left: twists [Fx, Fy] = 0; Solid blue and red circles
are grouped sites for twists. Dashed blue and red lines are electric lines. Up-right: Wilson loops depend on statistics of
excitations. Down-left: twist and Wilson loop on cylinder. The black line is grouped site. Down-right: twist and Wilson
loop on disc. The black line is grouped site. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

We call a unit cell as the grouped site such that it is a linear rep. For encoding, we find the
following general features. For TI systems that break translation, it encodes N-level logical system,
X̄ = T , Z̄ = F . For NTI systems that break translation (or parity), it encodes a logical qubit, X̄ = T
(or Π ), Z̄(ωN ) is twist. Here Π denotes the generator of parity symmetry. We emphasize that, for
NTI system we obtain non-Pauli logical operators Z̄(ωN ). This feature is not present for SU(2) VBS
qubits.

For practical implementation of the twist, it seems harder than the SU(2) case, though. However,
based on ideas from quantum simulators [73], if SU(N) VBS can be realized in well-controlled
artificial systems, such as superconducting devices, optical lattices, or trapped ions, a global twist
can also be simulated by a certain flux insertion process. This warrants a separate study.

4. 2D TOP and SPT qubits

In this section we study and compare some classes of 2D topological qubits briefly. Distinct from
the 1D case, there are more orders for 2D many-body systems, especially TOP order. Note that TOP
order can be roughly viewed as a symmetry-breaking of high-form symmetry [28–30], and SSB
refers to symmetry-breaking of a global symmetry. We find SET qubits are novel and there is a
nontrivial interplay between Wilson loops and global twists. We also compare the classes of SPT
and SET qubits, and point out their connections. We only highlight the features that are relevant
for this work.

4.1. 2D SET qubits

In this subsection we first study 2D SET qubits with continuous global symmetry. A unique
feature in this setting is the relation between Wilson loop and twist operations, see Fig. 5. In this
work we only consider finite abelian gauge groups. We find that logical operators can be played
by both twist and Wilson loops. We observe that they play different roles in the encoding. Wilson
loop determines the code distance, while twist is more suitable for global implementation. A twist
is equivalent to a corresponding Wilson loop, while Wilson loops are inevitable as they cannot be
fully substituted by twists. Code distances are the square root of the system size dx = dz =

√
L,

and it is symmetric for logical bit flip and phase flip operations. As noncommuting Wilson loops
intersect only on a few sites, the logical support is a small constant independent of the system
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size. This applies to the quantum dimer models (QDM) and other resonating valence-bond (RVB)
models [50,74–79].

Note that VBS and RVB states can be put in the same framework of tensor-network states. There
can be SET order if the virtual irreps belong to different projective classes [80], and there exists SPT
order if the virtual irreps belong to the same projective class. A RVB state can be expressed as an
equal-weight superposition of VBS states. A ground state with SET order is a RVB state, and with
SPT order is a VBS state. Below we use QDM and fractional quantum hall (FQH) states as examples
to highlight their features.

FQH with filling factor ν = 1/q (q ∈ 2Z + 1) on a torus has ground state degeneracy q. FQH is
the example that the two flux operators Fx and Fy do not commute. Note we only consider Laughlin
abelian case, the non-abelian cases are more involved [81]. FQH is U(1)-SET phase as the electron
number is conserved. Due to the global U(1) symmetry, we can use twist (inserting flux). There
is only one species of excitation: chargon with fractional charge e/q, so only one type of flux. We
define the two directions of torus as x and y. The GSD encodes a q-level system, and there are many
ways to define its logical operators

X̄ := Tx = Fy = Wx, Z̄ := Ty = Fx = Wy, X̄q
= Z̄q

= 1. (39)

T is magnetic translation operator [82], W is Wilson loop (create quasiparticle–hole pair, then
transport one along a nontrivial loop, then annihilate), F is twist. Wx is equivalent to inserting a
flux Fy, and translation Tx is equivalent to Wx. For the implementation issue, the flux operators are
relatively easier, given that we do not have clear clue how to implement T and W easily.

On the contrary, the well-known Z2 gauge model, e.g., the QDM and the toric code, is an example
that the two flux operators Fx and Fy commute. For Z2 gauge model there are two species of
excitations: spinon and vison. So there are two types of fluxes: electric and magnetic. The spinon
and vison are both self-boson, while spinon and vison mutually is semion. The spinon has fractional
magnetic moment and shows symmetry fractionalization with respect to SO(3) symmetry, so we can
insert electric flux by an analog of AC effect for the 1D case.

Denote spinon as e, vison as m. Let Wilson loops on a torus be Wx,e, Wx,m, Wy,e, Wy,m, then

[Wx,e,Wx,m] = [Wx,e,Wy,e] = [Wx,m,Wy,m] = [Wy,e,Wy,m] = 0, (40)

and

{Wx,e,Wy,m} = {Wx,m,Wy,e} = 0. (41)

As spinon e is fractionalized, there are twists Fx,e and Fy,e such that

{Fx,e,Wx,e} = {Fy,e,Wy,e} = 0. (42)

So

Fx,e = Wy,m, Fy,e = Wx,m, [Fx,e, Fy,e] = 0. (43)

The two twists (flux insertion) commute but not with Wilson loop.
A simple understanding of the independence of Fx,e and Fy,e is from the dimer covering. In

quantum dimer model, a ground state is an equal-weight superposition of short-range dimer
covering of the lattice. The local Z2 gauge condition converts to even/odd parity for the number of
bonds along x and y cut. The dimer covering breaks translation symmetry, like the 1D MG model.
The twist for each direction only induces logical action for one direction, x or y, not both, as a bond
orthogonal to the twist direction do not accumulate phase factors. In addition, we note that this
can also be captured by Chern–Simons field theory [81] and the so-called BF field theory.

Furthermore, there is a dependence on the size of the system [83]. As each dimer is formed by
two spins, the system should have even number of sites L = LxLy ∈ 2Z. On a cylinder, the GSD is
two. Given Lx ∈ 2Z, Ly can be even or odd. For any Ly, logical Z̄ operator is provided by twist Fx. For
odd Ly, logical X̄ operator is provided by translation operator Tx by odd number of lattice sites, for
even Ly, logical X̄ operator is a Wilson loop, which requires breaking dimers and drag soliton around
the system and come back to annihilate again. This is similar to the 1D MG model. On square lattice
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with Lx = Ly = L and L has to be even, L ∈ 2Z, there are four ground states instead of two. The
twist does not act as logical Z̄ as the even number of sites in both directions trivializes the twist
phase. Also translation operator does not act as logical X̄ . The only logical operators in this case are
Wilson loops.

Finally, we remark on a difference between SET qubits and standard TOP qubits. By definition,
TOP qubits do not have preserved global symmetry, hence there will be no twist or flux insertion.
TOP qubits are the most well understood class of qubits, such as TOP stabilizer codes and subsystem
codes [84–89]. Limitations on code distance have been established [84–86], while here we also
highlight the limitation on logical support.

Take the well-known toric code as the example, which is also known as Z2 gauge model. A
usual phase diagram [90,91] is depicted in Fig. 1(Right). The gapped TOP phase is deconfining,
although there is a slight confining force among anyons. The GSD can be understood as a SSB of
symmetries defined by Wilson loops, Xℓ or Zℓ for any homologically nontrivial loop ℓ, which is a
1-form symmetry. The algebra of Wilson loops defines anyon braiding statistics. On a torus two
qubits are encoded, with X̄x = Xℓx , Z̄x = Zℓy , for the first qubit, X̄y = Xℓy , Z̄y = Zℓx , for the second
qubit, and x, y as the two directions of the torus. The code distance is

√
L as the minimal weights

for X̄ and Z̄ are both
√
L. The logical support is 1, similar to the classical 2D Ising model. The low

support might make the qubit vulnerable to local errors on the intersection site of two Wilson loops,
yet, on the other hand, it could benefit local stabilizer measurements and active error correction
when these need to be performed.

The small logical support can be attributed to the connection between toric code and Ising model
(with XX terms). The toric code can be viewed as a coupled system of 1D Ising wires, Zℓx and Zℓy
are the symmetry being broken by 1D Ising wires, and Xℓx and Xℓy are symmetry being preserved.
Hence TOP order can be understood as a combination of SPT of a 1-form symmetry (by loop of X)
and SSB of a 1-form symmetry (by loop of Z) [30]. Other (abelian) topological subsystem stabilizer
codes [88,89] have similar properties with toric code. For instance, the 2D Bacon–Shor code [92],
which belongs to the class of compass model [93] and might be gapless [94], is defined by a gauge
group, has logical shape as string, distance

√
L, and logical support 1.

4.2. SPT vs. SET qubits

Here we compare SPT and SET qubits in a bit more details, both of which benefit from the
preserved symmetry. Although the SPT qubits, especially VBS qubits, are defined for 1D systems,
and SET qubits are for 2D systems, we find the dimensionality does not play central roles here.

To define 2D SPT qubits, the class of 2D VBS models with global SU(N) symmetry are the
natural physical systems. We find the features of encoding carry over from the 1D case, so it is
not necessary to generalize SPT qubits from 1D to 2D for the purpose of better encoding. However,
for completeness, we highlight some new features. Compared with 1D case, the complexity of 2D
systems is that their properties depend on the underlying geometry of the lattices. To determine
whether a model is gapped or gapless in general is a nontrivial problem. Our encoding only works
for the case when there is a gap.

To define a twist for 2D case, n is a single grouped-site of all sites along the other direction
with the same site index along the periodic direction. For 2D system on a torus, we can define two
different twists, corresponding to flux insertion for the two ‘holes’. Sites in each row or column
need to be grouped together and treated as a single site, and the system size entering the twist
operator is Lx or Ly for the two directions x or y. The twist phase is also easy to compute using the
fermion representation. It generally includes two parts: one part from the action on the edge (the
last blocked site), and the other from the action in the bulk. For instance, the SU(3) simplex solid
with on-site 3 irrep on Kagomé lattice [72] shows a SSB of lattice symmetry, hence can encode a
qubit, as an analog of the 1D MG model.

As passive quantum memory, systems with SET or SPT order would behave similarly as topolog-
ical qubits, since for both of which the broken or preserved symmetries are nonlocal. We have
to consider nontrivial quantum gates to resolve their differences and connections further. Due
to TOP order, SET qubits can also be encoded into anyonic excitations (or holes, defects) [12],
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braiding of which can enable universal quantum computing. While SPT order, by definition, does
not support anyons; however, these systems also enable universal quantum computing [37–40]. A
promising approach is to use ‘extrinsic’ defects in SPT systems, which, so far, have not been fully
understood [95] except for a few notable systems [96–98]. Coupling of 1D VBS wires, with junctions
as a sort of defects, has the potential for universal quantum computing [11]. Such networks of SPT
qubits are effectively 2D systems with a large number of defects, similar with the anyonic encodings
in TOP or SET systems. In addition, compared with 2D systems, different 1D SPT qubits can be
properly wired up in principle, hence their logical gates can be combined together leading to higher
computational power.

5. Conclusion and discussion

In this work, we mainly studied the class of 1D SPT qubits and compared with other classes
of topological qubits on a ‘logical’ level, with their main features summarized in Table 1. When a
global U(1) symmetry is present and preserved, a topological twist operator exists and plays the
role of a logical operator. The class of SU(N) VBS models can provide non-stabilizer codes and gates
that are on high levels of the Clifford Hierarchy [1]. When there is only discrete global symmetry,
our study of Pauli Hamiltonian models, mainly the Wen model, shows that flux insertion also exists
and plays the role of a logical operator, although there is no twist operator. Beyond SSB order, for
2D systems there are TOP orders and there is a nontrivial interplay between Wilson loops and twist
for SET qubits with a global U(1) symmetry. Wilson loops determine the code distance, while twist
can increase the logical support and benefit practical global implementations. Also, we shall note
that when qubits are realized in real materials or artificial simulators, many other factors will affect
the characters and controllability of a qubit.

Along the line of research in this work, further investigations can be taken in the future. For
instance, 2D SU(N) SPT and SET qubits can be constructed, which, however, require proofs of the
existence of gap. 2D Pauli Hamiltonian models with SPT orders, for both weak and strong SPT
cases also exist in principle. Also 3D topological qubits are highly nontrivial while important, which
may provide a thermally stable (self-correcting) quantum memory [84,85,99], such as the fracton
orders [21]. Comparison with the qubits encoded by defects or edge modes is also important. Last
but not least, we did not study active quantum error correction and computation on them, such as
measurement, readout, and entangling gates, which are inevitable but highly nontrivial.
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Appendix. SPT qubits with discrete symmetries

Here we define examples of SPT qubits with discrete symmetries. These examples are variations
of cluster states and toric code, which are notable examples with SPT order and TOP order,
respectively. They can also be viewed as generalizations of the five-qubit code [100] to the setting
of SPT orders, which is the smallest code that can correct an arbitrary error.
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A.1. 1D SPT qubits

Now we turn to 1D SPT order by discrete symmetry. As there is no U(1) global symmetry, a
twist cannot be directly defined. However, flux insertion is still allowed which will induce geometric
phase. The flux insertion process can be treated as a discrete version of the twist for U(1) case. To
define a SPT qubit, we look for models with discrete symmetry G1×G2, while there is SSB of G1 and
SPT of G2. Below we study a class of Pauli Hamiltonian model we term as ‘Wen model’, as the basic
interaction term XYYX firstly appeared in Wen’s model on the 2D square lattice [101]. It is also a
generalization of the five-qubit code [100]. For the 1D case, we find there is SPT order, hence there
is a GSD to encode one logical qubit. As the model is commuting, the large system size limit is not
required.

We study 1D Wen model of L two-level systems (qubits) with PBC

H = −

∑
n

Xn−1YnYn+1Xn+2, (A.1)

each term in it is from a product of Xn−1ZnXn+1 and XnZn+1Xn+2, which takes the form of the
stabilizers of the 1D cluster state [102]. This model has also been considered in other settings such
as phase transition [103,104]. The model can also be expressed as

H = −

∑
(∇△ + △∇). (A.2)

As such the system lives on a zig-zag ladder. The YY term is on the diagonal of each diamond. The
total number of sites can be even or odd. For odd number of sites, the lattice has to be geometrically
twisted once to satisfy periodic boundary condition.

The model is commuting, hence exactly solvable. The model has two degenerate ground states
due to SSB of a global Z2 symmetry, one as cluster state |C0⟩ =

⨂
n Hn

⨂
n CZn(|+⟩)⊗L for CZn

as controlled-Z gate on sites n and n + 1, Hn as Hadamard gate on site n, and the other as
|C1⟩ =

⨂
n Xn|C0⟩. The logical space is spanned by |C0⟩ and |C1⟩. As a result, logical X̄ is the generator

X⃗ :=
⨂

n Xn of the broken symmetry. For odd number of sites, the logical Z̄ =
⨂

n Zn can be viewed
as flux insertion operation. The twist phase is π for |C0⟩ and 0 for |C1⟩. This code includes the
five-qubit code as a special case when L = 5 [100], hence this model can also be viewed as a
generalization of the standard five-qubit code. Furthermore, Z̄ can take other forms. It is easy to see
Xn−1ZnXn+1 can also serve as Z̄ , as it anti-commutes with X̄ . Also the weight of X̄ can be reduced
by about 2/3 factor. So we find the code distances dx ≈ L/3 and dz = 3.

Now we generalize the model to qudit case. As there is a nontrivial connection with the cluster
state, we first define a qudit cluster model [40]

H = −

∑
n

X†
n−1ZnX

†
n+1 + h.c., (A.3)

and its unique ground state is |C0⟩ =
⨂

n Fn
⨂

n CZn(|+⟩)⊗L for CZn as qudit version of controlled-Z
gate on sites n and n + 1, Fn as a Fourier operator on site n [40]. Several other cluster states are
|Cℓ⟩ = (Xℓ)⊗L

|C0⟩ for ℓ = 1, 2, . . . , d − 1. To enforce the degeneracy of all |Cℓ⟩, we define the 1D
qudit Wen model

H = −

∑
n

X†
n−1Y

†
n Yn+1X

†
n+2 + h.c., (A.4)

for Y := ZX . This includes the five-qudit code as a special case when L = 5. Also there is an
asymmetry between the code distances of X̄ and Z̄ . This model has a global symmetry Zd × Zd × Zd,
with the first two symmetry factors Zd × Zd for SPT order generated by ZIZ†IZI · · · and IZIZ†IZ · · ·,
respectively, and the last one for SSB order generated by

⨂
n Xn.

The 1D Wen model is similar to the 1D Ising model HIsing = −
∑

n XnXn+1. Note we choose
XX term instead of ZZ term for convenience. There is a SSB of global Z2 symmetry defined by
Z⃗ :=

⨂
n Zn, and a SPT of 1-local gauge symmetry defined by Xn on any site n. As [HIsing, Z⃗] =

[HIsing, Xn] = {Z⃗, Xn} = 0, the ground subspace can encode a qubit and serve as an error correction
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Table 3
Comparison of features of 1D Ising model, cluster model, and Wen model.

1D Ising 1D Cluster 1D Wen

H term XX XZX XYYX
SSB Z2 no Z2
SPT no Z2 × Z2 Z2 × Z2
electric charge no monopole by X pair by X
magnetic charge pair by Z pair by Z pair by Y
logical qubit X̄ = Z⃗ , Z̄ = Xn no X̄ = X⃗ , Z̄ = Z⃗

code, with logical X̄ = Z⃗ , Z̄ = Xn for any n. For odd number of sites on PBC, Z̄ can also be
⨂

n Xn,
which is a flux insertion. However, as a well known fact the minimal weight of Z̄ is 1 (nontrivial
action on a single site), the Ising code is classical (also see Section 2). In this regard, the 1D Wen
model can be viewed as a quantum generalization of the 1D Ising model.

The 1D Ising model, cluster model, and Wen model can be related to each other. By a ‘gauging’
mechanism [36,95,105,106], the cluster model H = −

∑
i Xi−1ZiXi+1 can be constructed from the

1D Ising model by adding gauge qubit on each link and imposing the minimal coupling. Roughly,
gauging is to promote global symmetry to local gauge invariance, which is neither unitary nor
unique, and can change GSD in general. The cluster state has SPT order from a global Z2 × Z2
symmetry, with one factor from the Ising model, and the other from the gauge qubits. Then
by folding the spectrum, the Wen model is obtained from the cluster model. Their relations are
summarized in Table 3.

A.2. 2D SSPT qubits

As the final class of qubits that we consider, we discuss an example with Z2 × Z2 symmetry,
while the first factor is for SSPT order, and the second factor is for SSB order. It can be generalized
to the case Zd × Zd for integer d > 2, but we keep to the qubit case as the main features remain.
Also the study in this section can be viewed as a 2D generalization of that in Appendix A.1. The
logical operators are from the order parameter directly as expected: X̄ is the generator of the broken
symmetry, and Z̄ is the generator of the preserved symmetry.

We follow the procedure in Appendix A.1 that first involves a gauging-like process and then
folds spectrum to generate GSD. Start from the 2D Ising model, we gauge it by adding qubits on
each link. Now the term XX is changed to XZX , and new terms ZXXXX are added. This is a graph
state, as a coupled system of 1D cluster state wires, see Fig. 6. The lattice can be treated as a square
lattice with three qubits at each site. Given the full set of stabilizers, the graph state is the unique
ground state. The global Z2 symmetry that is SSB by Ising model becomes a preserved subsystem
symmetry. Each wire in the graph state has Z2 × Z2 SPT order, which is now a SSPT order of the
whole graph state. Next to induce GSD, we use spectrum folding as in the 1D case. We replace the
four weight-three stabilizers around a cell by their product ZZZZ , then we obtain a model that is a
‘decorated’ toric code. The GSD is four on a torus. The decoration changes the behavior of electric
charges: they can appear as monopole, as the additional qubit in X-stabilizer cell serves as a sink of
electric charge. The decoration also affects the code distance: the logical Z̄ operator can be played
by XZX instead of a loop of Z , so the code distance is three.

The toric code is obtained if the qubits in the original Ising model is measured out. As mentioned,
the toric code has SSPT order and SSB of a 1-form symmetry. All logical operators are Wilson loops.
For a model to show SSPT and SSB orders, it shall not have topological degeneracy and anyons.
We find this can be demonstrated by the Wen model on 2D square lattice [101], whose GSD
has a nontrivial dependence of the system size. Note that, by considering lattice symmetry, the
Wen model with different system sizes can be treated as different realizations of Chern–Simons
theory [107]. However, we do not consider point-group symmetry protection in our framework.

The 2D Wen model on square lattice is

H = g
∑
m,n

Xm,nYm−1,nYm,n+1Xm−1,n+1, (A.5)
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Fig. 6. Schematic picture to show the procedure from 2D Ising model on the square lattice (gray dots) to the toric code.
The Ising term XX is modified to XZX due to the addition of qubits on each link (black dots), and new terms ZXXXX
(shaded red loop) are added with Z acting on each qubit in the original Ising model, resulting in a graph state as the
network of vertical and horizontal 1D cluster states (shaded stripes). The unit cell of the graph state contains three qubits
(shaded purple loop). The Z-stabilizer (shaded blue diamond) ZZZZ of the toric code is obtained from product of four XZX
terms, and X-stabilizer XXXX is obtained by measured out the original Ising system. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

and we focus on the g < 0 case. This model can be generalized to the qudit case as we did in
Appendix A.1 for the 1D case, while here we stick to the qubit case. Let the size on the two periodic
directions be n and m, and total number of sites as L = mn. On even by even square lattice, its GSD
is four, and this case is equivalent to the toric code. Let the two directions be the direction x and
y. X̄x can be realized by XYXY · · · along direction x, X̄y can be realized by XYXY · · · along direction
y, Z̄x can be realized by Zℓ along direction y, Z̄y can be realized by Zℓ along direction x.

On even by odd square lattice, its GSD is two. As the two directions are not equivalent, anyons
can only move freely along one of the two directions, hence a reduction of the GSD from four to
two. Let the direction with even (odd) number of sites be the even (odd) direction. X̄ can be realized
by

⨂
n Xn on all sites, or XYXY · · · along an even direction. Z̄ can be realized by

⨂
n Zn on all sites,

or Zℓ along an odd direction. This means that a global operator is equivalent to a Wilson loop, and
logical operators of the encoded qubit come from Wilson loops.

On odd by odd square lattice, its GSD is also two, but it does not come from the usual TOP
order. The operator XYXY · · · cannot be defined along any of the two directions due to the oddness
of system size. This means that excitations cannot be divided into two species, only the fermions, as
combined electric and magnetic charges, are left. The GSD is due to SSB of global Z2 symmetry, and
with the line symmetry by Zℓ it has SSPT order. As is well studied, the line symmetry by Zℓ can be
viewed as a flux insertion operation. Therefore, we find that for the encoded qubit X̄ can be realized
by

⨂
n Xn on all sites, Z̄ can be realized by Zℓ on a line. If we treat it as the 2D generalization of the

five-qubit code, it is obvious to see that the code distance grows as
√
L, instead of a constant, due

to the emergence of the line symmetry by Zℓ.
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