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a b s t r a c t

It is suggested that the center vortex confinement mechanism,
familiar in hadronic physics, may have some relevance to high-
Tc phenomena. We focus specifically on the transition from
the superconducting phase to the pseudogap phase. There is
evidence of a vortex liquid in the latter phase, in which the
pairing responsible for superconductivity still exists, but super-
conductivity itself does not. An analogy, drawn from particle
physics, may be the Higgs to confinement phase transition in
an SU(N) gauge theory, where the confined phase is a vortex
liquid, and the Higgs phase is a phase of a broken global ZN
symmetry. We illustrate this idea with numerical simulations
of a spatially asymmetric U(1) gauge-Higgs model, with lattice
artifact monopoles suppressed. We show the existence of a
Higgs (superconductor) to confinement (vortex liquid) phase,
explicitly identifying vortices in lattice configurations generated
in the confined phase, and showing that they produce an area-
law falloff in planar Wilson loops, which may be measurable
experimentally. The superconducting phase is a phase of broken
global Z2 symmetry.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In a series of articles that appeared over a decade ago, Ong et al. [1–3] presented evidence that
the pseudogap phase in the cuprates behaves in some ways as a vortex liquid; more recently the

∗ Corresponding author.
E-mail addresses: greensit@sfsu.edu (J. Greensite), kazuem@sfsu.edu (K. Matsuyama).

https://doi.org/10.1016/j.aop.2019.168011
0003-4916/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aop.2019.168011
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2019.168011&domain=pdf
mailto:greensit@sfsu.edu
mailto:kazuem@sfsu.edu
https://doi.org/10.1016/j.aop.2019.168011


2 J. Greensite and K. Matsuyama / Annals of Physics 412 (2020) 168011

idea has been discussed by Anderson [4,5]. Since the evidence presented by Ong et al. also suggests
that the pairing responsible for superconductivity persists in the pseudogap region, the question is
why superconductivity is absent in this region. The answer given in the cited references (see also
[6]) is that superconductivity is a ‘‘phase locked’’ region, where this expression refers to the phase of
the order parameter, while the pseudogap region is characterized by spatial disorder in the phase
of the order parameter, which is due to the existence of a disordered vortex liquid. Of course a
gauge choice, e.g. London gauge, is implicit in this picture, since the phase of the order parameter
is a gauge-variant quantity. We will argue here, in the context of an effective U(1) gauge-Higgs
theory with a no-monopole constraint, that the vortex liquid and superconductor phases can be
distinguished by the unbroken or spontaneously broken realization of a global Z2 symmetry, and
in the process we will make contact with one of the proposed mechanisms of quark confinement,
known as the center vortex mechanism, in non-abelian gauge theories.

In Section 2 we introduce a spatially asymmetric lattice version of the 3D Ginzburg–Landau
model with a no-monopole constraint, and discuss its symmetries. It is not intended to be a
realistic model of high temperature superconductors, but rather to illustrate certain features which
we believe are relevant to the superconductor to pseudogap transition in cuprate materials.1 In
Section 3 we briefly review the center vortex confinement mechanism in SU(N) gauge theories,
and the importance of global center symmetry in such theories. The results of lattice Monte
Carlo simulations of the modified Ginzburg–Landau model are presented in Section 4. Section 5
explores possible connections to spin glasses and the concept of custodial symmetry breaking, and
in Section 6 we outline how one might derive and study, with our suggested gauge field observables,
a more realistic model of the cuprates. Section 7 contains concluding remarks.

2. The model

We begin with a lattice version of the classical Ginzburg–Landau action (i.e. no time derivatives),
which is also known as the D = 3 dimensional abelian Higgs model, with a double charged Higgs
field

SGL = −β
∑
x

2∑
µ=1

3∑
ν=µ+1

cos(θµν(x))

−

∑
x

3∑
µ=1

Re[φ∗(x)e2iθµ(x)φ(x + µ̂)]

+

∑
x

[
3φ∗(x)φ(x) + λ(φ∗(x)φ(x) − γ )2

]
, (1)

where

θµν(x) = θµ(x) + θν(x + µ̂) − θµ(x + ν̂) − θν(x) . (2)

We will simplify further by taking the limit λ → ∞, and after rescaling the Higgs field and dropping
a constant we have2

S ′
= −β

∑
x

2∑
µ=1

3∑
ν=µ+1

cos(θµν(x))

− γ
∑
x

3∑
µ=1

Re[φ∗(x)e2iθµ(x)φ(x + µ̂)] , (3)

with the unimodular constraint φ∗(x)φ(x) = 1.

1 For a recent, quite different approach to an effective gauge Higgs model for the cuprates, based on a fractionalization
of the spin density wave order parameter which results in an emergent non-abelian SU(2) gauge symmetry, see [7].
2 The couplings β, γ in natural units are β = 1/(e2kTa), γ = g/(kTa), where e is electric charge, g is a dimensionless

lattice coupling, T is temperature, and a is the lattice spacing.
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The compactness of the U(1) gauge group has one consequence which, in the present context, is
very unphysical, namely the existence of magnetic monopoles. These are lattice artifacts which are
responsible, in pure compact U(1) gauge theory, for confinement in D = 3 spacetime dimensions.
In order to suppress these objects entirely we insert a constraint in the integration measure
which prevents their appearance. The number of monopoles at a site on the dual lattice, in
D = 3 dimensions, is determined from the θµ(x) angular variables by the DeGrand–Toussaint [8]
construction. The no-monopole constraint [9] is a Kronecker delta in the lattice measure which
ensures that the monopole number is zero at every site of the dual lattice.

In cuprates the pairing phenomenon occurs, by some mechanism, in two dimensional planes,
while the electromagnetic field extends, as usual, in three space dimensions. In order to include
some remnant of this feature in our model, we simply eliminate the hopping term for the Higgs
field in the third spatial dimension

SMGL = −β
∑
x

2∑
µ=1

3∑
ν=µ+1

cos(θµν(x))

− γ
∑
x

2∑
µ=1

Re[φ∗(x)e2iθµ(x)φ(x + µ̂)] , (4)

while retaining the unimodular constraint on the Higgs field. This ‘‘modified Ginzburg–Landau"
action, together with the no-monopole constraint, is the theory we will focus on. It is of course
not intended as a realistic effective action for high Tc phenomena. The intention is only to illustrate
one particular aspect mentioned in the Introduction, namely, the nature of the transition between
a Higgs phase, and a vortex liquid (or ‘‘confining’’) phase, which we think may have some relevance
to the superconducting to pseudogap transition in the cuprates.

The action SMGL is invariant under three distinct symmetries:

1. local U(1) gauge symmetry;
2. global Z2 symmetry;
3. a set of global U(1) symmetries in the Higgs sector, one for each xy plane.

2.1. Gauge symmetry

We need not elaborate on local U(1) symmetry, apart from making one important point. Some
textbooks on quantum field theory erroneously describe the Higgs phase of the theory, which is the
phase of superconductivity in the condensed matter context, as a phase in which the local gauge
symmetry is spontaneously broken. The description is erroneous for the simple reason that a local
gauge symmetry cannot break spontaneously, as proven many years ago by Elitzur [10]. In fact,
for a Higgs field with a single unit of charge, there is no thermodynamic transition in the β − γ

plane which completely isolates the confined and Higgs regions of the theory. The proof is due to
Osterwalder and Seiler [11], and its implications were elucidated by Fradkin and Shenker [12]. One
consequence, which applies to the double-charged Higgs case as well, is that neither the magnitude
nor the phase of the Higgs field φ can be regarded as an order parameter, since

• ⟨φ⟩ = 0 at all β, γ in the absence of gauge fixing;
• ⟨φ⟩ = 1 at all β, γ in unitary gauge, even in the massless phase;
• in other gauges ⟨φ⟩ may be zero or non-zero at a particular β, γ , depending on the gauge

choice [13].

This does not mean that there is no precise distinction between, say, the Higgs and confinement
regions. It does mean that a fictitious breaking of the gauge symmetry cannot be used to make that
distinction.
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2.2. Global Z2 symmetry

In the case of a double-charged Higgs field, the Higgs phase is distinguished by the spontaneous
breaking of a global Z2 symmetry. This global transformation can be applied to gauge link variables

Uµ(x) = eiθµ(x) (5)

on any given plane orthogonal to one of the coordinate axes.
Consider, e.g., any y, z plane at constant x, e.g. x = 1, and make the transformation

U1(x) → σU1(x) , x = 1, all y, z
σ = ±1 ∈ Z2 . (6)

The action SMGL is invariant under this transformation. It is also invariant under transformations in
any other plane:

U3(x) → σU3(x) , z = 1, all x, y
U2(x) → σU2(x) , y = 1, all x, z . (7)

where indices 1,2,3 correspond to spatial directions x, y, z respectively
A Polyakov line is a Wilson loop along a line running in either of the x, y, z directions, which is

closed by lattice periodicity; e.g.

P(y, z) =

Nx∏
x=1

U1(x, y, z) , (8)

where Nx is the number of lattice sites in the x direction. Under the Z2 transformation (6), the
Polyakov line transforms by P(y, z) → σP(y, z). We take the lattice extension in the x direction to
be arbitrarily large but fixed, and take limit of large extension in the y, z directions. Since the action
is invariant under the global Z2 symmetry, but the Polyakov line is not, the expectation value ⟨P⟩

is, in the limit of large y, z area, a gauge-invariant order parameter for the spontaneous breaking
of this symmetry. The Polyakov line expectation value is often applied, in QCD studies, to detect
the high-temperature deconfinement phase. But it also serves to detect the breaking of global Z2
symmetry in the Higgs/superconductor phase, and to rigorously distinguish that phase from other
phases of the system, when the scalar field carries two units of electric charge.

2.3. Global U(1) symmetries

The action SMGL is also invariant under transformations of the Higgs field

φ(x) → eiα(z)φ(x) , (9)

which are local in the z-direction, but global in any x–y plane; these can be regarded as a set of
independent global U(1) transformations on each x–y plane. A related symmetry in the Higgs sector,
sometimes known as ‘‘custodial symmetry’’ (see, e.g., [14,15]) does play a role in non-abelian gauge-
Higgs theories when the Higgs field is in the fundamental representation, and may even (despite the
Fradkin–Shenker argument [12] based on the Osterwalder–Seiler theorem [11]) serve to distinguish
a Higgs from confinement phase in such theories [16]. In the present case this global symmetry in
the x–y planes might appear to be irrelevant, owing to the fact (the Mermin–Wagner theorem) that
continuous global symmetries cannot break in two dimensions. Nevertheless, we believe that this
symmetry does play a role in distinguishing the gapped from ungapped phases. The discussion will
be postponed to Section 5.
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3. Center symmetry and center vortices

In this section we will take a short excursion into confinement physics in SU(N) non-abelian
gauge theories, before returning to the abelian theory described by SMGL. The relevance of center
vortices to confinement was first pointed out by ‘t Hooft [17]; an extensive review of the confine-
ment mechanisms which have been proposed for non-abelian gauge theories is found in Ref. [18,19].
Here we provide only the briefest summary of ideas which are directly relevant to this article.

The center of a group is the set of all elements which commute with all other elements of the
group. For an SU(N) group this is the set

{zn1 = e2π in/N1, n = 0, 1, . . . ,N − 1} , (10)

where 1 the N×N unit matrix, and ZN ∈ SU(N) is the subgroup composed of these center elements.
The N-ality k of a group representation R[g], g ∈ SU(N) is defined by the representation of the center
subgroup, i.e.

R[zg] = zkR[g] for z ∈ ZN . (11)

The fundamental representation has N-ality k = 1, and the adjoint representation has N-ality k = 0.
An SU(N) gauge theory with either no matter fields, or with matter fields only in zero N-ality repre-
sentations, has a global ZN center symmetry whose unbroken or broken realization corresponds to
the presence or absence of confinement. ‘‘Confinement’’ means here that the interaction potential
between static test charges in the fundamental and anti-fundamental representations, at large color
charge separation R, rises linearly with R as R → ∞.

An example of a global center transformation in an SU(N) lattice gauge theory is a transformation
applied to all timelike link variables U0(x, 0) at time t = 0:

U0(x, 0) → zU0(x, 0) , z ∈ ZN . (12)

It is easy to check that the action, and any contractible Wilson loop, is invariant under this
transformation. On the other hand a Polyakov loop, which is a Wilson loop winding once around
the lattice in the periodic time direction, transforms as P → zP . Since the expectation value of P
is the exponential of minus the free energy of an isolated charge, it follows that color charges are
confined if ⟨P⟩ = 0 and center symmetry is unbroken, while they are unconfined in the opposite
case ⟨P⟩ ̸= 0 and center symmetry is broken.

One of the most striking features of confinement in an SU(N) gauge theory with center symmetry
is the fact that the confining force between color charges, at sufficiently large charge separation, is
sensitive only to the N-ality of the color charges, rather than the particular group representation
of that N-ality. In other words, let Wr (C) represent the expectation value of a Wilson loop around
closed contour C , with the gauge field in representation r . Then for large loops

Wr (C) ∼ e−σkA(C) , (13)

where A(C) is the minimal area enclosed by the loop, and k is the N-ality of representation r . The
point is that the string tension σk depends only on N-ality of r . If we are to attribute confinement
to some special class of configurations which dominate the functional integral at large scales, then
we must look for configurations which affect loops in different representations, but with the same
N-ality, in the same way. The only known configurations which have this property are called ‘‘center
vortices’’.

In a time slice in D = 4 Euclidean dimensions, a center vortex is a tubelike structure closely
analogous to an Abrikosov vortex in superconductivity, in the sense of being a field configuration
carrying a quantized amount of (something analogous to) magnetic flux. The action density of such
configurations is concentrated in a region of codimension two. This means that a center vortex
is point-like in two Euclidean dimensions, line-like in three dimensions, and surface-like in four
dimensions (one may imagine a tube sweeping out a surface-like region in time), with the qualifier
‘‘like’’ meaning that in each case the vortex region has a finite thickness. For an Abrikosov vortex

W (C) ≡ exp
[
i
e
h̄

∮
C
dx · A

]
= −1 , (14)
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where the loop C runs around the vortex, outside the vortex core. The analogous statement in a
non-abelian gauge theory is that if one creates a center vortex topologically linked to a Wilson loop
in a representation r of N-ality k running around contour C , the loop is transformed by a center
element z ̸= 1, i.e.

Wr (C) → zkWr (C) . (15)

3.1. Confinement

Confinement in the vortex picture works as follows. Let the gauge group be SU(2) for simplicity.
Consider a plane of area L2 which is pierced, at random locations, by N center vortices, and consider
a Wilson loop of area A, in a representation of N-ality k = 1 lying in that plane. Then the probability
that n of those N vortices will lie inside the area A is

PN (n) =

(
N
n

)(
A
L2

)n (
1 −

A
L2

)N−n

. (16)

Each vortex piercing the Wilson loop contributes a factor of −1, so the vortex contribution to the
Wilson loop is

W (C) =

N∑
n=0

(−1)nPN (n) =

(
1 −

2A
L2

)N

. (17)

Now keeping the vortex density ρ = N/L2 fixed, and taking the N, L → ∞ limit, we arrive at the
Wilson loop area law falloff

W (C) = lim
N→∞

(
1 −

2ρA
N

)N

= e−2ρA . (18)

That is the center vortex confinement mechanism in three lines [20]. It is the simplest such
mechanism known. The crucial assumption is that vortex piercings in the plane are random and
uncorrelated, and this implies that vortices percolate throughout the spacetime volume.

There is a great deal of numerical evidence in favor of this picture, obtained from lattice
Monte Carlo simulations. Most of this numerical work makes use of a technique, known as ‘‘center
projection’’, for locating center vortices in lattice configurations. The idea is to map SU(N) lattice
configurations into ZN configurations, which have only vortex excitations. This is accomplished by
a gauge transformation into ‘‘maximal center gauge’’, which brings the SU(N) link variables as close
as possible, on average, to the ZN center elements of the group. Maximal center gauge maximizes
the quantity

R =

∑
x,µ

|Tr[Uµ(x)]|2 , (19)

which is equivalent to Landau gauge fixing of link variables in the adjoint representation. One
then maps each link variable to the closest ZN center element. What is remarkable is that the
center projected configurations are qualitatively, and to a large extent quantitatively, similar to
the full SU(N) configurations, in terms of confinement, chiral symmetry breaking, and even the
mass spectrum. There is also a simple technique for removing center vortices from the SU(N)
configurations. When this is done, confinement and chiral symmetry breaking disappear. For older
reviews, see [18,19]. For more recent developments, see [21,22].

3.2. The Higgs phase

Confinement is lost, in a non-abelian theory in D ≤ 4 dimensions, when the global center
symmetry of the action is broken spontaneously, either at high temperatures (this is known as
the ‘‘deconfinement’’ transition), or via a transition to a Higgs phase. In the latter case, the action
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contains one or more Higgs fields φ transforming in the adjoint representation of the gauge group.
On the lattice, in d Euclidean spacetime dimensions, the Higgs action has the form

SH = −

∑
x

d−1∑
µ=0

Re[φ†(x)UA
µ(x)]φ(x + µ̂)

+

∑
x

{dφ†(x)φ(x) + V [φ(x)]} , (20)

where V (φ) is the Higgs potential, and the superscript A in UA
µ means that the link variables are taken

to be in the adjoint representation of SU(N). Since UA is invariant under transformations U → zU ,
where z ∈ ZN , the gauge-Higgs action is invariant under the global center symmetry defined above.

The distinction between the confinement and Higgs phases of gauge theories with adjoint Higgs
fields is nicely represented by the behavior of the Wilson loop W (C) and its dual in D = 4
dimensions, known as the ‘t Hooft loop B(C) [17], which can be thought of as a center vortex creation
operator. In the confinement phase, Wilson loops fall with the area and the expectation value of ‘t
Hooft loops fall with the perimeter of the loop; in the Higgs phase it is the reverse.

Alternatively, on a finite lattice the Polyakov line is defined by (8), only generalized to the non-
abelian gauge group and (on the lattice) the SU(N) link variables. Now if we take one of the Euclidean
directions (say µ = 0) to be the time direction, the Polyakov line in the time direction is

P(x) = Tr

[
Nt∏
t=1

U0(x, t)

]
. (21)

This observable is gauge-invariant, but transforms by a center element z ∈ ZN under a global center
transformation. It is therefore an order parameter for spontaneous symmetry breaking of global
center symmetry. If we keep the time extension arbitrarily large but fixed, and take the large volume
limit in the remaining space directions, then the Higgs phase is the phase in which ⟨P⟩ ̸= 0. This is
because the Polyakov line is related to the free energy Fq of an isolated static color charge by

⟨P⟩ = e−Nt Fq . (22)

It follows that when ⟨P⟩ = 0 the free energy of an isolated charge is infinite, and quarks are confined.
Conversely, when ⟨P⟩ ̸= 0 the free energy is finite, and quarks are unconfined. In this sense, keeping
one (time) direction constant, although arbitrarily large, in the limit that the lattice extension in the
space directions are taken to infinity, we may say that the Higgs phase is a phase of spontaneously
broken center symmetry.

The analogy we pursue in this paper is that the pseudogap phase in the cuprates is, in the same
sense, a phase of unbroken Z2 global symmetry, and corresponds to the confinement phase in an
SU(N) gauge theory, which is a phase of unbroken ZN center symmetry. These phases can each be
regarded as a vortex liquid of some kind. Likewise, the superconducting phase in the cuprates, and
the Higgs phase in a gauge theory, correspond to the spontaneously broken phase of global Z2 and
ZN symmetry, respectively.

In the case of SU(N) gauge theories such as QCD, with matter in the fundamental representation
of the gauge group, the action breaks global center symmetry explicitly, ⟨P⟩ is always non-zero, and
Wilson loops fall off asymptotically with a perimeter law. Moreover there is no thermodynamic
transition isolating the Higgs from the confinement regions [11,12]. One may ask in what sense
these theories are confining, apart from the fact that the asymptotic spectrum consists of massive
color singlets. This is, in fact, a surprisingly subtle question. Our view is presented in Ref. [23].

4. Numerical results

4.1. Pure gauge field

We first consider the three dimensional gauge theory with γ = 0; i.e. no coupling to the scalar
field. Our proposed effective theory eliminates monopoles by a constraint. Without this constraint
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Fig. 1. Average plaquette values in pure compact U(1) lattice gauge theory in D=3 dimensions, with and without the
no-monopole constraint.

there is confinement in 2+1 dimensional compact U(1) gauge theory, in the sense of a linearly
rising potential between static charges, as we know from the classic work of Polyakov [24]. With
the no-monopole constraint this linear confinement property ought to disappear, and the potential
between static charges should increase only logarithmically, as in the free continuum theory. This
is the first thing to check.

Fig. 1 is a comparison of the average plaquette ⟨cos θµν⟩ vs. β , in compact U(1) theory with and
without monopoles. The plaquette averages in the two theories converge as β increases as expected,
since the monopole density in the unconstrained theory falls rapidly beyond β = 1. However, there
is a finite monopole density at any β , and even if the difference in average plaquette with and
without monopoles is negligible, the unconstrained theory has a linear static potential, while the
constrained theory does not. To see this numerically, we note that the potential V (R) between static
opposite charges is given by the logarithmic time derivative of rectangular Wilson loops

V (R) = − lim
T→∞

d
dT

logW (R, T ) . (23)

On the lattice we extract V (R) from a best linear fit to the data for − logW (R, T ) vs T , at T > 10.
Of course the word ‘‘potential’’ should not be taken too literally in this particular context. V (R)

is indeed the potential between static charges in a U(1) theory with two space dimensions and one
time dimension, and a linearly rising potential would imply confinement of electric charge. But in
three space dimensions it is simply a diagnostic of the behavior of W (R, T ) at large R or large T
due to thermal fluctuations of the magnetic B field. In particular, if V (R) is asymptotically linear at
large R, this just means that the Wilson loop falls off exponentially with the area RT enclosed by
the loop.

With that caveat, let us compare the potential V (R) in the compact U(1) theory with and without
the no-monopole constraint. In a free theory in 2+1 dimensions we expect the potential between
static opposite charges to rise logarithmically with charge separation, while in the compact U(1)
theory, without any constraint, one expects to see a linear potential. The result of a simulation at
β = 2 is shown in Fig. 2. We find that the potential rises logarithmically in the compact U(1) theory,
as in the free theory, when a no-monopole constraint is imposed. The unconstrained compact U(1)
theory displays a linearly rising potential, as expected. Note that this drastic difference in the
potential is displayed at a coupling β = 2 where we also see, from Fig. 1, that the difference in
average plaquette values in the constrained and unconstrained theories is almost imperceptible.
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Fig. 2. The potential between static charges of opposite sign in pure compact U(1) gauge theory, D=3 dimensions, at
gauge coupling β = 2.0, with and without the no-monopole constraint. The potential rises linearly in the unconstrained
case, but only logarithmically with no monopoles, as in the free (non-compact) gauge theory.

4.2. Modified Ginzburg–Landau

We now couple the scalar field to the gauge field by setting γ > 0 in (4). The first task is to
determine the phase diagram in the space of β − γ couplings. There is only one symmetry which
can be spontaneously broken, namely the global Z2 symmetry discussed in Section 2.2, and the
appropriate order parameter is a Polyakov line running in a direction parallel to the x or y axes.
The superconducting region can only be the region where this global Z2 symmetry is broken, and
to check this we look for evidence in the potential, extracted from Wilson loops, that the photon
has acquired a mass.

Our numerical simulations are carried out on a 403 lattice volume. In the superconducting region
we find ⟨P⟩ ̸= 0, while in the normal region we have ⟨P⟩ = 0 within error bars. The transition points
are estimated, on the cubic lattice, by looking for a peak in the Polyakov line susceptibility, either at
fixed γ and varying β , or at fixed β while varying γ . Examples of our data for the Polyakov line and
the Polyakov line susceptibility vs. β , at fixed γ = 6, are shown in Figs. 3(a) and 3(b) respectively.
The resulting phase diagram is shown in Fig. 4, but since the phase boundary (just drawn as straight
lines between the numerically determined transition points) is determined from the breaking of
global Z2 symmetry, the labeling of the different regions (SC, vortex liquid, log potential) must be
justified.

We begin at γ = 6, comparing V (R) calculated from W (R, T ) in the x–y plane, as explained
above. Fig. 5 displays V (R) calculated just outside the SC region, at β = 1.1 in a region labeled
‘‘vortex liquid’’, and V (R) just inside the SC region, at β = 1.3. The potential in the vortex liquid
region is fit to the form

V (R) = a + b log(R) + σR , (24)

and we find from the fit that σ = .00623(8), i.e. a ‘‘confining’’ potential, meaning that Wilson loops
fall off asymptotically with loop area. In contrast, inside the SC region, we see that V (R) is nearly
constant for R > 3, consistent with what one would expect from a finite-range interaction mediated
by a massive photon. This is evidence of superconductivity in the SC region.

We have labeled the region at small β and large γ , outside the SC domain, as a ‘‘vortex liquid’’,
and this characterization must now be justified. Let us consider going to unitary gauge, φ(x) = 1,
and taking the γ = ∞ limit. In this case, the Uk(x) link variables in the x, y directions are forced to
be Uk = ±1, i.e. the variables of a Z2 gauge theory, at least in the xy planes. The only excitations
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Fig. 3. (a) Polyakov lines and (b) Polyakov line susceptibilities vs. β at γ = 6 on a 403 lattice volume. All Polyakov lines
are 40 lattice units in length, computed in the x and y directions in xy planes.

Fig. 4. Phase diagram of the modified Ginzburg–Landau theory in the β − γ coupling plane. The superconducting phase
is also a phase of broken global Z2 symmetry.

in these planes are at plaquettes where cos θ12(x) = −1, and these are Z2 vortex configurations.
Consider a Wilson loop

W (R, T ) = ⟨U(R, T )⟩ . (25)

where U(R, T ) is a product of U(1) link variables around a rectangle oriented in one of the x, y
planes. Suppose, in some gauge field configuration, there are n plaquettes within this rectangle
with cos θ12(x) = −1. Then

U(R, T ) = (−1)n (26)

in this γ = ∞ limit. If there is a finite density of vortices in the plane, and if vortex positions are
entirely uncorrelated, then this leads to an area law falloff of W (R, T ), and a linear potential for V (R),
as explained in Section 3. If there is some finite range correlation among the vortices, then there
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Fig. 5. The potential V (R) at γ = 6 just outside (β = 1.1) and just inside (β = 1.3) the superconducting region.

will be a deviation from the linear potential up to that finite range. A linear potential is therefore
the signature that the system in a plane is a disordered gas or liquid of Z2 vortices.3

We can try to locate vortices in xy planes away from the γ = ∞ limit, with the strategy of (i)
performing a gauge transformation which brings link variables in the xy planes as close as possible
to ±1; and (ii) ‘‘Z2 projection’’ in the xy planes, i.e. projecting link variables in the x, y directions
onto the closest element of the Z2 subgroup of the U(1) gauge group. The gauge transformation
should maximize the quantity

Q =

∑
x

2∑
i=1

cos2 θi(x) , (27)

and this is done by performing a sequence of gauge-fixing sweeps of the lattice. In this gauge there
is a remnant local Z2 gauge symmetry. Gauge transformations are made site-by-site, at each site
making a transforming which maximizes

2∑
i=1

[
cos2 θi(x) + cos2 θi(x − î)

]
. (28)

This procedure converges to a local maximum of Q .4 The gauge fixing sweeps end when the
fractional increase in Q from one sweep to the next falls below 10−8. Z2 projection consists of the
mapping

Ui(x) → Zi(x) = sign[Re(Ui(x))] , i = 1, 2 . (29)

We define Z(R, T ) as the product of projected link variables Zi(x) around an R×T rectangle, with
the corresponding expectation values

Wproj(R, T ) = ⟨Z(R, T )⟩ , (30)

and we compute the projected potential Vproj(R) from the Wproj(R, T ) by the same procedure used
to obtain V (R) from W (R, T ). In Fig. 6 we compare V (R) and Vproj(R) vs. R, at γ = 6, β =

3 Of course it must be kept in mind that even in the γ = ∞ limit we are not dealing with a trivial Z2 gauge theory
in two dimensions, since even in this limit the gauge field extends into all three spatial dimensions. For the action S ′ in
(3), the γ = ∞ theory would be Z2 gauge theory in three dimensions.
4 Finding the global maximum is likely to be an NP hard problem.
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Fig. 6. A comparison of the projected and unprojected potentials, V (R) and Vproj(R), at a point in the vortex liquid region.

1.1, and it can be seen that the projected and unprojected potentials are essentially parallel,
differing only by a constant R-independent self-energy. Since the vortices alone, in the projected
configuration, reproduce the potential in the unprojected lattice, it seems reasonable to attribute
the R-dependence of the potential to the effects of vortices, whose positions in the unprojected
lattice are located by the excitations in the projected lattice. As a further check we can compute
the average value of cos θµν(x) for plaquettes on the original lattice, at locations where the plaquette
on the projected lattice is −1, indicating the presence of a Z2 vortex. At couplings β = 1.1, γ = 6,
these special ‘‘vortex plaquettes’’ have an average value of 0.398, to be compared with the average
over all plaquettes, which is ⟨cos(θµν(x))⟩ = 0.909. So although the procedure for locating vortices
involves fixing to a particular gauge (i.e. maximal Z2 gauge), we nevertheless find that the locations
of vortices on the projected lattice are very strongly correlated with a gauge-invariant observable
on the unprojected lattice, i.e. the gauge-invariant field strength.5

For these reasons we label the region where a linear potential can be identified, and where
the projected and unprojected string tensions agree, as a ‘‘vortex liquid’’. The linear potential
disappears in both the projected and unprojected potentials inside the SC region, as seen in Fig. 7
for γ = 6, β = 1.3.

Linear confinement cannot persist down to γ = 0, simply because the theory in that limit is
pure U(1) gauge theory, and with the no-monopole constraint there are no topologically stable
configurations which could disorder Wilson loops. And at small but finite γ we cannot, in fact, detect
any string tension from numerical simulations. Fig. 8 shows our data for V (R) at β = 2.5 just below
(γ = 1.4) and just inside (γ = 1.55) the SC phase. Just below the SC phase, at β = 2.5, γ = 1.4,
the potential fits a logarithm, i.e. it is consistent with Eq. (24) with σ ≈ 0, which is the fit shown
in Fig. 8. Inside the SC phase at β = 2.5, γ = 1.55 the potential is nearly flat, as expected.

In a region where the potential is logarithmic, i.e. essentially perturbative, we would not expect
to explain the potential via purely non-perturbative effects due to vortices. In this region Z2
projection should fail to match the unprojected potential, and in fact that is what we see in Fig. 9,
where the projected and unprojected potentials are compared at β = 2.5, γ = 1.4. The unprojected
potential fits (24) with σ ≈ 0, as already noted. Not so for the projected potential, where we find
σ = 0.00322(5). Moreover, the average plaquette value in this case is 0.887, while the average value
of plaquettes whose location coincides with vortices on the projected lattice is 0.803. While there is

5 The fact that plaquettes on the unprojected lattice, at vortex locations on the projected lattice, are not closer to −1
can be attributed to either a thickness of the vortex which is greater than one lattice spacing, and/or a small error, on
the projected lattice, in finding the actual vortex location.
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Fig. 7. The projected and unprojected potentials at a point inside the SC phase.

Fig. 8. The potential V (R) at β = 2.5 just below (γ = 1.4) and just above (γ = 1.55) the superconducting transition line.

some modest correlation here between vortex location on the projected lattice and plaquette value
on the unprojected lattice, it is greatly reduced as compared (0.909 vs. 0.398) to the previous case
at β = 1.1, γ = 6, in a region described as a vortex liquid.

So the normal phase appears to have regions with and without a string tension, associated with
the presence or absence, respectively, of vortex effects. We have been unable, however, to detect a
thermodynamic phase transition between the vortex liquid and logarithmic potential regions, and
it is numerically somewhat challenging to pin down exactly where the string tension disappears. To
search for a thermodynamic transition from the behavior of the plaquette susceptibility we have
scanned the phase diagram at fixed β = 1.1 and 0 < γ < 6, and also at fixed γ = 1.4 and
0 < β < 2.5. We have not found any evidence of a transition along these search lines, which cross
from the vortex liquid to the log potential regions. The absence of a thermodynamic phase transition
is perhaps unsurprising, since there is no symmetry which distinguishes the vortex liquid from the
log potential regions. Indeed the vortex liquid and log potential regions are both ‘‘confining’’ in the
sense that V (R) → ∞ as R → ∞ in each case, and consequently ⟨P⟩ = 0 in both regions.
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Fig. 9. A comparison of the projected and unprojected potentials in the normal phase, at β = 2.5, γ = 1.4. In this case
the Z2 projection is misleading.

Fig. 10. The potential at β = 1.25, γ = 2.0 on a 403 lattice volume, computed at R ≤ 10.

If it were possible to compute V (R) out to R = 20 or larger everywhere in the phase diagram,
then it might be possible to pinpoint the disappearance of the linear potential, but this strategy is
frustrated, at small β, γ , by very large error bars on relatively small Wilson loops. As γ is reduced
at small β , large Wilson loops become noisy, and we are not able to measure V (R) up to the limit
set by the lattice size. As an example, we show in Fig. 10 our results at β = 1.25, γ = 2, together
with a best fit to (24). In this case we still find evidence of a linear potential with σ = 0.0226(6);
a purely logarithmic fit fails completely. However, at these couplings we cannot reliably go beyond
R = 10 on the 403 lattice volume. Moreover, as γ is reduced the Z2 projection becomes increasingly
inaccurate, e.g. at β = 1.25, γ = 2 the Z2 projected string tension is about 30% larger than the
string tension derived from the unprojected data. As we increase β at fixed γ = 1.4 it is possible to
again measure the potential at larger values of R, but the string tension seems to either gradually
disappear, or else exists at R values beyond the practical limitations imposed by statistics and lattice
size. In any case we cannot detect any trace of a linear potential at β = 2.5, γ = 1.4, as seen in
Fig. 9.
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The precise manner in which the disordering effects of the vortex liquid disappear in the normal
phase as γ is reduced and β increased, whether that disappearance is sudden or gradual, and
whether it is associated with some instability in the vortex configurations at small γ , is unclear
at the moment. In the next section we will suggest that the transition from the logarithmic region
to the linear potential region may be related to a spin glass transition.

5. A spin glass phase?

Although Elitzur’s theorem rules out the breaking of a local gauge symmetry, it is always possible
to impose a gauge condition, such as Coulomb or Landau or a maximal axial gauge, which preserves
a global subgroup of the gauge group. Spontaneous breaking of such remnant symmetries is not
forbidden by the Elitzur theorem, and some texts do define spontaneously broken gauge symmetry
in this way, e.g. [25].6 There are at least two problems with that idea, however. The first is that
transition lines for remnant symmetry breaking may differ in different gauges [13]. The second is
that in the cuprates, the Mermin–Wagner theorem forbids spontaneous breaking of any continuous
symmetry, yet cuprates have a superconducting phase, which therefore defies characterization in
terms of the breaking of a continuous symmetry.

Leaving aside the second issue for a moment, some authors have introduced gauge invariant
order parameters for spontaneously broken gauge symmetry. It is not hard to construct such order
parameters, but all of the ones we are aware of are based, either explicitly or implicitly, on a gauge
choice. Let g(x;U) be a gauge transformation to a gauge G such as Landau or Coulomb or maximal
axial gauge, and we consider the order parameter

Qx = g(x;U)φ(x) (31)

where φ(x) is the Higgs field. By construction, Qx is invariant under local gauge transformations
of Uµ and φ, but does transform under the remnant global gauge symmetry. Constructions of that
type are found in the literature, e.g. in [27,28], where G is (implicitly) an axial gauge, or in [29],
where G is lattice Landau gauge, or the Dirac order parameter (see, e.g., [30]) where G is Coulomb
gauge. Although these order parameters are described as (and in fact are) locally gauge-invariant,
it should be understood that a certain gauge choice, and therefore a certain arbitrariness, underlies
these constructions. Evaluation of such Q observables, in the absence of gauge fixing, is completely
equivalent to evaluating the expectation value ⟨φ⟩ in a particular gauge, and the case ⟨φ⟩ ̸= 0 means
that the remnant global symmetry has been broken in that gauge.

In [16] we have proposed a different identification of the Higgs phase of a gauge-Higgs theory:
the Higgs phase is the phase of a spontaneously broken custodial symmetry. The term ‘‘custodial
symmetry’’ is adopted from the electroweak theory of particle physics, and refers to a global
symmetry of the Higgs field which does not transform the gauge field. Let us first consider the
lattice abelian Higgs action SGL of (1), where SGL = SW (U) + Sm(U, φ) is the sum of a pure gauge
Wilson action SW (U) and the part of the action involving the matter field Sm(U, φ). In this theory
the custodial symmetry is the group of global U(1) transformations φ(x) → eiαφ(x). Because the
Higgs field transforms also under local gauge transformations, its expectation value vanishes in the
absence of gauge fixing, so the question is how to observe the breaking of custodial symmetry
without fixing the gauge in some way. The proposal in [16] was made in the context of a non-
abelian gauge Higgs theory, but applies equally to the abelian theory under consideration. The idea
is to write the usual partition function as a sum of the partition functions of a spin system in an
external gauge field, i.e.

Z =

∫
DU Zspin[U]e−SW (U) , (32)

where

Zspin[U] =

∫
Dφ e−Sm(U,φ) (33)

6 In this connection, see also [26].
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Since the gauge field is held constant in Zspin[U], the only symmetry of the ‘‘spin system’’ is the
group of global transformations φ(x) → eiαφ(x), and this symmetry can break spontaneously,
depending on the background gauge field, and the value of γ . For an operator Ω(φ,U) we define
the expectation value in the spin system

Ω(U) =
1

Zspin(U)

∫
Dφ Ω(φ,U)e−Sm(U,φ) , (34)

Then the full expectation value is

⟨Ω⟩ =
1
Z

∫
DUDφ Ω(φ,U)e−SGL

=

∫
DU Ω(U)P(U) (35)

where the spin system average Ω(U) is evaluated in a background with U chosen from the
probability distribution

P(U) =
1
Z
Zspin[U]e−SW (U) . (36)

If Ω is simply the scalar field φ(x) we may define

φ(x;U) =
1

Zspin(U)

∫
Dφ φ(x;U)e−Sm , (37)

Because Ui(x) = exp[iθi(x)] is not gauge fixed, and θi(x) will in general vary wildly with position,
the same will be true of φ(x;U), and we must expect the spatial average of this quantity to vanish,
even if custodial symmetry in Zspin(U) is spontaneously broken. The proposal is instead to take the
spatial average of a gauge-invariant and positive definite quantity

Φ =
1
V

∑
x,t

⟨|φ(x;U)|⟩

=
1
V

∑
x,t

∫
DU |φ(x;U)|P(U)

=
1
Z

∫
DU

1
V

∑
x,t

e−SW (U)
⏐⏐⏐⏐∫ Dφ φ(x)e−Sm(U,φ)

⏐⏐⏐⏐ (38)

Custodial symmetry is said to be spontaneously broken if Φ > 0 in the V → ∞ limit, but this does
not imply long range correlations in any gauge-invariant observable [16]. It should be emphasized
that there is no appeal whatever, in this formulation, to any choice of gauge.

The order parameter Φ is very closely related to the Edwards–Anderson [31] order parameter
for spin glasses. Their original model, for Ising spins Sx = ±1 and in the absence of an external
magnetic field, was

HEA = −

∑
⟨xy⟩

JxySxSy (39)

where Jxy is a set of random couplings taken from some probability distribution P(J). Since the
couplings are random, the spatial average of spins will tend to average to zero, so the order
parameter is taken to be

κ =

∫ ∏
⟨ij⟩

dJij

(
1
V

∑
k

(Sk)2
)
P(J)

S i =

∏
n
∑

Sn Sie
−HEA∏

n
∑

Sn e
−HEA

(40)
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The analogy between Φ and κ is obvious. Instead of spins Si we have a unimodular complex field
φ(x), with squared link variables U2

j (x) = e2iθj(x) in Sm which play the role of the random couplings
Jij, and these link variables are drawn from the probability distribution P(U) in (36), rather than the
simpler (usually Gaussian) distributions assigned for P(J). The symmetry of the Edwards–Anderson
model is global Z2, while in our case it is global U(1). And while Edwards–Anderson order parameter
κ involves the square (S i)2 of the spin average, our order parameter Φ involves the modulus
|φ(x;U)|. But the general idea is the same.

In [16] we have argued, in the context of the SU(2) gauge-Higgs model with the Higgs field
in the fundamental representation of the gauge group, that the Higgs and confinement regions
are separated by the spontaneous breaking of a custodial symmetry, and also that the Higgs and
confinement regions are distinguished physically by different realizations of confinement, which we
have termed color (C) confinement in the Higgs region, and separation of charge (Sc) confinement
in the confinement region. Our conjecture is that the custodial symmetry breaking transition, and
the Sc-to-C confinement transition, coincide. In the abelian model SMGL there is also somewhere
a transition between logarithmic and linear confinement. Could it be that this transition is also
associated with spontaneous breaking of a custodial symmetry, which we now identify as a spin
glass transition?

At this point we must confront the Mermin–Wagner theorem, mentioned at the beginning of
this section. The modified Ginzburg–Landau action SMGL differs from SGL in that the Higgs part of
the action is a set of uncoupled actions in different xy-planes. As a result, the custodial symmetries
φ(x) → eiα(z)φ(x) can be regarded as a U(1) × U(1) × · · · × U(1) symmetry, where each U(1) factor
is an independent global symmetry acting in a particular xy plane at fixed z and which could, in
principle, break spontaneously. The Φ order parameter could detect such symmetry breaking in
Zspin(U), if it exists. But a true symmetry breaking transition of this kind would imply the breaking
of a continuous U(1) symmetry in two dimensions, and this is ruled out by the Mermin–Wagner
theorem.

Despite this fact, we may note that in real materials that are thought to be spin glasses, it is
even now not known whether the spin glass transition is a true thermodynamic transition, and
whether the global symmetries are truly broken spontaneously in the spin glass phase [32]. Spin
glasses are, however, characterized by metastable states with extremely long relaxation times, and
this is a property which we can investigate numerically, even granting the fact that a true custodial
symmetry breaking transition cannot exist in the system described by SMGL. Keeping the background
gauge field fixed, metastability can be observed in the time variable of a molecular dynamics
simulation, or the time variable of Langevin evolution, or, as the most convenient choice, in terms
of the number of lattice sweeps ns, in a Monte Carlo simulation in which the scalar field is updated
but the gauge field U is fixed. In this last case metastability implies very long autocorrelation times.

Our procedure, after initial thermalization, is to compute Φ via a ‘‘Monte-Carlo-within-a-Monte
Carlo’’ simulation. This means that we update the scalar and gauge fields together, according to the
usual Metropolis algorithm, for some number of sweeps (we chose one hundred). This generates
a starting configuration, with the gauge field U chosen from the probability distribution (36). The
data-taking sweep actually consists of ns sweeps, in which the scalar field φ(x) is updated, but the
gauge field Ui(x) is held fixed. At each data-taking sweep we compute the average

|φ| =
1
V

∑
x

1
ns

⏐⏐⏐⏐⏐
ns∑

n=1

φ(x, n)

⏐⏐⏐⏐⏐ (41)

where index n denotes the nth Monte Carlo sweep with U fixed. Then averaging |φ| over all data-
taking sweeps in the simulation gives us an estimate for Φ(ns). If there were a true transition, then
on general statistical grounds we would expect

Φ(ns) = Φ∞ +
c

√
ns

(42)

with c a constant, and Φ∞ non-zero in the case of a true transition. Because of the Mermin–Wagner
theorem it must be that Φ(ns) → 0 as ns → ∞, even in the infinite volume limit. But if there exist
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Fig. 11. The custodial symmetry/spin glass order parameter Φ vs. 1/
√
ns , where ns is the number of update sweeps of

the scalar field with the gauge field held fixed. The data shown is at β = 1.6 and γ values from 0.8 to 2.2 on a 403 lattice
volume. The straight lines are best fits to the data at fixed β, γ . There is an (apparent) transition at a critical coupling
γc between γ = 1.2 and 1.4, beyond which the extrapolated value of Φ at ns = ∞ appears to be non-zero.

metastable states with very long relaxation times, it could be that, beyond some line of critical
couplings, the large volume data fits (42) with Φ∞ > 0 up to very large values of ns. This would
indicate the existence of a line of quasi-transitions into a spin glass state of some kind, which is a
precursor to genuine transitions in higher spatial dimensions.

In Fig. 11 we display our results for Φ(ns) vs. 1/
√
ns, at β = 1.6, and various γ , computed on a

403 lattice volume. Data points in the figure were computed at ns up to ns = 10000. For γ below
the quasi-transition point at 1.2 < γc < 1.4, the data falls on a straight line which extrapolates
to Φ∞ = 0 at ns → ∞. Above the transition, the data appears to extrapolate to a non-zero value
of Φ∞. By estimating at which γ value, for fixed β , the extrapolated value for Φ∞ begins to move
away from zero, we arrive at the quasi-transition points shown in Fig. 12.

Of course, at ns → ∞ we must have Φ∞ → 0, in a finite volume, even if there were a true
transition in the infinite volume limit. In Fig. 13 we show the data at β = 0.8, γ = 2.2, which
is inside the linearly confining region which have argued corresponds to the pseudogap region in
cuprates, on 203, 403, 803 lattice volumes, up to ns = 20,000 lattice sweeps. At all three volumes
we see the data fall away from the straight line (a fit to the first few data points at low ns),
presumably heading to zero at ns = ∞. The falloff is, however, most pronounced at the smallest
203 volumes, and the data points seem to tend upwards towards the straight line as the volume
increases. Were it not for the Mermin–Wagner theorem, we would probably conclude that Φ∞ is
non-zero in the infinite volume limit. This cannot be true. Nevertheless, there is no strong indication
from the data thatΦ∞ vanishes at infinite volumes, and this implies the existence of states with very
long relaxation times as measured by the nspin, parameter, characteristic of some sort of spin glass
phase, with a fairly abrupt transition, as γ varies at fixed β , to a phase of this kind. We regard this
as a precursor to the true custodial symmetry breaking transition expected in higher dimensions.
Our conjecture is that this quasi-transition is associated with a transition from the massless phase,
i.e. logarithmic confinement, to the ‘‘gapped’’ phases, namely the pseudogap and superconducting
phases.

6. Towards a realistic effective action

In this article we have advocated the use of electromagnetic observables, i.e. Wilson loops,
Polyakov loops, and Z2 projected Wilson loops, as a probe of cuprate phase structure, and in
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Fig. 12. Location of the spin glass ‘‘quasi-transition’’ (yellow circles) in the phase diagram of the modified Ginzburg–Landau
lattice action.

Fig. 13. The spin glass order parameter Φ(ns) vs. 1/
√
ns at β = 0.8, γ = 2.2, computed on lattice volumes L3 with

L = 20, 40, 80. In this case the simulations were carried out to ns = 20,000.

particular we have argued that there are strong analogies between the pseudogap phase of the
cuprates, and the confined phase of a non-abelian gauge theory. However, we have illustrated
the use of those observables in a theory which, while incorporating certain important features, is
surely not a very realistic model of the cuprates. For one thing, the momentum-space anisotropies
associated with D-wave superconductivity are absent in this model, and so it goes wrong already
at this early stage. In addition, if we take e.g. T = 100 K and β to be of O(1) we get a lattice spacing
on the order of 10−4 m (see footnote 1), and this is far larger than the radius of a magnetic vortex
in a cuprate, which is the scale where we might expect the effective theory to apply. In this section
we would like to indicate how one might derive, and solve numerically, a more realistic model.
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The obvious starting point is the Hubbard model Hamiltonian

H = −q
∑
x

2∑
i=1

(
c†
σ (x)cσ (x + ı̂) + c†

σ (x)cσ (x − ı̂)
)

+Y
∑
x

(n↑(x) −
1
2
)(n↓(x) −

1
2
) − µ

∑
x

(n↑(x) + n↓(x))

= HK + HV (43)

where HK is the hopping term proportional to q, HV contains the local terms proportional to Y,µ,
and constants q,Y,µ all have units of energy, and

Z(β) = Tr e−βH (44)

We have made the slight generalization that the sum over x in (43) is taken to be a sum over sites
in a three-dimensional lattice. Electrons hop only between nearest sites in planes parallel to the x–y
plane, so at this initial stage the introduction of numerous planes perpendicular to the z-axis is just
a redundancy.

Lattice Monte Carlo treatments of the Hubbard model are generally based on the seminal work
of Blankenbecler, Scalapino, and Sugar (BSS) [33] (see e.g. the early studies in [34,35], and more
recent investigations in [36–41]), and we will also follow along these lines. In order to address the
questions we are interested in we have to modify the model to include the electromagnetic field,
and also explain how we would deal with the sign problem, which is inevitable away from half-
filling. The electromagnetic field is introduced in a fairly obvious way, by following along the BSS
derivation and then imposing local gauge invariance. We suggest here that the sign problem might
be addressed by the complex Langevin approach. We should stress that this section does not contain
any numerical results; it is only a proposal. The calculation that we outline here is computationally
intensive, and is reserved for future work.

Starting from

Z = Tr e−βH
= Tr

(
e−δtH)Nt

≈ Tr
(
e−δtHK e−δtHV

)Nt (45)

where δt = β/Nt , we define the dimensionless constants

q = βq , Y = βY , µ = βµ (46)

Then re-express the term proportional to Y via the Hubbard–Stratonovich transformation

exp
[
−

1
Nt

Y (n↑(x) −
1
2
)(n↓(x) −

1
2
)
]

=

(
1

Ntπ

) 1
2

e−Y/4Nt

×

∫
dφ(x) exp

[
−

1
Nt

(φ2(x)) +
√
2Y (n↑(x) − n↓(x))

]
(47)

It was shown by BSS that the partition function (45) can be rewritten as a Euclidean time path
integral over bosonic (φ) and Grassman (ψ,ψ) valued fields

Z =

∫ Nt∏
t=1

∏
x

dψσ (x, t)dψσ (x, t)dφ(x, t) e
−S (48)

where

S =
1
Nt

∑
x,t

φ2(x, t) +

∑
x,x′

∑
t,t ′

∑
σ=↑,↓

ψσ (x, t)Mσ (xt, x′t ′)ψσ (x′, t ′) (49)
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with

Mσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · Bσ1
−Bσ2 1 0 · · · 0
0 −Bσ3 1 · · · 0
· · · 0
· · · 0
· · · 0
· · · · · −BσNt

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(50)

In this expression the time index t ′ runs left to right, index t runs along the vertical, 1 and Bσt are
matrices of dimension NS × NS , where NS is the total number of lattice sites, and where

Bσt = e−K/Nt e−Vs/Nt (51)

with

K (x, y) = −q
∑
i=1,2

(δx+ı̂,y + δx−ı̂,y)

Vσ (x, y) = δxy(µ+ sσ
√
2Yφ(x, t)) where sσ = {

+1 σ =↑

−1 σ =↓
(52)

Integrating over the Grassman variables leads to an effective action for the Hubbard–Stratonovich
field

Z =

∫ Nt∏
t=1

∏
x

dφ(x, t) det[M↑] det[M↓] exp

[
−

1
Nt

Nt∑
t=1

∑
x

φ2(x, t)

]

=

∫ Nt∏
t=1

∏
x

dφ(x, t)e−Sφ (53)

where

Sφ =
1
Nt

Nt∑
t=1

∑
x

φ2(x, t) − Tr lnM↑ − Tr lnM↓ (54)

In the case of half filling it can be shown that det[M↑] and det[M↓] have the same sign [34], so there
is no sign problem in that situation. So far this is all standard.

The next step is to promote the global invariance of (49) under ψ → eiαψ , ψ → e−iαψ to a local
invariance, keeping in mind that the NS × NS matrix Bt connects ψ at time t with ψ at time t − 1.
Local invariance is achieved by first modifying the hopping term

K (x, y) → KU (x, y) = −q
∑
i=1,2

(δx+ı̂,yUi(x, t) + δx−ı̂,yU
†
i (x − ı̂)) (55)

and then, since Mσ connects ψ at time t − 1 to ψ at time t , we introduce the diagonal matrix Ut
with matrix elements

[Ut ]xy = δxyU
†
4 (x, t − 1) (56)

and redefine

Bσt = Ute−KU /Nt e−Vσ /Nt (57)

We then add the latticized action SW for the electromagnetic field to the effective action. Here we
must take account of the different lattice spacings that are involved. The Hubbard model assumes
that electrons hop in a plane, between points separated by some spacing a. The neighboring planes
are separated by a distance az , with a and az at the interatomic distance scale, presumed to be
fixed (like q,Y) by comparison to some real material. The Euclidean time step is δt = β/Nt , with
continuous time obtained in the Nt → ∞ limit. With gauge link variables Uµ(x) = exp[iθµ(x)]



22 J. Greensite and K. Matsuyama / Annals of Physics 412 (2020) 168011

and θµν defined in (2), the Wilson lattice action for this asymmetric lattice, having the appropriate
continuum limit, is

SW = −
1
e2
∑
x

{
Nt

β

(
az(cos θ14 + cos θ24) +

a2

az
cos θ34

)
+
β

Nt

(
1
az

(cos θ13 + cos θ23) +
az
a2

cos θ12

)}
(58)

The final effective action is

Seff (θµ, φ) = Sφ(θµ, φ) + SW (θµ) (59)

where Sφ is the action in (54) with the modification (57). For arbitrary chemical potential there is
certainly a sign problem.

We are not aware of any numerical treatment of the Hubbard model which incorporates a
coupling to the quantized electromagnetic field, probably because this field is considered extraneous
to the underlying physics. The experimental evidence of vortex effects in the pseudogap phase of
cuprates suggests that this coupling should not be ignored. However, with or without the coupling
to the electromagnetic field, one must confront the sign problem in regions of interest in the cuprate
phase diagram. There are a number of approaches in the literature. One idea, which goes back
to [35], is to simulate the theory using the modulus |detM↑ detM↓|. This is known as the ‘‘sign-
quenched’’ technique in the particle physics literature, and it is known to go wrong for QCD at high
baryon density [42]. Three other methods which have been studied extensively are the complex
Langevin equation [43–45], the thimble approach [46], and the LLR algorithm [47]. None of these
methods is perfect. Each has been shown to work successfully in some models, and to fail in others.
The thimble approach has recently been applied to the two-dimensional Hubbard model [40,41],
but thus far only for tiny (2 × 2) lattices.

We propose to apply the complex Langevin equation to the effective Hubbard model action
which includes the quantized gauge field. Discretizing the fictitious Langevin time τ , the Langevin
equations are

φ(x, t, τ + ϵ) = −

[
∂Seff
∂φ(x, t)

]
τ

ϵ + ηφ(x, t, τ )
√
ϵ

θµ(x, t, τ + ϵ) = −

[
∂Seff

∂θµ(x, t)

]
τ

ϵ + ηθµ (x, t, τ )
√
ϵ (60)

where the notation [...]τ means that the quantity in brackets is to be evaluated with fields at
Langevin time τ , and the η fields are random numbers with a probability distribution such that

⟨ηφ(x, t, τ )ηφ(x′, t ′, τ ′)⟩ = 2δxx′δtt ′δττ ′

⟨ηθµ (x, t, τ )ηθν (x
′, t ′, τ ′)⟩ = 2δµνδxx′δtt ′δττ ′

⟨ηφ(x, t, τ )ηθµ (x
′, t ′, τ ′)⟩ = 0 (61)

Since the effective action Seff is in general complex away from half-filling, these equations are only
consistent if the φ, θµ fields are also complex (and of course this means that gauge link variables
are no longer unimodular), but the η fields are always taken to be real. Solving these equations
numerically, and averaging observables over the fictitious Langevin time, is the essence of the
complex Langevin approach.

The trace of logarithms in the effective action give rise to

−
∂Seff
∂φ(x, t)

= −
2
Nt
φ(x, t) +

∑
σ=↑,↓

Tr
[
M−1
σ

∂

∂φ(x, t)
Mσ

]
−

∂Seff
∂θµ(x, t)

= −
∂SW

∂θµ(x, t)
+

∑
σ=↑,↓

Tr
[
M−1
σ

∂

∂θµ(x, t)
Mσ

]
(62)
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Since Mσ has dimensions of N × N , where N = NtNS is the number of lattice sites, direct inversion
of Mσ at each Langevin time step is impractical if N is large, but there are tricks which avoid
direct inversion, as explained in, e.g., [44]. The idea is to approximate the trace with a stochastic
N-component noise vector v

Tr
[
M−1
σ ∂Mσ

]
≈ v†

· M−1
σ ∂Mσv (63)

where v is drawn from a Gaussian probability distribution such that

⟨v∗

i vj⟩ = δij (64)

One must then solve the linear system

M†
σw = v (65)

after which the trace becomes

Tr
[
M−1
σ ∂Mσ

]
≈ w†

· ∂Mσv (66)

The most computationally intensive part of this algorithm is the solution of the linear system of
equations (65). This is practical if the matrix Mσ is sparse, which is not quite true of the NS × NS
matrix Bσt . The problem is that while the matrix KU is sparse, the exponential of this matrix is
not. One possibility is to expand exp[−KU/Nt ] to first or second order in 1/Nt , in which case Mσ

will be a sparse matrix. There are indications that expansion to first order may not be sufficient,
cf. [38] unless Nt is quite large, and this reference also presents a method (the ‘‘Schur complement
solver’’), which speeds up the solution of the linear system without approximating the exponential
exp[−KU/Nt ]. The method has also been applied in the thimble approach of [40]. Alternatively, one
might simply expand exp[−KU/Nt ] to second order in 1/Nt .

By these means it ought to be possible implement evolution in Langevin time and to compute
gauge field observables, in particular Wilson loops, Polyakov loops, vortex densities, electromagnetic
field strengths, and so on. The complex Langevin method is practical, and supplies numerical
answers to numerical questions. What is not certain is whether those answers are correct. The
validity of the method is not guaranteed when the action is non-holomorphic [48,49], which is the
situation for the Hubbard model. Sometimes the complex Langevin approach will supply the correct
answers for non-holomorphic actions, and sometimes not [50]. There are certain tests for validity;
one can only try and see.

The effective action Seff in (59), unlike our modified Ginzburg–Landau model (4), is not a gauge-
Higgs theory in the usual sense because the scalar Hubbard–Stratonovich field is uncharged. If we
are only interested in gauge field observables, this is not a problem. It has been suggested (in
the context of graphene) that effective theories involving the charge-neutral Hubbard–Stratonovich
field (but not the gauge field) can be used to detect charge and spin density wave order [38]. On
the other hand, a theory with a neutral scalar field cannot be used to investigate the possible spin-
glass nature of the Higgs and pseudogap phases, as suggested in the last section. So the question
is whether one could follow the steps in the derivation of the Ginzburg–Landau theory from the
BCS Hamiltonian, as presented in many textbooks (e.g. [51]), using a charged rather than a neutral
Hubble–Stratonovich field to decouple the four-fermi interaction term. The problem, however, is
that unlike the BCS Hamiltonian, where the four-fermi attraction is attractive, in the Hubbard model
the four-fermi term is repulsive, and the opposite sign of this term as compared to the BCS theory
results in a ‘‘wrong-sign’’ in front of the term φ∗(x)φ(x) quadratic in the Hubbard–Stratonovich field,
i.e. if one could argue that the integral∫

dφ exp[(φ∗
−

√
Yc†

↑
c†
↓
)(φ −

√
Yc↓c↑)/Nt ] (67)

was meaningful, then the Hubbard–Stratonovich trick would replace the four-fermi term in the
Hubbard model Hamiltonian by the identity

−(φ∗
−

√
Yc†

↑
c†
↓
)(φ −

√
Yc↓c↑) + Yc†

↑
(x)c↑(x)c

†
↓
(x)c↓(x)

= −φ∗(x)φ(x) +
√
Yφ∗(x)c↓(x)c↑(x) + φ(x)

√
Yc†

↑
(x)c†

↓
(x) (68)
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with the obvious drawback that the integration over φ in e−βH is exponentially divergent. The
situation is not necessarily hopeless. Wrong-sign quadratic terms have been encountered elsewhere,
notably in Euclidean quantum gravity, where the kinetic term of the metric conformal factor has the
wrong sign, and the recommended prescription [52] is to interpret expectation values of this field
via a deformation of the contour of integration in the path integral. According to this prescription
one would have, e.g.

⟨x2⟩ =

∫
dx x2e+x2∫
dx e+x2

= −
1
2

(69)

Another approach to so-called ‘‘bottomless action’’ theories, where the value of the Euclidean action
is unbounded from below, is presented in [53]. But of course the difficulties of the wrong-sign term,
coupled with the already thorny technicalities of the sign problem associated with the chemical
potential, suggests that attention should be directed first to the effective theory with a neutral
Hubbard–Stratonovich term, and a conventional sign in front of the quadratic term in the effective
action.

Perhaps the greatest advantage of focussing on electromagnetic observables, i.e. Wilson loops,
Polyakov lines, and center-projected loops is that they allow us to study numerically the electro-
magnetic properties of the theory in the superconducting, pseudogap, and other phases of the theory
even if the effective theory involves only a neutral Hubbard–Stratonovich field, which may be the
only practical possibility.

7. Conclusions

We have presented a modified lattice version of the time-independent Ginzburg–Landau model,
containing a compact U(1) gauge field with a no-monopole constraint, and an action for the
scalar field with nearest-neighbor couplings limited to two dimensional x–y planes of the three
dimensional volume. In this model we detect in numerical simulations

1. an area-law falloff for Wilson loops in the x–y planes, in regions of small β and large γ ;
2. a superconducting phase at large β and large γ ;
3. a falloff consistent with a logarithmic potential at large β and small γ .

The superconducting phase is distinguished from other regions of the phase diagram by the
spontaneous breaking of a global Z2 symmetry.

In the region of area-law falloff we have used a Z2 projection procedure to identify the location
of vortex configurations, and provided evidence that the identified vortices are responsible for
the area-law falloff. This ties in to the center vortex theory of confinement in non-abelian gauge
theories, as briefly reviewed here. It is interesting that this is an example where the introduction of
a matter field can induce an area-law falloff in a U(1) gauge theory with a no-monopole constraint,
in which the area-law falloff would otherwise be absent.

While we do not suggest that the modified lattice Ginzburg–Landau model studied here is
a realistic model of the physics of cuprates, we do believe that it furnishes an example of a
superconducting to vortex liquid phase in the context of a U(1) gauge theory, in which the modulus
of the scalar field is a non-zero constant. This may be relevant to the superconducting to pseudogap
transition found in the cuprates.

On the experimental side, we note that there have, in fact, been measurements of magnetic
susceptibility along a planar area of a thin film of cuprate material in the superconducting phase,
e.g. [54]. Perhaps it is also feasible to compute the expectation value of Wilson loops of fixed area in
the pseudogap phase. This could be accomplished by measuring the magnetic flux Φ(t) through a
fixed loop C as a function of time, from which we derive the corresponding Wilson loop observable
exp[ieΦ(t)/h̄], also as a function of time, and then averaging with respect to time to determine
W (C). The behavior of Wilson loops is fundamental to our understanding of the strong nuclear
force, so their experimental determination in cuprate materials is an intriguing possibility.

We finally wish to stress the utility of gauge field observables in the numerical simulation
of more realistic theoretical models of the cuprates, such as the Hubbard model. This calls for
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introducing the electromagnetic gauge field in such models, as discussed in the previous section.
There is no need, in this approach, to have a charged order parameter associated with pairing, e.g.
a charged Hubbard–Stratonovich field in the effective action. The distinction between the normal,
superconducting, and pseudogap phases can be made entirely in terms of gauge field observables,
i.e. the Wilson, Polyakov, and Z2-projected loops, and the challenge is mainly to confront the sign
problem, perhaps via the complex Langevin equation, or by some other means.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank Makoto Hashimoto for discussions. JG’s research is supported by the U.S. Department
of Energy under Grant No. DE-SC0013682.

References

[1] Y. Wang, L. Li, N. Ong, Phys. Rev. B 73 (2) (2006) 024510, arXiv:cond-mat/0510470.
[2] L. Li, Y. Wang, M. Naughton, S. Komiya, S. Ono, Y. Ando, N. Ong, J. Magn. Magn. Mater. 310 (2007) 460–466, arXiv:

cond-mat/0611731.
[3] L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. Gu, N. Ong, Phys. Rev. B 81 (5) (2010) 054510, arXiv:0906.1823.
[4] P. Anderson, Four last conjectures, 2018, ArXiv e-prints, arXiv:1804.11186.
[5] P. Anderson, Last words on the cuprates, 2016, ArXiv e-prints, arXiv:1612.03919.
[6] V.J. Emery, S.A. Kivelson, Phys. Rev. Lett. 74 (1995) 3253–3256.
[7] S. Sachdev, H.D. Scammell, M.S. Scheurer, G. Tarnopolsky, Phys. Rev. B 99 (2019) 054516, http://dx.doi.org/10.1103/

PhysRevB.99.054516.
[8] T.A. DeGrand, D. Toussaint, Phys. Rev. D22 (1980) 2478, 194 (1980).
[9] G. Mack, V.B. Petkova, Z. Phys. C12 (1982) 177.

[10] S. Elitzur, Phys. Rev. D12 (1975) 3978–3982.
[11] K. Osterwalder, E. Seiler, Ann. Physics 110 (1978) 440.
[12] E.H. Fradkin, S.H. Shenker, Phys. Rev. D19 (1979) 3682–3697.
[13] W. Caudy, J. Greensite, Phys. Rev. D78 (2008) 025018, arXiv:0712.0999.
[14] S. Willenbrock, Symmetries of the standard model, arXiv:hep-ph/0410370.
[15] A. Maas, Prog. Part. Nucl. Phys. 106 (2019) 132–209, http://dx.doi.org/10.1016/j.ppnp.2019.02.003.
[16] J. Greensite, K. Matsuyama, Phys. Rev. D98 (7) (2018) 074504, arXiv:1805.00985.
[17] G. ’t Hooft, Nuclear Phys. B138 (1978) 1–25.
[18] J. Greensite, Springer Lect. Notes Phys. 821 (2011) 1–211.
[19] J. Greensite, Prog. Part. Nucl. Phys. 51 (2003) 1, arXiv:hep-lat/0301023.
[20] M. Engelhardt, K. Langfeld, H. Reinhardt, O. Tennert, Phys. Lett. B431 (1998) 141–146, arXiv:hep-lat/9801030.
[21] W. Kamleh, D. Leinweber, D. Trewartha, Proceedings, 26th International Nuclear Physics Conference (INPC2016):

Adelaide, Australia, September 11–16, 2016, PoS INPC2016 (2017) 293.
[22] D. Trewartha, W. Kamleh, D. Leinweber, Centre vortex removal restores chiral symmetry, 2017, arXiv:1708.06789.
[23] J. Greensite, K. Matsuyama, Phys. Rev. D96 (9) (2017) 094510, http://dx.doi.org/10.1103/PhysRevD.96.094510, arXiv:

1708.08979.
[24] A.M. Polyakov, Nuclear Phys. B120 (1977) 429–458.
[25] A. Duncan, The Conceptual Framework of Quantum Field Theory, in: EBSCO Ebook Academic Collection, OUP Oxford,

2012, https://books.google.com/books?id=MuH0TQvpY5sC.
[26] M. Greiter, Ann. Physics 319 (1) (2005) 217–249, http://dx.doi.org/10.1016/j.aop.2005.03.008.
[27] A.M. Schakel, Boulevard of broken symmetries, 1998, ArXiv preprint, cond-mat/9805152.
[28] J. van Wezel, J. van den Brink, Phys. Rev. B77 (6) (2008) 064523, http://dx.doi.org/10.1103/PhysRevB.77.064523,

arXiv:0706.1922.
[29] T. Kennedy, C. King, Comm. Math. Phys. 104 (1986) 327–347, http://dx.doi.org/10.1007/BF01211599.
[30] T.H. Hansson, V. Oganesyan, S.L. Sondhi, Ann. Physics 313 (2) (2004) 497–538, http://dx.doi.org/10.1016/j.aop.2004.

05.006.
[31] S.F. Edwards, P.W. Anderson, J. Phys. F 5 (5) (1975) 965–974.
[32] D.L. Stein, C.M. Newman, Complex Syst. 20 (2011).
[33] R. Blankenbecler, D.J. Scalapino, R.L. Sugar, Phys. Rev. D24 (1981) 2278.
[34] J.E. Hirsch, Phys. Rev. B31 (1985) 4403–4419.
[35] S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis, R.T. Scalettar, Phys. Rev. B40 (1989) 506–516,

http://dx.doi.org/10.1103/PhysRevB.40.506.

http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0510470
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/cond-mat/0611731
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/0906.1823
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1804.11186
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://arxiv.org/abs/1612.03919
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb6
http://dx.doi.org/10.1103/PhysRevB.99.054516
http://dx.doi.org/10.1103/PhysRevB.99.054516
http://dx.doi.org/10.1103/PhysRevB.99.054516
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb8
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb9
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb10
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb11
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb12
http://arxiv.org/abs/0712.0999
http://arxiv.org/abs/hep-ph/0410370
http://dx.doi.org/10.1016/j.ppnp.2019.02.003
http://arxiv.org/abs/1805.00985
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb17
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb18
http://arxiv.org/abs/hep-lat/0301023
http://arxiv.org/abs/hep-lat/9801030
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb21
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb21
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb21
http://arxiv.org/abs/1708.06789
http://dx.doi.org/10.1103/PhysRevD.96.094510
http://arxiv.org/abs/1708.08979
http://arxiv.org/abs/1708.08979
http://arxiv.org/abs/1708.08979
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb24
https://books.google.com/books?id=MuH0TQvpY5sC
http://dx.doi.org/10.1016/j.aop.2005.03.008
http://arxiv.org/abs/cond-mat/9805152
http://dx.doi.org/10.1103/PhysRevB.77.064523
http://arxiv.org/abs/0706.1922
http://dx.doi.org/10.1007/BF01211599
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb31
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb32
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb33
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb34
http://dx.doi.org/10.1103/PhysRevB.40.506


26 J. Greensite and K. Matsuyama / Annals of Physics 412 (2020) 168011

[36] D. Smith, L. von Smekal, Phys. Rev. B89 (19) (2014) 195429, http://dx.doi.org/10.1103/PhysRevB.89.195429, arXiv:
1403.3620.

[37] S. Beyl, F. Goth, F.F. Assaad, Phys. Rev. B97 (8) (2018) 085144, http://dx.doi.org/10.1103/PhysRevB.97.085144,
arXiv:1708.03661.

[38] P. Buividovich, D. Smith, M. Ulybyshev, L. von Smekal, Phys. Rev. B98 (23) (2018) 235129, http://dx.doi.org/10.1103/
PhysRevB.98.235129, arXiv:1807.07025.

[39] E.W. Huang, R. Sheppard, B. Moritz, T.P. Devereaux, Strange metallicity in the doped Hubbard model, 2018,
arXiv:1806.08346.

[40] M. Ulybyshev, C. Winterowd, S. Zafeiropoulos, Taming the sign problem of the finite density Hubbard model via
Lefschetz thimbles, 2019, arXiv:1906.02726.

[41] M. Fukuma, N. Matsumoto, N. Umeda, Applying the tempered Lefschetz thimble method to the Hubbard model
away from half-filling, 2019, arXiv:1906.04243.

[42] J.R. Ipsen, K. Splittorff, Phys. Rev. D86 (2012) 014508, http://dx.doi.org/10.1103/PhysRevD.86.014508, arXiv:1205.
3093.

[43] G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, I.-O. Stamatescu, Eur. Phys. J. A49 (2013) 89, http://dx.doi.org/10.1140/
epja/i2013-13089-4, arXiv:1303.6425.

[44] D. Sexty, Phys. Lett. B729 (2014) 108–111, http://dx.doi.org/10.1016/j.physletb.2014.01.019, arXiv:1307.7748.
[45] C.E. Berger, L. Rammelmüller, A.C. Loheac, F. Ehmann, J. Braun, J. n E. Drut, Complex langevin and other approaches

to the sign problem in quantum many-body physics, 2019, arXiv:1907.10183.
[46] M. Cristoforetti, F. Di Renzo, A. Mukherjee, L. Scorzato, Phys. Rev. D88 (5) (2013) 051501, http://dx.doi.org/10.1103/

PhysRevD.88.051501, arXiv:1303.7204.
[47] K. Langfeld, Proceedings, 34th International Symposium on Lattice Field Theory (Lattice 2016): Southampton, UK,

July 24–30, 2016, PoS LATTICE2016 (2017) 010, http://dx.doi.org/10.22323/1.256.0010, arXiv:1610.09856.
[48] A. Mollgaard, K. Splittorff, Phys. Rev. D88 (2013) 116007, http://dx.doi.org/10.1103/PhysRevD.88.116007, arXiv:

1309.4335.
[49] G. Aarts, E. Seiler, D. Sexty, I.-O. Stamatescu, J. High Energy Phys. 05 (2017) 044, J. High Energy Phys. 01 (2018) 128

(erratum), http://dx.doi.org/10.1007/JHEP05(2017)044, http://dx.doi.org/10.1007/JHEP01(2018)128, arXiv:1701.02322.
[50] J. Greensite, Phys. Rev. D90 (11) (2014) 114507, http://dx.doi.org/10.1103/PhysRevD.90.114507, arXiv:1406.4558.
[51] A. Altland, B.D. Simons, Condensed Matter Field Theory, second ed., Cambridge University Press, 2010, http:

//dx.doi.org/10.1017/CBO9780511789984.
[52] G.W. Gibbons, S.W. Hawking, M.J. Perry, Nuclear Phys. B138 (1978) 141–150, http://dx.doi.org/10.1016/0550-

3213(78)90161-X.
[53] J. Greensite, M.B. Halpern, Nuclear Phys. B242 (1984) 167–188, http://dx.doi.org/10.1016/0550-3213(84)90138-X.
[54] S.I. Davis, R.R. Ullah, C. Adamo, C.A. Watson, J.R. Kirtley, M.R. Beasley, S.A. Kivelson, K.A. Moler, Phys. Rev. B 98

(2018) 014506.

http://dx.doi.org/10.1103/PhysRevB.89.195429
http://arxiv.org/abs/1403.3620
http://arxiv.org/abs/1403.3620
http://arxiv.org/abs/1403.3620
http://dx.doi.org/10.1103/PhysRevB.97.085144
http://arxiv.org/abs/1708.03661
http://dx.doi.org/10.1103/PhysRevB.98.235129
http://dx.doi.org/10.1103/PhysRevB.98.235129
http://dx.doi.org/10.1103/PhysRevB.98.235129
http://arxiv.org/abs/1807.07025
http://arxiv.org/abs/1806.08346
http://arxiv.org/abs/1906.02726
http://arxiv.org/abs/1906.04243
http://dx.doi.org/10.1103/PhysRevD.86.014508
http://arxiv.org/abs/1205.3093
http://arxiv.org/abs/1205.3093
http://arxiv.org/abs/1205.3093
http://dx.doi.org/10.1140/epja/i2013-13089-4
http://dx.doi.org/10.1140/epja/i2013-13089-4
http://dx.doi.org/10.1140/epja/i2013-13089-4
http://arxiv.org/abs/1303.6425
http://dx.doi.org/10.1016/j.physletb.2014.01.019
http://arxiv.org/abs/1307.7748
http://arxiv.org/abs/1907.10183
http://dx.doi.org/10.1103/PhysRevD.88.051501
http://dx.doi.org/10.1103/PhysRevD.88.051501
http://dx.doi.org/10.1103/PhysRevD.88.051501
http://arxiv.org/abs/1303.7204
http://dx.doi.org/10.22323/1.256.0010
http://arxiv.org/abs/1610.09856
http://dx.doi.org/10.1103/PhysRevD.88.116007
http://arxiv.org/abs/1309.4335
http://arxiv.org/abs/1309.4335
http://arxiv.org/abs/1309.4335
http://dx.doi.org/10.1007/JHEP05(2017)044
http://dx.doi.org/10.1007/JHEP01(2018)128
http://arxiv.org/abs/1701.02322
http://dx.doi.org/10.1103/PhysRevD.90.114507
http://arxiv.org/abs/1406.4558
http://dx.doi.org/10.1017/CBO9780511789984
http://dx.doi.org/10.1017/CBO9780511789984
http://dx.doi.org/10.1017/CBO9780511789984
http://dx.doi.org/10.1016/0550-3213(78)90161-X
http://dx.doi.org/10.1016/0550-3213(78)90161-X
http://dx.doi.org/10.1016/0550-3213(78)90161-X
http://dx.doi.org/10.1016/0550-3213(84)90138-X
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb54
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb54
http://refhub.elsevier.com/S0003-4916(19)30266-0/sb54

	Cuprates and center vortices: A QCD confinement mechanism in a high-Tc context
	Introduction
	The model
	Gauge symmetry
	Global Z2 symmetry
	Global U(1) symmetries

	Center symmetry and center vortices
	Confinement
	The Higgs phase

	Numerical results
	Pure gauge field
	Modified Ginzburg–Landau

	A spin glass phase?
	Towards a realistic effective action
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


