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a b s t r a c t

We analyze the validity of Eliashberg theory of phonon-mediated
superconductivity in 2D systems in light of recent extensive
Monte-Carlo studies of the Holstein model. Conventional wis-
dom says that Eliashberg theory is applicable as long as vertex
corrections remain small. For small ratio of the phonon energy
Ω0 and the Fermi energy EF , this condition is supposed to hold
even when the dimensionless electron–phonon coupling λ is
larger than one, i.e., in the strong coupling regime. A comparison
between various quantities computed in the Migdal approxima-
tion and those computed by Quantum Monte Carlo prove that
this belief is wrong, and we identify analytically some of the
ways in which this breakdown occurs for various ‘‘normal state’’
properties at λ = λcr , where λcr = O(1). The breakdown occurs
at temperatures high enough that neither superconducting nor
charge–density wave correlations extend over any significant
range of distances, so it cannot be associated with the onset of
an instability toward any of the relevant ordered ground-states —
rather it is associated with the local physics of classical bipolaron
formation. Still, we show that certain properties, including the
superconducting Tc and the superconducting gap structure below
Tc , can be accurately inferred from the strong-coupling limit of
Eliashberg theory at λ ≤ λcr .
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1. Preface

It is our great pleasure to present this mini-review for the special issue of Annals of Physics
devoted to 90th birthday of Gerasim Matveevich Eliashberg. His works on phonon-mediated supre-
rconductivity gave the community a much needed tool to compute Tc and analyze the properties
of superconductors below Tc . The Eliashberg theory of superconductivity has been applied with
great success to both conventional and unconventional superconductors, and up to now remains
the most reliable tool for analytical studies of superconductivity in correlated electron materials
and its interplay with other effects, including non-Fermi liquid physics. His works form the base for
our study. We send Gerasim Matveevich our very best wishes on his anniversary.

2. Introduction

Electron–phonon interactions determine many of the electronic properties of quantummaterials,
which include electrical transport properties of most metals at all but the lowest temperatures, and
the instabilities toward superconducting (SC) and/or charge–density-wave (CDW) states. Phonon-
mediated attractive interactions between fermions are the pairing glue in the BCS theory of
superconductivity. BCS theory, however, is valid only at weak coupling, when the dimensionless
fermion–boson coupling λ is small. It includes only a subset of processes which give rise to
logarithmically singular renormalizations of the pairing vertex at low frequencies, and approximates
the full dynamical phonon-mediated interaction by a finite attraction up to a certain energy cutoff,
above which the interaction is set to zero. As a result, the pairing instability temperature Tc and
the gap function ∆(T ) below Tc depend on the cutoff; only their ratio 2∆(0)/Tc = 3.53 is cutoff
independent.

The Eliashberg theory (ETh) of phonon-mediated superconductivity, developed a few years after
BCS, keeps the full frequency dependence of the phonon-mediated interaction. Because the phonon
propagator decays at high frequencies, the pairing problem is ultra-violet convergent and does not
need a cutoff. Eliashberg, [1] and Migdal [2] before him, argued that when the phonon frequency
Ω0 (Debye frequency for an acoustic phonon) is much smaller than the Fermi energy EF (i.e., the
sound velocity vs ∼ Ω0a is much smaller than the Fermi velocity vF ∼ EF/kF ∼ EFa, where a is the
lattice constant) the corrections to the two side vertices in the pairing interaction can be neglected,
and the pairing can be analyzed by summing the ladder series in the particle–particle channel. The
physical argument underlying this observation is that in the processes leading to vertex corrections,
fermions vibrate at frequencies near a bosonic mass shell, which are thus not close to their own
mass shell.

Due to the same smallness of Ω0/EF one can also (i) neglect the Landau damping of the phonons
due to a decay into particle–hole pairs, (ii) linearize the fermionic dispersion near k = kF , and
(iii) factorize the momentum integration in each cross-section in the ladder series by keeping
the dependence on the momentum component perpendicular to the Fermi surface only in the
propagators of fast electrons and restricting the bosonic momenta to those that connect two points
on the Fermi surface. This last consideration is relevant to cases in which the phonon propagator
depends on momentum, e.g., for an acoustic phonon.

Within these approximations, one can obtain a closed form integral equation relating the
frequency dependent dynamical gap function ∆(ω, T ) to a convolution of ∆(ω′, T )/|ω′

| and the
imaginary part of the effective phonon-mediated interaction, V ′′(ω − ω′), averaged over the Fermi
surface. The solution of this equation for infinitesimally small gap function yields Tc , and the solution
for T < Tc yields a finite ∆(ω, T ), which determines, e.g., the tunneling density of states. (We
will henceforth incorporate the angle-dependent fermionic density of states at the Fermi level, NF ,
into the definition of V (Ω), which makes it dimensionless.) The dimensionless V ′′(Ω) is commonly
represented as α2F (Ω), where α is the effective electron–phonon coupling (with units of energy)
and F (Ω) is the imaginary part of a phonon propagator. The ETh allows one to express measurable
quantities in terms of α2F (Ω), and also allows one to solve the inverse problem and extract F (Ω)
from the tunneling data. An excellent agreement between the functional form of F (Ω), extracted by
Bill McMillan and John Rowell [3] from the tunneling spectra in lead, and the imaginary part of the
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phonon propagator, inferred from inelastic neutron scattering data, is widely considered to be the
most convincing single piece of evidence that the pairing glue in a conventional superconductor is
indeed phonon exchange.

The frequency integral of α2F (Ω) determines the dimensionless coupling parameter in ETh

λ =
2
π

∫
∞

0
dx
α2F (x)

x
= V (0) . (1)

For a single Einstein phonon with frequency Ω0, V ′′(Ω) = α2F (Ω) = (π/2Ω0)δ(Ω − Ω0), and
λ = α2/Ω2

0 .
At weak coupling, λ ≪ 1, ETh reduces to BCS theory at frequencies ω,Ω ≪ Ω0, but also

allows one to accurately analyze the behavior of the system at bosonic and fermionic frequencies
of order Ω0, and to obtain Tc and ∆(ω, T ) for a given α2F (Ω). It has been argued, however [4–8]
that ETh remains valid even when λ becomes larger than 1, i.e., at strong coupling. The argument,
due to Migdal [2] and Eliashberg [1] is that the small parameter, which allows one to neglect vertex
corrections, is of order λvs/vF ∼ λΩ0/EF . For Ω0 ≪ EF , this parameter remains small even when
λ > 1, up to λ ∼ EF/Ω0.

At strong coupling, ETh has to take into account the fermionic self-energyΣ(k, ω) as the strength
of the self-energy corrections to the electron propagator are controlled by λ. For the calculations of
Σ(k, ω), the same line of reasoning suggests that vertex corrections again can be neglected, and the
momentum integration can be factorized. As a consequence, the self-energy depends on frequency
more strongly than on momentum and can be approximated by Σ(ω). The equations for ∆(ω)
and Σ(ω) form a coupled set: Tc and the form of the gap function below Tc are affected by the
self-energy, and the self-energy in turn gets modified below Tc .

The strong coupling limit of ETh attracted considerable attention in the past because in this
limit the solution of the Eliashberg equations yields [4,9] Tc = 0.1827Ω0

√
λ = 0.1827α, which

is much larger than Ω0, and also because the forms of ∆(ω) and of the tunneling density of
states are highly non-trivial [7] (see Section 3.2). That the onset temperature of the pairing is
parametrically larger than Ω0 is puzzling at first glance because the phonon-mediated interaction
V (Ω) ∝ 1/(Ω2

−Ω2
0 ) is attractive up to Ω0 and repulsive at higher frequencies, and at Ω0 → 0 the

region of attraction shrinks. It was argued [7] that although Tc remains finite, the pairing problem
at strong coupling is very different from BCS and can be effectively described as self-trapping, i.e., a
process in which if a system develops a pairing gap, the pairing potential gets modified in such a
way that it favors a larger gap. The authors of another paper in this volume [10] argued that in
this situation ETh corresponds to a shallow minimum of the Free energy, i.e., fluctuations beyond
ETh are strong, despite that Eliashberg Tc is much smaller than EF . It remains to be seen how much
these fluctuations reduce Tc down from its mean-field value.

The relation between superconducting Tc and the energy of a soft boson has been extensively
discussed for pairing near a quantum critical point (QCP) in a metal. There, the pairing is mediated
by a soft collective boson, which represents the fluctuations of a spin or charge order parameter that
condenses at the QCP. A finite Tc at a critical point suggests the existence of a dome of supercon-
ductivity above a QCP, similar to what has been observed in several classes of materials. However,
for electron–phonon superconductors, there is no experimental evidence so far that Tc ever exceeds
(or even comes close to equaling) Ω0. Furthermore, recent extensive Determinant Quantum Monte
Carlo (DQMC) calculations for the Holstein model, [11,12] which is the paradigmatic model for
phonon-mediated superconductivity, have found that Tc is at most 0.1 Ω0 even for the case when
Ω0 is much smaller than EF and vertex corrections, which could potentially lead to a breakdown of
the ETh should be small.

In this communication we discuss the origin of the apparent discrepancy between DQMC
data and the strong coupling limit of the ETh. At the most basic level, the ‘‘bare" ETh breaks
down at λ = O(1) due to the renormalization of the static phonon propagator by the fermionic
polarization bubble. The strength of this renormalization is determined by λ rather than by λΩ0/EF .
For instance, in the rotationally-invariant case, the one-loop renormalization does not depend on
bosonic momentum and changes Ω0 into Ωeff

0 = Ω0(1 − 2λ)1/2 (see Section 4.4). The ETh is then
only valid at most up to λ = 1/2 and the maximum possible Tc remains a fraction of Ω0. Still, near
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λ = 1/2, one can construct an effective ETh with the bosonic propagator with Ωeff
0 instead of Ω0

and with the new coupling λeff = λ/(1 − 2λ). This effective ETh is in the strong coupling limit for
λ ≤ 1/2, and the corresponding Tc behaves as Tc ≈ 0.1827Ωeff

0

√
λeff . This Tc is parametrically larger

than Ωeff
0 , but is still a fraction of the bare Ω0. While, as discussed in the next paragraph, various

normal state properties are not well represented even in this ‘‘effective’’ sense, for the purposes of
determining specific properties of the superconducting state ETh near λ = 1/2 may be valid in 2D
as long as λeff (Ω0/EF ) S2D remains small, where S2D = π log EF/Ω0 is a logarithmic factor specific
to 2D (see Section 4.4). For a lattice system, the renormalization does depend on momentum and
changes Ω0 into Ω∗

0 (q). For the dispersion used in the DQMC study, the renormalization of Ω0 by
the fermionic polarization bubble is strongest at q0 = (π, π ). In this case, Ωeff

0 (q) has a minimum
at q = q0. For λ > λcr , the system develops (π, π ) CDW order at low T . (The T = 0 transition
to the CDW state appears to be first order, so while the softening of Ωeff

0 (π, π ) is substantial, it is
never seen to go strictly to zero.) For λ ≲ λcr one can construct an effective model near λ = λcr
with a q−dependent bosonic propagator, and study it within the ETh. The corresponding Tc exceeds
Ω

eff
0 (q0), but remains small compared to both the bare Ω0 and to Ωeff

0 (q), averaged over the Fermi
surface.

We also analyze the phase diagram at T > Tc . DQMC results show [11,12] that there exists a
crossover line λ = λcr (T ), which separates a Fermi liquid at smaller λ from a classical bipolaron
lattice gas at larger λ. This is an additional way in which corrections to Migdal theory (vertex
corrections) alter the physics at large λ, although in a way that has relatively less impact on the
superconducting state itself. We speculate that this crossover may be associated with singular
thermal contribution to the self-energy Σ(ω) = iTλeff sign[ω]. This thermal self-energy acts as a
non-magnetic impurity and cancels out in the gap equation, but does give rise to precursors of a
bipolaron gas, much like thermal spin fluctuations give rise to thermal precursors to a SDW state.

The paper is organized as follows. In Section 3 we briefly summarize the original ETh of electron–
phonon superconductivity, introduce the effective coupling α, and discuss the weak and strong
coupling regimes. In Section 4 we analyze the validity of ETh in 2D. We obtain an explicit expression
for the vertex correction and show that in 2D there is an additional logarithm, not present in 3D.
We then discuss the corrections to the bosonic propagator. In Section 5 we discuss the effective ETh
with renormalized Ωeff

0 and λeff for both rotationally invariant and lattice systems and analyze the
crossover induced by thermal corrections to the fermionic self-energy. In Section 7 we introduce
the Holstein model and discuss results of the DQMC analysis [11,12]. We summarize our results in
Section 8 and discuss our findings in a broader context in Section 9.

3. Eliashberg theory of phonon-mediated superconductivity

We begin with a brief review of the canonical ETh of phonon-mediated superconductivity. As our
purpose is to discuss the limits of validity of ETh we avoid unnecessary complications and consider
a simple model of fermions with parabolic dispersion coupled to an Einstein phonon. We consider
only electron–phonon interactions, i.e. we neglect direct Coulomb repulsion between the fermions.
The analysis of the interplay between Coulomb repulsion and electron–phonon interaction is rather
involved and requires separate considerations. (See the article by Ruhman et al. in this volume.)

Exchange of an Einstein phonon gives rise to an effective 4-fermion interaction

V (Ω) =
α2

Ω2
0 − (Ω + iδ)2

. (2)

Here, we incorporate the fermionic density of states NF into the definition of α, so that α has
the dimensions of energy and V (Ω) is dimensionless. The effective interaction V (Ω) causes renor-
malizations in both the particle–hole and particle–particle channels. In the particle–hole channel,
V (Ω) gives rise to a dynamical fermionic self-energy, that makes the fermions less coherent. In the
particle–particle channel, the same V (Ω) gives rise to pairing below a certain T . The two effects
are treated on equal footings in the ETh, i.e., the tendency to pairing is affected by the fermionic
self-energy, while the fermionic self-energy changes when the system becomes a superconductor.
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As we said in the Introduction, ETh neglects corrections to the fermion–boson vertex from
processes involving particle–hole bubbles. Consequently, the fermionic self-energy is computed
self-consistently within one-loop approximation, but with the full normal and anomalous Green’s
functions, and the pairing vertex is computed within the ladder approximation, again with the full
Green’s functions. In particular, ETh neglects Kohn–Luttinger corrections to the pairing vertex. The
ETh also assumes that pairing involves fermions with energies much smaller than EF and thus uses
the fermionic dispersion linearized near the Fermi surface [13].

Within these approximations one can obtain a closed set of coupled integral equations for two
frequency dependent functions — the fermionic self-energy Σ(ω) and the pairing vertex Φ(ω). The
pairing vertex is generally a function of both bosonic and fermionic frequencies, Φ(ω,Ω − ω). In
ETh it is taken at the bosonic Ω = 0 and is a function of a running fermionic frequency ω. Below
we will use Σ̃(ω) = ω +Σ(ω).

Eliashberg equations are most commonly analyzed on the Matsubara axis, where ωm form a
discrete set ωm = πT (2m + 1). Here, the two equations are

Φ(ωm) = α2πT
∑
ωm′

Φ(ωm′ )√
Σ̃2(ωm′ ) +Φ2(ωm′ )

1
(ωm − ωm′ )2 +Ω2

0

Σ̃(ωm) = ωm + α2πT
∑
ωm′

Σ̃(ωm′ )√
Σ̃2(ωm′ ) +Φ2(ωm′ )

1
(ωm − ωm′ )2 +Ω2

0
. (3)

Even for T < Tc , a reference ‘‘normal state’’ solution to these equation can be obtained by setting
Φ = 0. In such normal state at T = 0,

Σ(ωm) = λΩ0 arctan
ωm

Ω0
(4)

with λ = V (0) = α2/Ω2
0 . At a finite T ,

Σ(ωm) = λπT

(
1 + 2

(
Ω0

2πT

)2 m∑
1

1

n2 +
(
Ω0
2πT

)2
)

(5)

for m > 0, and Σ(ω−(m+1)) = −Σ(ωm). At the first two Matsubara frequencies, m = 0 and m = −1
(ωm = ±πT ) the second term on the r.h.s. of (5) vanishes, such that

Σ(±πT ) = ±πTλ. (6)

We plot the self-energy in the normal state at T = 0 and at finite T in Fig. 1.
The Eliashberg equations can be conveniently re-arranged by introducing the gap function∆(ωm)

and the function Z(ωm) via

∆(ωm) = Φ(ωm)
ωm

Σ̃(ωm)
(7)

and

Z(ωm) =
Σ̃(ωm)
ωm

(8)

At vanishing T and in the limit ωm → 0, the function Z(0) — the ‘‘Eliashberg Z-factor’’, is the inverse
of the quasiparticle residue ZQP = 1/Z(0).

In terms of these new functions Z(ωm) and ∆(ωm), the Eliashberg equations become

∆(ωm) = α2πT
∑
ωm′

1√
ω2

m′ +∆2(ωm′ )

(
∆(ωm′ ) −∆(ωm)

ωm′

ωm

)
1

(ωm − ωm′ )2 +Ω2
0

(9)

Z(ωm) = 1 +
α2

ωm
πT

∑
ωm′

ωm′√
ω2

m′ +∆2(ωm′ )

1
(ωm − ωm′ )2 +Ω2

0
. (10)
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Fig. 1. Fermionic self-energy Σ(ωm) in the normal state. The self-energy is linear in frequency at small ωm and saturates
at a finite value at large ωm . The canonical ETh is the case β̄ = 0. The self-energy in the ETh is essentially independent
on T , as evidenced by near-equivalence of the results at T = 0 and at T = Ω0/(1.6π ). The curve for a non-zero β̄ is
for the case when the bosonic propagator has momentum dependence, induced by dressing the propagator by fermionic
particle–hole bubbles (see Eq. (35)). We used λ = 0.3, Ω0/EF = 0.08.

The advantage of presenting the equations in this form is that Eq. (9) for ∆(ωm) does not depend
on Z(ωm) and Eq. (10) for Z(ωm) depends only on ∆(ωm′ ). Hence one first solves for ∆(ωm) and then
uses it to obtain Z(ωm). The lack of any explicit Z dependence of the gap equation, Eq. (10), reflects
the fact that the objects that undergo pairing are quasiparticles, whose distribution function does
not depend on the residue ZQP .

In the normal state at T = 0, the self-energy is linear in ωm at small frequencies, Σ(ωm) = λωm.
In this limit, Z(ωm) = 1 + λ coincides with the inverse residue of the fermionic propagator
Gk(ωm) = Z−1/(iωm − v∗

F (k − kF )), where v∗

F = vF/Z .
Within ETh, one can also compute the Free energy in the superconducting and the normal state,

Fsc and Fn, and the mean-field condensation energy δF = Fsc − Fn. The condensation energy δF
depends only on ∆(ωm) (Refs. [1,14–16]):

δF = −2πTNF

∑
m

|ωm|

(
1√

1 + D2
m

− 1

)

−π2T 2α2
∑
m,m′

sgnωm sgnωm′

|ωm − ωm′ |
2
+Ω2

0

1 + DmDm′ −
√
1 + D2

m

√
1 + D2

m′√
1 + D2

m

√
1 + D2

m′

(11)

where Dm = ∆(ωm)/ωm. The gap equation (9) is obtained from ∂δF/∂∆m = 0. At T = 0, δF is the
condensation energy of an Eliashberg superconductor.

We note that Fsc and Fn are not the full Luttinger–Ward Free energies as the Eliashberg equations
are obtained by minimizing Luttinger–Ward functional with respect to variations of Σ and Φ (or
∆ and Z). Accordingly, the Eliashberg Free energies are computed right at the minimum, without
fluctuation corrections and in these respect are mean-field Free energies. The same is true for δF .

Eqs. (3), (9), and (11) can be simplified even further, by subtracting the contribution from thermal
fluctuations, i.e., the term with m′

= m on the r.h.s. of the Eliashberg equations. For the equation
for ∆ this is obvious because ∆(ωm′ ) − ∆(ωm)ωm′/ωm in the numerator vanishes at m = m′. The
same is true for Eq. (11). In Eqs. (3), one can pull out the term with m′

= m from the r.h.s., move
it to the l.h.s., and introduce new variables Φ∗(ωm) and Σ̃∗(ωm) via

Φ∗(ωm) = Φ(ωm) (1 − Q (ωm)) ,
Σ̃∗(ωm) = Σ̃(ωm) (1 − Q (ωm)) (12)
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where

Q (ωm) =
πTλ√

Σ̃2(ωm) +Φ2(ωm)
(13)

and

λ =
α2

Ω2
0

(14)

The ratio Φ(ωm)/Σ̃(ωm) = Φ∗(ωm)/Σ̃∗(ωm), hence the equations for Φ∗(ωm) and Σ̃∗(ωm) are the
same as for Φ(ωm) and Σ̃(ωm), but the summation on the r.h.s. now runs over m ̸= m′. The physical
reasoning for the cancellation of the contributions from thermal phonons in Eliashberg equations
is that thermal phonons scatter with zero frequency transfer and arbitrary momentum transfer
and in this respect act in the same way as impurities. For s-wave, spin–singlet pairing, thermal
phonons give equal contributions to the self-energy and the pairing vertex and mimic non-magnetic
impurities. From this perspective, the cancellation of the thermal contribution is the manifestation
of Anderson’s theorem. Note, however, that the thermal contribution does not cancel in Z(ω), i.e., the
full self-energy Σ(ω) does contain contributions from thermal fluctuations.

We also see from Eqs. (3), (9), and (12) that the bosonic Ω0 factors out from the summand, once
we rescale the temperature T to dimensionless T̄ = T/Ω0, and the dimensionless λ remains the only
parameter in the gap equation. Obviously then ETh yields an expression for the critical temperature
of the form T (ETh)

c = Ω0fF (λ). We will call this the ETh value of Tc ; it may better be thought of as
the onset temperature for the pairing keeping in mind that the actual Tc may be smaller because
of pairing fluctuations.

The Eliashberg equations on the Matsubara axis can be used to obtain T (ETh)
c and thermodynamic

properties below Tc , e.g., the jump of the specific heat at Tc . To obtain transport properties of a
superconductor one needs ∆(ω) along the real frequency axis. The transformation cannot be done
by just a rotation from iωm by ω, because in the complex frequency plane (iωm → z), V (ωm′ +iz) has
poles at z = iωm′ ±Ω0. One needs to add additional terms to the r.h.s. of the Eliashberg equation for
the retarded ∆(ω) to cancel these singularities and restore analyticity [5–7,17]. Alternatively, one
can use the spectral representation to derive the Eliashberg equation for the gap function directly
for real frequencies [6]. The resulting equation for ∆(ω) has the form

D(ω)B(ω) = A(ω) + C(ω) (15)

where D(ω) = ∆(ω)/ω and

A(ω) =
α2

2

∫
∞

0
dω′ tanh

ω′

2T
ℜ

[
D(ω′)√

1 − D2(ω′)

(
1

Ω2
0 − (ω − ω′)2

+
1

Ω2
0 − (ω + ω′)2

)]

B(ω) = ω +
λ

2

∫
∞

0
dω′ tanh

ω′

2T
ℜ

[
ω′√

1 − D2(ω′)

(
1

Ω2
0 − (ω − ω′)2

−
1

Ω2
0 − (ω + ω′)2

)]

C(ω) = i
α2

2

∫
∞

−∞

dΩℑ
1

Ω2
0 − (Ω + iδ)2

[
coth

Ω

2T
− tanh

Ω + ω

2T

]
D(ω +Ω) − D(ω)√

1 − D2(ω +Ω)

= i
πα2

4Ω0

[ (
coth

Ω0

2T
− tanh

ω +Ω0

2T

)
D(ω −Ω0) − D(ω)√

1 − D2(ω +Ω0)
(16)

+

(
coth

Ω0

2T
+ tanh

ω −Ω0

2T

)
D(ω −Ω0) − D(ω)√

1 − D2(ω −Ω0)

]
.

Here the integrals are the principal values. For practical purposes, it is sometimes advantageous to
use a mixed approach: obtain the integral equation for ∆(ω) with ∆(ωm) in the input term, solve
for ∆(ωm) and find the input, and then solve for ∆(ω) (Refs. [5,7,17,18]).



8 A.V. Chubukov, A. Abanov, I. Esterlis et al. / Annals of Physics 417 (2020) 168190

We now briefly review the solution of the Eliashberg equations.

3.1. Weak coupling, λ ≪ 1

At weak coupling, the solution of the Eliashberg gap equation reproduces the known results of
BCS theory: Tc scales as e−1/λ, ∆(ω) ≈ ∆ for ω < Ω0, and 2∆/Tc ≈ 3.53. The only substantial
difference between the Eliashberg and BCS theories at weak coupling is that the latter requires a
high-energy cutoff, which sets the pre-exponential factors for Tc and ∆, while in ETh the cutoff
is effectively provided by the frequency dependence of V (Ω). As a consequence, both Tc and ∆
are obtained within ETh with the exact prefactors, as has been discussed in several papers, using
different computational tools [19–27]. The result is

Tc = 1.13 e−1/2Ω0e−
1+λ
λ = 0.252 Ω0e−

1
λ (17)

A recipe for computing the weak coupling Tc for an arbitrary non-critical bosonic propagator has
been given in [24]. The gap function ∆(ω) is a frequency independent constant, ∆(ω) = 1.76 Tc for
ω ≪ Ω0, and decays as 1/ω2 for ω ≫ Ω0.

3.2. Strong coupling, λ ≫ 1

We discuss the applicability of the strong coupling limit of ETh later in the paper. Here we just
analyze Eqs. (3) and (9) in the large λ limit which we approach by holding α fixed and taking
Ω0 → 0 (see Eq. (14)). Note that we define the canonical ETh as the one for which the phonon
propagator is treated as given, i.e., does not include the renormalization of V (Ω) by fermions. We
will discuss this renormalization later, when we analyze the corrections to the canonical ETh.

To obtain Tc , we set ∆(ωm) to be infinitesimally small. A quick look at Eq. (9) shows that the
r.h.s. of the gap equation is non-singular at Ω0 = 0:

∆(ωm) =

(
α

2πTc

)2 ∑
m′ ̸=m

[
∆(ωm′ ) (2m + 1)−∆(ωm)

(
2m′

+ 1
)]

|2m′ + 1|(2m + 1)(m − m′)2
. (18)

This equation has one dimensionless parameter α/(2πTc). ( Recall that α has the dimensions of
energy.) Hence, if a solution exists, Tc must be of order α. Eq. (18) has been solved numerically on
a large mesh of Matsubara frequencies [7,9,28], with the result

Tc ≈ 0.1827 α . (19)

One can analyze extensions of (18) for the case in which instead of V (Ω) = α2/Ω2 we have V (Ω) =

αγ /|Ω|
γ ; the resulting equations can be solved analytically in the limit of large γ , from which it

follows that Tc =
α
2π s

1/γ (Ref. [8]), where s is determined from J3/2+1s(1/s)/J1/2+1/s(1/s) = s − 1,

and Ja(b) is a Bessel function. The solution is s ≈ 1.1843. Applying this to γ = 2, we obtain
Tc ≈ 0.17α, in good agreement with the numerical result. We also note that Tc is reasonably close
to α/2π ≈ 0.16α. The same result for Tc can be obtained by solving the set of equations for the
pairing vertex and the self-energy. Note that the full self-energyΣ(ωm) diverges atΩ0 → 0 because
of singular contributions from thermal fluctuations. However, the truncated Σ∗(ωm) is free from
singularities. Evaluating Σ̃∗(ωm), substituting it into the equation for Φ∗(ωm), and solving the latter
as an eigenvalue problem, one reproduces Tc from (19).

Eq. (19) was first obtained in Ref. [9]. These authors expressed the critical temperature as
Tc ∼ Ω0

√
λ to emphasize that at strong coupling, Tc is parametrically larger than Ω0. Using

λ = α2/Ω2
0 , one immediately finds that this is equivalent to Tc ∼ α, as in (19).

The gap function ∆(ωm) at T ≪ Tc has a universal form ∆(ωm) = ∆(πT )f (ωm/∆(πT )), where
∆(πT ) ∼ α and f (x ≪ 1) ≈ 1 and f (x ≫ 1) ∝ 1/x2. Still, the frequency dependence of ∆(ωm) is
stronger than in the weak coupling limit. For example, at T ≪ Tc , ∆(πT ) ≈ ∆(0) is roughly 1.6
times larger than ∆(ωm) at the frequency at which ∆(ωm) = ωm. The ratio of 2∆(0)/Tc is a pure
number, as at weak coupling, but its value is close to 13, i.e., is much higher than at weak coupling.
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Fig. 2. Left: the gap function ∆(ω) in real frequencies at T = 0 (Ref. [7]) Right: superconducting Tc in the canonical ETh.
At weak coupling λ, Tc ≈ 0.25e−1/λ . At strong coupling, Tc follows Allen–Dynes dependence Tc ≈ 0.18Ω0

√
λ (the dashed

line in the figure).

A large 2∆/Tc ratio can be understood by again looking at the extension to γ > 2: Tc saturates at
α/2π at larger γ , while ∆(0) diverges for γ = 3, as at this γ the singularity of the denominator on
the r.h.s. of the gap equation, (9), at ωm = ωm′ is no longer compensated by the vanishing of the
numerator. The large value of 2∆/Tc for γ = 2 (our case) reflects the fact that for this γ ∆(0) is
already large.

Although Tc is finite in the strong coupling limit of ETh and ∆(ωm) is a regular function of
frequency, the behavior of the gap function and the density of states analytically continued to
real frequencies is highly non-trivial [5,7,17]. For instance, at T = 0, the gap ∆(ω) behaves as
∆(ω) ≈ ω/sin(φ(ω/∆(0))), where φ(x) is a near-linear function of the argument. At small x, φ(x) ≈ x
and ∆(ω) ≈ ∆(0), as expected, but at larger ω, ∆(ω) oscillates in sign and diverges at a discrete set
of ω (see the left panel on Fig. 2) [Along Matsubara axis, ω/sin(ω/∆(0)) becomes ωm/sinh(ωm/∆(0)),
which is a regular function of ωm]. This behavior has been analyzed in detail in Ref. [7]. (See also
the paper by D. Hauck et al. in this volume.)

3.3. Intermediate coupling

In the right panel of Fig. 2 we plot Tc(λ), obtained by solving the gap equation numerically, along
with its asymptotic form at large λ. We see that strong coupling behavior Tc ≈ 0.1827 Ω0

√
λ =

0.1827 α sets in at λ ∼ 5, and Tc exceeds Ω0 at even larger λ ∼ 30. The weak coupling behavior
holds up to λ ∼ 0.5, so the intermediate regime between the two limits is rather wide. At λ = 1,
the actual Tc is about a half of each of the two asymptotic forms.

4. The validity of the Eliashberg theory in the strong coupling limit

We now discuss the self-consistency of ETh at λ ≫ 1. We assume that both Ω0 and α are much
smaller than EF , but the ratio (α/Ω0)2 = λ can be arbitrary.

The ETh in the weak coupling regime is justified by the following four observations:

1. Pairing comes from fermionic states near the Fermi level, where one can linearize the
fermionic dispersion near kF .

2. The fermions are much faster excitations than the phonons, and one can factorize the
momentum integration in the expressions for the self-energy and the pairing vertex.

3. The corrections to the fermion–boson coupling α are small and can be ignored.
4. The corrections to phonon propagator V (Ω), can also be ignored.

We need to reexamine these four conditions in the case of strong coupling.
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4.1. Linearization of the fermionic dispersion near the Fermi surface

At strong coupling, Tc in the ETh is of order α, hence the fermions, relevant to the pairing, also
have energies of order α. One can use the linearized dispersion for these fermions if

α ≪ EF . (20)

(We assume that the Fermi energy, EF , and the bandwidth are of the same order.) Eq. (20) is satisfied
in most DQMC studies and in general is not an obstacle for the applicability of the ETh at strong
coupling because the frequency dependence of the interaction makes the frequency sum in the
formula for Tc convergent, hence typical ωm relevant to superconductivity are of order Tc . Then
typical energy deviations from the Fermi surface are of order vF |k − kF | ∼ Tc ≪ EF .

4.2. Factorization of momentum integration

This issue is not relevant for the canonical ETh, but is important for a more generic case when
the phonon propagator has momentum dependence. This holds for pairing by acoustic phonons, but
also for the case of pairing by optical phonons, when one includes the renormalization of the bosonic
propagator. We again use the fact that frequencies relevant to pairing are of order ωm ∼ Tc ∼ α. At
such frequencies, the fermionic Σ̃∗(ωm) from Eq. (12) is Σ̃∗(ωm)α2/Tc ∼ α comparable to ωm, hence
for estimates fermions can be treated as free quasiparticles. The factorization of the momentum
integration is then guaranteed by the smallness of the ratio vs/vF ∼ Ω0/EF both at weak and strong
coupling.

4.3. Vertex corrections

The commonly cited result due to Migdal [2] is that in 3D the correction to the fermion–boson
interaction α (often called the vertex correction) is

δα

α
∼ λ

Ω0

EF
(21)

i.e., any vertex correction is the product of λ and the ratio Ω0/EF . The latter appears in (21)
because in the processes that gives rise to vertex corrections, fermions are vibrating near a phonon
frequency, far away from their mass shell. Note in passing that there is no Ω0/EF factor in the self-
energy diagram because there an intermediate fermion is near its own mass shell, and a phonon
just provides a static interaction between mass-shell fermions.

At weak coupling, vertex corrections are small because both λ and Ω0/EF are small. At strong
coupling, λ is large, and the strength of vertex corrections depends on the interplay between λ and
Ω0/EF . Because λ = α2/Ω2

0 , the strength of vertex corrections is

δα

α
∼

α2

Ω0EF
(22)

At Ω0 → 0, vertex corrections diverge, but because α ≪ EF , this happens only at truly small
Ω0 < α2/EF , when Eliashberg Tc is already close to its value at Ω0 = 0. One can also reach the
strong coupling limit of ETh by taking EF → ∞ first and Ω0 → 0 after, while keeping α finite. In
this approach, δα/α remains small as λ → ∞.

The analysis of the vertex correction is actually not so straightforward and requires some care,
particularly in 2D. At zero momentum transfer, corrections to the fermion–boson vertex δα are
related by a Ward identity to the fermionic self-energy: δα/α = d Σ(ω)/dω = λ. This vertex
correction is only small at weak coupling, but not at λ > 1. The argument that vertex corrections
nevertheless can be neglected even at λ > 1 is due to the fact that typical momentum transfers
in the processes leading to the self-energy and the renormalization of the pairing vertex, are of
order kF , hence one needs to know δα/α for a finite momentum transfer of order kF . For a generic
momentum transfer q,

δα

α
= λf

(
vF |q|
Ω0

)
, (23)
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Fig. 3. (a) Lowest-order static vertex correction as a function of the momentum transfer q = k − p for particles on the
Fermi surface (green circle). (b) The diagram for the pairing vertex (black filled triangle) with the correction to the side
vertex.

where f (0) = 1 and f (x ≫ 1) ∼ 1/x. For q ∼ kF , the argument of f (x) is x = vF |q|/Ω0 ∼ EF/Ω0 ≫

1. Substituting f (x ≫ 1) ∼ 1/x into (23), we reproduce Eq. (21).
In 2D, the situation is somewhat different. Evaluating the lowest-order vertex correction dia-

gram, shown in Fig. 3a, at zero frequency transfer and small momentum transfer q = k − p, and
putting the external momenta k and p on the Fermi surface, such that |q| = 2kF sin(θ/2), where θ
is the angle between k and p, we obtain, at |sin(θ/2)| > Ω0/EF ,⏐⏐⏐⏐δαα

⏐⏐⏐⏐ = λ
Ω0

EF

π

2
√
2|sin(θ/2)|

(24)

Substituting this into the pairing channel and comparing the renormalization of the pairing vertex
with and without a vertex correction (Fig. 3b) we find that adding a vertex correction changes the
renormalization of the pairing vertex by the factor 1 + Q̃ , where

Q̃ = π
√
2λ
Ω0

EF
log

EF
Ω0

(25)

The Q̃ has the same factor λ(Ω0/EF ) as the vertex correction in 3D, but has an extra logarithm.

4.4. Renormalization of the bosonic propagator

The commonly used argument to justify the neglect of the renormalization of the bosonic
propagator in 3D is that the primary effect of such a renormalization is to add Landau damping
to the phonon propagator. The Landau damping term is the linear in Ω piece in the fermionic
polarization bubble, which acts as a bosonic self-energy and converts V (Ω) into an effective

1
V eff (q,Ωm)

=
1

V (Ωm)
+Π (q,Ωm) . (26)

The Landau damping term ΠL(q,Ωm) can be estimated by computing the particle–hole bubble:

ΠL(q,Ω) ∼
|Ωm|

vF |q|
. (27)

Substituting into (26) we obtain

V eff (q,Ω) =
α2

Ω2
m +Ω2

0 +
α2

vF |q| |Ωm|

. (28)

We now recall that at weak coupling the pairing is confined to frequencies smaller than Ω0 and to
momentum transfers of order kF , while at strong coupling, relevant frequencies are of order α and
relevant momenta are again of order kF . In both limits, the Landau damping term in the denominator
in (28) is parametrically smaller than max (Ω2

m,Ω
2
0 ) and can be neglected. For λ = O(1), typical

|Ωm| ∼ Ω0 and the Landau damping term is small by the same parameter Ω0/EF , which makes
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vertex corrections small. In 2D, the effect of the Landau damping term has to be analyzed with
extra care as the 1/|q| dependence in (28) leads to an additional logarithm log EF/Ω0, as for the
vertex corrections. Still, so long as the vertex corrections remain parametrically small, the effect of
the Landau damping term in V eff (q,Ω) is also small.

This is, however, not the full story. A simple inspection of the fermionic Π (q,Ω) shows that
it also has the static contribution, Π (q, 0). The static polarization of free fermions in 2D does not
depend on q up to |q| = 2kF , i.e., for all momentum transfers relevant to pairing, and in our notations
is equal to

Π (q, 0) = −2λΩ2
0 (29)

Substituting this Π (q, 0) into (26) we obtain, even without the Landau damping,

V eff (q,Ω) = V eff (Ω) =
α2

Ω2
m +Ω2

0 (1 − 2λ)
. (30)

We see from (30) that the renormalization of the bosonic propagator by the static polarization
bubble can only be neglected for small λ. Once λ becomes of order one, this renormalization
becomes crucial. Eq. (30) shows that it restricts the applicability of the canonical ETh to λ < 1/2,
which is well outside the strong coupling regime.

Eq. (29) was obtained by computing the polarization bubble for free fermions. For self-
consistency, we need to verify whether it remains valid for λ ≤ 1/2. For this, we extend the
calculation of the static polarization bubble to higher orders by adding self-energy and vertex
corrections inside the bubble. Self-energy corrections originate from inserting fermionic self-energy
Σ(ωm) into fermionic propagators in the bubble. Using (30) for the interaction, we obtain Σ(ωm) =

λeffωm, where

λeff =
λ

1 − 2λ
. (31)

The Green’s function with Σ(ω) included is

G(k, ωm) =
Z−1

iωm − (vF/Z)(k − kF )
(32)

where Z = 1 + λeff . A calculation of the static particle–hole polarization bubble with these G(k, ω)
changes the free-fermion result for Π (q, 0) by a factor of 1/Z . Vertex corrections inside the bubble
in turn form a ladder series in λeff /(1 + λeff ) = (Z − 1)/Z and change the free fermion result for
Π (q, 0) by Γ = 1/(1 − (Z − 1)/Z) = Z . This result can be also obtained using the Ward identity
Γ = 1 + dΣ(ω)/dω = 1 + λeff = Z . Combining self-energy and vertex corrections we see that the
factor Z cancels out, i.e., Π (q, 0) remains the same as for free fermions. Thus, Eq. (30) for V eff (Ω)
holds for λ = O(1). Beyond ladder approximation, the dressed polarization bubble does acquire
some momentum dependence. In isotropic systems the static Π (q, 0) is generally peaked at q = 0,
in a lattice system it likely has a maximum at finite momenta. In the last case, the vanishing of the
mass term in V eff (q,Ω) signals an instability toward CDW order with a particular q. In any case,
the canonical Eliashberg theory becomes unstable at λ = O(1).

5. Effective Eliashberg theory

5.1. Isotropic 2D systems

Let us neglect for a moment possible momentum dependence of Π (q, 0) and use Eq. (30) for
the phonon susceptibility. We see from (30) that the renormalization of the bosonic propagator
can be absorbed into the effective frequency Ωeff

0 = Ω0(1 − 2λ)1/2 (see Refs. [29–32] for earlier
discussions on this issue). The new coupling λeff is expressed via Ωeff

0 in the same way as without
this renormalization, i.e., λeff = α2/(Ωeff

0 )2. One can then introduce an effective ETh withΩeff
0 instead

of Ω0 and λeff instead of λ. All expressions, which we earlier obtained for the canonical ETh are also
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valid for the effective ETh, but in the effective ETh the strong coupling regime does develop near
λ = 1/2. In particular, Eliashberg Tc ≈ 0.1827α. For λ ≈ 1/2, this Tc is much larger than Ωeff

0
(Tc = 0.1827Ωeff

0

√
λeff ). At the same time, this Tc can be equivalently re-expressed as Tc ≈ 0.13Ω0,

i.e., it is only a fraction of the bare Ω0. Vertex corrections change the pairing interaction by 1+ Q̃ eff ,
where

Q̃ eff
= π

√
2λeff

Ω
eff
0

EF
log

EF
Ω

eff
0

(33)

For small Ω0/EF , vertex corrections remain small for almost all λ < 1/2, except for the immediate
vicinity of λ = 1/2, where the effective ETh breaks down.

We next include the momentum dependence of Π (q, 0). In an isotropic 2D system the momen-
tum dependence comes from higher-order diagrams for the polarization bubble [33], the same that
give rise to the Kohn–Luttinger effect in 2D [34]. We assume that Π (q, 0) has the smallest value
at q = 0. At the minimum, Π (0, 0) ∼ λΩ2

0 , like in (29), but with a different prefactor. Expanding
around q = 0 and using |q| = 2kF sin θ/2 for q between fermions on the Fermi surface, we obtain,
neglecting the Landau damping,

V eff (Ωm, θ ) =
α2

Ω2
m + (Ωeff

0 )2 + β2 sin2 θ/2
. (34)

where Ωeff
0 = Ω0(1 − λ/λcr )1/2 with λcr = O(1), and β sets the energy scale for the momentum

dependence. Because the momentum dependence comes from fermions, β is generally of order α,
although the numerical prefactor is likely quite small in 2D (Ref. [33]). In this respect, the ratio α/β
can be large. The self-energy in the normal state at T = 0 is

Σ(ωm) =
α2

Ω
eff
0

∫ ωm/Ω
eff
0

0

dx
[(x2 + 1)(x2 + 1 + β̄2)]1/2

(35)

where β̄2
= (β/Ωeff

0 )2. At small ωm, Σ(ωm) = λeffωm, where λeff = (α2/(Ωeff
0 ))2/(1 + β̄2)1/2.

The same λeff determines the self-energy at T ̸= 0 at the first fermionic Matsubara frequency
Σ(πT ) = πTλeff . We plot Σ(ωm) from (35) in Fig. 1. Comparing it with Σ(ωm) for β = 0 we see
that the functional forms are similar, but the variation of Σ(ωm) between small and large ωm/Ω

eff
0

gets smaller.
The gap equation also gets modified due to the different form of the self-energy and because the

gap equation now contains an effective local interaction

V eff
L (Ωm) = ⟨V eff (Ωm, θ )⟩ (36)

where the averaging is over the Fermi surface. This effective interaction has a weaker dependence
on frequency than when V eff (Ωm) was independent of q. For V eff (Ωm, θ ) given by (34), V eff

L (ωm) =

α2/((Ω2
m + (Ωeff

0 )2)(Ω2
m + (Ωeff

0 )2 + β2))1/2. The analysis of the pairing with Σ(ωm) from (6) and
V eff
L (Ωm) from (36) shows [10] that Tc still saturates at a finite value when Ωeff

0 → 0. When β ≪ α,
Tc changes little compared to the case β = 0. In the opposite limit β ≫ α, the angle variations
in V eff (Ωm, θ ), relevant to pairing, are small and Tc gets reduced. To find Tc in this case we need
to go one step back and reconsider the Landau damping term ΠL in (27). Earlier we neglected this
term because for β = 0 typical angle variations along the Fermi surface are of order one, and for
these variations ΠL is small compared to Ω2

m for Ωm relevant to pairing. At small angle variations,
ΠL ∼ α2

|Ωm|/(EF |θ |) is larger and may become relevant. A simple analysis shows that there are
two regimes of system behavior, depending on how large β is. For α ≪ β ≪ (α2EF )1/3, the Landau
damping term is still irrelevant, V eff (Ωm, θ ) is given by (34), and Tc ∼ α2β . For larger β , when
α ≪ (α2EF )1/3 ≪ β , the Landau damping term is more relevant than the bare Ω2

m term, and
V eff (Ωm, θ ) is given by

V eff (Ωm, θ ) =
α2

(Ωeff
0 )2 + β2 sin2 θ/2 + α2 |Ωm|

2kF vF |sin θ/2|

. (37)
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and Tc is further reduced to Tc ∼ (α2/β)(α2EF/β3). The effective interaction (37) has been analyzed
in some detail in the context of purely electronic pairing by Ising-nematic fluctuations (see [10] and
references therein).

5.2. 2D lattice systems

For fermions on a lattice Π (q, 0) is generally peaked at some finite q = q0. In this situation,
Σ(kF , ωm) depends on the position of kF on the Fermi surface. At weak coupling, the gap equation
can be analyzed by restricting to the regions near ‘‘hot spots’’ — points on the Fermi surface
separated by q0. At strong coupling, the whole Fermi surface becomes hot, and in general one
cannot express the gap equation in terms of local effective interaction, averaged over the Fermi
surface. Instead, one has to solve the full integral gap equation in both momentum and frequency
[35–38]. Alternatively, one can apply an approximate computation scheme: approximate the
fermionic polarization Π (q,Ωm) by a single bubble, made out of dressed fermions and compute
Π (q,Ωm), the fermionic self-energy Σ(kF , ωm), and V eff (q,Ω) = α2(Ω2

m + Ω2
0 + Π (q,Ωm))−1

self-consistently. One then substitutes V eff (q, ωm) and Σ(kF , ωm) into the gap equation, projects
the pairing onto the s−wave channel, and obtains Tc and ∆(ωm) below Tc . This is not a rigorous
procedure because the self-consistent scheme neglects higher-order vertex corrections to the
polarization bubble, which are technically relevant for λ = O(1), but it captures the key features
of the evolution of Tc near a point where Ωeff

0 softens at q = q0. We call this computational
scheme an extended ET. It is quite similar to the fluctuation exchange approximation used to study
spin-fluctuation mediated d−wave superconductivity (see, e.g., Ref. [39]).

We show the results obtained within the extended ETh in Figs. 4, 5, and 6. We consider a tight-
binding model of fermions with nearest-neighbor hopping t and next-nearest-neighbor hopping
t ′/t = −0.3. We fix the electron density n = 0.8. This yields EF ≈ 1.7t . In Fig. 4a we showΣ(k, πT ),
plotted along a path in the Brillouin zone. In general, Σ(k,F πT ) determines the effective coupling
λeff (kF ) via λeff (kF ) = Σ(kF , ωm)/ωm at the smallest ωm. In a lattice system, λeff (kF ) does in general
depend on the location of k along the Fermi surface. We see, however, that the full k-dependence
of Σ is quite modest. In Fig. 4b we show the frequency dependence of the self-energy, averaged
over the Fermi surface. Frequencies ωm are in units of the hopping t = 0.6EF . Temperatures for
this plot are much smaller than t , hence, to high accuracy, Matsubara frequency is a continuous
variable, i.e., the self-energy is the same as at T = 0. This is also evident from the fact that the
self-energy in Fig. 4b is very weakly T -dependent. In Fig. 4b the dashed line has slope λeff , as
defined by Eq. (31). Comparing ⟨Σ(ωm)⟩ with the one for the rotationally invariant case from Eq. (6)
(Fig. 1) we see that they are quite similar, just the overall variation of ⟨Σ(ωm)⟩ is a bit smaller for
the same initial slope. In the two other panels of this figure we show Σ(kF , ωm) as a function of
frequency for two directions on the Fermi surface, and the q-dependence of the effective bosonic
energy Ωeff

0 (q). The latter quantity is defined as Ωeff
0 (q) = α/(V eff (0, q)1/2), where V eff (0, q) is the

momentum-dependent static interaction.
In Fig. 5 we show the square of the ratio of the ‘‘averaged’’ effective bosonic energy Ωeff

0 and the
bare Ω0: (Ω

eff
0 /Ω0)2 = α2/(Ω2

0V
eff
L (0)), where V eff

L (0) is the static interaction, integrated over the
Fermi surface. If there was no angle dependence of V eff , we would have (Ωeff

0 /Ω0)2 = 1 − 2λ. We
see a very similar behavior within the self-consistent scheme, roughly up to λ ∼ 0.4 (the best fit
yields 2.13 instead of 2). At larger λ, the deviations start to grow.

We show superconducting Tc in Fig. 6. We see that Tc increases with increasing λeff and saturates
at a finite value of order α when λeff diverges. (Measured in units of the averagedΩeff

0 , Tc does follow√
λeff behavior.) This is quite similar to the behavior in Fig. 2. The numbers are also quite similar,

when expressed in appropriate units: for e.g., λ = 2, Tc/Ω0 in Fig. 2 is about 0.2, while for λeff = 2,
Tc/Ω

eff
0 in Fig. 6 is about 0.18.

Good agreement between the self-consistent calculation for the lattice model and the effective
ETh with Ωeff

0 = Ω0(1 − 2λ)1/2 and λeff = λ/(1 − 2λ) implies that, at least for the band structure
used here, the effect of momentum dependence of the effective interaction is rather mild. To get
an estimate, we approximated static V eff (0, q) by Eq. (34) and extracted β/α by fitting Ωeff (q) in
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Fig. 4. Results for the effective ETh for the tight-binding t − t ′ model with nearest-neighbor hopping t and next-nearest-
neighbor t ′ = −0.3t . (a) The self-energy Σ(k, πT ), normalized by πT , for the k path indicated on the horizontal axis
through the Brillouin zone. (b) The self-energy, averaged over the Fermi surface, as a function of ωm . The averaged
self-energy behaves as λeffωm at small frequencies and saturates at higher ωm . (c) The self-energy Σ(kF , πT ) for two
directions on the Fermi surface (shown in the inset) for two different values of λ. (d) The q-dependence of the effective
Ω

eff
0 (q)/Ω0 for two values of λ. Self-energy is units of the hopping t . For our choice of fermionic density, EF ≈ 1.7t .

Fig. 4d. We found that α and β are comparable: β ∼ 0.5Ω0 and α ∼ 0.6Ω0. In Section 5.1 we found
that in this situation, Tc is close to the result for momentum-independent interaction, consistent
with Fig. 6

We emphasize that although at λeff = 2 the effective ETh approaches the strong coupling regime,
Tc is still much smaller than both the averaged Ωeff

0 and the variation of Ωeff
0 (q) along the Fermi

surface. Like we said, Tc ∼ 0.1827Ωeff
0

√
λeff exceeds Ωeff

0 only at λeff > 30, which holds only

extremely close to the point where Ωeff
0 vanishes.

6. The validity of Migdal–Eliashberg theory at T > Tc

We now briefly discuss the validity of a more general Migdal–Eliashberg theory for the electron–
phonon interaction in the normal state T > Tc . We argue that here the situation is more drastic
because of thermal fluctuations. For the ETh of s-wave superconductivity, the contributions from
thermal fluctuations to the fermionic self-energy and the pairing vertex cancel because they
effectively act as non-magnetic impurities. However, for the normal state, the thermal self-energy
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Fig. 5. The square of the ratio of ‘‘averaged’’ effective phonon frequency and the bare Ω0 (see text). For a momentum-
independent interaction, (Ωeff

0 /Ω0)2 = 1 − 2λ, where λ is the bare dimensionless fermion–boson coupling (dashed line
in the Figure). The actual dependence (solid line) is almost the same.

Fig. 6. Superconducting Tc for the extended ETh and t − t ′ dispersion. Left panel: Tc/Ω0 versus λ. Right panel: the same
plot, but in terms of the effective parameters Ωeff

0 and λeff . Tc in the right panel roughly follows
√
λeff behavior. Note

that Tc ≪ Ω0 , and for realistic λeff is remains smaller than Ωeff
0 .

plays a crucial role. The self-energy due to thermal fluctuations (the contribution from zero bosonic
Matsubara frequency in (5)) is computed differently from the self-energy at T = 0 because the
factorization of the momentum integration does not work for thermal fluctuations. For small enough
Ω

eff
0 the bosonic propagator, integrated over both components of a 2D momentum, is still singular,

and to first approximation,

Σth(k, ω) ∼ TG(k, ω)λT , (38)

where λT diverges at λ = λcr (T ), albeit more weakly than λeff . Such a self-energy, not included in
the ETh, gives rise to precursors of the ordered state. The precursors develop at λ∗(T ) < λcr (T ) and
shift the spectral weight from low-frequencies to a finite |ω| ∼ (TλT )1/2. This changes the form
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Fig. 7. Fermionic density of states N(ω) in the normal state, due to thermal fluctuations Eq. (41). Frequency is in units of
Λ, equal to a half of the bandwidth. The results are for λT/Λ = 0.01, 0.1, 0.3, 0.5, 0.7. As T increases, the maximum of
N(ω) shifts to a finite frequency, and the system develops pseudogap behavior due to thermal fluctuations. This physics
is outside Migdal–Eliashberg theory of the normal state. We set the broadening δ = 0.5Λ.

of the spectral function and other observables and invalidates the ETh. The width of the precursor
region increases with T .

The effects of thermal fluctuations can be analyzed more clearly if we choose another path to take
the limitΩeff

0 → 0, as was done in the DQMC studies. Previously we kept the overall factor α2 in the
bosonic propagator (2) finite. Then λeff = α2/(Ωeff

0 )2 diverges when Ωeff
0 → 0. Let us now assume

that α2 by itself scales as (Ωeff
0 )2, such that α2/(Ωeff

0 )2 = 1/k̄ remains finite. The advantage of this
approach is that at Ωeff

0 → 0, the fermionic self-energy entirely comes from thermal fluctuations.
Indeed, at finite T , the bosonic propagator at vanishing Ωeff

0 ,

V eff (Ωm) =
1
k̄

(Ωeff
0 )2

4π2T 2m2 + (Ωeff
0 )2

(39)

is finite only for m = 0. There is no superconductivity, because the self-energy due to thermal
fluctuations cancels out in the gap equations, but there are precursors to a charge-ordered state.

Assume for simplicity that the non-interacting fermionic density of states is a constant in the
frequency interval between −Λ and Λ and vanishes outside this interval. The one-loop retarded
self-energy in real frequencies can be easily computed, and the result is

Σ(ω) = −
T
k̄
log

ω + iδ +Λ

ω + iδ −Λ
(40)

At small ω, Σ(ω) ≈ iπT/k̄ − 2Tω/(k̄Λ). At large ω > Λ, Σ(ω) ≈ −2(T/k̄)Λ/ω. The fermionic
density of states is

N(ω) = −ImQ (ω), Q (ω) = log
ω + iδ +Λ− (T/k̄) log ω+iδ+Λ

ω+iδ−Λ

ω + iδ −Λ− (T/k̄) log ω+iδ+Λ
ω+iδ−Λ

(41)

In Fig. 7 we plot N(ω) for several temperatures T/(k̄Λ) = O(1). We clearly see that N(ω) evolves
as T increases and at large enough T develops precursors — the peak in N(ω) shifts from ω = 0 to
a finite frequency, of order Λ. We emphasize that these precursors due to thermal fluctuations are
beyond ETh.

In the next section we show that a similar behavior has been observed in DQMC studies.
However, as will be explained further in the next section, for λ ≫ 1, the depression of spectral
weight in the single-particle fermionic density of states is due to formation of localized bound pairs
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(bipolarons). The onset of a ‘‘pseudogap’’ due to formation of pairs is more complex phenomenon
than the one-loop effect that we discussed above. The main point of this section, therefore, is just
to illustrate how thermal fluctuations can invalidate the Migdal–Eliashberg theory, even for λ ≲ 1.
We note in passing that the effects of thermal fluctuations can be studied beyond one-loop order
using a computational procedure similar to the eikonal approximation in the scattering theory (see
e.g., Ref. [40] and references therein).

7. Comparison with Monte-Carlo analysis

7.1. Self-energy, bosonic propagator, and pairing susceptibility

In this section we compare the results obtained using the extended ETh with the results of
extensive Monte Carlo calculations for the Holstein model [11,12]. The model describes tightly
bound electrons on a 2D square lattice coupled to an optical phonon mode with frequency Ω0.
The explicit form of the Hamiltonian is

H =

∑
ij

tijc
†
iσ cjσ +

1
2

∑
i

(χ0p2i + χ−1
0 Ω2

0 x
2
i ) + g

∑
iσ

xic
†
iσ ciσ , (42)

where c†
iσ creates an electron at site i with spin σ and xi is the local oscillator displacement at site

i and pi is the conjugate momentum, [xi, pj] = iδij. We choose tij with nearest-neighbor hopping t
and next-nearest-neighbor hopping t ′/t = −0.3. We fix the electron density at n = 0.8, in which
case EF ≈ 1.7t . We present results for Ω0/EF = 0.1.

In the notations of Eq. (42), the effective fermion–boson coupling α2 is expressed as

α2
= g2NFχ0, (43)

and the dimensionless coupling λ is

λ =
g2NFχ0

Ω2
0

(44)

The focus in Ref. [12] was on the breakdown of the ETh when the bare coupling λ reaches some
value λcr of order one. In Ref. [12] is was found that λcr ≈ 0.4. DQMC analysis includes vertex
corrections, hence λcr in DQMC should be somewhat smaller than the one at which extended ETh
breaks down. For λ > λcr , DQMC study has found that at finite T electronic states are affected
across the entire band and the low-energy spectrum changes dramatically from dressed electronic
quasiparticles to bipolarons, which acquire a large effective mass and behave effectively as a clas-
sical lattice gas. Rather than superconducting, the bipolarons tend to form various commensurate
charge-ordered states, or else phase separate.

Our focus here is superconductivity and we will first consider λ < λcr , where the ETh remains
viable. We will show that, in this regime, certain predictions of the extended ETh are in fact
remarkably consistent with DQMC.

The normal state self-energy and the effective, q−dependent phonon frequency Ωeff
0 (q) are

shown in Fig. 8 for temperature T ≈ EF/25, which is the lowest temperature we were able to
access by DQMC. Both are remarkably close to the ones obtained within the extended ETh (same as
in Fig. 4d), which we also present in these figures. Notice that the momentum dispersion is rather
small for λ = 0.2, but increases for λ = 0.4. For λ = 0.4, there is a noticeable difference between
DQMC and extended ETh in a narrow range of q around (π, π ), this reflects an emerging problem
in treating the tendency toward CDW (Ref. [11].) In Fig. 9 we show the s-wave pair susceptibility
χsc , defined as

χsc =

∫ β

0
dτ ⟨∆(τ )∆†(0)⟩, ∆†

=
1
L

∑
i

c†
i↑c

†
i↓, (45)

and L is the linear system size. The lines show χsc , obtained within the extended ETh. We see that the
extended ETh and DQMC yield almost identical results for χsc over the entire accessible temperature
range.
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Fig. 8. Comparison of the results obtained within the extended ETh (empty circles/squares) and DQMC (filled cir-
cles/squares). Left panel: the self-energy. Right panel: the ratio of the effective and the bare phonon frequency, Ωeff

0 /Ω0 .
In both figures the temperature is T ≈ EF /25.

Fig. 9. Comparison of the results within the extended ETh (lines) and DQMC (dots) for the static s-wave pair susceptibility
χsc .

7.2. The full phase diagram of the Holstein model

In this section we describe the global phase diagram of the Holstein model at T > Tc , as a
function of λ and temperature T , in the limit Ω0/EF ≪ 1 (Ref. [11]). The schematic phase diagram
in Fig. 10 presents the summary of the results. The key finding, relevant to the current discussion, is
the existence of a crossover line T ⋆(λ), separating the phase diagram into two qualitatively distinct
regions. To the left of the T ⋆ line the ETh is both qualitatively and quantitatively accurate; to the
right the ETh breaks down qualitatively. In this last region the low-energy degrees of freedom at
higher T are bipolarons with a binding energy ∼ g2χ0/Ω

2
0 and there is a pseudogap to single-

particle excitations. At lower T the system has a tendency to form commensurate charge-ordered
states, with a wave-vector unrelated to nesting vectors of the Fermi surface.
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Fig. 10. The phase diagram emerging from DQMC studies. Left panel: full DQMC calculations. At higher T , there is a wide
crossover region around T ∗(λ), separating normal metal behavior, for which ETh (more accurately, Migdal–Eliashberg
theory) is applicable, and classical bipolaron lattice gas, for which Migdal–Eliashberg description is not applicable. At low
T the system develops superconductivity for λ ≤ 0.4 and commensurate CDW state at larger λ. Right panel — the results
of a separate DQMC study, in which the limit Ωeff

0 → 0 has been taken such that the phonon stiffness, k = χ−1
0 (Ωeff

0 )2 ,
was kept fixed. In this particular limit the dimensionless coupling λ = g2NFχ0/(Ω

eff
0 )2 = g2NF /k remains finite. There is

no superconductivity in this case, but the CDW phase and the T ∗(λ) line are present. To the left of this line the system
behaves as a Fermi liquid and Migdal–Eliashberg is applicable down to zero temperature. To the right, the single-particle
spectral function develops a pseudogap. In this regime Migdal–Eliashberg theory becomes entirely inapplicable.

The schematic phase diagram of Fig. 10 is based on the DQMC studies, described in the previous
section, as well as a separate DQMC study, in which the limitΩeff

0 → 0 has been taken such that the
phonon stiffness, k = χ−1

0 (Ωeff
0 )2, was kept fixed. In this particular limit the dimensionless coupling

λ = g2NFχ0/(Ω
eff
0 )2 = g2NF/k remains finite. We modeled this approach in Section 6. The bosonic

propagator is given by Eq. (39) with k = k̄/(g2NF ) and is non-vanishing only at Ωm = 0, i.e., only
static, thermal fluctuations of the phonons contribute to the fermionic self-energy. The reason for
working in this particular limit is that standard DQMC becomes computationally intractable as the
coupling strength is increased. The simplification described here ameliorates those difficulties and
gives access to the entire phase diagram. Moreover, the physics of the strong-coupling regime is
expected to be largely insensitive to Ω0, so long as Ω0 ≪ EF . In the weak-coupling regime this
limit should be quantitatively accurate in the regime Ω0 ≪ T ≪ EF . This has also been verified by
comparing with the full DQMC calculations with Ω0/EF = 0.1, described in the previous section.
Superconductivity is absent in the limit Ω0 = 0 because then Ωeff

0 also vanishes, and V eff (Ωm)
has only the contribution from thermal fluctuations, which cancel out in the gap equation. For
Ω0/EF = 0.1, Tc is non-zero, but too low to be detected by DQMC. However, given the quantitative
reliability of ETh to the left of the T ⋆ line (see in particular Fig. 9), we can use it to reliably
extrapolate to lower temperature and obtain estimates of Tc . This is the procedure by which the
superconducting region of the phase diagram in Fig. 10 was obtained.

The results of such DQMC calculation for the case Ω0 → 0 are shown in Fig. 10. The electronic
band structure is the same as in the previous section. To the left of the T ∗ line the system behaves as
a Fermi liquid and is metallic down to zero temperature. To the right of the T ⋆ line the single-particle
spectral function develops a pseudogap. In this regime the ETh becomes entirely inapplicable. This is
fully consistent with our analysis in Section 6. Remember that thermal fluctuations are not included
into either canonical or effective ETh, so when these fluctuations become strong, ETh necessarily
breaks down.

At sufficiently low temperature below T ⋆ there is a transition to a commensurate (π, π ) CDW
state. The T = 0 transition is first order, while all the observed finite temperature transitions
appear to be continuous (presumably, the first order transition persists to some low but nonzero
temperature). As explained in [11], to leading order in the strong-coupling expansion in powers of
1/λ the Holstein Hamiltonian in the limit Ω0/EF ≪ 1 maps to the antiferromagnetic Ising model
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Fig. 11. The occupation number of the single-particle state at the bottom of the electron band, nk=0 . Solid line — the
result within the extended ET, dots are DQMC results. We see that DQMC and ETh results almost coincide for λ < 0.4,
but rapidly deviate for λ > 0.4. Inset shows the difference between DQMC and ET. Note the precipitous increase in the
error for λ ≳ 0.4.

in an external field. From this perspective, the (π, π ) transition is natural, corresponding to the
commensurate, antiferromagnetic ordering transition of the Ising model at a temperature T Ising

c .
Fig. 10 shows that T Ising

c , computed with parameters from the strong-coupling expansion, coincides
accurately with the CDW transition temperature of the full Holstein model for λ ≳ 1.

To better understand the finite-temperature breakdown of ETh, we show in Fig. 11 the occu-
pation number of the single-particle state at the bottom of the electron band, nk=0. As already
explained, in ETh one takes the bandwidth to infinity at the outset, focusing only on a narrow band
of energy ∼ Ω0 around EF . This approximation becomes invalid when g2χ0/Ω

2
0 ∼ EF ; i.e., when

λ = O(1) (NF ∼ 1/EF ), at which point the entire electronic spectrum is rearranged. This effect is
evident in Fig. 11, where we observe a precipitous change in the occupation of the electronic state
deepest in the band.

8. Summary

In this work we analyzed of validity of ETh of phonon-mediated superconductivity in 2D systems
in light of recent extensive Monte-Carlo studies of the Holstein model. For analytical analysis,
we considered a model of fermions, coupled to a single Einstein phonon with frequency Ω0. The
dimensionless coupling in this model is λ = α2/Ω2

0 , where α (with dimension of energy) is the
effective electron–phonon coupling, which incorporates fermionic density of states.

We found that:

1. The canonical ETh breaks down when the bare coupling reaches a critical value λcr = O(1).
At this value, the would be Fermi liquid ground state in the absence of SC becomes unstable.
To a good approximation, λcr = 1/2.

2. Near the instability, the phonon frequency softens, and the system enters a strong coupling
regime, although the bare coupling is of order one. In general, in this regime the dressed
phonon propagator becomes momentum dependent and softens first either at q = 0 (in
a spatially isotropic system) or at a finite q in a lattice system. Away from the immediate
vicinity of λcr , the T = 0 properties of a would be normal state are approximately described
by an effective ETh with Ωeff

0 = Ω0(1 − 2λ)1/2 and λeff = λ/(1 − 2λ).
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3. Superconductivity near the critical point can plausibly be well described within the strong
coupling limit of the effective ETh. A characteristic temperature Tc , which may be better
interpreted as an onset of pairing than the actual transition temperature, saturates to a finite
value as the effective coupling diverges. For the isotropic dispersion, Tc ≈ 0.18α ≈ 0.08Ω0.
In a lattice system, the prefactor is generally a bit smaller. This Tc is much smaller than Ω0
and is even smaller than Ωeff

0 , except in the immediate vicinity of λcr .
4. Effective ETh breaks down at some λ∗ < λcr , because vertex corrections become large. In

2D vertex corrections are logarithmically enhanced compared to 3D case and are of order
(α2/(Ωeff

0 EF )) log(EF/Ω
eff
0 ). Still, for large EF , ETh breaks only near λcr .

We emphasize that in our consideration we assumed that at λ = λcr the system undergoes a
conventional second-order transition, in which it becomes unstable toward a charge order, bilinear
in fermions. Such an order is accompanied by the softening of a phonon mode at some q = q0.
If, however, the T = 0 transition is either first order, or is more complex (e.g., a multi-phonon
propagator softens before a single-phonon one), the effective ETh breaks down at λ∗ < λcr , even
if vertex corrections are still small at λ∗. Also, we assumed that the electron–phonon coupling α is
small compared to Fermi energy. When α becomes comparable to EF , the effects associated with
electron localization (Mott physics) become progressively more relevant. In this situation, the region
of applicability of both the canonical and the effective ETh shrinks, and for large enough α ETh
becomes unapplicable.

9. Discussion

We view the present discussion as a step toward reconciling various different approaches to
the problem of boson mediated superconductivity, but there are still aspects of the problem that
look different when approached from different perspectives, and these need to be reconciled. This
will require further work. We now step back a bit to discuss the problem from a more general
perspective to emphasize what we think are still vexed issues.

The Migdal approximation involves neglecting all vertex corrections, which leads to a closed set
of integral equations for the electron and phonon self energies,Σ(k⃗, ω) andΠ (k⃗, ω). If we introduce
Nambu spinors and allow for an anomalous term in the electron self-energy, the same set of integral
relations gives the Migdal–Eliashberg approximation for the properties of the superconducting state.
There is a widely held belief that this approximation is valid for computing general features of the
electron–phonon problem even if the dimensionless electron–phonon coupling, λ, is large so long
as the ‘‘Migdal parameter’’, λ(Ω0/EF ), is sufficiently small. Comparison between various quantities
computed in the Migdal approximation and those computed by DQMC prove that this belief is
wrong, and in the above we have identified analytically some of the ways in which this breakdown
occurs for various ‘‘normal state’’ properties. It is important to stress that this breakdown occurs
at temperatures high enough that neither superconducting nor charge–density wave correlations
extend over any significant range of distances, so it cannot be associated with the onset of an
instability toward any of the relevant ordered ground-states — rather it is associated with the local
physics of classical bipolaron formation.

However, it is possible that — despite the fact that aspects of the electron self-energy (and many
other features of the problem) are overall ill-accounted for by the diagrams that are summed in the
Migdal–Eliashberg treatment, one might still be able to obtain reliable results from the same set of
equations for other properties, in particular the superconducting Tc and the superconducting gap
structure below Tc . While a priori this proposition sounds strange, the above analysis suggests that
much that is missed in Migdal–Eliashberg approach is inessential for these specific features of the
superconducting state. To make this proposition more plausible, we remind the reader of a related
case in which controlled calculations are possible, and where similar underlying mathematical
structures account for this nonintuitive state of affairs.
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Consider the case of electrons in high dimension d > 2 in the presence of a weak attractive
interaction, U , and weak disorder:

• Ignoring the effect of disorder, the attractive interaction leads to the existence of electron–
electron scattering which leads to a normal-state quasi-particle scattering rate, 1/τel−el ∼

U2T 2E−3
F , and a mean-field superconducting transition temperature that depends exponen-

tially on EF/U as ln[Tc0/EF ] ∼ −U/EF . Correspondingly, there is an exponentially small gap
function that is approximately k⃗ and ω independent of magnitude ∆0 ≈ 3.53Tc0 ≪ U < EF ,
and correspondingly an exponentially long superconducting coherence length, ξ0 = vF/∆0.
Moreover, the mean-field value of Tc is accurate to exponential accuracy, as the Ginzburg
parameter (which controls the range of T in which fluctuations about the mean-field solution
are significant) is itself exponentially small, g = [ρ(EF )∆0ξ

d
0 ]

−1
∼ [kF ξ0]−(d−1).

• Ignoring the interactions, we have a dirty metal with a quasiparticle scattering rate 1/τdis ∼

vF/ℓ where ℓ is the elastic mean-free path. Naturally as the system is non-interacting, there
can be no finite T transitions, and since by assumption we are in d > 2, the system remains
metallic even as T → 0.

• For both weak interactions and weak disorder we still find a superconductor with the same
Tc and gap magnitude as in the absence of disorder. When the disorder is sufficiently weak that
ℓ ≫ ξ0, this result is obvious. However, for the case ξ0 ≫ ℓ ≫ k−1

F , the result is highly non-
trivial. If we were to ignore the effects of disorder in computing the quasi-particle scattering
rate 1/τ either just above Tc or even below Tc , we would be off by a parametrically large
factor τ0/τ ∼ (kF ξ0)(ξ0/ℓ). Indeed if we were to compute the zero temperature superfluid
stiffness ignoring the effects of disorder we would be off by a factor of (ξ0/ℓ) from the true
value. But by the miracle of ‘‘Anderson’s theorem’’ – which is analogous to the cancellations in
the ETh results discussed above – if we computed Tc totally ignoring the effect of disorder on
the electron propagator, we would get precisely the correct mean-field value. Moreover, while
fluctuation effects are enhanced by disorder, so long as d > 2 the Ginzburg parameter g =

[ρ(EF )∆ξ d]−1
∼ (kFℓ)−d/2(kF ξ0)(d−2)/2, still vanishes exponentially as U → 0, meaning that the

mean-field estimate of Tc remains asymptotically exact. (Recall that in a dirty superconductor,
ξ ∼

√
ξ0ℓ.)

One other observation is worth making. It is possible to define a limit in which the Migdal–
Eliashberg theory for the electron–phonon problem is exact, regardless of the strength of the
electron–phonon coupling or the degree of retardation. Here we consider introducing N2 flavors
of phonons and N × M flavors of fermions in a O(N) × O(M) symmetric manner, in which the
electron–phonon coupling has the form

Hel−ph =
α

[NM]1/4

∑
R⃗

ψ†
a,α(R⃗)X

α,α′

(R⃗)ψa,α′ (R⃗) (46)

where the sum over α and α′
= 1−N and a = 1−M is implicit. In the limit N → ∞ and M → ∞

with N/M = q, the Migdal approximation (and correspondingly the ETh below Tc) is exact. (In the
case q ≫ 1, where there are many more flavors of boson than of fermions, the renormalization of
the phonon propagator can be ignored. Conversely, for q ≪ 1, the renormalization of the fermions
propagator is parametrically small.)

It is not, of course, clear how much of the relevant physics is captured by this peculiar large
N limit. One interesting route to take, however, would be to examine the 1/N corrections to this
theory, and to explore the extent to which their importance is controlled by the Migdal parameter
λ(Ω0/EF ) rather than the value of λ itself.
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