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a b s t r a c t

By comparing with recently available experimental data from
several groups, we critically discuss the manifestation of contin-
uum many body interaction effects in twisted bilayer graphene
(tBLG) with small twist angles and low carrier densities, which
arise naturally within the Dirac cone approximation for the non-
interacting band structure. We provide two specific examples of
such continuum many body theories: one involving electron–
phonon interaction and one involving electron–electron interac-
tion. In both cases, the experimental findings are only partially
quantitatively consistent with rather clear-cut leading-order the-
oretical predictions based on well-established continuum many
body theories. We provide a critical discussion, based mainly
on the currently available tBLG experimental data, on possible
future directions for understanding many body renormalization
involving electron–phonon and electron–electron interactions in
the system. One definitive conclusion based on the compari-
son between theory and experiment is that the leading order
1-loop perturbative renormalization group theory completely
fails to account for the electron–electron interaction effects in
the strong-coupling limit of flatband moiré tBLG system near
the magic twist angle even at low doping where the Dirac cone
approximation should apply. By contrast, approximate nonper-
turbative theoretical results based on Borel–Padé resummation
or 1/N expansion seem to work well compared with experi-
ments, indicating rather small interaction corrections to Fermi
velocity or carrier effective mass. For electron–phonon interac-
tions, however, the leading-order continuum theory works well
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except when van Hove singularities in the density of states come
into play.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Electronic properties of twisted bilayer graphene (tBLG) at low twist angles are of great current
interest because of pioneering experiments [1,2] by Cao et al. and follow up experiments from
several groups [3–9]. Among the numerous striking experimental findings, the most significant
ones are the discovery of carrier density dependent superconducting and insulating states at low
temperatures at various fillings of the tBLG moiré flatband, a highly resistive linear-in-temperature
(T ) resistivity at higher temperatures above the exotic ground states, and intriguing magnetic
properties at different carrier densities. There is as yet no consensus in the literature on the origin
of all the observed exotic phenomena in tBLG except for the general agreement that the physics
here is controlled by the extremely flat band nature of the system at low twist angles where the
Fermi velocity is greatly suppressed leading to very strong interaction effects. There are strong hints
that the system is strongly correlated and therefore, the noninteracting band theory may not even
be a good starting point, but in spite of a large number of theoretical papers [10–45] on tBLG, no
agreement has been reached on the precise nature of the superconducting and insulating ground
states of the system. A serious complication in understanding the tBLG physics at this stage is that
experiments do not always agree with each other with respect to the details of the various observed
phases and their temperature and carrier density scales, indicating the likely role of unknown
nonuniversal physics (e.g. disorder, strain, substrates).

The current work deals with interaction effects in tBLG, but with a rather modest and narrow
focus, where we confine ourselves entirely to low carrier doping studying interaction physics close
to the Dirac point where the Dirac cone approximation should presumably apply. Our view is that
it may not be particularly useful to insist on one global paradigm underlying all tBLG phenomena,
and the possibility that different phenomena may arise from different types of interaction effects
should be taken seriously. After all in normal metals, superconductivity (ferromagnetism) arises
from electron–phonon (electron–electron) interactions respectively, and insisting on one inter-
action mechanism to explain it all (as is often done in high-Tc cuprates) may not be the most
reasonable approach. Given that both electron–electron and electron–phonon interaction effects
in monolayer graphene (MLG) are well-understood [46–48], we ask the extent to which tBLG
properties derive from MLG properties using a continuum many body theory perspective within
the Dirac cone approximation. Such a continuum many body theory approach using the linearized
Dirac dispersion (and accounting for spin, pseudospin, and valley) as the starting point has had
great success in explaining much of the experimentally observed MLG (as well as regular Bernal-
stacked bilayer graphene, BLG, without any twist) phenomenology including electron–electron and
electron–phonon interaction effects [46–48]. Of course, the strong twist angle induced suppression
in the Fermi velocity in tBLG compared with MLG enhances all interaction effects drastically, but it
is important to ask whether such a continuum Dirac description of tBLG using a suppressed Fermi
velocity is capable of capturing the currently observed experimental phenomenology near the Dirac
point at least qualitatively as a zeroth order approximation. If not, then tBLG must be thought of as
an independent strongly correlated lattice system on its own which is not adiabatically connected
at all to MLG (i.e. highly successful continuum many body theories cannot be simply transplanted
from MLG to tBLG). A natural question would then arise on how and why (and at what critical twist
angle) the continuum many body Dirac approximation breaks down as the twist angle decreases
since we know definitively that at large twist angles (i.e. in usual MLGs and BLGs) such a Dirac
description is often adequate [46–48].

There is a deeper and more fundamental field theoretic purpose underlying the current work.
Graphene, with its chiral linear particle–hole energy dispersion, is an ideal low-energy effective
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model for quantum electrodynamics (QED), albeit in two dimensions with the nonrelativistic and
unretarded (graphene Fermi velocity ∼ c/300, where c is the velocity of light in vacuum) Coulomb
interaction. So, tBLG, with its suppressed Fermi velocity enables (since the coupling constant is
inversely proportional to velocity) an effective analog emulation of QED at very large coupling
constant, which is impossible in the usual QED with the vacuum fine structure constant being 1/137
at ordinary energies. Similarly, for the electron–phonon interaction, the effective dimensionless
electron–phonon coupling constant, i.e., the Eliashberg constant [49,50], also goes as the inverse
of the Fermi velocity (i.e. effectively as the effective tBLG fine structure constant, other parameters
being constant) enabling a study of the strong-coupling regime of electron–phonon interaction in
tBLG, which is impossible in regular untwisted graphene where the Eliashberg constant is very
small, thus restricting the system to the extreme weak-coupling regime. Thus, tBLG at low twist
angles close to the magic angle, enables a study of continuum many body phenomena (for both
electron–electron and electron–phonon interactions) in the extreme strong-coupling regime simply
by virtue of the strongly enhanced effective fine structure constant because of the twist-angle
induced Fermi velocity suppression, making the subject particularly interesting.

We consider two specific examples where the experimental data are available from multiple
groups to carry out our theoretical work. We compare the leading order Dirac prescription based
continuum many body theories with the experimental data to reach some qualitative conclusions.
The two examples we choose pertain respectively to the roles of electron–phonon interaction and
electron–electron interaction in affecting the electronic properties. Of course, we cannot rule out
other effects in each case, but our motivation comes from the fact that in each case, the corre-
sponding MLG experimental results can be well-understood by considering only electron–phonon
and electron–electron interactions respectively in each case.

The electron–phonon interaction part applies to the recently predicted [36] and observed [4–6]
linear-in-T resistivity in tBLG with large values of both the absolute resistivity and the temperature
coefficient of resistivity. The basic idea propounded in Ref. [36] is that the effective electron–phonon
coupling determining the finite-temperature electrical resistivity increases inversely proportional
to the square of the Fermi velocity in Dirac-like materials, and since the tBLG Fermi velocity is
very strongly suppressed with decreasing twist angle, the phonon-induced electrical resistivity
(and the associated temperature coefficient) would increase strongly in tBLG with decreasing twist
angle. The velocity suppression effect could be quantitatively large as a factor of 50 decrease
in the Fermi velocity would correspond to a factor of 2500 increase in the resistivity and the
temperature coefficient. Indeed, the temperature coefficient of resistivity in low twist angle tBLG
at higher temperatures, where the resistivity is linear in T , is found to be ∼100 �/K [5,36]
whereas the corresponding MLG value is typically 0.1 �/K [51,52]. In addition, the experimentally
observed temperature coefficient of the tBLG resistivity in the linear-in-T regime is approximately
independent of the tBLG doping density consistent with the theoretical prediction. In the current
work, we critically investigate the crossover temperature down to which the linearity in the
resistivity arising from electron–phonon interaction effect should persist and examine its relevance
to new temperature dependent resistivity data which have become available very recently [6]. In
particular, we discuss whether such a linear-in-T tBLG resistivity could be construed to be associated
with strange metallicity and Planckian behavior as has recently been speculated [4] in contrast
to the phonon scattering mechanism predicted in Ref. [36] which has considerable experimental
support [5].

For the electron–electron interaction part, we address a key question of considerable importance:
What is the role of the quantum electrodynamic (QED) type ultraviolet-divergent many-body
renormalization of the graphene Fermi velocity due to the Dirac nature of the low-energy spectrum
given that the relevant bare fine structure constant (∼1/vF , where vF is the Fermi velocity) is
large (>10 compared with <1 in MLG) in low angle tBLG by virtue of the moiré flatband induced
bare velocity suppression? Naively, one expects a huge interaction-induced increase (decrease)
in the renormalized Fermi velocity (coupling constant) at low energies which should dominate
physics near the charge neutrality point. (This is the so-called the ‘‘running of coupling constant’’
phenomenon well-known from the renormalization group, RG, flow in QED.) By carefully examining
the available experimental data on the density dependent tBLG effective mass from SdH [1,2,5] and
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Fig. 1. (a) Velocity v∗

F at the Dirac point in tBLG moiré bands as a function of twist angle θ . Details of the calculation
can be found in Ref. [36]. (b), (c) and (d) Density of states (DOS) per spin and valley as a function of total carrier density
(n). The blue dashed lines show the DOS estimated using the Dirac cone approximation. θ is respectively 1.05◦ in (b),
1.1◦ in (c) and 1.2◦ in (d).

capacitance [9] measurements, we comment critically on the evidence for or against the existence
of the QED-type coupling constant RG flow in the system. We mention that such renormalization
effects have been widely reported in MLG experiments, where the coupling constant is small,
using SdH, capacitance, STM, and ARPES measurements (see Ref. [53] for a discussion of the MLG
experiments on the MLG RG flow physics). Since the bare fine structure constant is much larger
in tBLG by virtue of much smaller bare Fermi velocities, one expects huge QED-type interaction
effects to manifest in tBLG at low energies (i.e. at low densities close to the Dirac point). We discuss
qualitatively and quantitatively the evidence for or against such enhanced interaction effects using
continuum field theories.

In order to avoid any confusion or misunderstanding, we emphasize at the outset that the Dirac
model of linearly dispersing electron–hole bands used in our continuum approach applies to tBLG
only near the charge neutrality point (i.e., low doping densities), and therefore, our theoretical
considerations apply to the low carrier density situation with the tBLG chemical potential being
below the van Hove singularities of the moiré miniband. We show the density of states for tBLG
continuum band structure (at a few values of the twist angle) in Fig. 1 calculated following
Ref. [36,54] where the linear Dirac cone structure is apparent at low densities. Our work applies only
to this low energy regime which restricts us to a carrier density (electrons or holes) below ∼1012

cm−2. The Dirac model does not apply to tBLG above this density, and we have nothing to say about
higher doping density situations. We also show in Fig. 1(a) the calculated tBLG Fermi velocity at the
Dirac point as a function of twist angle. This Fermi velocity, v∗

F , describes the noninteracting low-
energy Dirac-like tBLG Hamiltonian in our continuum approximation, which is the starting point of
our work. The twist angle dependent tBLG Dirac velocity shown in Fig. 1(a) is a key parameter in
our theory. We mention that while for MLG the Dirac approximation holds up to 5 × 1014 cm−2

doping density, the same holds only up to a doping of ∼1012 cm−2 in tBLG.
For completeness (and because the low density and low twist angle suppression of the tBLG

Fermi velocity is the key physics controlling the continuummany body properties of the system near
the charge neutrality point), we also show in Fig. 2 the calculated tBLG Fermi velocity as a function
of both the doping carrier density and twist angle along with the corresponding effective tBLG
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Fig. 2. (a) and (b) Velocity v∗

F at finite densities in tBLG moiré bands for different twist angles. v∗

F is calculated for the
first moiré conduction band states along a high-symmetry momentum path that connects corner and center of moiré
Brillouin zone. In (a), v∗

F is shown for densities below van Hove singularities. (b) and (c) Corresponding values for the
effective fine structure constant α = e2/(κ h̄v∗

F ). The dielectric constant κ is taken to be 5 for tBLG encapsulated by hBN.

fine structure constant (for graphene encapsulated by hBN as used in experimental tBLG systems),
which is simply proportional to the inverse of the Fermi velocity. Fig. 2 shows that v∗

F of the non-
interacting band structure has a strong angle dependence, but only a weak density dependence at a
given angle. We neglect the density dependence of the non-interacting Dirac velocity v∗

F thereafter.
The results shown in Figs. 1 and 2, which present the main physical parameters describing tBLG
continuum many body effects at low carrier densities are calculated based on the well-established
band structure model of Ref. [54] with parameters given in Ref. [36].

The rest of this manuscript is organized as follows. In Section 2 we describe the electron–
phonon interaction induced tBLG resistivity, discussing how our earlier theory [36] compares with
the new transport data [6] which just became available, specifically commenting on the crossover
temperature scale down to which a linear-in-T phonon induced resistivity behavior should hold.
In Section 3, we discuss electron–electron interaction effects on the renormalization of tBLG Fermi
velocity, and how this renormalization should affect the measurement of the density-dependent
tBLG effective mass. In Section 4, we discuss the interplay of electron–phonon and electron–electron
interactions. We conclude in Section 5 with a summary of our main findings as well as a discussion
of the open questions and possible future directions.

2. Electron–phonon interaction

We consider electron–acoustic phonon interaction within the deformation potential approxima-
tion with the longitudinal acoustic phonons of graphene interacting with the tBLG Dirac electrons
in the moiré miniband. Assuming the phonons to be unaffected by the tBLG structure (i.e., taking
the tBLG phonons to be the same as the MLG phonons), we can write, following Refs. [36,51,55], the
phonon-scattering induced intrinsic carrier resistivity ρ to be given, within the Boltzmann transport
theory, by:

ρ(T , n, θ ) =
32F (θ )D2kF

(gsgvgl)e2ρmv∗2
F vph

I(T/TBG) (1)

where

I(z) =
1
z

∫ 1

0
dxx4

√
1 − x2

ex/z

(ex/z − 1)2
(2)
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Fig. 3. Form factor F (θ ) as a function of the twist angle θ .

We use Eq. (1) as it is without derivation, following our earlier work [36] where the details leading
to Eq. (1) can be found.

In Eq. (1), D, ρm, and vph define the phonon model, being respectively the electron–phonon
deformation potential coupling constant, the atomic mass density, and the phonon (i.e., sound)
velocity. Carriers in tBLG are characterized by e, kF , gs,v,l, and v∗

F , which are respectively the electron
charge, the Fermi wave number, the tBLG degeneracy factor (with gs, gv , gl being each equal to 2
in the absence of any symmetry breaking) arising from spin (gs), valley (gv) and layer (gl) quantum
number, and the effective twist angle dependent tBLG Dirac velocity. The Fermi wave number kF
depends on carrier density n through the formula:

kF =

√
4πn/(gsgvgl). (3)

An important physical quantity for our consideration in Eq. (1) is TBG, the Bloch–Grüneisen
temperature defined by:

kBTBG = 2h̄vphkF , (4)

where kB is the Boltzmann constant. Note that TBG basically defines the energy of an acoustic phonon
with a wave number q = 2kF . Finally, the function F (θ ) in Eq. (1) is a form factor of order unity,
which arises from the detailed tBLG moiré wave function and accounts for the modification of the
tBLG electron–phonon interaction matrix element compared with the MLG situation. Since F (θ ) ∼ 1
for tBLG according to detailed calculations [36,56], we neglect F (θ ) from qualitative discussions in
the following but keep it in the actual quantitative estimation of resistivity. We show in Fig. 3
the calculated tBLG electron–phonon form factor F (θ ) as a function of θ using the tBLG moiré band
structure of Ref. [36]. We note the important point that Eqs. (1) and (2) apply equally well to regular
MLG [51,55] except that F (θ ) = 1, gl = 1, and v∗

F (θ ) ≡ vF , where vF is the regular monolayer
graphene Dirac velocity given by vF ≈ 108 cm/s. In tBLG, v∗

F < vF , because of the moiré flatband
physics being dominant at low twist angles.

As explained in Refs. [36,56], the key physics of electron–phonon interaction strength in tBLG
compared with MLG or BLG is the strong moiré flatband induced enhancement of the effective
electron–phonon coupling due to the presence of the v∗2

F term in the denominator of Eq. (1).
Since v∗

F (θ )/vF ≪ 1 for θ ∼ θM , where θM is the largest magic angle for vanishing Dirac velocity
(i.e., v∗

F (θM ) = 0), the phonon-induced tBLG resistivity can be order of magnitude larger than the
corresponding MLG resistivity for small twist angle:

ρtBLG(T , n, θ ) ≈

( vF

v∗

F (θ )

)2
ρMLG ≫ ρMLG. (5)

The above physics has already been emphasized in Refs. [36,56] and is consistent with experimental
findings [4–6]. In fact, good quantitative agreement between theory and experiment can be achieved
through adjusting the phonon parameter D/vph by a factor of 2 or so compared with its MLG value,
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as already discussed in Refs. [5,36]. Since D is never precisely known, and both D and vph are likely to
be quantitatively modified in tBLG (e.g., by lattice relaxation), the quantitative agreement between
theoretical and experimental ρ(T ) is quite reasonable.

The current work focuses on the qualitative temperature dependence, i.e., the power law
dependence of ρ(T , n, θ ) on T for different n and θ . We also connect our theory with newly available
ρ(T ) data in Ref. [6]. Expanding the integral in Eq. (2), it is easy to see that

I(z) ∼ z4, for z ≪ 1,
I(z) ∼ z, for z ≫ 1,

(6)

and hence, we get:

ρ(T ) ∼ T 4, for T ≪ TBG,
ρ(T ) ∼ T , for T ≫ TBG.

(7)

Note that the above low-T (ρ ∼ T 4) and high-T (ρ ∼ T ) [Eqs. (6) and (7)] regimes are known as
the Bloch–Grüneisen (BG) and the equipartition regime, respectively, where the phonon scattering
induced resistivity is negligible and dominant, respectively. In 3D metals, the T 4-BG law appropriate
for 2D systems is replaced by the T 5-BG law, and the characteristic temperature scale is the Debye
temperature TD. The relevant phonon temperature scale is actually TD or TBG, whichever is lower
as shown and discussed in depth in Refs. [51,55,57,58]. In low-density electronic materials, the
characteristic phonon temperature is kBTBG = 2h̄vphkF since TBG < TD when the carrier density is
low. In 3D metals, by contrast, TD < TBG, and hence TD is the relevant temperature scale. Graphene
Debye temperature plays no role in the physics of our interest since we are explicitly in the TBG < TD
regime.

Expansion of the integral in Eq. (2) as well as a direct numerical evaluation [see, e.g., Figs. 4(c)
and 4(d) in Ref. [36]] shows that the actual crossover temperature TL, controlling the crossover from
the linear-in-T law for T > TL to the T 4-law for T < TL, happens in tBLG for:

TL ≈ TBG/8 = h̄vphkF/4 ≈ 5
√

ñK , (8)

where ñ is the carrier density n expressed in units of 1012 cm−2. In Ref. [36], we estimated TL by
TBG/4 in the text, but numerical results presented in Fig. 4 of that paper show that TBG/8 is a better
estimation for TL. In this context, it is appropriate to mention that kF (∝

√
n) in tBLG is lower than

the corresponding kF in MLG for the same carrier density by a factor of
√
2 (and hence so is TBG)

because of the additional layer degeneracy gl = 2 in tBLG. To obtain the numerical estimate in
Eq. (8), we use the MLG value for vph = 2 × 106 cm/s.

Before discussing a comparison between the experimental and theoretical TL values, we first
mention two essential restrictions on the applicability of our theory to tBLG: (i) the theory is valid
only for θ > θc , where v∗

F (θc) = vph, i.e., the theory applies only when v∗

F > vph; (ii) the theory is
valid only for n < nc , where nc is the carrier density up to which the Dirac cone approximation
remains valid in tBLG (actually, the more precise statement is that the theory is restricted for
EF (n) < Ec , defining n < nc , where Ec is the tBLG band energy up to which the linear Dirac
cone approximation applies). For θ < θc , intraband scattering by acoustic phonons, which is the
only scattering process included in the current theory, vanishes. For n > nc , the chemical potential
is above the tBLG Dirac cone regime, where our theory does not apply. Comparing with the tBLG
continuum band structure and the standard graphene sound velocity, we find θc ≈ 1.08◦, nc ≈ 1012

cm−2, and we can only compare with experimental data in the θ > 1.08◦ and n < 1012 cm−2

regime. The high density (i.e., n > 1012 cm−2) and the low twist angle (i.e., θ < 1.08◦) regimes are
not accessible to the current theory. But the theory should be reasonably accurate in the n < 1012

cm−2 and θ > 1.08◦ regime, both qualitatively and quantitatively. We note that the exact value
of θc depends on details of the Bistritzer–MacDonald model [54] as well as phonon velocity, and
therefore, is not precisely determined. Nevertheless, we expect θc to be close to the magic angle
θM , which is experimentally found to be around 1◦–1.1◦.

First, we summarize the comparison between our theory and the findings in Ref. [4,5], which
were already discussed in Ref. [36], but some new details are mentioned below:
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(1) In both sets of data [4,5], where a clear linear-in-T resistivity is seen at lower densities
(< 1012 cm−2), where the theory applies, the theory describes the data very well, perhaps even
quantitatively if the phonon parameter D/vph is adjusted upward by a factor of 2.

(2) In both sets of data [4,5], the resistivity is strongly nonlinear at higher densities and lower
temperatures, showing that TL(n) indeed increases with increasing n consistent with the expected
TBG ∝

√
n behavior.

(3) The theory does a poor job of explaining the data quantitatively for n > 1012 cm−2, most
likely because of the failure of the Dirac cone approximation at higher densities.

(4) At lower temperature, typically for T < 10 K, as well as for the T = 0 extrapolation
from higher temperature resistivity, our theory also does a poor job, partly because of other
more dominant (than phonon scatterings) contributions to the low-T resistivity, e.g., impurity
scattering [59] and perhaps also because of fluctuation effects arising from the incipient tBLG
superconductivity, which becomes increasingly important at lower temperatures (<5 K) for certain
carrier densities.

(5) The most important discrepancy between the MIT data [4] and our theory is for their sample
MA4 (Fig. 2a in Ref. [4]), where the T -linear resistivity for n = 1.19 × 1012 cm−2 and θ = 1.16◦

persists down to T ∼ 0.5 K just before the system goes superconducting. For n = 1.19 × 1012

cm−2, our theory gives TL ≈ 5 K, which is an order of magnitude larger than the experimental
T ∼ 0.5 K. In contrast to the very low value of experimental TL compared with theory, the measured
temperature coefficient dρ/dT ∼ 75 �/K in this sample is in reasonable agreement with our
calculated dρ/dT ∼ 60 �/K for θ = 1.16◦. Of course, n = 1.19× 1012 cm−2 is above the maximum
density nc < 1012 cm−2 up to which the Dirac cone approximation (and consequently, our theory)
applies, so the persistence of T -linearity down to very low temperature may arise from effects
beyond our model. In the same figure (Fig. 2a) of Ref. [4], the authors also show data for their sample
MA3 at n = 1.46×1012 cm−2 where the linear-in-T behavior persists to ∼6 K, which agrees with our
theoretical TL ∼ 6 K, and therefore, the experimental situation itself is highly nonuniversal, with the
experimental TL values being strongly sample dependent (varying by an order of magnitude), which
no universal theory can possibly explain using one resistive mechanism. The persistence of T -linear
behavior down to very low temperature is even more pronounced in the very recent data of Ref. [6],
where only four line plots are provided for T -linear resistivity at n = (0.55, 0.76, 1.11, 1.73)×1012

cm−2. The corresponding TL values according to our theory are respectively, TL = 3.7 K, 4.4 K,
5.3 K and 6.6 K. Experimental T -linear resistivity for these four densities persists respectively to
temperatures 0.5 K, 0.5 K, 4 K and 6 K. Here, rather unexpectedly, our theory agrees with the regime
of T -linear behavior for the two higher density (1.11 × 1012 cm−2, 1.73 × 1012 cm−2) sample, but
not with the two lower density (0.55×1012 cm−2, 0.76×1012 cm−2) samples, although the theory
is supposed to apply better to the lower density situation by virtue of the applicability of the Dirac
approximation near charge neutrality. In fact, the discrepancy between theoretical and experimental
TL is again a factor of 10 similar to the MIT MA4 sample at high density [4], and similar to the MIT
situation, the experimental temperature dependence is nonuniversal with the linearity persisting
to 5 K in one case and 0.5 K in another for two very similar densities in two different samples. In
Fig. 4 we show the calculated ρ(T ) and TL, where the discrepancy in TL for the low-density case
compared with the data in Ref. [6] is apparent. The persistence of a T -linear resistivity down to
low temperatures in the low-density samples of Ref. [6] is a puzzle for the theory. The discrepancy
between experimental and theoretical TL values in some situations has led the authors of Ref. [4] to
call the T -linear resistivity in tBLG as ‘‘strange metallicity’’. We disagree with this characterization
as the phonon scattering mechanism does provide an excellent overall description of tBLG ρ(T )
for T > 5 K, explaining the overall magnitude of ρ(T ) and its roughly density independent large
(∼100 �/K) value for dρ/dT . The simple idea of phonon scattering effect being enhanced by the
very large factor (∼103–104) of (vF/v

∗

F (θ ))
2 in tBLG compared with MLG also provides a natural

explanation for why ρ(T ) and dρ/dT are so much (by orders of magnitude) larger in tBLG [4–6]
than in MLG [52]. The fact that two MIT samples with similar densities (MA3 with n = 1.46× 1012

cm−2 and MA4 with n = 1.19 × 1012 cm−2) have very different experimental TL values (6 K and
0.5 K, respectively) is a hint that the T -linear behavior in sample MA4 of Ref. [4] down to very low
TL may not be a universal phenomenon. A similar experimental discrepancy also applies to Ref. [6]
where two samples manifest TL differing by an order of magnitude.
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Fig. 4. (a) Phonon induced resistivity ρ as a function of temperature T for different carrier density n. θ is 1.1◦ . ρ becomes
linear in T at high temperature (T > TL). (b) The crossover temperature TL as a function of carrier density n. Blue and
yellow dashed lines respectively show TBG/4 and TBG/8.

One possibility is that the existence of tBLG van Hove singularities (VHS) for n > 1012 cm−2 is
drastically suppressing the effective value of kF in sample MA4 of Ref. [4], thus reducing TL(∝ kF ).
In fact, the VHS is known to lead to a Lifshitz transition in the Fermi surface, providing an effective
Fermi wave number corresponding to a much lower carrier density neff ≈ n − nVHS , where nVHS is
the carrier density corresponding to the Fermi level being at the VHS. Experiments [4–6] already
show the presence of such small tBLG Fermi pocket for n > nVHS . The Fermi wave number kF ,eff
corresponding to neff is much smaller than that corresponding to the full density n:

kF ,eff = kF
√
neff /n = kF

√
(n − nVHS)/n. (9)

Given that TL ∝ TBG ∝
√
neff , TL could easily be suppressed strongly if neff ≪ n. More experimental

and theoretical work would be necessary to validate this line of reasoning, but we do believe that
a strong suppression of TL is possible for n > nVHS because the effective Fermi wave number now
corresponds to a much smaller carrier density measured with respect to the VHS points because of
the Lifshitz transition.

A very recent experiment [60] shows a clear correlation between the van Hove singularities in
the density of states and the persistence of the T -linear resistivity down to rather low temperatures,
thus providing considerable support to our proposal of a strong suppression of TL compared with
the nominal TBG/8 arising from the Lifshitz transition affecting the effective free carrier density
defining kF in the system. A full calculation of the tBLG temperature-dependent resistivity including
the Lifshitz transition and the van Hove singularities, which is beyond the scope of the current
continuum many body theory, should be carried out in the future to definitively validate the role
of the van Hove singularities in extending the T -linear resistivity down to T ≪ TL.

We note, however, that this van Hove singularity induced Lifshitz transition argument for the
suppression of experimental TL works only at higher density (>1012 cm−2) when the Fermi level is
at or above the VHS points. The experimental finding in Ref. [6] of very low TL for n ≈ 0.6 × 1012

cm−2 is unlikely to be explicable based on an effective lower carrier density arising from the VHS
induced Lifshitz transition, although it is not absolutely impossible. A possible explanation for the
low-density discrepancy between theoretical and experimental TL in Ref. [6] could be the fact that
the sample of Ref. [6] is known to manifest a small energy gap at the charge neutrality point,
and hence do not represent a system of massless Dirac fermions at low densities. In fact, close
to the charge neutrality point, the system is massive by virtue of the energy gap at the Dirac point.
An accurate knowledge of the low-density band structure now becomes crucial for estimating the
phonon induced resistivity, and this effect will be the strongest at the lowest density closest to the
Dirac point. This might explain why the samples of Ref. [6] manifest TL values which disagree with
the theory at lower carrier densities while agreeing at higher densities.

We show in Fig. 5 the calculated Fermi velocity in a gapped Dirac model as a function of
the energy gap at charge neutrality, and we can see that the effective Fermi velocity is strongly
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Fig. 5. Band velocity v as a function of the total carrier density n (including valley, spin and layer degeneracies) for a
massive Dirac Hamiltonian h̄v∗k · σ + ∆σz/2. Different curves are for different values of the gap ∆, and v∗ is taken to be
3 × 104 m/s for this figure.

suppressed by the energy gap, particularly at lower carrier density (in fact v∗

F → 0 as n → 0). This
enhances the effective electron–phonon coupling in these samples considerably (since the coupling
goes as 1/v∗2

F ) at lower density. Whether the existence of the charge neutrality gap leads to a strong
suppressed TL in sample of Ref. [6] at lower density remains an important open question for the
future. Obviously, more work would be necessary to investigate the role of a possible gap at the
Dirac point on determining the low-temperature tBLG resistivity.

We emphasize, however, that in the vast majority of the situations studied so far the linearity-
in-T in the measured resistivity persists only down to our TL as defined in Eq. (8), and hence the
continuum many body theory describes the temperature-dependent tBLG resistivity extremely well.
A few cases, where the measured resistivity remains linear well below TL defined by Eq. (8), may
very well be explicable by the VHS as proposed by us and as recently observed in Ref. [60]

3. Electron–electron interaction

It is well accepted that the massless Dirac fermions in ordinary monolayer graphene manifest
the QED-type running of the coupling constant associated with the renormalization group (RG) flow
arising from the ultraviolet divergence inherent in the Coulomb coupling of Dirac fermions. The
leading-order correction to the effective Fermi velocity arising from electron–electron interactions
is easily calculated within the 1-loop approximation to be:

v∗

F (E) = v∗

F (Ec)[1 +
αc

4
ln(Ec/E)], (10)

where v∗

F (E) is the velocity at the energy scale E connecting with the ‘‘bare’’ velocity v∗

F (Ec) at high
energy scale Ec > E. Connecting the whole equation for velocity renormalization to carrier density
(using the fact that for Dirac electrons EF ∝ kF ∝

√
n) we get:

ṽ∗

F ,1/ṽ
∗

F ,2 = 1 +
α2

8
ln(n2/n1), (11)

where ṽ∗

F ,i are the interaction-renormalized Fermi velocity at carrier densities ni with n2 > n1, and
α2 = e2/(κ h̄ṽ∗

F ,2) is the interaction coupling at density n2. Here κ is the applicable background
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dielectric constant of tBLG with the relevant substrates. We assume with no loss of generality that
ṽ∗

F ,2 is taken at a sufficiently high carrier density so that it is the twist-angle dependent bare band
value:

ṽ∗

F ,2 ≡ v∗

F . (12)

In practical terms, it should suffice to take n2 = 1012 cm−2 where the tBLG band structure at low
twist angles starts deviating from linearity making the Dirac cone approximation inaccurate. We
note that the characteristic density for the breakdown of the Dirac approximation in MLG is very
high ∼5 × 1014 cm−2.

The tBLG band Dirac velocity v∗

F (see Fig. 1(a)) depends on the twist angle θ and can be
empirically approximated by

v∗

F (θ ) ≈ 0.5|θ − θM |vF , (13)

where both θ and θM are expressed in degrees, θM ≈ 1.02◦ from our calculation and vF = 108 cm/s
is the MLG bare Fermi velocity. Eq. (13) holds for θ < 3◦, and for θ > 3◦, v∗

F ≈ vF for our purpose.
Using an effective background dielectric constant κ = 5, which is approximately appropriate for
hBN encapsulated graphene systems, we get αMLG ≈ 0.5 and αtBLG = α2 ≈ 0.5vF/v

∗

F (θ ) ≈

1.0/|θ − θM |. Thus, for θ = 1.1◦, 1.2◦, 1.3◦, 2◦, we have αtBLG = 12, 5.5, 3.6, 1 respectively. Thus,
for small twist angles, the tBLG bare coupling (∼1) is substantially enhanced compared with MLG
bare coupling by virtue of the strong suppression of tBLG Fermi velocity due to the moiré flatband
situation arising for small twist angles.

The large bare coupling in tBLG (for θ < 2◦) should lead to a large increase in the renormalized
Fermi velocity ṽ∗

F with decreasing carrier density according to the running of the coupling constant
formula in Eq. (11), giving the following n-dependent result:

ṽ∗

F ,1(θ )/ṽ
∗

F ,2(θ ) = 1 +
ln(n2/n1)
8|θ − θM |

. (14)

Taking n2 = 1012 cm−2, n1 = 1010 cm−2, and θ = 1.2◦, we get ṽ∗

F ,1/ṽ
∗

F ,2 ≈ 4.2. The leading
order (i.e, 1-loop) RG flow of the coupling constant, therefore, predicts a very large many-body
renormalization of the tBLG Fermi velocity as a function of carrier density — going from near
the charge neutral point (∼1010 cm−2) to a moderate density (∼1012 cm−2) in a density range
where band structure calculations predict, even for a low twist angle of θ ∼ 1.2◦, that the Dirac
cone approximation remains valid. We note that the interaction induced renormalization of the
Fermi velocity is explicitly density dependent and is always an increasing function with decreasing
density, approaching infinite velocity (i.e., zero coupling) at the Dirac point (n = 0), albeit extremely
slowly (i.e., as ln n). Of course, eventually v∗

F must saturate at some exponentially small density at
the light velocity c = 3 × 1010 cm/s (≫v∗

F ), where relativistic effects become relevant, but this
extreme weak-coupling (α ≈ 1/137) limit is not of any relevance to the physics of our interest.

To compare with the factor of ≥ 4 increase in the renormalized tBLG Fermi velocity in going
from n = 1012 cm−2 to n = 1010 cm−2 for θ = 1.2◦, we quote the corresponding velocity ratio
calculated within the 1-loop theory for the same density variation in regular MLG encapsulated by
hBN (where vF ≈ 108 cm/s and bare α ≈0.5): vF ,1,MLG/vF ,2,MLG ≈ 1.3, where vF ,i,MLG corresponds
to the effective MLG Fermi velocity for n = 1010 cm−2 (i = 1) and n = 1012 cm−2 (i = 2). Thus,
the coupling constant runs only 30% in MLG compared with a predicted 420% running for tBLG
with θ = 1.2◦ in the same density range. (As an aside, in high energy physics, OPAL experiments
show a maximal QED coupling constant flow only by ≤3% because of the very weak value of bare
coupling, α ≈ 1/137 in QED [61].) This 30% variation in graphene coupling constant has been
experimentally observed in MLG by a number of groups using several different techniques (see
Ref. [53] and references therein).

It is, therefore, a serious puzzle that the currently available and very recent tBLG experiments
find little evidence for a > 400% variation in the experimentally measured Fermi velocity as
a function of carrier density. In fact, the experimentally extracted Fermi velocity in low twist-
angle tBLG typically finds a density independent Fermi velocity which is quite consistent with the
noninteracting moiré band structure result (for the specific twist angle) in the whole low density
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Fig. 6. 1-loop RG velocity (solid lines) and resummed RG velocity (dashed lines) as a function of total carrier density n.
The bare velocity is taken to be 0.015 × 106 m/s (blue lines), 0.15 × 106 m/s (yellow lines), and 0.3 × 106 m/s (green
lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

regime above charge neutrality (n < 2 × 1012 cm−2), where the Dirac cone approximation should
apply. For example, Ref. [9] finds, based on quantum capacitance measurements, v∗

F ≈ 0.116× 108

cm/s for θ = 1.05◦ (sample M2 of Ref. [9]) over the whole density range n = 0 to 2 × 1012 cm−2.
For θ = 1.05◦, we have v∗

F (θ = 1.05◦) ≈ 0.015 × 108 cm/s from our moiré band structure
calculation, whereas the corresponding renormalized Fermi velocity including electron–electron
interaction effects according to the 1-loop RG theory would be

ṽ∗

F (n = 1011 cm−2) ≈ 10ṽ∗

F (n = 1012 cm−2)

≈ 0.15 × 108 cm/s.
(15)

It is curious that the experiment of Ref. [9] finds a v∗

F ≈ 0.12 × 108 cm/s reasonably comparable
to the theoretically expected renormalized Fermi velocity [Eq. (15)], a factor of 8 larger than the
bare band structure value at the density 1011 cm−2. By contrast, the fact that a constant density-
independent Fermi velocity provides description of the data in Ref. [9] argue against the expected
running of the coupling constant. One possibility, which cannot be ruled out at this stage, is that
the Dirac cone density range covered in the experiment is 1010–2 × 1012 cm−2, and the data can
therefore be reasonably explained by using the renormalized Fermi velocity at the intermediate
density of n ≈ 1011cm−2, given the error bars in the data. The theoretical RG flow leads to a variation
in ṽ∗

F from the bare value of 0.015 × 108 cm/s at high density n ∼ 1012 cm−2 to 20 times the bare
velocity (i.e. 0.3× 108 cm/s) at the lowest density n ≈ 1010 cm−2, but the noisy experimental data
are not precise enough to decisively discern the velocity variation with carrier density. Thus, the
data over the whole density range can be fitted approximately by using ṽ∗

F ≈ 0.12 × 108 cm/s. In
Fig. 6, we show the density dependence of the 1-loop RG velocity.

In Ref. [2], capacitance measurements on a tBLG sample (device D2 in Extended Data Figure 2
of that paper) with θ = 1.12◦ extracts ṽ∗

F ≈ 0.15 × 108 cm/s in the carrier density range between
1010 cm−2 and 1012 cm−2. Here our theoretical bare band velocity v∗

F ≈ 0.05× 108 cm/s is a factor
of 3 smaller than the extracted experimental velocity leading to an effective renormalization factor
of 3. Assuming that this renormalization can be modeled by the mid-density n = 1011 cm−2, we
get a factor of 3.9 renormalization arising from the RG flow equation [Eq. (14)]. Again, the density
independence of the experimental fit to the measured effective velocity could be attributed to the
relatively large error bar in the data.

Thus, the available capacitance based tBLG velocity measurements do not indicate a strong
logarithmic running of the coupling constant with decreasing carrier density as predicted by the
1-loop perturbative RG theory. But the extracted Fermi velocity from capacitance measurements
in Refs. [2,9] seems to be much larger than the corresponding theoretical tBLG band velocity,
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thus suggesting some hints of a velocity renormalization although this is ambiguous unless a
clear increasing velocity with decreasing carrier density is also observed in the experiment. We
emphasize, however, that the true tBLG bare band velocity may differ from our estimates based
on the continuum Bistritzer–MacDonald model, and hence we cannot be sure that the existing
capacitance measurements definitively imply any interaction-induced renormalization effects in
spite of the 1-loop RG theory predicting a very large velocity renormalization. The most definitive
evidence in favor of the predicted running of the coupling constant would be a direct experimental
observation of the logarithmic velocity renormalization, which seems not to have been reported
yet.

The theory can also be used to compare with the experimentally measured tBLG effective mass
(m̃∗) through Shubnikov–de Haas (SdH) oscillation experiments in a weak applied magnetic field.
Of course, the linear Dirac energy dispersion of graphene implies a vanishing effective mass at the
Dirac point corresponding to massless Dirac fermions, but at a finite carrier density away from the
Dirac point a graphene effective mass may be defined using the relativistic formula:

EF = h̄v∗

F kF = m∗v∗2
F , (16)

leading to:

m∗(kF ) = h̄kF/v∗

F ∝
√
n. (17)

Note that precisely the same effective mass follows also from the Newtonian definition for mo-
mentum, i.e., p = h̄kF = m∗v∗

F , giving m∗
= h̄kF/v∗

F . The so-defined effective mass, which varies
at the Dirac point as

√
n, is directly measured from the oscillation amplitude of SdH oscillations.

We mention that, for the same value of n, the bare tBLG effective mass would be heavier than the
MLG effective mass by the large ratio of vF/(

√
2v∗

F ) where the factor of
√
2 arises from the layer

degeneracy of tBLG which suppresses its effective kF by a factor of
√
2 compared with MLG. Using

Eq. (13) for v∗

F in tBLG we get the following formula for the bare tBLG effective mass as a function
of twist-angle θ and carrier density n:

m∗(n, θ )/m0 ≈ 0.03
√

ñ/|θ − θM |, (18)

where m0 is the electron rest mass and ñ = n/(1012 cm−2). m∗ goes to 0 as ñ → 0.
This tBLG bare effective mass m∗ is renormalized by the coupling constant RG flow due to the

velocity renormalization to a many-body effective mass m̃∗ given in the 1-loop theory by:

m̃∗

1(n1, θ ) =

√
n1

n2
m̃∗

2(n2, θ )[1 +
α2

8
ln

(n2

n1

)
]
−1, (19)

where m̃∗

1 and m̃∗

2 are the renormalized effective mass respectively at density n1 and n2 (both for the
same system with the twist angle θ ). Taking into account the dependence of the bare effective mass
already on the density, and taking n2 ≈ 1012 cm−2 where the Dirac cone approximation ceases to
apply (see Fig. 7), we get:

m̃∗

1/m0 ≈ 0.03
√

n1

n2

[
|θ − θM | +

1
8
ln

(n2

n1

)]−1
, (20)

where n2 is taken to be 1012 cm−2 and 0 < n1 ≤ n2 so that the Dirac approximation applies.
We can compare the 1-loop effective mass theory to the experimental measurements of the SdH

effective mass in Refs. [1,2,5]. First, we note that the
√
n dependence of the bare effective mass is

suppressed at lower densities in the renormalized effective mass for n < 1012 cm−2. In fact, as
n → 0, m̃∗(n) ∼

√
n/ln(n2/n) → 0, which varies faster than

√
n and includes a non-analytic ln(1/x)

function due to the logarithmic RG flow of the Dirac system. Thus, although the renormalized tBLG
effective mass m̃∗(n) at high density (n ≥ 1012 cm−2) is still given by the bare band mass (since
we assume the RG flow to stop at n ≈ 1012 cm−2 where the Dirac model stops being valid), the
low-density effective mass near charge neutrality (n < 1012 cm−2) should be much smaller than
the corresponding bare band mass (∼

√
n) at that density. Another way of saying this is that a

direct effect of many-body renormalization is that the ratio of the effective mass at a low density n1
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Fig. 7. 1-loop RG mass (solid lines) and resummed RG mass (dashed lines) as a function of total carrier density n. The
bare velocity is taken to be 0.015× 106 m/s (blue lines), 0.15× 106 m/s (yellow lines), and 0.3× 106 m/s (green lines).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

compared with that at a high density n2(≥ 1012 cm−2) should be much smaller than that implied by
the simple band structure ratio of m̃∗

1/m̃
∗

2 =
√
n1/n2 because of the additional logarithmic RG flow

of the coupling constant [i.e., m̃∗

1/m̃
∗

2 =
√
n1/n2/(1 + (α2/8) ln(n2/n1))]. The upper density cutoff

for the RG flow should be set by the experimental van Hove singularity and is thus, dependent on
θ , but typically the cutoff density for the RG flow is ∼1012 cm−2 for small values of θ (>θM ) of
interest in tBLG experiments.

In Ref. [2], the measured SdH effective mass varies from ∼0.1–0.2m0 at n = 1011 cm−2 to
∼0.4m0 at n = 1012 cm−2 with a rather large error bar. Here m0 is the electron rest mass. Thus, the
ratio of the effective mass at these two densities varies by a factor of 2–4 (with large error bars),
which is comparable to that predicted by the noninteracting

√
n density dependence without the

predicted logarithmic coupling constant running effect. Similarly, in Ref. [1], the measured effective
mass in sample D2 with θ = 1.1◦ manifests the noninteracting

√
n density dependence (with very

large error bars) with an extracted v∗

F = 6×106 cm/s which is approximately consistent again with
the bare band velocity with this twist angle, thus indicating (within large error bars) an absence of
any substantial density-dependent velocity renormalization as predicted by the 1-loop RG theory.

Ref. [5] obtains the SdH effective mass for a tBLG sample with θ ≈ 1.59◦, finding that the
noninteracting result m∗

∝
√
n is approximately obeyed in the 1011–1012 cm−2 range of carrier

density (within error bars). This is crudely consistent with theory since for θ ≈ 1.59◦, the bare
tBLG Fermi velocity v∗

F is about 0.3vF , leading to only a factor of 3 enhancement of the effective
bare coupling constant αtBLG ≈ 3αMLG ≈ 1.5 so that the logarithmic RG renormalization factor
is only (1 + (1.5/8) ln(n2/n1)) ≈ 1.4, and hence, we expect minimal velocity renormalization
in the 1011–1012 cm−2 density range for the large-angle sample. For the θ ≈ 1.24◦ sample,
the logarithmic RG factor in the 4 × 1011–1012 cm−2 density range is only ∼1.5 because of the
rather narrow density range of the measurement. Hence, within error bars, which are typically
large for SdH measurements of effective mass, we do expect the bare tBLG Fermi velocity and
the

√
n dependence to describe the data of Ref. [5]. Lower density experimental measurement

(for n < 1011 cm−2) should allow a more decisive quantitative comparison between theory and
experiment. Obviously, the effective mass measurements of Ref. [5] are actually more consistent
with the velocity renormalization being negligibly small in contradiction with the 40% velocity
renormalization predicted by the 1-loop theory.

Because of the large error bars in these effective mass measurements as well as the absence of
accurate data at low densities close to the Dirac point (n < 1011 cm−2) where the mass renormaliza-
tion is the strongest, much more data would be necessary for a definitive conclusion. But, it seems
pretty clear that the 1-loop RG theory predicts much stronger tBLG mass renormalization than has
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been reported in the existing (admittedly limited) experimental data. If the experimental data are
available for v∗

F and m∗ in the density range of 1010 cm−2–1012 cm−2, where the renormalized tBLG
Fermi velocity should change, according to the 1-loop RG theory, by a factor of ∼800% in a sample
with θ ≈ 1.2◦ (so that the bare v∗

F is only 10% of the MLG Fermi velocity), the situation would be
more convincing, particularly since the corresponding renormalization for hBN encapsulated MLG
over the same factor of 100 change in carrier density would only be a paltry ∼11%.

The apparent inconsistency between the existing experiments and the 1-loop RG prediction of a
large density-dependent tBLG velocity renormalization (≫100% compared with the band structure
prediction) brings up the important question regarding the applicability of the 1-loop RG flow
equation to tBLG because of the large effective bare tBLG coupling constant αtBLG of small twist
angles. Since αtBLG/αMLG = vF ,MLG/vF ,tBLG ≈ 2/(θ −θM ) with θ measured in degrees, αtBLG ≫ αMLG for
small θ ≥ θM . For example, for θ = 1.1◦(1.2◦), αtBLG ≈ 12(5.5). A natural question now is whether
a 1-loop perturbative RG analysis is meaningful in a situation with a bare interaction coupling
αtBLG > 1. Of course, the standard argument is that the RG flow goes toward weak coupling as
the renormalized Fermi velocity increases with decreasing density (i.e., energy) starting at the high
density (i.e., from above the Dirac cone energy, which is the natural ultraviolet cutoff in the theory).
Thus, the weak-coupling RG flow becomes increasingly a more valid approximation as the density
decreases. On the other hand, for example, taking θ = 1.1◦, where the bare coupling αtBLG ≈ 12,
decreasing carrier density by a decade (e.g., going from 1012 cm−2 to 1011 cm−2), the decrease
in α is only by a factor of ∼4.5, so the coupling is still pretty large ∼3. Since this is essentially
the currently available experimental density scale, the applicability of the 1-loop perturbative
RG becomes dubious. (The situation improves somewhat considerably if the experimental tBLG
measurements of Fermi velocity and/or effective mass could be pushed down in density to 1010

cm−2 since even for θ ≈ 1.1◦, the renormalized effective coupling in the 1-loop theory decreases to
1.5 which is still larger than unity.) So the whole comparison between tBLG theory and experiment
based on the 1-loop RG theory should be taken with a large grain of salt. A 1-loop perturbative
RG theory should not apply to a situation where the bare coupling is larger than unity — after
all, the great success of QED is based entirely on the accidental fact of the vacuum fine structure
constant being very small (∼1/137). So, the disagreement between the 1-loop RG theory and tBLG
measurements is simply emphasizing the inapplicability of the 1-loop theory to tBLG with its very
low bare Fermi velocity.

Actually, the issue of the large bare coupling (i.e., α > 1) arises already for ordinary free-standing
MLG in vacuum without any substrate, where αvac = e2/(h̄vF ) ≈ 2.2. Even the very extensively
studied graphene on SiO2 substrate has a relatively large bare coupling of αSiO2 ≈ 0.8 compared with
the QED fine structure constant α ≈ 1/137. Therefore, the applicability of the 1-loop RG theory for
MLG is also questionable, and has been questioned in the context of graphene experiments [53,62].
A rather extensive analysis [53] shows that the field theory underlying graphene is renormalizable,
i.e., only a finite number of logarithmic divergences arise in the theory, but the perturbative
expansion in α is asymptotic only perhaps to the first term (or even less). In fact, a literal QED type
perturbative expansion up to O(α2) implies a strong coupling fixed point at αc ≈ 0.7, where the
Fermi velocity in fact flows to zero, implying infinite coupling. Experiments in MLG, by contrast,
agree reasonably well with the 1-loop RG theory, and therefore, the 2-loop perturbative strong
coupling fixed point (already for α < 1) is most likely an artifact of the perturbation theory which
fails even more strongly at the second order than the first order. This is consistent with the analysis
showing that for α ∼ αc (≈0.7), the perturbative expansion is asymptotic only up to O(α) and starts
diverging beyond that. Obviously, this problem is far worse for tBLG with small twist angles where
αtBLG ∼ 10, and therefore the perturbation expansion is not convergent at all.

An alternative approach is to use the 2-loop results of Ref. [53] and do an approximate Borel–
Padé resummation where the explicit 2-loop results show up as the first two terms (i.e., up to O(α2))
of the resummed RG flow equation. The idea is that the final result to all orders in α including
non-perturbative effects (e.g., instantons) is finite, and therefore, a Borel–Padé resummation of the
perturbative expansion is a more accurate description of the underlying theory than the term by
term asymptotic perturbative series itself [63,64].
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Such a Borel–Padé resummed renormalization of the graphene perturbative expansion gives the
following nonperturbative RG flow equation:

ṽ∗

F (E) = ṽ∗

F (Ec)
[
1 +

α

4

{
1 +

(8
3

− 2 ln 2
)
α

}−1
ln

Ec
E

]
, (21)

where ṽ∗

F (E) is the renormalized Fermi velocity at energy E < Ec and ṽ∗

F (Ec) is the bare velocity
at the ultraviolet cutoff energy scale Ec with α being the bare coupling, i.e., α ≡ α(Ec). Note that
this resummed RG flow keeps v∗

F (E) finite for all α, and it reproduces the known 1-loop and 2-loop
results up to O(α2). In fact, it agrees with the 3-loop results up to O(α3) pretty well also. One can
think of Eq. (21) to be the appropriate RG flow equation in the strong-coupling situation which does
not suffer from the artifacts of the loop expansion result in powers of coupling.

Connecting energy to carrier density through the usual substitution of:

E → EF ∝
√
n (22)

we get (see Fig. 6):

ṽ∗

F (n) = ṽ∗

F (nc)
[
1 +

(α/8) ln(nc/n)

1 +

(
8
3 − 2 ln 2

)
α

]
, (23)

where ṽ∗

F (n) and ṽ∗

F (nc) are respectively the renormalized Fermi velocity at density n (<nc) and the
bare band Fermi velocity at the highest density nc up to which the linear Dirac cone approximation
holds with α = e2/(κ h̄v∗

F ) and v∗

F = 0.5vF (θ−θM ) being the twist-angle-dependent tBLG band Fermi
velocity. Once ṽ∗

F (n) is known, the renormalized effective mass m̃∗ is defined in the usual way for
graphene: m̃∗

= h̄kF/ṽ∗

F . Comparing the resummed RG flow theory to the same sets of experimental
results in Ref. [1,2,5,9], we conclude as follows.

(i) For the θ ≈ 1.05◦ sample in Ref. [9], the resummed theory gives at n = 1011 cm−2 a
renormalized Fermi velocity ṽ∗

F ≈ 1.25v∗

F . Thus, the tBLG Fermi velocity according to the resummed
formula is renormalized only by about 25% in going from n = 1012 cm−2 to n = 1011 cm−2, perhaps
explaining why Ref. [9] obtains reasonable agreement between theory and experiment using the
bare tBLG Fermi velocity over the whole 1011–1012 cm−2 density range, since a 25% variation in
the Fermi velocity is well within the error bar of the experimental measurements. We note that, by
contrast, the corresponding 1-loop formula predicts a factor of ∼10 increase in the renormalized
Fermi velocity in decreasing the density from 1012 cm−2 to 1011 cm−2. Since the experiment of
Ref. [9] can be well fitted by a single Fermi velocity in the whole density range, it is clear that the
resummed nonperturbative theory is in much better qualitative agreement with the experimental
data than the 1-loop theory which predicts an order of magnitude variation in the tBLG velocity
over the 1011–1012 cm−2 density range.

(ii) In Ref. [2], the experimentally extracted Fermi velocity ṽ∗

F ≈ 0.15 × 108 cm/s appears to
fit the capacitance data (within large error bars) over a 1011–1012 cm−2 density range for a sample
with θ = 1.12◦. The resummed theory predicts ṽ∗

F (n = 1011cm−2) ≈ 1.21v∗

F , where v∗

F ≈ 0.05×108

cm/s is our calculated bare tBLG band velocity for θ = 1.12◦. Thus, the variation in the renormalized
velocity is only 20% over the 1011–1012 cm−2 density range according to the resummed theory.
By contrast, the 1-loop theory predicts a large change of the velocity by a factor of 4. Again, the
experimental data are qualitatively much more consistent with the resummed theory than the
1-loop theory.

(iii) Finally, we consider the SdH measurements in Refs. [1,2,5], where the experimentally ex-
tracted effective mass seems to agree with the simple noninteracting prediction of a

√
n dependence

without any obvious signatures (within error bars) of a strong logarithmic deviation from the
√
n

density dependence of m̃∗(n). This is qualitatively consistent with the resummed nonperturbative
formula in the sense that the resummed theory predicts a much weaker logarithmic renormalization
(≤25%) than the 1-loop theory (>100%) for small twist angles θ < 1.5◦. On the other hand, the
experimentally extracted Fermi velocities themselves appear to be much larger than our calculated
bare band velocities obtained from the Bistritzer–MacDonald model. Whether this is due to the
band theory being inaccurate or the actual twist angle being larger than the quoted twist angle is
unclear at this stage.
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Clearly, much more density-dependent experimental measurements for n < 1012 cm−2 of
effective velocity and effective mass for tBLG sample with low twist angles (θ < 1.3◦) are necessary
before any decisive conclusion regarding the relevance of the coupling constant RG flow associated
with the Dirac cone renormalization can be reached. At this point, with the availability of rather
limited data in the low density (< 1012 cm−2) regime, we have only a tentative conclusion
as discussed in depth in this section: The relative density independence of the experimentally
extracted Fermi velocity and the approximate

√
n dependence of the extracted effective mass

indicate that tBLG renormalization is more consistent with the nonperturbative resummation theory
which predicts rather modest (<25%) tBLG coupling constant renormalization in the 1011–1012

cm−2 carrier density range even for θ as small as 1.1◦ where the bare coupling is large (∼10).
By comparison, the 1-loop RG theory (valid technically for α ≪ 1) predicts a >100% variation in
the renormalized coupling, which is not experimentally observed.

We note that our finding regarding the applicability of the resummed RG theory (i.e. Eq. (23))
rather than the 1-loop RG theory (i.e. Eq. (11)) to tBLG experiments is sufficiently important that we
hope that experimental tBLG measurements of Fermi velocity and effective mass will be extended
to much lower carrier density (1010 cm−2 or lower) with better quality data (i.e. lower error bars)
so as to validate (or invalidate) this tentative conclusion. In particular, tBLG experiments at low
carrier density should search for the logarithmic density dependence so that the basic idea of the
running of the coupling constant can be validated for a strong-coupling system. The current tBLG
experimental measurements do not see any obvious signature of a logarithmic variation, but this
could simply be because of large error bars in the measurements. If it is definitively established
that the measured low density tBLG velocity is basically the bare band velocity with no density
dependence, then one must conclude that the continuum Dirac description does not apply to tBLG
at any energy (or carrier density), and the system must be described by a moiré lattice theory at all
scales (in contrast to MLG or BLG where the continuum description is very successful over a wide
range of doping density). In this context it might be useful to tune the electron–electron interaction
in tBLG by putting the metal gates rather close to each other where screening by the gates would
strongly modify the interaction from the 1/r Coulomb interaction to a much weaker interaction
(e.g. 1/r3) leading to substantial modifications in the many body renormalization corrections. Thus,
in addition to the doping density, the distance of the gates from the tBLG layers could be used as
additional tools to tune interaction effects.

The fact that the 1-loop perturbative RG theory of Eq. (10) fails quantitatively for tBLG even
near the Dirac point (and that the corresponding resummed nonperturbative Borel–Padé theory of
Eq. (21) describes the existing tBLG (and MLG) experimental results well) has profound implications,
not only for graphene physics, but also for QED. In particular, the 1-loop theory of Eq. (10) has
the well-known Landau pole [65] with the effective coupling diverging at a finite energy scale
∼ Ec exp(4/α), which, for α ≫ 1, as it is in tBLG near the magic angle, would happen essentially
at Ec , the ultraviolet cut off scale of the tBLG moiré lattice. By contrast, in QED, the Landau pole
happens at the unphysical energy scale way above the Planck scale because of the very small value of
the QED fine structure constant (∼1/137). Nevertheless, the question remains whether the Landau
pole of QED (and of all quantum field theories which are not asymptotically free with the running
coupling constant increasing with increasing energy) is an artifact of the perturbative RG theories
or implies that all such field theories are basically trivial [66]. The fact, as discussed in the current
work in depth, that the existing tBLG experiments produce measured effective Fermi velocities and
effective masses in clear agreement (disagreement) with the nonperturbative resummed theory
(1-loop perturbative theory) strongly indicate that the Landau pole is an artifact of the 1-loop
perturbative RG theory and is not a real physical effect. Given the large effective tBLG fine structure
constant because of the strong band velocity suppression, one would have expected very strong
many-body renormalization of the Fermi velocity (and the effective mass) if the 1-loop RG theory
is valid. We show in this work that this does not happen, and the measured velocity/mass near the
Dirac point is in fact consistent with the rather small many body renormalization effects predicted
by the nonperturbative theory defined by Eq. (21). Since the nonperturbative theory implies the
nonexistence of a Landau pole [i.e. the coupling constant does not run to infinity at a finite energy
scale in Eq. (21) as it does in Eq. (10)], we conclude that there is no Landau pole in tBLG, and by
extension, there is no Landau pole in QED.
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In this context, we may consider an alternative theoretical approach to calculating the tBLG many
body effects using the so-called 1/N expansion (with N = 4 in tBLG corresponding to the two
valleys and two layers). Here the expansion parameter is 1/N (<1) rather than α (≫1), and hence
the 1/N theory should be quantitatively more reliable in tBLG than the loop expansion perturbation
theory. In fact, it turns out that the actual expansion parameter in the graphene theory is 1/(πN)
rather than just 1/N , making the 1/N expansion much more reliable than the loop expansion in the
effective coupling constant α in the strong-coupling tBLG limit near magic twist angles. (By contrast,
in QED, α ∼ 1/137, so the loop expansion remains asymptotically accurate up to very high orders
in the perturbation theory, as is well-known.) Following Refs. [62] and [67] carried out for MLG, we
find that the correction to the Fermi velocity implied by the 1/N expansion theory in tBLG (with
N = 4) for α ∼ 10 is only about 10%–30% in contrast to the 1-loop RG theory [i.e. Eq. (10)] which
predicts, as discussed above, a Fermi velocity renormalization by 400%–500% for α ∼ 10 ! This
10%–30% renormalization is consistent not only with the tBLG experiments, but it is also consistent
with the nonperturbative Borel–Padé resummed theory which predicts a very similar quantitative
renormalization. We therefore conclude that theory and experiment are in agreement here as long
as one uses a strong coupling theory (either Borel–Padé resummation or 1/N expansion), and not
the 1-loop perturbative RG theory which clearly fails for tBLG at low twist angle because of the
strong enhancement of the effective coupling constant.

In fact, the strong-coupling limit, for α ≫ 1, of the 1/N expansion can be obtained analytically
(N = 4 for tBLG with layer and valley degeneracy), giving:

v∗

F (E) = vF (Ec)(pc/p)δ, (24)

where p and pc are respectively the momentum scales corresponding to energies E and Ec (as,
e.g., in Eq. (10)), and δ is the exponent for the Fermi velocity in the 1/N expansion, related to
the corresponding anomalous dimension z < 1, defined by:

δ = 1 − z. (25)

Eqs. (24) and (25) define how the Fermi velocity changes with momentum in the infinite coupling
(α ≫ 1) and large-N limit. They should be contrasted with Eq. (10) defining the weak-coupling
1-loop perturbative RG result valid for α ≪ 1. The approximate anomalous dimension exponent
(or the dynamical exponent) up to O(1/N2) is given by approximately [62]:

z = 1 − 4/(π2N) − 1/(πN)2. (26)

We can convert the momentum scales to carrier density n by the usual substitution of p = kF =
√

πn/2, leading to the conclusion that for a change in density from n = 1010 cm−2 to n = 1012 cm−2,
the strong-coupling theory of Eq. (24) predicts a Fermi velocity change of only ∼40% in the infinite
coupling limit whereas the weak-coupling theory of Eq. (10) predicts a 400% change in the Fermi
velocity for α = 10 ! Experimental results, as discussed extensively above, are in total disagreement
with the weak-coupling 1-loop RG theory, but are in agreement with the strong-coupling 1/N
expansion theory. We, therefore, believe that electron–electron interaction induced tBLG many body
effects at low carrier densities are well-described by the appropriate strong coupling continuum
field theory, but not by the 1-loop perturbative RG theory. Another direct conclusion arising from
the agreement of the experimental tBLG data with Eq. (24) [or Eq. (21)] is that Landau poles do not
exist in tBLG, and experiments are clearly showing the absence of the Landau pole although the
weak-coupling 1-loop theory of Eq. (10) predicts a Landau pole.

4. Interplay of electron–phonon and electron–electron interactions

Given that both electron–phonon and electron–electron interactions are strongly enhanced in
tBLG at small twist angles by virtue of the strong suppression of the tBLG Fermi velocity, an
interesting (and potentially important) question arises about their interplay: Do they just act
independently of each other or is there an interplay leading to new physics? A detailed answer
to this question is rather difficult and way outside the scope of this paper, but it is possible to
make some comments, restricting the discussion of this interplay to the electronic properties being
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studied in this work, namely, the T -dependent resistivity (Section 2) arising from electron–phonon
interaction and the logarithmic Fermi velocity (and effective mass) renormalization (Section 3)
arising from electron–electron interaction. There are other effects where electron–electron and
electron–phonon interactions produce interesting mode coupling effects, e.g. plasmon–phonon
coupling affecting finite frequency properties [68,69], which are beyond the scope of the current
work.

In general, developing a theory for electron–electron and electron–phonon interactions together,
particularly when both interactions are strong, is a notoriously difficult and unsolved problem in
condensed matter physics. Note that the interplay between electron–phonon and electron–electron
interactions even in the Eliashberg theory of superconductivity remains essentially an unsolved
hard problem for general values of the system parameters (e.g. when the Fermi velocity and
phonon velocities are comparable as they are in tBLG for low twist angles). The very successful so-
called µ∗ correction arising from electron–electron interaction in the Eliashberg theory is a drastic
approximation, which applies very approximately only to metals where TF ≫ TD, EF ≫ ωD, and
vF ≫ vph. For tBLG, including both electron–electron and electron–phonon interactions on an equal
footing in a general and quantitative strong-coupling theory is obviously hopelessly difficult task
way beyond the scope of the current work.

For the acoustic phonon scattering induced electronic resistivity discussed in Section 2, one
possible correction arising from electron–electron interaction could, in principle, be the screening
of the electron–phonon coupling by the free carriers themselves. This issue has been discussed in
depth with respect to regular monolayer and bilayer graphene (without any moiré flatband physics)
in Ref. [55]. Typically for metals, or more generally for situations involving electron energies much
larger than the phonon energies involved in the scattering process (i.e. EF ≫ ωD), static screening
approximation may be used to discuss the screening of the electron–phonon coupling by electron–
electron interactions. This leads to two main effects: (1) The long wavelength acoustic phonon
scattering, which is the main scattering process at low (T ≪ TBG) temperatures, is suppressed
by screening leading to an effective decrease of the electron–phonon coupling compared to its
bare value, i.e., the low-temperature BG regime has an effectively lower value of the deformation
potential coupling because of static screening by the electrons themselves; and (2) because of the
wavenumber dependence of static screening, an extra power of q2, where q is the wavenumber of
the scattered phonon, comes into play inside the Bloch–Grüneisen integral in Eqs. (1) and (2) of
Section 2, leading to the low-temperature BG resistivity temperature dependence changing to T n+2

where n is the BG resistivity power law (n = 4 in 2D and 5 in 3D) without screening. We emphasize
that both of these screening induced modifications of phonon scattering happen only in the low
temperature regime where long wavelength acoustic phonon are involved in the scattering process.
The higher temperature equipartition phonon scattering regime with the linear-in-T resistivity
behavior, which is the topic of our interest in the paper, is hardly affected by screening because
the scattering in this linear-in-T regime involves almost entirely large wavenumber 2kF acoustic
phonons which are essentially unscreened since screening occurs mostly at long distances (i.e. small
wavenumbers). Thus, even when screening is potentially important (i.e. when EF ≫ ωD), the
interesting linear-in-T resistivity produced by acoustic phonon scattering is hardly affected by
screening, a fact which is not widely appreciated. In addition, we point out that the screened BG
behavior with a T 6 low-T dependence of the resistivity has never been observed in any 2D materials,
so it is unclear that even the low-T BG regime is actually affected by screening at all. In fact, the
experiment in Ref. [52] clearly finds a T 4 (and not a T 6) power law dependence in the resistivity
for T ≪ TBG in very high density (>1013 cm−2) graphene layers where, in principle, screening
could play a role. In addition, the experimental resistivity measured in Ref. [52] is quantitatively
consistent with a single graphene deformation potential electron–phonon coupling constant (∼20
eV) throughout both low-T BG (ρ ∼ T 4) and high-T equipartition (ρ ∼ T ) regimes [51]. This
experimental finding strongly argues against screening playing any role in graphene acoustic
phonon scattering induced carrier resistivity even in the physical situation (EF ≫ ΩD and T ≪ TBG)
where screening might play a role.

The main physics of the interplay of electron–electron and electron–phonon interaction in the
context of tBLG transport properties can only be captured by carrying out a fully dynamical theory
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where both electron–electron and electron–phonon interactions are frequency dependent. Such
a transport theory is highly demanding numerically since the relaxation time approximation no
longer applies in such a dynamical situation, and all scattering must be treated as intrinsically
inelastic, necessitating a full solution of the quantum transport integral equation (in both fre-
quency and momentum) for the resistivity. We believe that such a completely numerical theory
is unwarranted for tBLG low-density (<2 × 1012 cm−2) transport since it is likely in the end to
produce results very similar to the unscreened approximation in the linear-in-T regime where
phonon scattering effects are important. The low-T BG transport regime may indeed be affected
by dynamical screening in some complicated nonuniversal and density-dependent manner, but
this is of little practical significance since the phonon scattering contribution to the resistivity is
strongly suppressed in this regime and the resistivity is likely to be dominated by other scattering
processes for T < 5 K any way. We should comment, however, that a full dynamical treatment of
screened electron–phonon interaction in the transport problem may even lead to an enhancement
of the effective phonon scattering strength because it is well-known that dynamical screening could
lead to anti-screening behavior [70] because the dielectric screening function ϵ(q, ω) behaves as
ϵ(ω) = 1 − ω2

p/ω
2 at high frequencies (where ωp is the plasma frequency) which is always less

than unity leading to a generic enhancement of the screened interaction. By contrast, the static
screening function for graphene ϵ(q, ω = 0) = 1+ qTF/q, where qTF is the graphene Thomas–Fermi
screening wavenumber [48], is always larger than unity leading to a suppression of the screened
interaction. Thus, whether screening leads to an enhanced or suppressed effective electron–phonon
scattering strength is a subtle question requiring detailed calculations, which are beyond the scope
of the current work. We expect that our results and discussion in Section 2 with respect to phonon
scattering limited T -linear resistivity being strongly enhanced by electron–phonon scattering in
tBLG remains unaffected by electron–electron interactions.

In contrast to the above conclusion of electron–electron interaction not affecting our theory of
phonon scattering effects in the tBLG carrier resistivity, we expect the electron–phonon interaction
to affect the tBLG effective mass renormalization. In fact, it is well-known that electron–phonon
interaction enhances the thermodynamic effective mass as appearing, for example, in the specific
heat. This phonon-induced effective mass renormalization follows simply from the real part of the
electronic self-energy due to electron–phonon coupling whereas the imaginary part of the same
self-energy contributes to the resistivity (assuming no vertex corrections). The phonon-induced
effective mass renormalization (without considering any electron–electron interaction effects) itself
is given in the leading order many-body perturbation theory by:

m∗/m = 1 + λ, (27)

where m∗ (m) are the renormalized (bare) effective masses, and λ is the dimensionless electron–
phonon coupling strength which also enters the high-temperature resistivity through the formula:

h̄/τ = 2πλkBT , (28)

where τ is the scattering relaxation time entering into the Drude formula for the resistivity (with
N0 being the density of states at the Fermi energy):

1/ρ = e2v∗2
F N0τ/2. (29)

The dimensionless tBLG electron–phonon coupling is proportional to the deformation potential
coupling strength and is given by:

λ = N0D2/(2ρmv2
ph). (30)

We note that the carrier density of states N0 ∝ 1/vF , and hence λ ∝ 1/vF ∝ α, as mentioned
already, leading to the strong enhancement of electron–phonon coupling in tBLG compared with
ordinary MLG. In small twist-angle tBLG, λ ∼ 1 [36] for n ∼ 1012 cm−2 carrier density, leading to the
phonon scattering rate manifesting the so-called Planckian behavior [4] with h̄/τ ≫ kBT whereas
the ordinary MLG and BLG have λ (∼0.01) ≪ 1 leading to weak phonon-induced T -dependence in
the resistivity even at room temperatures.
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With respect to the effective mass renormalization, a λ ∼ 1 corresponds to a factor of 2
increase in the renormalized effective mass over the bare mass arising in small angle tBLG purely
from the strongly enhanced electron–phonon coupling whereas the corresponding electron–phonon
renormalization in the MLG effective mass is of the order of ∼1% [71]. Thus, the effective mass
renormalization can indeed be strongly affected by electron–phonon interaction in addition to the
electron–electron interaction effects discussed in Section 3. First, we note that the renormalization
of the effective mass by electron–phonon interaction enhances the effective mass (i.e. it is a positive
renormalization with λ > 0) whereas the effective mass renormalization by the logarithmic flow of
the electron–electron interaction effect is always negative with the renormalized effective mass be-
ing suppressed compared with the bare effective mass since the Fermi velocity is always enhanced
as density decreases due to the RG flow. In addition, the density of states for tBLG in the Dirac
cone regime (i.e. low density) has a density dependence N0 ∼

√
n, indicating that phonon-induced

effective mass renormalization correction increases (decreases) with increasing (decreasing) carrier
density. Thus, the electron–phonon and electron–electron (Section 3) interaction-induced effective
mass renormalizations behave the opposite ways (although both are proportional to the respec-
tive coupling constants λ and α). The two effects can be distinguished, in principle, by careful
measurements at low and high carrier densities (but staying within the Dirac cone approximation
which implies n < 1012 cm−2 always) where electron–electron and electron–phonon interactions
would dominate respectively. Whether such a separation of the two renormalization effects is
experimentally viable through density-dependent effective mass measurements carried out in the
regime (below the van Hove singularities) where the Dirac cone approximation is valid is unclear
since the overall density regime is only about two decades in carrier density (at best 1010 to 1012

cm−2).
We note that the opposite effective mass renormalization correction of the electron–phonon

interaction compared with that of electron–electron interaction may be one of the underlying rea-
sons for the experimental tBLG measurements finding very little mass or velocity renormalization
as discussed in Section 3 — the possibility of the two renormalization effects canceling each other
out (at least within the large error bars of the currently available data) cannot be ruled out at this
stage. With more data over an extended density regime, one should be able to address this issue
quantitatively since the density dependences of the two renormalizations are qualitatively different
(i.e. logarithmic for the electron–electron interaction and square root for the electron–phonon
interaction).

Another interesting question in this context is whether the two renormalization effects are
additive as is often assumed in leading-order theories. It may seem that the total effective mass
renormalization arising from both electron–electron and electron–phonon interactions together,
i.e. the experimental effective mass, can simply be written as (up to leading orders in the two
interactions):

m∗/m = 1 + λep + λee, (31)

where λep equals λ defined above and λee is the electron–electron interaction dependent logarithmic
effective mass renormalization discussed in Section 3. Note that both λep and λee include implied
carrier density dependence not shown explicitly (i.e. subsumed in the λ). Note also (as emphasized
above) that the two renormalizations come with opposite signs– λep (λee) enhances (suppresses)
the effective mass. Although this additive renormalization appears reasonable in a theory involving
leading order calculations for both interactions, it is not obvious at all that in the strong coupling
situation, where both electron–phonon and electron–electron tBLG interactions are strong (by virtue
of the strong flatband-induced suppression of the bare Fermi velocity for small twist angles), that
the net renormalization would be additive. It is entirely possible that because of the strong effects
of the two interactions (and because they come with opposite signs), the theory would necessitate
a Borel–Padé resummation of the type discussed in Section 3 for the electron–electron interaction
itself. The issue of additive or not combined renormalization is beyond the scope of the current work
and remains an interesting question for future investigations. The additive renormalization formula
in Eq. (31) is certainly correct within the leading-order theory in the two coupling constants, and
hence may not be valid in the strong-coupling regimes of low twist-angle tBLG. On the other
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hand, the fact that the two renormalizations come with opposite signs (i.e. electron–phonon and
electron–electron interactions in general increase and decrease the effective mass of graphene,
respectively) is quite general, and should apply in the strong-coupling regime also. Therefore, it is
possible that the strong electron–phonon interaction in tBLG serves to reduce the effect of electron–
electron interaction-induced effective mass suppression, again bringing theory and experiment
closer together.

5. Conclusion

In summary, we have considered two aspects of many-body renormalization of low-density
(n ≤ 1012 cm−2) tBLG electronic properties for low twist angle (θ < 1.5◦), where the continuum
Dirac cone approximation should apply since the Fermi level is below the van Hove singularities. For
the electron–phonon interaction, the small tBLG band velocity implies greatly enhanced (∼1/v∗2

F )
electron–phonon coupling leading to very large and linear-in-T resistivity for T ≥ TBG/8 where
TBG = 2h̄vphkF ∝

√
n. The theory explains the available experimental data well for T > 5 K or

so with the main discrepancy arising from the fact that a few samples at some specific densities
appear to manifest linear-in-T resistivity to temperatures almost an order of magnitude lower than
that predicted by our theory (although most samples at most carrier densities agree well with the
theory). We have proposed the possibility of the van Hove singularity driven Fermi surface Lifshitz
transition and/or the gap opening at the Dirac point as possible reasons for the discrepancy, but
much more experimental and theoretical work would be necessary to settle the question.

For the electron–electron interactions, we have investigated the role of the so-called ‘‘coupling
constant running’’ in determining the low-density properties of tBLG, where the Dirac cone ap-
proximation applies, consequently leading to a logarithmic renormalization of the Fermi velocity
and the relevant tBLG fine structure constant characterizing electron–electron interactions. The
motivation here is that, given the large bare tBLG coupling constant (∼1/v∗

F ) arising from the small
tBLG bare Fermi velocity, electron–electron interaction effects should be extremely strong in the
tBLG low density (<1012 cm−2) regime according to the 1-loop perturbative RG theory. Carrying out
a detailed comparison with the rather limited available tBLG experimental data on the measured
Fermi velocity and effective mass, we conclude that the experimental observation of relative density
independence of the measured low-density Fermi velocity is inconsistent with the 1-loop RG theory
which predicts a large (∼ by factors of 2–10 depending on the twist angle) increase in the Fermi
velocity as the carrier density decreases from 1012 cm−2 to 1011 cm−2. We propose that the tBLG
electron–electron interaction effects are better described by a nonperturbative resummation theory
and/or an 1/N expansion theory, both of which predict only a modest (∼25%) increase in the tBLG
Fermi velocity, consistent with experimental findings, with decreasing density in the 1011–1012

cm−2 regime. An important finding of the current work is that the 1-loop RG theory fails to
describe the many body effects in tBLG even near the charge neutrality point where the Dirac
cone approximation applies because the low band velocity of the moiré flatband system makes the
interaction strength large (≫1), where the applicable theory should be a strong-coupling theory
(e.g. Borel–Padé resummation, 1/N expansion) rather than a perturbative RG theory. The fact that
such strong-coupling theories do provide reasonable agreement between theory and experiment
demonstrates that the continuum field theory is applicable to tBLG at low carrier energies below the
van Hove singularity points. One immediate implication of this strong-coupling behavior is that the
effective mass renormalization is ∼25% rather than being ∼500% as the weak-coupling perturbative
RG theory predicts. A second implication is that Landau pole is absent in tBLG since the strong-
coupling theories do not lead to a diverging running coupling at any finite energy. We have also
discussed qualitatively the interplay between electron–electron and electron–phonon interactions
in tBLG, concluding that the carrier screening of the deformation potential coupling should play
no role in the linear-in-T equipartition regime of the tBLG electrical resistivity as well as that the
effective mass renormalizations due to electron–electron and electron–phonon interactions may
oppose each other at low carrier densities possibly adding to the experimental null results on the
velocity or mass renormalization effects although much more data would be needed before this
cancellation can be validated.
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One theory that remains to be developed for the future is a complete strong-coupling Eliashberg
theory for the electron–phonon interaction induced superconductivity in tBLG. The weak-coupling
theory predicts [36] a superconducting Tc ∼ 1–10 K in approximate agreement with experimental
findings, but whether this result survives the strong-coupling limit or not can only be answered
in the future when the full Eliashberg theory is developed for tBLG superconductivity. One very
serious challenge in the development of such an Eliashberg theory in tBLG is the fact that the Migdal
approximation [72] is unlikely to apply to tBLG by virtue of the fact that vF ∼ vph at low twist angles
since the band velocity is strongly suppressed (see our Figs. 1 and 2). In the absence of the Migdal
approximation, even the weak-coupling theory for superconductivity becomes a difficult problem,
let alone the problem of strong-coupling superconductivity. Note that the Migdal approximation is
valid [73] in graphene as long as vF ≫ vph, precisely the same condition necessary for the validity
of Migdal theorem as in ordinary metals, however, tBLG violates this basic condition for the validity
of Migdal approximation.

The main conclusion of this work is that the continuum field theories provide an excellent
description of the low-density (and low-energy) properties of tBLG, when the electron–electron
and electron–phonon interactions are both very strongly enhanced by virtue of the flatband Fermi
velocity suppression in the moiré system, provided one uses the appropriate strong-coupling (either
Borel–Padé resummed RG theory or a strong-coupling 1/N expansion) field theory for calculating
the electron–electron interaction effects. The 1-loop perturbative RG fails for tBLG since such a
weak-coupling theory is inapplicable for α > 1. A corollary of our strong coupling theories is that
graphene does not have any Landau pole. The standard electron–phonon weak-coupling theory
continues working well for the tBLG temperature-dependent resistivity since the dimensionless
electron–phonon Eliashberg coupling remains small (λ < 1) even near the magic twist angle in spite
of its giant enhancement compared with untwisted graphene (where λ ∼ 0.001). We have indicated
how these low-density theories can be extended to higher densities by explicitly incorporating
the Lifshitz transition associated with the van Hove singularities in the density of states at higher
energies where the Dirac cone approximation no longer applies.
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