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tions satisfied by the moments. These fixed points are already
present in the two-moment truncations and are only moder-
ately affected by the coupling to higher moments. Collisions
contribute to a damping of all the non trivial moments. At
late time, when the hydrodynamic regime is entered, only the
monopole and quadrupole moments are significant and remain
strongly coupled, the decay of the quadrupole moment being
delayed by the expansion, causing in turn a delay in the full
isotropization of the system. The two-moment truncation con-
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1. Introduction

One of the striking features of relativistic heavy-ion experiments at RHIC and the LHC is the col-
lective, fluid dynamical, behavior of matter produced in these collisions. Relativistic hydrodynamics
has thus become an essential tool in the modeling of these collisions, and many bulk observables
are well understood from simulations based on such a framework (for recent reviews see for
instance [1–3], and also [4] dealing with the special case of small colliding systems). These phe-
nomenological studies have been accompanied by many theoretical developments, leading to a bet-
ter understanding of the foundations of relativistic hydrodynamics, as well as improved numerical
implementations of higher order viscous corrections (see e.g. the recent reviews Refs. [5,6]).

This success of hydrodynamics hides in fact a number of long-standing theoretical questions.
Indeed, the reasons why hydrodynamics work so well are far from obvious. In the traditional
view, hydrodynamics requires some form of local equilibrium, and usually applies where deviations
from local equilibrium are small, and can be accounted for by so-called viscous corrections. The
magnitude of such corrections can be measured by the size of the typical gradients in the system, or
by a Knudsen number, the ratio of microscopic to macroscopic scales. The corrections are expected
to be small when the gradients, or the Knudsen number, are small. It is not clear whether such
conditions are well satisfied for all the systems studied, nor whether local equilibrium is attained
on the short time scales that are involved in hydrodynamical simulations.

Recent developments, in particular those based on holography and strong coupling techniques
[7,8], suggest that viscous hydrodynamics may work even well before local equilibrium is achieved.
As was first observed in [9], viscous hydrodynamics can indeed handle sizeable deviations to
local equilibrium, measured in [9] by the difference between the longitudinal and the transverse
pressures. Similar results were obtained within kinetic theory (see e.g. [10,11]). This apparent
emergence of hydrodynamical behavior prior to reaching local thermal equilibrium is sometimes
dubbed ‘‘hydrodynamization’’.

Further insight into this question came from the realization that the late time dynamics in
several settings is controlled by an attractor that drives the solution of the out-of-equilibrium
equations of motion towards hydrodynamics [12]. This attractor has universal properties, such as
the loss of memory of the initial conditions, and a relative independence of the pre-equilibrium
microphysics that precedes the hydrodynamic regime. This behavior was observed both in strong
coupling, based on gauge–fluid duality [9,13], and in weak coupling kinetic theory where attractor
solutions have been identified in the case of Bjorken expansion of conformal plasmas [13–17],
and extended beyond this regime (see e.g. [18–20]). This has triggered a number of interesting
mathematical developments on the nature of the gradient expansion, its possible resummation, as
well as a detailed analysis of the asymptotic solutions of differential equations whose long time
behavior admits an hydrodynamic regime (see e.g. [21]).

Our goal in this paper is to shed light on some of these questions, starting from elementary
physical considerations. To do so, we shall exploit the approach initiated in Refs. [17,22]. This
approach is based on kinetic theory, which serves as a model for the pre-equilibrium dynamics
(limited here to free streaming with corrections due to collisions), and which allows for a smooth
transition to hydrodynamics. It is presently limited to the specific context of a longitudinally
expanding system with boost invariance. It uses as basic degrees of freedom simple angular
moments of the distribution function. Using moments is a standard strategy in the context of kinetic
theory. They have the advantage of averaging away much of the superfluous information contained
in the distribution function, and offer a simple way to realize the transition from the kinetic to
the hydrodynamic regimes. For recent applications in this context see e.g. [23–25]. The moments
that we are using are not general moments though, and their knowledge does not allow us to
reconstruct the full momentum distribution. However they are enough to describe accurately the
angular dynamics, and in particular capture the physics of isotropization. They constitute the basic
degrees of freedom in the present discussion.

This paper is somewhat lengthy, with five main sections and six appendices. In order to guide
the reader through its content, we summarize below the goals and important results of the main
sections.
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• Pre-equilibrium expansion with Bjorken symmetry. This section gathers well known results con-
cerning the simple setting that we consider, namely a system of massless particles undergoing
a boost invariant longitudinal expansion, and its kinetic description by a Boltzmann equation
whose collision term is treated in the relaxation time approximation. We also recall there
the definition of the moments that were introduced in [22], as well as the infinite hierarchy
of equations that they satisfy [17]. Initial conditions and relevant parameters are discussed.
We emphasize in particular the important role of the ratio of the expansion to the collision
rates at the initial time. We end this section by showing that the lowest non trivial truncation
of the hierarchy of equations for the moments, the two-moment truncation, yields accurate
results for the energy density and the pressures, and predicts correctly the transition to
hydrodynamics. The following four sections are devoted to provide a simple understanding
for these results.
• The free streaming regime. The free streaming regime is a priori trivial and the distribution

function in this regime is known analytically. When considered in terms of the moments of
the momentum distribution, the description of this regime becomes more complicated as it
involves the solution of an infinite set of coupled equations. However, even in that case, the
two-moment truncation captures the main qualitative features. This is surprising since free
streaming drives the distribution towards a flat distribution whose description requires an
infinite set of moments. As we shall see, this simple behavior results from the fact that the
system of coupled equations is controlled by two fixed points that are already present in the
two-moment truncation, and whose locations are only slightly modified by the couplings to
the higher moments.
• The gradient expansion and the hydrodynamic regime. While a free streaming regime may exist

at early times, in all cases studied in this paper the collision rate will eventually overcome
the expansion rate (that decreases as the proper time), and collisions will drive the system
towards hydrodynamics. This regime is controlled by a fixed point of a different nature than
the fixed points of the free streaming. Its properties are analyzed in detail in this section. We
discuss the gradient expansion, viewed as an expansion around the hydrodynamic fixed point.
We define an attractor solution as the particular solution of the kinetic equation that joins the
stable free-streaming fixed point at short time to the hydrodynamic fixed point at late time.
This attractor solution is obtained numerically, since no simple expansion exists that can relate
smoothly these two types of fixed points.
• The approach to hydrodynamics within the two-moment truncation. This section complements

the discussion of the previous two sections by focusing on the two-moment truncation, where
many features can be analyzed in great detail using semi-analytical techniques. We start by
considering the effect of collisions in terms of perturbative corrections to the free-streaming
regime, and argue that such an approach necessarily breaks down at some time. At later
times, the appropriate expansion is the gradient expansion associated with hydrodynamics.
The analysis of the fixed points and the attractor solution joining these fixed points is carried
through in detail. This section ends with a discussion of the role of the higher moments which
are left out of the two-moment truncation. We show how, in some cases, the main effect of
these moments can be accounted for by a renormalization of the equations of the two-moment
truncation.
• Hydrodynamics. Finally, we exploit the insight gained by the study of the moments by revisiting

the various versions of viscous hydrodynamics. The ambiguities that arise in second and higher
orders are made apparent, and the numerical values of the corresponding transport coefficients
are obtained painlessly.

The paper ends with a conclusion section. Appendices gather technical material that complements
various discussions of the main text.

2. Pre-equilibrium expansion with Bjorken symmetry

In this paper, we consider an expanding system of massless particles, with Bjorken symmetry,
i.e., translationally invariant in the transverse plane (xy-plane), and boost invariant along the
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collision axis (z-axis). As a result of this symmetry, physical quantities at any space–time point are
functions only of the proper time τ =

√
t2 − z2, and they can be deduced from the corresponding

quantities in a small slice centered around z = 0 [26].

2.1. A simple kinetic equation

The kinetic description is based on a single particle phase-space distribution function f (τ , p)
which depends on the momentum p of the particles, and on space–time coordinates solely via the
proper time τ . This distribution function obeys a kinetic equation which, in the z = 0 slice, reads(

∂

∂τ
−

pz
τ

∂

∂pz

)
f (τ , p) = C[f (τ , p)], (2.1)

where C[f ] denotes the collision integral. In this work collisions are treated in the relaxation time
approximation, that is we write Eq. (2.1) as(

∂

∂τ
−

pz
τ

∂

∂pz

)
f (τ , p) = −

f (τ , p)− feq(p/T )
τR

, (2.2)

where τR denotes the relaxation time. This equation is the basis of the present work. It has been
solved long ago [27] in the case where τR is constant. The solution has the following form

f (τ , p⊥, pz) = e−(τ−τ0)/τR f0(p⊥, pzτ/τ0)+
∫ τ

τ0

dτ ′

τR
e−(τ−τ ′)/τR feq

(√
p2
⊥
+ (pzτ/τ ′)2/T (τ ′)

)
.

(2.3)

In Eqs. (2.2) and (2.3), feq is the local equilibrium distribution, a function of the energy Ep of the
particles. For massless particles, the case considered in this work, Ep = p, with p denoting the
modulus of the momentum p. The local equilibrium distribution function depends on a temperature
T (τ ) which is fixed through the requirement that, at each time τ , the energy density ε be the same
when calculated from the local equilibrium distribution and from the actual distribution, that is1

ε =

∫
p
pf (p) =

∫
p
pfeq(p). (2.5)

This condition is often referred to as the Landau matching condition. Once this condition is satisfied,
a temperature T is defined through its equilibrium relation to the energy density, i.e., ε ∝ T 4.

The quantity f0(p⊥, pzτ/τ0) in the first term in the right-hand side of Eq. (2.3) is the free-
streaming solution, that is, the solution of the kinetic equation in the absence of collisions:(

∂

∂τ
−

pz
τ

∂

∂pz

)
f (τ , p) = 0. (2.6)

This solution is indeed of the form f (τ , p) = f0(p⊥, pzτ/τ0), with f0(p) the distribution at the initial
time τ0. Free-streaming tends to drive the momentum distribution to a very flat distribution (peaked
at pz = 0), an effect reflecting the fast longitudinal expansion of the system.

So far we have considered a constant relaxation time τR. More generally, the relaxation time may
depend on momentum, a possibility that we shall not consider here (for a discussion of the effect
of such a dependence see e.g. [22,28]). The relaxation time may also depend on time. This occurs in
particular when one enforces scale invariance, and measure τR in units of the inverse temperature,
the only available parameter with the relevant dimension. Since the temperature (defined through
the Landau matching condition (2.5)) depends on time, so does τR, the product τRT being kept

1 Here, and throughout∫
p
≡

∫
d3p
(2π )3

(2.4)
.
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constant: τRT = 5η/s, where η is the shear viscosity and s the entropy density (related to the
temperature by the usual equilibrium relation, i.e., s ∝ T 3).

The solution (2.3) of the kinetic equation (2.2) easily generalizes to the case of a time-dependent
relaxation time [29]

f (τ , p⊥, pz) = D(τ , τ0)f0(p⊥, pzτ/τ0)+
∫ τ

τ0

dτ ′

τR(τ ′)
D(τ , τ ′)feq(

√
p2
⊥
+ (pzτ/τ ′)2/T (τ ′)) (2.7)

where

D(τ2, τ1) ≡ exp
[
−

∫ τ2

τ1

dτ ′τ−1R (τ ′)
]

. (2.8)

2.2. Energy–momentum tensor and pressures

At late time, we expect the collisions to isotropize the momentum distribution, and eventu-
ally drive the system to a state of local equilibrium, describable by hydrodynamical equations.
The dynamical variables in hydrodynamics are the fluid velocity and the components of the
energy–momentum tensor,2 which can be obtained from the single particle distribution function
as

Tµν
=

∫
p

pµpν

p
f (τ , p) . (2.9)

Because of Bjorken symmetry, this tensor has only three independent components, the energy
density ε(τ ) and the longitudinal (PL) and the transverse (PT ) pressures

PL(τ ) =
∫
p

p2z
p
f (τ , p), PT (τ ) =

1
2

∫
p

p2
⊥

p
f (τ , p). (2.10)

As already stated, we consider in this paper only massless particles, in which case the trace of the
energy–momentum tensor vanishes, so that

ε = PL + 2PT . (2.11)

Because of this relation, there subsists only two independent components of Tµν , which we may
choose to be either the energy density and the longitudinal pressure, or the difference of pressures
PL − PT .

The local conservation of energy and momentum, ∂µTµν
= 0, translates then into an equation

that relates these two independent components, and takes the following forms depending on the
choice of the independent variables:

d(τε)
dτ
+ PL = 0, τ

dε
dτ
+

4
3
ε +

2
3

(PL − PT ) = 0. (2.12)

The equation of motion above is usually closed by relating the pressure to the energy density via an
equation of state, or more generally by writing a constitutive equation for PL−PT . We shall return
to this issue shortly. We just note here that once the energy density is known, one can calculate
the pressures from the relations

PL = −
d(τϵ)
dτ

, PT =
1
2
(ϵ − PL) =

1
2τ

d(τ 2ϵ)
dτ

. (2.13)

When the system has reached local equilibrium, the momentum distribution is isotropic and the
longitudinal and transverse pressures are equal, PL = PT = P . Then, the equation of state is simply
ε = 3P , and Eq. (2.12) for the energy density becomes a closed equation

dε
dτ
= −

4
3

ε

τ
. (2.14)

This is the ideal hydrodynamic regime.

2 We do not impose here particle number conservation, so that the only conservation laws on which hydrodynamics
is built are that of energy and momentum.
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2.3. The approach to ideal hydrodynamics and a set of special moments

Corrections to ideal hydrodynamics are generally implemented as viscous corrections to the
energy–momentum tensor. These are derived by writing so-called constitutive equations for the
pressure difference, in the form of a gradient expansion. Thus for instance

PL − PT = −
2η
τ
+

4
3τ 2 (λ1 − ητπ )+ O

(
1
τ 3

)
. (2.15)

In this equation, the gradients appear as powers of 1/τ , a consequence of the boost invariance,
as we shall discuss in more detail later (see also Appendix C). The dominant contribution to the
pressure anisotropy involves the shear viscosity η. The next correction in Eq. (2.15) involves the
transport coefficients λ1 and ητπ , where we consider here a conformal fluid and use the notation
from Ref. [7].

To proceed further, we note that the pressure difference PL − PT can be expressed as a special
moment of the distribution function. We have indeed

PL − PT =

∫
p
p P2(cos θ ) f (τ , p⊥, pz), cos θ = pz/p, (2.16)

where P2(x) = (3x2− 1)/2 is a Legendre polynomial. More generally, we define the following set of
moments, to be referred to as the L-moments [22],

Ln =

∫
p
p P2n(cos θ ) f (τ , p⊥, pz) , n = 0, 1, 2, . . . , (2.17)

where P2n is the Legendre polynomial of order 2n. Note that odd order moments vanish as a
consequence of the invariance of the distribution function under parity (or under reflection with
respect to the z = 0 plane, i.e. pz → −pz and θ → π − θ ). Clearly, the energy–momentum tensor
is entirely expressible in terms of the first two moments,

ε = L0, PL − PT = L1. (2.18)

The L-moments allow to treat the approach to isotropy keeping along only the required minimal
information on the distribution function. Note that these L-moments do not allow us to reconstruct
the full momentum distribution. This is because a single powers of p is involved in their definition
(and no higher powers as is usually the case — see Ref. [23,24] for recent studies involving
more complete sets of moments). In other words, these moments carry only information on the
rms radius of the radial momentum distribution. With this particular definition, all the moments
have the same dimension, that of the energy–momentum tensor. They provide an intermediate
description between the full kinetic theory dealing with the complete distribution function, and
the hydrodynamics where only the first couple of moments are directly involved. As we shall see,
these moments provide a simple picture of the isotropization of the momentum distribution, and
the approach to hydrodynamics.

The time dependence of the L-moments can be deduced from the formal solution in Eq. (2.7)

Ln(τ ) = D(τ , τ0)L(0)
n (τ )+

∫ τ

τ0

dτ ′

τR(τ ′)
D(τ , τ ′)L0(τ ′)(τ ′/τ )Fn(τ ′/τ ), (2.19)

where the function Fn is defined by

Fn(x) ≡
1
2

∫ 1

−1
dy
[
1− (1− x2)y2

]1/2
P2n

(
xy[

1− (1− x2)y2
]1/2

)
. (2.20)

A detailed study of the function Fn(x) is presented in Appendix A. The first term in Eq. (2.19)
contains the free-streaming moment L(0)

n (τ ), which is given by

L(0)
n (τ ) = ε0

τ0

τ
Fn

(τ0

τ

)
, (2.21)
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with ε0 the initial energy density. Thus, Eq. (2.19) allows the calculation of all the moments, once
L0, that is, the energy density, is known (this may be seen as a generalization of Eqs. (2.13) that
allow the calculation of PL and PT from ε(τ )). Thus, except for the case of the energy density,
for which Eq. (2.19) is truly an equation to be solved to determine L0, for all n > 0 Eq. (2.19)
is simply an integral representation of the various moments. This representation is exact if L0 is
exactly calculated.

2.4. Initial conditions and relevant parameters

In order to solve the kinetic equation, we need to specify the initial condition. We shall, in
many cases, consider isotropic initial conditions, for which all moments vanish, except L0. But
we shall also consider flat initial distributions for which all moments take finite values. Such flat
distributions naturally emerge as one lets the system free stream before switching on the effects
of collisions, as we shall see shortly. They also naturally appear in microscopic determination
of the energy–momentum tensor in the early stage of a heavy ion collision (see e.g. [30]). It is
convenient to characterize these various initial conditions by a single parameter ξ that expresses
the ‘‘deformation’’ of the initial distribution, with ξ = 1 corresponding to isotropy, and ξ →∞ to

a flat distribution, and write the initial distribution as f0(pT , pz) = f0

(√
p2T + ξ 2p2z

)
[31]. Since the

longitudinal pressure equals the transverse pressure for an isotropic distribution and vanishes for
a flat distribution, one may as well characterize the deformation of the initial distribution by the
ratio

PL

PT
=

L0 + 2L1

L0 − L1
=

1+ 2Λ0

1−Λ0
, (2.22)

or equivalently by the ratio Λ0 ≡ L1/L0. These ratios are decreasing functions of ξ , with L1 = 0
when ξ = 1 and L1 →−L0/2 as ξ →∞.

As we just mentioned, an anisotropic initial condition of the form f0

(√
p2T + ξ 2p2z

)
can be

reached from an isotropic initial condition that one lets evolve by free streaming from an earlier
time. Indeed, given the function f0(pT , pz) at time τ0, the free streaming solution at time τ reads

f0(pT , pzτ/τ0). This suggests setting ξ = τ̃0/τ0 and interpreting the function f0

(√
p2T + ξ 2p2z

)
as

the solution of the free streaming equation obtained from an isotropic distribution at time τ̃0. It is
then straightforward to obtain the free streaming solution corresponding to this initial condition.
In particular

ε
(0)
0 (τ ) = ε̃0

τ0

τ

1
ξ
F0

(
τ0

τ

1
ξ

)
, ε0 = ε

(0)
0 (τ0) = ε̃0

1
ξ
F0

(
1
ξ

)
, (2.23)

where ε̃0 is the energy density at time τ̃0 and ε0 that at the true initial time τ0. Similarly, the general
(free streaming) moment of the anisotropic distribution takes the form

L(0)
n (τ ) = ε̃0

τ0

τ

1
ξ
Fn

(
τ0

τ

1
ξ

)
= ε0

τ0

τ

Fn

(
τ0
τ

1
ξ

)
F0

(
1
ξ

) . (2.24)

Note that because the integral in Eq. (2.19) vanishes when τ = τ0, all the information about ξ is
carried by the initial values of the free streaming moments.

The initial energy density ε0 plays no essential role in the discussion. When τR is constant, the
equation of motion is linear, and all the L-moments are proportional to ε0 and to a dimensionless
function of τ/τ0. This structure is explicit in the general expression (2.24) of the free streaming
moments. When collisions are present, the moments acquire a parametric dependence on r0 ≡
τ0/τR, that is, on the ratio between the collision rate and the expansion rate at the initial time. In
the case of conformal fluids τR depends on time, with τRT constant. Although it can be determined
from the initial energy density and the ratio η/s, the value of this constant is actually irrelevant if
the moments are written as functions of τ/τR (and r0 = τ0/τR(τ0)).
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2.5. The equations for the L-moments and their truncations

By using well known relations among the Legendre polynomials, one can recast Eq. (2.2) into
the following hierarchy of coupled equations [17]

∂Ln

∂τ
= −

1
τ
[anLn + bnLn−1 + cnLn+1]−

(1− δn0)Ln

τR
, n = 0, 1, 2, . . . . (2.25)

where the coefficients an, bn, cn are pure numbers given by

an =
2(14n2

+ 7n− 2)
(4n− 1)(4n+ 3)

≃
7
4
+

5
64n2 −

5
128n3 + O

(
1
n

)4

(2.26)

bn =
(2n− 1)2n(2n+ 2)
(4n− 1)(4n+ 1)

≃
n
2
+

1
4
−

7
32n
+

1
64n2 −

7
512n3 + O

(
1
n

)4

(2.27)

cn =
(1− 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
≃ −

n
2
+

7
32n
−

3
32n2 +

27
512n3 + O

(
1
n

)4

. (2.28)

As we shall see later, the transport coefficients are simple functions of these coefficients. It is to be
observed that they are entirely determined by the part of the equation that describes free streaming,
i.e., they are independent of the collision kernel.

Note the relation

an + bn + cn = 2 (2.29)

valid for any n, as a simple calculation reveals. Note also the asymptotic value an ≃ 7/4 at large n,
and the values of the first few coefficients

a0 = 4/3, a1 = 38/21, b1 = 8/15, b2 = 8/7, c0 = 2/3, c1 = −12/35. (2.30)

These will be useful later in our discussion.
The collision kernel in Eq. (2.25) leads to a damping of all the L-moments, except L0 which

is not directly affected by the collisions. The latter property is of course a consequence of energy
conservation and the Landau matching condition.

The advantage of transforming the simple kinetic equation (2.1) into an infinite hierarchy of
equations for the L-moments is that it suggests new approximations, in particular the truncation
of the hierarchy in which a limited set of moments is kept, all the others being set equal to zero.
We are indeed not really interested in all the moments, but mainly in the lowest ones, essentially
L0 and L1 directly related to the hydrodynamical quantities. A natural question is of course that
of the convergence of the procedure. This will be much discussed in the rest of this paper. At this
point, we shall just make a few general comments, and show some numerical results indicating
that indeed selecting a few moments does provide a good description of the dynamics, at least if
one is only interested in the time dependence of the energy–momentum tensor, i.e., in the first few
moments.

2.6. The two-moment truncation

An important truncation, to be referred to as the two-moment truncation, consists in keeping the
first two moments L0 and L1 and setting Ln≥2 = 0. This truncation results in two coupled equations
for L0 and L1,

∂τL0 +
1
τ
(a0L0 + c0L1) = 0 , (2.31a)

∂τL1 +
1
τ
(b1L0 + a1L1) = −

L1

τR
. (2.31b)
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Fig. 1. Comparison between the exact solution of the kinetic equation (solid lines) and the solution of the two-moment
truncation (dashed lines). Four sets of initial condition are chosen which lead to different time evolutions of the pressure
anisotropy.

Note that the first equation (2.31) is identical to Eq. (2.12) since a0 = 4/3 and c0 = 2/3. As we shall
see these two coupled equations provide an accurate description of the dynamics of the energy–
momentum tensor, with the higher moments contributing to quantitative renormalizations, but no
major qualitative modifications.

To demonstrate the validity of the aforementioned truncation scheme, we compare in Fig. 1 the
pressure ratio PL/PT obtained form the exact solution of the kinetic equation to that obtained from
the two-moment truncation. Four different initial conditions are considered, specified by different
choices of PL/PT and r0 = τ0/τR. The choices (I) and (IV) correspond to a very small value of PL/PT ,
and respectively r0 = 0.07 (I) or r0 = 1.3 (IV). Case (III) corresponds to isotropic initial conditions
and r0 = 0.7, while in case (II) PL/PT = 0.5 and r0 = 0.26. These initial conditions cover most
typical situations. The first observation is that the two-moment truncation is in good agreement
with the exact solution, for nearly all initial conditions. The largest deviations occur in case (I) where
the collision rate is small compared to the expansion rate and the initial longitudinal pressure is
small. In this case, free-streaming dominates at early time, and drives the longitudinal pressure to
negative values. This is an artifact of the two-moment truncation that we shall discuss further later.
Note however that as soon as the collision rate ceases to be negligible (as in case IV for instance)
this unphysical feature disappears.

Fig. 1 contains another important message. When τ exceeds a few times τR, the solutions
corresponding to different initial conditions merge into a single curve. That is, at that time, the
memory of the details of the initial state is lost, and some universal behavior emerges. As we shall
discuss at length later, this reflects the emergence of the hydrodynamic behavior. This regime sets
in while the pressure anisotropy is still significant, i.e. for PL/PT ≳ 0.6. Note that the two-moment
truncation describes accurately this regime, as well as the pre-equilibrium regime which is very
sensitive to the initial conditions. The value PL/PT ≃ 0.6 is often considered as an indication of
a large anisotropy. Note however that, according to Eq. (2.22), this value translates into a smaller
ratio of the first two moments, L1/L0 ≃ 0.15. Since the approach to local equilibrium, or at least
the isotropization of the system, is characterized by the decay of the non trivial moments of the
distribution function, it may not be too surprising that viscous hydrodynamics start to work when
the largest non trivial moment represents a 15% correction.

3. The free streaming regime

In this section we study the free streaming regime from the point of view of the moments of the
kinetic equation. A priori this may look as an unnecessary complication, since the explicit solution
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Fig. 2. Time evolution of the first few moments shown through the function Fn(x), as a function of τ/τ0(= 1/x) on a
logarithmic scale.

of the free streaming kinetic equation is indeed trivial. However, in doing so, we prepare the ground
for the more complete discussion of the kinetic equation in the presence of collisions. Besides, this
study of the free streaming moments is interesting in its own sake, as it illustrates some important
features that are not immediately visible in the exact solution. In particular, we shall see that the
solution of the hierarchy of moments is controlled by two fixed points that are already present in
the two-moment truncation, and whose locations are moderately affected by the higher moments.

3.1. The exact solution

The exact expression of the free streaming moments has already been given in the previous
section, for isotropic (Eq. (2.21)) and anisotropic (Eq. (2.24)) initial conditions. These involve the
function Fn(x) defined in Eq. (2.20), with here x = τ0/τ . This function has the following limits:

Fn(x→ 0)→
π

4
P2n(0), Fn̸=0(x→ 1)→ 0, F0(x→ 1)→ 1. (3.1)

It follows in particular that, at late time (x→ 0),

L(0)
n (τ ) ∼

τ0

τ

π

4
P2n(0), (τ ≫ τ0) (3.2)

i.e., all moments decay as 1/τ and are proportional to each other. We set Ln(τ ) = AnL0(τ ), where
the dimensionless constants An characterize the moments of a distribution that is flat in the pz
direction [22]

An = P2n(0) = (−1)n
(2n− 1)!!
(2n)!!

, A1 = −1/2, A2 = 3/8. (3.3)

Note that L1(τ )/L0(τ ) = A1 = −1/2 corresponds to a vanishing longitudinal pressure. As for
the factor 1/τ , it reflects the conservation of the energy in the increasing comoving volume
(τε(τ ) = cste) in the absence of longitudinal pressure (see Eq. (2.12)): when the longitudinal
pressure vanishes, we have indeed ε = 2PT , so that (PL − PT )/ε = −1/2.

The coefficient An is a very slowly decreasing function of n: it takes many moments to describe
the flat distribution. This may cast doubt on any attempt to solve the kinetic equation in terms of
a finite set of moments, as we shall do in the next subsection. Note however, that starting from
an isotropic distribution, for which all moments vanish, the higher moments develop very slowly
in time, since all derivatives of Fn vanish up to order n − 1: Fn(τ ) ∼ (τ − τ0)n (see Eq. (A.6), and
Fig. 2). Thus it takes time for higher moments to develop, and at late time they are damped by the
expansion (recall that Ln(x) ∼ xFn(x)). As a result, at least for isotropic initial conditions, moments
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Fig. 3. (Color online.) The moment L1 (left) and the pressure ratio PL/PT (right) as a function of τ/τ0 for various values
of ξ , covering a range of distributions from isotropic to flat: for L1 , ξ = 1, 1.5, 2, 3 from top to bottom; for PL/PT ,
ξ = 1, 1.5, 2, 10 from top to bottom.

of rank n ≥ 2 do not affect significantly the evolution of the lowest two moments L0 and L1. In
Section 3.3 we shall present a deeper argument for why truncations work.

Fig. 3 illustrates the behavior of quantities that we shall be discussing many times in this
paper, namely the first moment L1, and the ratio PL/PT , for various anisotropic initial conditions
characterized by the parameter ξ introduced in Section 2.4 (the moment L0 is a smoothly decreasing
function of τ , and is shown for instance in Fig. 4). Noteworthy is the change of slope at the origin of
L1 as the initial anisotropy increases. This is easily understood by recalling how these various curves
can be deduced from that corresponding to the isotropic initial condition (namely a shift of time and
a rescaling, according to Eq. (2.24)). Note also the smooth decrease of PL/PT , related to the regular
drop of the longitudinal pressure as the initial distribution goes from an isotropic distribution to a
flat distribution. These behaviors are like those in cases II and III in Fig. 1, for which indeed collisions
play a minor role at short time. When the initial distribution is a flat distribution, the longitudinal
pressure vanishes initially and remains so at all times.

3.2. Truncating the moment equations

We now turn to the hierarchy of Eqs. (2.25) for the L-moments, and ignore the effect of collisions
(e.g. τR → ∞). We set t ≡ log τ/τ0 and consider L⃗ = L1, . . . ,Ln, . . . as a vector (in an infinite
dimensional space), and write Eq. (2.25) as a matrix equation

∂t L⃗ = −ML⃗, (3.4)

where M is a tridiagonal matrix, with constant elements. The truncations amount to restrict the size
of this infinite dimensional linear problem to a finite dimensional one, which can then be solved
by elementary linear algebra techniques.

The simplest truncation corresponds to all moments vanishing except L0. It yields
∂L0

∂τ
= −

a0
τ
L0, L0(τ ) =

(τ0

τ

)a0
= x4/3, (3.5)

where we have set x ≡ τ0/τ and used a0 = 4/3. We recognize here the ideal hydrodynamic
behavior. We note that at small τ , that is near x = 1, the behaviors of the exact and approximate
solutions are remarkably similar. In fact from the expansion of F0(x) near x = 1 given in Eq. (A.6),
and recalling that L0(x) = xF0(x), we get

L0(x) ≃ 1+
4
3
(x− 1)+ O(x− 1)2. (3.6)

Physically, this corresponds to the fact that, at small time, the evolution of the system (as given
by the exact solution) is dominated by the lowest moment (assuming isotropic initial condition):
as already emphasized, it takes time for the higher order moments to build up and modify the
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Fig. 4. (Color online.) The function L0(τ0/τ ) (left) and L1(τ0/τ ) (right), as a function of τ/τ0 on a logarithmic scale, for
isotropic initial conditions. The full lines represent the solution of the linear system of Eqs. (3.7), the dashed line is the
exact free streaming solution. In the case of L0 the two solutions are indistinguishable on the plot.

evolution. Thus, at small time, and when the initial conditions are isotropic, the energy density L0
behaves as in ideal hydrodynamics. It is only through its interaction with L1 (and, through L1, with
higher moments) that it will eventually reach the asymptotic behavior L0(τ ) ∼ 1/τ , corresponding
to energy conservation in the absence of longitudinal pressure.

The next truncation is the two-moment truncation. It involves the two moments L0 and L1, with
the corresponding equations given by

∂

∂t

(
L0
L1

)
= −

(
a0 c0
b1 a1

)(
L0
L1

)
. (3.7)

The eigenvalues of the matrix M are λ0 ≃ 0.93 and λ1 ≃ 2.21. Note that they are both positive so
that the two modes are damped, and for isotropic initial conditions are given explicitly by:

L0(t) = 0.69 e−0.93 t
+ 0.31 e−2.21 t

L1(t) = −0.41 e−0.93 t
+ 0.41 e−2.21 t . (3.8)

At small t , L0(t) ≃ 1 − (4/3)t , so that the ideal hydro behavior at short time is maintained. The
expression of L1(t) in Eq. (3.8) provides an analytical understanding of the behavior illustrated in
Fig. 4. At short time, the second exponential drops rapidly, making L1 negative as it tends to its fixed
point value (see later). Then the first exponential takes over and causes a decay of the magnitude
of L1.

As can be seen in Fig. 4, the agreement between the approximate solution and the exact one is
excellent, in particular for the moment L0. There are deviations from the exact solution though. For
instance, the dominant term at late time is not ∼ τ−1 but ∼ τ−0.9. As discussed in the appendix, the
lowest eigenvalue of the linear system (3.4) converges towards −1 rather slowly, with the first few
values being−1.33,−0.93,−1,06,−0.97, etc. (see Fig. 18 in Appendix B). Similarly the coefficient of
the dominant power in L0 is not π/4 ≈ 0.785, but 1 and 0.68 in the first two truncations, and 0.96,
0.71 in truncations with 3 and 4 moments, respectively. Also, at late time, the ratio L1/L0 takes the
successive values 0, −0.61, −0.4, −0.55. These numbers converge slowly to the exact ratio −1/2.
However, these quantitative aspects do not alter significantly the general picture.

However, we should emphasize here an unphysical feature of the two-moment truncation. From
the relation (2.22) and the positiveness of PL and PT in kinetic theory, one easily derives the
following bounds on L1/L0:

− 0.5 ≤
L1

L0
≤ 1. (3.9)

The lower bound corresponds to PL = 0, while the upper bound corresponds to PT = 0. These
two bounds are violated in the two-moment truncation. In particular, at late time, as we have
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Fig. 5. Comparison of the function L1(τ ) obtained from the two-moment truncation (blue line) and the rescaled exact
solution (dashed line), as a function of τ/τ0 for the values Λ0: −0.1 (left), −0.49 (right) with Λ0 = L1/L0 at τ = τ0 .

seen, L1/L0 ≃ −0.6, which corresponds to a negative longitudinal pressure (see case I in Fig. 1).
This unphysical feature is an artifact of the two-moment truncation, and would eventually become
negligible in truncations of sufficiently high order since, as we have mentioned above, the ratio
L1/L0 converges (slowly) towards its exact value A1 = −1/2. We shall see later that once collisions
are taken into account this unphysical feature becomes insignificant.

Further tests of convergence are presented in Appendix B, for isotropic initial conditions. A
general pattern emerges from the higher order truncations that is also discussed in this Appendix:
(i) The small time behavior is preserved at any order. For an initial isotropic distribution, the energy
density at small time behaves as in ideal hydrodynamics. (ii) The dominant eigenvalue of −M
converges (slowly) towards −1. (iii) The ratios of moments at late time become constant. This is
related to the exponential decays (in the variable t) of the various components of the moments.
The ratios converge slowly towards the values An corresponding to a flat distribution. (iv) We find
three types of eigenvalues. Two real ones, near −1 and −2, which can be associated with two fixed
points to be discussed next, and a set of complex eigenvalues whose real part is close to 7/4 and
whose imaginary part increases (roughly linearly) with n. These imaginary parts yield oscillating
contributions to the moments. These, however, are strongly damped, and not visible in any of the
plots displayed in this paper (see Appendix B for more details).

Finally, we consider briefly the case of anisotropic initial conditions. We expect of course similar
convergence properties, in view of the close connection between the corresponding solution and
that for isotropic initial conditions. This is indeed the case, as can be seen for instance in Fig. 5 where
one compares the moment L1 calculated from the two-moment truncation and that obtained from
the exact solution.

3.3. Fixed point analysis

We shall now elucidate the reasons why the two-moment truncation suffices to capture the
essential features of the time evolution of the first two moments in the free streaming regime. We
shall argue that this results from the existence of fixed points of the general solution of the coupled
systems of equations. These fixed points are already present in the two-moment truncation, and
are only moderately affected by the higher moments.

The fixed points have already been identified, at least one of them. Indeed we have already
noticed that at late time, all the moments become proportional to the energy density, Ln = AnL0,
with An given by Eq. (3.3). That this is a solution follows from the identity

(an − 1)An + bnAn−1 + cnAn+1 = 0, (3.10)

which is easily checked (note that A0 = 1, b0 = 0). Another identity has also been mentioned,
namely an + bn + cn = 2, Eq. (2.29). It follows from this identity that another fixed point exists,
where all moments are equal, and decay as τ−2. Clearly the two fixed points that we have just
identified correspond to the two eigenvalues 1 and 2 of the matrix M in Eq. (3.4).
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Fig. 6. The function β(g0) in Eq. (3.12). The full line corresponds to Eq. (3.12), and the dots locate the two approximate
fixed points, with the arrows indicating their stability or instability. The two dashed lines correspond to the shifts
proportional to L2 in Eq. (3.14), which induce minor displacements of the approximate fixed points and brings them
to their exact (respective) locations.

Since the moments continue to evolve at large time, it is convenient to consider their logarithmic
derivatives

gn(τ ) ≡ τ∂τ lnLn, (3.11)

which indeed go to constant values at late time. The quantity g0 obeys an equation of motion that
is easily obtained in the two-moment truncation, by eliminating the moment L1 (assuming that L2
vanishes). One gets

τ
dg0
dτ
= β(g0), β(g0) = −g2

0 − (a0 + a1)g0 − a0a1 + c0b1. (3.12)

A plot of the function β(g0) is given in Fig. 6. The fixed points correspond to the zeros of β(g0). It
is easy to verify that these coincide with the two eigenvalues of the matrix −M , the one close to
−1 (λ0 = 0.93), the other close to −2 (λ1 = 2.21).

Consider then small deviations away from the fixed points, and set g0(t) = ḡ0 + f (t), with
τ = τ0et and ḡ0 the value of g0 at a fixed point. In linear order in f we get

df
dt
+ 2ḡ0f + (a0 + a1)f = 0, f (t) = f (0)e−(2ḡ0+a0+a1)t . (3.13)

Now, recall that a0 = 4/3 and a1 = 38/21, so that a0+a1 ≃ 3. Thus when ḡ0 ≈ −1, 2ḡ0+a0+a1 > 0,
corresponding to a stable fixed point. When ḡ0 ≈ −2, 2ḡ0+a0+a1 < 0, corresponding to an unstable
fixed point.

One can verify that these fixed points are also those of g1. This is natural since in the vicinity of
the stable fixed point, L1 and L0 are proportional, L1 = A1L0, while L1 = L0 at the unstable fixed
point. Thus in both cases, g0 = g1 at the fixed point. In fact this reasoning extends trivially to all
the gn’s: at the stable fixed point for instance, gn = −1 for all n.

This basic structure is not changed when one takes into account higher moments in the
truncation. The equation for g0 that one obtains by keeping the moment L2 reads

τ
dg0
dτ
= −

[
g2
0 + (a0 + a1)g0 + a0a1 − c0b1

]
+ c0c1

L2

L0
. (3.14)

This equation is now exact. Of course, at this point L2/L0 is unknown, and can only be determined
by solving the hierarchy of equations. But we can argue that the effect of L2 is modest. This can
be easily demonstrated since we know the values of L2/L0 in the vicinity of the two fixed points.
Indeed, the effect of L2/L0 is simply to shift down the function β(g0) in Fig. 6 by the amount c0c1

L2
L0
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(c1 = −12/35, c0 = 2/3). This results in a decrease of the value of ḡ0 at the stable fixed point, and
an increase of ḡ0 at the unstable fixed point. In fact, L2/L0 is a constant in the vicinity of each fixed
point, equal to 1 near the unstable fixed points and to A2 = 3/8 in the vicinity of the stable fixed
point. If one inserts in Eq. (3.14) the exact value of L2

L0
, A2 = 3/8, the fixed point is moved from

−0.929366 to exactly −1. Similarly, injecting the value corresponding to the unstable fixed point,
namely L2/L0 = 1, one moves ḡ0 from −2.21349 to −2.

The existence of these two fixed points whose location is only moderately affected by the higher
moments is the main reason why the two-moment truncation suffices to capture the main features
of the free streaming.

4. The gradient expansion and the hydrodynamic regime

As we have seen in the previous section, starting from an isotropic momentum distribution, free
streaming drives the system to a very anisotropic state, with an infinite number of moments being
populated as time goes on, and the longitudinal pressure decreasing. We have seen also that, in spite
of the fact that many moments are populated, even the simple two-moment truncation gives a fair
account of the time dependence of the two lowest moments L0 and L1. We have argued that this
can be understood from the existence of two fixed points which control the time evolution of these
two lowest moments, and whose locations are only moderately affected by the higher moments.

We expect the truncations to become even more accurate once collisions are included. The main
effect of the collisions is indeed to wash out the anisotropy of the momentum distribution, a process
which, in the absence of expansion, is exponentially fast, ∼ exp (−τ/τR). In fact, a profound change
takes place at late time, with the solution of the kinetic equation acquiring a simple representation
as an expansion in powers of 1/τ . This corresponds to the fact that the late time behavior is
controlled by a different fixed point of the kinetic equation, the hydrodynamic fixed point. It is
the purpose of this section to analyze the main characteristics of this new fixed point.

4.1. Gradient expansion and constitutive equations

As recalled in Section 2.3, in the hydrodynamic regime, the energy–momentum tensor admits
an expansion in gradients, which, in the present setting with Bjorken symmetry, appears as an
expansion in powers of 1/τ . The first couple of terms of this expansion are displayed in Eq. (2.15).
We shall assume here that not only L1, but all moments Ln admit a gradient expansion and we
write

Ln(τ ) =
∞∑

m=n

α
(m)
n

τm . (4.1)

Such a structure follows for instance from the Chapman–Enskog expansion presented in Appendix C.
In the case of L1, which is directly related to the energy–momentum tensor, the coefficients α

(n)
1 are

related to usual transport coefficients (such as the shear viscosity η in Eq. (2.15)). The coefficients
of higher moments are not directly related to usual transport coefficients, even though their contri-
butions may affect dynamically the coefficients of the various gradients in the energy–momentum
tensor.

The Chapman–Enskog expansion is an expansion for the deviation δf = f − feq, in powers of
the relaxation time τR, as well as in Legendre polynomials (see Appendix C). Each power of τR is
accompanied by a gradient, i.e, in the present context, by a power of 1/τ , so that the expansion is
an expansion in powers of 1/w ≡ τR/τ (see Section 5.3 for more on this variable w). The expansion
is such that in Ln the leading term is of order 1/wn, as indicated in Eq. (4.1).

In the expanding case, the coefficients α
(m)
n acquire a time dependence. In fact, for dimensional

reason, Ln is proportional to the energy density ε, a function of τ . Also τR may depend on τ . We
may then rewrite Eq. (4.1) as follows

Ln(τ ) =
∞∑

m=n

B(m)
n ετm

R

τm = ε

∞∑
m=n

B(m)
n

wm , (4.2)
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where B(m)
n is a dimensionless constant number, and α

(m)
n = B(m)

n ετm
R . This observation is enough

to determine the asymptotic behavior of the moments in the hydrodynamic regime. Note that the
coefficients B(m)

n are entirely determined by the coefficients an, bn, cn, the effects of collisions being
factored out in the explicit dependence on τR.

4.2. The hydrodynamic fixed point

From the remark above we have, for the leading term of each moment

α(n)
n = B(n)

n ετ n
R . (4.3)

We shall assume that the energy density behaves, in leading order, as in ideal hydrodynamics,
i.e., ε ∼ τ−4/3 ∼ T 4. For constant τR, the time dependence of α

(n)
n is just that of the energy density.

In the conformal case, where τRT = cste, we have instead

α(n)
n = B(n)

n
ε

T n (τRT )n ∼ τ−4/3+n/3. (4.4)

It follows that

Ln(τ ) ∼ τ−(4/3+2n/3) (τRT = cste), Ln(τ ) ∼ τ−(4/3+n) (τR = cste). (4.5)

We can rewrite these relations as
Ln(τ )
L0(τ )

∼ τ−2n/3 (τRT = cste),
Ln(τ )
L0(τ )

∼ τ−n (τR = cste), (4.6)

or in terms of the logarithmic derivatives (3.11)

gn(∞) = −
4
3
−

2n
3

(τRT = cste), gn(∞) = −
4
3
− n (τR = cste). (4.7)

These power laws characterize the hydrodynamic fixed point that we shall discuss further later.
Note that these fixed point values do not depend on the truncation, in contrast to what happens in
the free streaming case where the value of the stable fixed point depends (weakly) on the order of
the truncation. The fixed point values in Eq. (4.7) depend only on the time dependence of τR, and
that corresponding to g0 (−4/3) is universal.

4.3. Asymptotic behavior from the kinetic equation

It is instructive to see how the fixed point behavior emerges from the solution of the kinetic
equation. In doing so, we shall also be able to determine the coefficient of the leading power law
in Eq. (4.2), B(n)

n , as well as that of the subleading contribution, B(n+1)
n .

Let us then return to the equations of motion for Ln, that is, Eq. (2.25). There is an intriguing
feature of this equation whose solution could contain a priori exponentially decaying contributions
because of the last term, which seems to be incompatible with the gradient expansion. Let us
however rewrite Eq. (2.25) as follows

gn(τ ) = τ∂τ lnLn = −an − bn
Ln−1

Ln
− cn

Ln+1

Ln
−

τ

τR
. (4.8)

At large time, we can ignore the constant term an, as well as the ratio Ln+1/Ln, which is of order
1/τ . Then, in order to avoid the appearance of exponential terms, it is sufficient that the remaining
two terms cancel, that is

− bn
Ln−1

Ln
−

τ

τR
= 0, Ln = −bn

τR

τ
Ln−1. (4.9)

This indeed fixes the leading order in the gradient expansion in agreement with what was obtained
before. Eq. (4.9) provides a simple recursion relation from which one can deduce

α(n)
n = ετ n

R

n∏
i=1

(−bi) = ετ n
R B(n)

n . (4.10)
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In particular, α
(0)
0 = ε = L0, and α

(1)
1 = −b1ετR, from which the expression of the shear viscosity

follows, η = (b1/2)ετR (see Eq. (2.15)). Note the factorial growth of the coefficient (bn ∼ n at large
n), at the origin of the divergence of the gradient expansion [12,21,32,33].

We can push the analysis to the next-to-leading order. The cancellation of the large (∝ τ ) terms
leading to Eq. (4.9) left aside a possible constant contribution that we can determine. We then return
to Eq. (4.8) and keep the leading order terms at large τ , i.e.,

gn(τ →∞) = −an − bn
Ln−1

Ln
−

τ

τR
+ O

(
1
τ

)
. (4.11)

By using the expansion of the moments to the next to leading order,

Ln =
α
(n)
n

τ n +
α
(n+1)
n

τ n+1 . (4.12)

we can then obtain for the coefficients α
(n+1)
n the following recursion relation

α
(n+1)
n

α
(n)
n
= −τR

[
gn(∞)+ an + bn

α
(n)
n−1

α
(n)
n

]
, (4.13)

with gn(∞) given by Eq. (4.7) (and for n = 1 the last term vanishes, i.e. α(n)
0 = 0). One then gets

B(n)
n =

n∏
i=1

(−bi) ,
B(n+1)
n

Bn
n
= −

n∑
i=1

[gi(∞)+ ai] . (4.14)

One can deduce in particular from the relations above the value of the second order transport
coefficient in Eq. (2.15). We have indeed,

λ1 − ητπ =
3
4
α
(2)
1 = −

3
4
τ 2
R ε b1(2− a1), (4.15)

where the last expression holds for the conformal case.
The same results can be obtained by solving directly the coupled equations for the moments,

searching a solution in the form of a gradient expansion. As an illustration, consider the two-
moment truncation, i.e., Eqs. (2.31), assuming here that τR is constant for simplicity. Using the
Ansatz (see Eq. (4.2))

L1 = L0

[
B(1)
1

τR

τ
+ B(2)

1

(τR

τ

)2
+ · · ·

]
(4.16)

for L1, we obtain, after a simple calculation, the following solution for the energy density L0

L0(τ ) ≈ τ−a0 exp
{
c0B

(1)
1

τR

τ
+

c0
2
B(2)
1

(τR

τ

)2}

≈ τ−a0

⎛⎜⎝1+ c0B
(1)
1

τR

τ
+

⎡⎢⎣ c20
(
B(1)
1

)2
2

+
c0
2
B(2)
1

⎤⎥⎦(τR

τ

)2⎞⎟⎠ , (4.17)

together with the explicit values of the coefficients

B(1)
1 = −b1, B(2)

1 = −b1[1+ a0 − a1]. (4.18)

These are identical to those obtained earlier, Eq. (4.14), for the case of a constant τR. Note that these
first two coefficients B(1)

1 and B(2)
1 are given exactly by the two-moment truncation (this would not

be the case for the coefficient B(2)
2 which involves b2, hence L2).3

3 The values of the coefficients B(1)
1 and B(2)

1 obtained in this section agree with those given in [16] for both constant
and conformal τR .
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Fig. 7. Attractor solution of the moment equations (conformal case). Left panel: attractor solution for g0 , for various
truncations (n = 1 is the two-moment truncation). Right panel: the attractor solutions for the moments g0, . . . , g4 ,
calculated with the ‘‘exact’’ solution (n = 20).

This example illustrates a subtle aspect of the gradient expansion. We have argued earlier
that the coefficients α

(n)
0 vanish, that is, there is no genuine gradient expansion for the energy

density, in the sense of a constitutive equation analogous to Eq. (4.16) for L1. However, such a
gradient expansion is generated dynamically, through the coupling of L0 to higher moments, as
demonstrated in Eq. (4.17). It can be seen in particular that the gradient terms in Eq. (4.17) are all
multiplied by c0, the coefficient that couples L0 to L1. Such a gradient expansion of L0 needs to
be properly identified when extracting the values of the coefficients B(m)

n from the solution of the
moment equations.

4.4. The attractor solution

We have now a more complete picture of the general solution of the kinetic equation. At small
times, i.e. τ ≪ τR, the collision rate is small compared to the expansion rate and the collisions play
little role: the evolution is then dominated by free streaming. On the contrary, at later times, when
the collision rate exceeds the expansion rate, τ ≫ τR, the collisions dominate and the evolution
is controlled by the hydrodynamic fixed point. It is interesting to consider the particular solution
of the kinetic equation that starts at the free streaming fixed point, that is with a flat distribution
and no longitudinal pressure, and follow its evolution to the hydrodynamic fixed point. We call
this particular solution the ‘‘attractor solution’’ since the solutions corresponding to different initial
conditions will eventually converge to this attractor solution at late time. Thus defined, the attractor
solution joins smoothly the two (stable) fixed points that we have identified. Note that, as we shall
discuss further in Section 5.4, the attractor depends on the value of the initial time τ0 (i.e., on the
ratio τ0/τR of the collision rate to the expansion rate at the initial time). We assume here that
τ0 ≪ τR, so that there is a sizeable region (τ0 < τ < τR) of the attractor that is sensitive to the free
streaming fixed point.

Fig. 7 depicts the attractor solution obtained from various truncations of the coupled moment
equations. The transition from the free streaming regime to the hydrodynamic regime is clearly
visible. It occurs, as expected, when τ ∼ τR. The dispersion of the curves at small time on the left
panel reflects the slow convergence of the truncation towards the free-streaming fixed point, as
discussed in Section 3. Note that this (weak) sensitivity to the initial conditions is quickly washed
out as soon as the collision rate becomes comparable to the expansion rate.

Also shown in Fig. 7 (right panel) are the attractor solutions for the logarithmic derivatives of
first few moments, g0, . . . , g4, obtained by solving the coupled moment equations with truncation
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at n = 20 (i.e., keeping 21 moments), which coincides numerically with the exact solution. In this
case, all moments start at their free-streaming fixed point value, −1, and then evolve towards their
hydrodynamical fixed point values, gn(∞) given in Eq. (4.7). The decrease with n of these fixed
point values reflects the fact that higher moments are more efficiently damped at late times. As
already emphasized these hydrodynamic fixed point values are independent on the truncation. In
particular the fixed point values of g0 and g1 are perfectly captured by the two-moment truncation.
The existence of attractor solutions for the gn’s translates into corresponding attractors for other
quantities, such as the ratios of moments, in particular the ratio L1/L0 and hence the pressure
anisotropy PL/PT (see Eq. (2.22)). This is indeed the case, as shown in Fig. 8 for the pressure ratio
PL/PT . The insensitivity of the attractor at late times to the truncation reflects the ‘‘universality’’
of the hydrodynamic fixed point. A similar feature was pointed out concerning Fig. 1, where it
was observed that the solutions corresponding to the four distinct initial conditions converge to a
unique curve, which we now recognize as the hydrodynamic attractor, when the time τ exceeds a
few times τR.

5. The approach to hydrodynamics within the two-moment truncation

This section contains a detailed study of the two-moment truncation, i.e. of the coupled system
of Eqs. (2.31). These are obtained from the exact equations

∂τL0 +
1
τ
(a0L0 + c0L1) = 0 , (5.1a)

∂τL1 +
1
τ
(b1L0 + a1L1 + c1L2) = −

L1

τR
(5.1b)

by dropping the term proportional to L2 in the second equation. As we have repeatedly emphasized,
this simple truncation captures the main qualitative features of the free streaming, and the damping
of the L1 moment drives the system towards the hydrodynamical regime at late times. Because of
its simplicity, it allows for a semi-analytical treatment that provides insight into the approach to
hydrodynamics. At the end of this section we shall discuss the role of the moment L2, and through
it of the higher moments: as we shall see, the effect of these moments can be accommodated at
late time by a simple renormalization of the dynamics captured by the two-moment truncation.

5.1. Perturbative corrections to free streaming at small time

We can rewrite the system of Eqs. (2.31) in a matrix form

∂

∂t

(
L0
L1

)
= −

(
a0 c0
b1 a1 + r0et

)(
L0
L1

)
= −M(t)

(
L0(t)
L1(t)

)
. (5.2)

where we have set τ = τ0et , and r0 = τ0/τR (we suppose τR = Cste in this subsection). This is a
linear, homogeneous, system of equations with time dependent coefficients. At early times, i.e. when
τ/τR ≲ 1, one can treat the effect of collisions by using perturbation theory, that is we set

M = H0 + V (t), H0 =

(
a0 c0
b1 a1

)
, V (t) =

(
0 0
0 r0et

)
, (5.3)

where H0 represents free streaming and V (t) is the perturbation caused by the collisions. By
applying the standard techniques of time-dependent perturbation theory, we can then write the
solution in the form of a time-ordered exponential(

L0(t)
L1(t)

)
= e−H0t T exp

{
−

∫ t

0
dt ′ VI (t ′)

}(
L0(0)
L1(0)

)
, (5.4)

where

VI (t) = eH0tV (t)e−H0t . (5.5)
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Fig. 8. Attractor solution for the pressure ratio (conformal case) as a function of τ/τR in a logarithmic scale (left) and a
linear scale (right).

Loosely speaking, the expansion of the time-ordered exponential in powers of V corresponds to an
expansion in the number of collisions, the linear term corresponding to one collision, the second
order term to two collisions, and so on.

The moments obtained up to second order are displayed in Fig. 9, for a small and a large value of
r0. Note that all curves start at τ0/τR = r0. In both cases, perturbation theory accounts very well for
the time variations of the moments and their deviations from free streaming at early time, i.e., when
τ − τ0 ≲ τR. Note that the deviation from free streaming can be sizeable before τ − τ0 ∼ τR. This
depends somewhat on the quantity one looks at, and on the initial condition. In the case of the
ratio PL/PT , the short time behavior is dominated by free streaming when the initial conditions are
isotropic. This is not so for flat initial conditions, where collisions produce a deviation from free
streaming already at early time. We shall return to this aspect shortly. Note finally the artifact of
the two-moment truncation that we have already emphasized: the free streaming tends to drive
the longitudinal pressure to negative values. This unphysical feature is absent in the exact free
streaming calculation, and is also much attenuated when the collision rate is sufficiently high, as
can be see in the right panels of Fig. 9.

Although we could increase the range of validity of perturbation theory by including higher order
terms, the plots in Fig. 9 already suggest that this will not give a consistent account of the late time
behavior, as deviations from one order to the next in perturbation theory grows rapidly with time
(this is most clearly visible in the right panels of Fig. 9, corresponding to the large collision rate
r0 = 5). In fact, at late time, one expects hydrodynamics to set in, and this regime is not expected
to be reached by perturbing free streaming to any order in perturbation theory. Indeed, as we have
seen in the previous section, it is controlled by a different fixed point than the free streaming one
around which one is expanding.

In order to study the large time behavior of the solution it is then necessary to go beyond
perturbation theory. To do so, it is more convenient to transform the linear system into a single
differential equation.

5.2. Reducing the linear system to a second order differential equation

Such an equation is easily obtained by taking a time derivative of the first equation (2.31) and
using the second equation in order to eliminate L1. One gets then a second order linear differential
equation for L0

τ L̈0 +

(
1+ a0 + a1 +

τ

τR

)
L̇0 +

1
τ

(
a1a0 − c0b1 +

a0τ
τR

)
L0 = 0. (5.6)
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Fig. 9. From top to bottom, the moments L0 , L1 , and the ratio PL/PT for isotropic initial conditions (Λ0 = 0), and for
flat initial conditions (Λ0 = −0.45). Full lines: first order (blue) and second order (red) perturbation theory, as a function
of τ/τR , for r0 = 0.1 (left) and r0 = 5 (right) (for L0 the left curve corresponds to r0 = 1, as the curves corresponding
to r0 = 0.1 would be indistinguishable from the complete solution). Dashed (magenta) lines: exact solution of the two-
moment truncation. Orange dotted lines: free-streaming obtained from the two moment equations. Dashed green lines:
exact free streaming. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Note that this equation is valid for an arbitrary (e.g. time dependent or time independent) relaxation
time τR. This single equation for L0 can be viewed as an approximation to the exact equation for
the energy density (Eq. (2.19), for n = 0). In the variable t = ln(τ/τ0), this equation reads

∂L0

∂t2
+
(
a0 + a1 + r0et

) ∂L0

∂t
+
(
a1a0 − c0b1 + a0r0et

)
L0 = 0. (5.7)

Once L0 is known, L1 can be determined from the first of Eqs. (5.1). Alternatively, one may obtain
L1 by solving an equation analogous to Eq. (5.7), namely

∂L1

∂t2
+
(
1+ a0 + a1 + r0et

) ∂L1

∂t
+
(
a1a0 − c0b1 + (1+ a0)r0et

)
L1 = 0. (5.8)

In contrast to Eqs. (5.6) or (5.7) this equation is valid only for constant τR (a derivative of the second
equation (2.31) is involved in its derivation). We shall see later how to treat the conformal case,
and focus for the time being on the case of constant τR.

Since Eqs. (5.7) and (5.8) are of second order, we need to specify the values of the functions L0
and L1 and their time derivatives at t = 0. These are easily obtained from the equivalent linear
problem (2.31):(

L̇0
L̇1

)
= −

(
a0 c0
b1 a1 + r0

)(
1

Λ0

)
, (5.9)

where we have set L0(t = 0) = 1, and L1(t = 0) = Λ0. Note that since the equation is linear, the
solution L0 is defined to within a multiplicative constant. Measuring all moments in units of the
initial energy density, we fix all initial conditions so that L0 = 1 initially, leaving Λ0 = L1/L0
at the initial time as the only parameter. Recall that physically acceptable values of Λ0 range
from Λ0 = −0.5 corresponding to a flat distribution, to Λ0 = 1 corresponding to an isotropic
distribution.

The equation L̇0 = −a0− c0Λ0 is exact. It involves only L0 and L1 and no other moment, and it
is independent of the collision rate. Since a0 and c0 are both positive, L̇0 < 0 for all physical values
of Λ0, and L̇0 goes from −4/3 for an isotropic distribution to −1 for a flat distribution.

The equation L̇1 = −b1 − (a1 + r0)Λ0 indicates that the sign of L̇1, may vary depending on the
values of Λ0 and r0. For all positive values of r0, L̇1 is a decreasing function of Λ0. For Λ0 = 0,
corresponding to isotropic initial conditions, L̇1 = −b1 = −8/15 and is independent of r0. (Note
that the value L̇1 = −b1 coincides with the slope of the exact free streaming solution.) As Λ0
decreases L̇1 increases and vanishes for Λ0 = Λ̄0 = −56/(190 + 105r0). Note that Λ̄0 ≃ −0.295
for r0 = 0, and Λ̄0 remains negative as r0 → ∞. Thus for a flat initial condition, i.e. Λ ≳ −0.5,
L̇1 > 0. This behavior is consistent with that of the exact free streaming solution displayed in Fig. 5.

The expression of L̇1 obtained from the two-moment equations is only approximate. The exact
equation, which can be obtained from Eq. (5.1), involves not only L0 and L1, but also L2. It reads

L̇1 = −b1 − (a1 + r0) Λ0 − c1
F2(1/ξ0)
F0(1/ξ0)

, (5.10)

where ξ0 is such that F1(1/ξ0)/F0(1/ξ0) = Λ0. One can estimate the effect of the correction due to
L2 in the two limiting cases of isotropic and flat initial distributions. For isotropic initial conditions,
ξ0 = 1 and F2 = 0, so the correction due to L2 vanish, and L̇1 = −b1, as we have already observed.
Near the flat distribution, L2(1/ξ0)/L0(1/ξ0) ≃ A2 = 3/8, and Λ0 ≃ −0.5. We have therefore, in
the exact case

L̇1 =
1
2
+

r0
2

, (5.11)

while, neglecting the contribution from L2, we get instead

L̇1 =
13
35
+

r0
2

. (5.12)

Such a correction has an impact on the behavior of the ratio PL/PT at small τ . We have indeed

d
dt

PL

PT

⏐⏐⏐⏐
t=0
=

3L̇1 − 3Λ0L̇0

(1−Λ0)2
= τ0

d
dτ

PL

PT

⏐⏐⏐⏐
τ0

. (5.13)
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Fig. 10. (Color online.) The moment L1 for isotropic initial conditions, as a function of τ/τR on a logarithmic scale, for a
small collision rate, r0 = 0.1 and a large collision rate r0 = 5. The full (blue) line is the complete solution with collisions,
while the dashed line is the free streaming solution.

This relation holds for any τR, constant or not. A simple calculation yields for the slope at the origin
(expressed in terms of τ/τR for constant τR)

τR
d
dτ

PL

PT

⏐⏐⏐⏐
τ0

=
2
3

(exact), τR
d
dτ

PL

PT

⏐⏐⏐⏐
τ0

= −
6

35r0
+

2
3

(without L2). (5.14)

For a non constant τR, we use the variable w = τ/τR (see next subsection) and express PL/PT in
terms of w. That is,

d
dw

PL

PT

⏐⏐⏐⏐
w0

=

(
d
dτ

PL

PT

)
dτ
dw
=

(
τ0

d
dτ

PL

PT

)
τR/τ0

1+ g0/4
=

2r0
3

1
r0

1
3/4
=

8
9
, (5.15)

where we have used g0 = −1. Thus, for the exact case the slope at the origin is always positive,
which is physically expected: for a flat distribution the longitudinal pressure vanishes, and cannot
therefore decrease. However, if one ignore the contribution of L2, as we do in the two-moment
truncation, there is a value of r0, r0 = 9/35, below which the slope is negative. This is the situation
illustrated in Fig. 1 for initial conditions I.

We now consider the effects of the collisions beyond those just described, and that concerned the
short time behavior. We consider only isotropic initial conditions, that is Λ0 = 0, and study how the
time dependence of L0 and L1 is affected by the change of r0. This is illustrated in Fig. 10. The effect
of the collisions in accelerating the damping of the moment L1 is clearly visible. We note however
that the short time behavior is not modified: this is in line with the fact that the initial conditions
do not depend on r0 in the isotropic case. Note that the free streaming curves are the same for the
two values of r0. The apparent difference is due to the change in the relative expansion rate versus
the collision rate (in other words the two curves would be the same if plotted as a function of τ/τ0
instead of τ/τR = τ/(r0τ0) as done here).

5.3. Gradient expansions at late time

As explained in the previous section, one expects the solution at late time to be well represented
by an expansion in powers of 1/τ , i.e., by a gradient expansion. In order to study such an expansion
in a systematic fashion, it is convenient to write Eq. (5.6) in terms of the function g0(τ ) =
d lnL0(τ )/d ln τ (see Eq. (3.11)). A simple calculation yields

τ
dg0
dτ
+ g2

0 +

(
a0 + a1 +

τ

τR

)
g0 + a1a0 − c0b1 +

a0τ
τR
= 0. (5.16)

This is a first order, non linear equation for g0. It is furthermore useful to perform a change of
variables, setting

w =
τ

τR
, (5.17)
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and assuming the mapping between w and τ to be invertible, which is the case in practice. We may
then consider L0 as a function of w, i.e. L0(τ (w)), so that (with a slight abuse of notation)

d lnL0(w)
d lnw

= g0
d ln τ

d lnw
. (5.18)

If τR is a constant, d ln τ/d lnw = 1. If τRT is a constant, then d lnw/d ln τ = (1 + g0/4), where
we have used L0(τ ) ∝ T 4(τ ) so that d ln T/d ln τ = g0/4. It is then straightforward to transform
Eq. (5.16) into

wg ′0 + g2
0 + (a0 + a1 + w)g0 + wa0 + a0a1 − b1c0 = 0, g ′0 ≡

dg0
dw

, (5.19)

which is valid for the case of constant τR. A similar equation holds in the conformal case, with wg ′0
replaced by wg ′0

(
1+ g0

4

)
.4

We look now for a solution of Eq. (5.19) at large time of the form

g0(w) =
∑
n=0

γn

wn , (5.20)

where the coefficients γn are determined by solving the equation order by order. The first two
coefficients are independent of the choice of τR. They read

γ0 = −a0 = −
4
3
, γ1 = b1c0 =

16
45

. (5.21)

The higher order coefficient depend on the choice of τR. For instance

γ2 =
b1c0
4

(3a0 − 4a1 + 4) (τRT = Cste ), γ2 = b1c0 (1+ a0 − a1) (τR = Cste). (5.22)

Note that γ1 and γ2 are proportional to c0, that is to the coupling of L0 to L1: it is indeed via
this coupling that the gradient expansion of L0 emerges dynamically, as already explained. Further
details are given in Appendix D.

5.4. Fixed point analysis and attractor solution

Eq. (5.19) also lends itself to a simple analysis in terms of fixed points. It is convenient to rewrite
this equation as follows5

w
dg0
dw
= β(w, g0), β(w, g0) = β(g0)− w(g0 + a0), (5.23)

where β(g0) is the function introduced in Eq. (3.12) for the free streaming case, and which we
rewrite here for convenience

β(g0) = −g2
0 − (a0 + a1)g0 − a0a1 + c0b1. (5.24)

The function β(w, g0) plays a role similar to that of the function β(g0) in the free streaming case.
However, since it depends on w, we do not have true fixed points as in the free streaming case.
Nevertheless we shall see that the function β(w, g0) is helpful to understand the main features of
the solution.

A plot of the function β(g0, w) as a function of g0 for different values of w is given in Fig. 11. The
difference between β(g0, w) and β(g0) is given by the quantity linear in g0 and w, −w(g0+a0). This

4 This equation, for the conformal case, can also be written in terms of the function f = d lnw/d ln τ = 1 + g0/4. It
then takes the form (f ′ = df /dw)

4wf ′f + 16f 2 + (−32+ 4 (a0 + a1 + w)) f + 16− 4(a0 + a1)+ a0a1 − c0b1 + (a0 − 4)w = 0.

This equation (to within inessential details) is the equation whose asymptotic solution is analyzed thoroughly in Refs. [12]
and [21] (see also Appendix E).
5 In the conformal setting wg ′0 is to be multiplied by (1+ g0/4).



J.-P. Blaizot and L. Yan / Annals of Physics 412 (2020) 167993 25

Fig. 11. The function β(g0, w) as a function of g0 for different values of w. Left, from bottom to top: w = 0.01 (red),
w = 0.5 (orange), w = 1 (blue), w = 2 (green). The pseudo fixed point are located at the intersection of these curves
with the horizontal dashed line. The attractive fixed point is on the right, the repulsive one on the left. Note that all
curves cross for g0 = −4/3. The right panel shows the approach of the hydrodynamic fixed point g0 = −4/3 as w tends
to infinity: w = 5 (red), w = 10 (orange), w = 20 (blue), w = 50 (green). Recall that for very small values of w, the
stable (free streaming) fixed point sits at g0 = −0.929 (the approximation to −1 in the two-moment truncation). As w

increases, this fixed point moves continuously towards the hydrodynamical fixed point g0 = −4/3. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

term is small near the free streaming fixed point, i.e., for small w. It vanishes at the hydrodynamical
fixed point, where g0 = −a0. Note that all curves cross at this particular point, since there the
dependence on w disappears. As w increases, the slope of β(g0, w) viewed as a function of g0 is
simply −w, and it becomes infinite as w becomes infinite.

When w ≃ 0, the function β(g0, w) has two zeros in the vicinity of the two free streaming stable
and unstable fixed points. We shall refer to these zeros as pseudo fixed points. The motion of these
pseudo fixed points as w increases is clearly visible on the left panel of Fig. 11. As w becomes large
the unstable pseudo fixed point is pushed to large (eventually infinite) negative values of g0, while
the original stable pseudo fixed point approaches the hydrodynamic fixed point located at g0 = −a0.
The expansion of the location of the stable pseudo fixed point at large w reads

gfp(w) = −
4
3
+

16
45w
−

32
189w2 −

4544
99225w3 + O

(
1
w4

)
(5.25)

Note that the first two terms in this expansion coincide with the first two terms in the gradient
expansion of g0(w). This is no accident as we shall see shortly.

A stability analysis can be carried out, as we did earlier for the free streaming fixed point. To
do so, we start from Eq. (5.23), or the equivalent equation for the conformal case. By expanding a
generic solution about the fixed point g0 + a0 ≃ b1c0/w, and linearizing, one finds that δg(w) ∝
e−Swwβ+CS2/4, with δg denoting the deviation from the fixed point solution and S = 1, β =
a0 − a1, C = b1c0 for the case of constant τR, and S = 3/2, β = 3(a0 − a1)/2, C = b1c0 for
the conformal case (see Appendix E for more details). In either case a generic solution relaxes
exponentially fast to the fixed point solution (i.e. towards hydrodynamics).

Consider now the attractor solution, that is the solution that starts at time τ0 = r0 τR in the
vicinity of the stable free streaming fixed point, i.e. g0 = −0.93. As w increases, g0 decreases, and
eventually reaches the hydrodynamical regime. The approach to the hydrodynamical fixed point is
subtle however. Note that β(g0 = −a0, w) = b1c0, that is, this is the result one obtains if one sets
g0 = −a0 in Eq. (5.23). However, as w→∞, β(g0, w) is linear in the vicinity of the point where all
curves cross, and we have there β(g0, w) ∼ b1c0 −w(g0 + a0). The pseudo fixed point, determined
by the condition β(g0, w) = 0, is located at g0 ∼ −a0 + b1c0/w. This moves smoothly towards −a0
as w increases, keeping β(g0, w) = 0, that is, the pseudo fixed point moves smoothly towards the
hydrodynamic fixed point. This is clearly seen in the right panel of Fig. 11.

The full attractor solution has already been discussed in Section 4.4. We complete here this
analysis by examining the effect of the initial time τ0, or more properly, the effect of changing
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Fig. 12. The attractor solution of the two-moment truncations for various values of r0 (from 0.001, 0.1, 0.5, 1.0 to 2.0,
corresponding to red-dashed, green, brown, blue and magenta lines respectively), as a function of τ/τR in logarithmic
scale (constant τR). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. The attractor solution of the two-moment truncation for r0 = 0.01 (dashed line), and r0 = 0.5 (dotted line),
compared with the gradient expansion of g0(w) to order 1 (orange), 2 (blue) and 3 (red), as a function of w = τ/τR in
logarithmic scale (constant τR). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

the ratio r0 between the collision rate and the expansion rate at the initial time. This is illustrated
in Fig. 12. If r0 is sufficiently small, there is a time regime dominated by free streaming, that is a
regime where the attractor remains in the vicinity of the free streaming fixed point (this is the case
for r0 = 0.001 in Fig. 12). As r0 increases, this regime gradually disappears, and for r0 ≳ 1, the initial
phase of the attractor is dominated by the effect of collisions, exhibiting a rapid transition towards
the hydrodynamic fixed point.

Note that the attractor near the hydrodynamic fixed point becomes insensitive to the starting
point after a few collisions. When this happens, the attractor is well described by the first few terms
in the gradient expansion, as illustrated in Fig. 13. However, the deviations become significant as
soon as τ/τR ≲ 1: in this region the attractor starts to feel the effect of the free streaming fixed point
(assuming that r0 is small enough), an effect which, of course, cannot be captured by the gradient
expansion.
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5.5. The role of higher moments

So far in this section, we have focused on the two-moment truncation. In this last subsection, we
examine the effects of the higher moments, and examine in particular how they can be accounted
for by a simple renormalization of the equations of the two-moment truncation.

5.5.1. Corrections to gradient expansion from higher moments
The generalization of Eq. (5.16) obtained by keeping the contribution of L2 reads

τ
dg0
dτ
= −

[
g2
0 + (a0 + a1 + w)g0 + a0a1 − c0b1 + a0w

]
+ c0c1

L2

L0
. (5.26)

In this form this equation generalizes Eq. (3.12) obtained in the free streaming case. However the
role of the last term, proportional to L2/L0 is here more subtle. Indeed, while in the free streaming
case the ratio L2/L0 is a constant near the fixed points, here, near the hydrodynamic fixed point,
L2/L0 ∼ −b1b2/w2, and this affects the gradient expansion. We shall verify, however, that as L2/L0
vanishes as 1/w2 in the vicinity of the hydrodynamic fixed point, the contribution of L2 does not
affect the value of g0 at the fixed point, nor its first order correction.

To proceed, we start by rewriting Eqs. (5.1) in terms of the logarithmic derivatives (3.11). We
get

g0 + a0 + c0
L1

L0
= 0

g1 + a1 + w + b1
L0

L1
+ c1

L2

L1
= 0. (5.27)

Ignoring temporarily the contribution proportional to L2 in the second equation, one can eliminate
the ratio L1/L0 between the two equations, and obtain

g0 = −a0 +
b1c0

a1 + g1 + w
. (5.28)

This relation, which is an exact relation in the two-moment truncation, allows us to recover the
first and second order terms of the gradient expansion of g0:

g0 ≃ −a0 +
b1c0
w

(
1−

a1 + g1
w

+ · · ·

)
, (5.29)

where the first two terms are independent of the choice of τR. In the second order term (∼ 1/w2),
we can replace g1 by g1(∞), and get for the coefficient of 1/w2, −(a1 + g1(∞))b1c0 = γ2, where γ2
is the second order coefficient obtained by other means in Eqs. (D.5) and (D.6).

In order to estimate the effect of L2 on the gradient expansion, we start from the equation for
L2

− τ
∂L2

∂τ
= a2L2 + b2L1 + c2L3 + wL2, (5.30)

from which, dividing by L2 and neglecting the contribution proportional to L3, we get

− g2 = a2 + b2
L1

L2
+ w,

L1

L2
= −

1
b2

(g2 + a2 + w). (5.31)

We can then use this result in Eqs. (5.27), and get an ‘‘improved’’ expression for g0,

g0 = −a0 +
b1c0

g1 + a1 + w −
b2c1

g2+a2+w

. (5.32)

This equation allows us to obtain the gradient expansion of g0 up to order 1/w3. By expanding to
the required order, we get

g0 = −a0 +
b1c0
w

[
1−

g1 + a1
w

+

(
g1 + a1

w

)2

+
b2c1
w2 + · · ·

]
. (5.33)
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To obtain this result, we have used the leading order behavior g2 + a2 → g2(∞)+ a2, and ignored
this constant term in replacing b2c1/(g2 + a2 + w)→ b2c1/w.

The coefficient of the second order term involves g1(∞) and equals γ2, as we have just
mentioned. The coefficient of the third order term requires the expansion of g1 + a1 to order 1/w,
which can be obtained in the two-moment truncation and is given explicitly in Eq. (D.7). We then
get, for the full contribution of order w−3 to g0,

b1c0

[
(γ1γ3 − γ 2

2 )b1c0
γ 3
1

+

(
γ2b1c0

γ 2
1

)2

+ b2c1

]
= γ3 + b1c0b2c1, (5.34)

revealing, in addition to the term γ3 coming from the expansion of g1 + a1, the additional
contribution coming from the moment L2.6 The latter, proportional to b1c0b2c1, that is to the
coefficients that couple L0 to L1 and L1 to L2, reflects the indirect, dynamical, origin of this
contribution. We shall return to these dynamical corrections in the next section, in the broader
context of viscous hydrodynamics. At this point, we shall examine how they can be handled as a
simple renormalization of the two-moment truncation.

5.5.2. Renormalized relaxation time from higher moments
Let us then return to the equation for L1, which we write as follows

∂τL1 = −
1
τ

(a1L1 + b0L0)−

[
1+

c1
w

L2

L1

]
L1

τR
. (5.35)

This writing suggests interpreting the effect of L2 as a correction of the relaxation time τR (or
equivalently of the viscosity η/s = τRT/5), viz., τR → Zη/sτR, with [17]

Zη/s ≡

[
1+

c1
w

L2

L1

]−1
. (5.36)

Note that since both c1 = −12/35 and L2/L1 are negative, Zη/s < 1 corresponds to a lowering of
the effective viscosity. As w → ∞, i.e., in the vicinity of the hydrodynamic fixed point, Zη/s → 1,
indicating that there the two-moment truncation is accurate.

A plot of the function Zη/s as a function of τ/τR is given in Fig. 14, for various determinations of
L2/L1. The dashed–dotted (green) line corresponds to the first two terms in the gradient expansion,
which can be obtained from the general formulae in Section 4.3, or directly from Eq. (5.31),

L2

L1
= −

b2
w + g2 + a2

≃ −
b2
w

(
1−

a2 + g2(∞)
w

)
. (5.37)

Of course such an estimate makes sense only when w ≳ 1, i.e., in the vicinity of the hydrodynamic
fixed point. As one moves away from this fixed point, i.e. reaching values w ≲ 1, L2/L1 becomes
sizeable, the gradient expansion breaks down and does not represent accurately the solution of the
kinetic equation: this is indeed the region where the influence of the free-streaming fixed point
starts to be felt, and correlatively higher moments begin to play a role. A possible way to encode
information about this transition region is to express L2/L1 in terms of g2 (see Eq. (5.31)),

L2

L1
= −

b2
a2 + g2(w)+ w

, (5.38)

and use for g2(w) the attractor solution (in place of its gradient expansion). We may also improve
on this determination by also including the correction coming from g3, viz.

L2

L1
= −

b2
a2 + g2(w)+ w −

b3c2
a3+g3(w)+w

(5.39)

and use for both functions g2(w) and g3(w) the attractor solutions. We refer to these two de-
terminations of Zη/s as to leading order and next-to-leading order, respectively [17]. The results

6 It can be verified that this complete third order contribution agrees with that given in Ref. [16].
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Fig. 14. (Color online.) The renormalization factor Zη/s , Eq. (5.36), calculated according to different approximations for
L2/L1 . The green dash-dotted line is obtained from the first two terms in the gradient expansion. The bands correspond
to results from the attractor solution of g2 (leading order) and with both g2 and g3 (next-to-leading order), for different
values of the ratio τ0/τR . Blue lines are from solving Eq. (5.30) as discussed in the text. The labels I, II, III, IV refer to the
initial conditions used in Fig. 1. See text for more details.

obtained in this way correspond to the gray band in Fig. 14 which shows that for values w ≲ 1,
the effective viscosity is substantially reduced by the non equilibrium dynamics [34]. As we have
seen in Section 5.4, the attractor solution depends on the initial time τ0. This is reflected in the
right panel of Fig. 14 where the various areas correspond to the initial conditions considered in
Fig. 1.

In practical applications the attractor solutions of g2 may not be available, but a good approxima-
tion to L2 can be obtained by solving Eq. (5.30), dropping there the contribution from L3, and using
for L1 the solution of the two-moment truncation. By doing so, we are assuming that moments
of high order (Ln with n ≥ 2) are mostly determined by the lowest order ones, while corrections
from higher ones are minor. We then solve Eq. (5.30) as we just indicated, for the various initial
conditions of Fig. 1. This yields the blue curves in Fig. 14, left panel. The solution depends on the
initial conditions, although this dependence quickly disappears when w ≳ 1.

To appreciate the impact of the correction factor, we have solved the corresponding ‘‘improved’’
equations of the two-moment truncation, that is, injecting into Eq. (5.35) the value of the factor
Zη/s determined by the methods indicated above. The results are displayed in Fig. 15. One sees
that, except for the determination based on the first two terms in the gradient expansion, the
exact solution is accurately reproduced with all other methods, and the corrections represent in
most cases an improvement of the two-moment truncation. One should emphasize however that
the interpretation of the present correction to Eq. (5.35) in terms of a renormalized viscosity truly
makes sense as long as Zη/s is not too small.

In summary of this section, we have seen that the simple two-moment truncation, which
involves only the monopole and the quadrupole components of the distribution function, that is the
energy density and the pressure difference PL−PT , describes rather accurately the whole evolution
of the expanding system, and this from the pre-equilibrium, early time regime, all the way to the
late time hydrodynamic regime. We shall see in the next section that the two-moment truncation
contains exactly the second order viscous hydrodynamics, while the corrections coming from the
coupling to higher moments correspond to higher order viscous hydrodynamics. As was shown
in Fig. 1 the hydrodynamic regime starts when the pressures are not fully isotropic, which does
not imply a large value of the moment L1. Rather, one finds that hydrodynamics begin when the
collision rate becomes comparable to the expansion rate. Coupling to higher moments represents
small corrections, but these become large when the expansion rate becomes large compared to
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Fig. 15. Comparison between the exact solution of the kinetic equation (solid black lines), of the two-moment truncation
(dashed black lines), and two-moment truncation with a renormalization of L2/L1 obtained via different schemes: by
using two-terms in the gradient expansion (red dashed lines), by using the attractor solutions (pink bands) and solving
effectively Eq. (5.30) without the L3 term (blue dotted lines). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the collision rate. Then the hydrodynamic description breaks down, but the dynamics remains well
captured by the two-moment truncation.7

6. Hydrodynamics

In this last section, we exploit the simplicity of the moment equations in order to make
closer contact between kinetic theory and hydrodynamics. In particular we use the two-moment
truncation, and the corrections arising from the second moment, in order to recover in a simple way
known results from second and third order viscous hydrodynamics. In spite of the simplicity of the
present setting, in which the hydrodynamic fields are function only on the proper time (and have no
explicit dependence on transverse spatial coordinates), the basic structure of viscous hydrodynamics
and its variants emerges naturally, and the values of the relevant transport coefficients are obtained
painlessly.

7 The two-moment truncation bears some similarity with the so-called anisotropic hydrodynamics [35,36]. The coupled
equations for L0 and L1 capture essentially the same physics as the ‘‘background’’ of anisotropic hydrodynamics.
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6.1. General comments

The standard formulation of hydrodynamics involves the expansion in gradients of the viscous
part of the energy–momentum tensor, πµν . The first order viscous correction involves the first order
gradients of the flow four-velocity uµ, and reads

πµν
= ησµν

= 2η⟨∇µuν
⟩ ≡ η

(
∇

µuν
+∇

νuµ
−

2
3
∆µν
∇ · u

)
, (6.1)

where the tensor ∆µν
= gµν

−uµuν projects on directions orthogonal to uµ (uµ∆µν
= 0). In Eq. (6.1)

and in the following, the tensor structure in angular brackets is defined as symmetric, traceless and
transverse to the flow four-velocity uµ. That is, for any second-rank tensor Aµν one defines [7]

⟨Aµν
⟩ =

1
2
∆µα∆νβ

(
Aαβ + Aβα

)
−

1
3
∆µν∆αβAαβ (6.2)

For a conformal system, the second order terms are constrained by symmetry [7], and result in
five independent transport coefficients. In the present boost invariant setting, these reduce to two
independent coefficients, λ1 and τπ , that enter the expansion of πµν as follows [7]

πµν
= ησµν

− ητπ

[
⟨Dσµν

⟩ +
1
3
σµν
∇ · u

]
+ λ1⟨σ

µ

λ σ νλ
⟩ + O(∇3) , (6.3)

where we have set D ≡ uµ∂µ (in the local rest frame, this operator reduces to the time derivative,
i.e., D = ∂τ ). At this point it is customary to use the leading order relation, πµν

= ησµν , in order
to replace σµν by πµν in the second order terms, which is legitimate since the difference is a
contribution of higher order in the gradient expansion. In doing so, we need the derivative of the
viscosity which is estimated from the leading order equation of motion, again a legitimate operation
at the considered order. That is, one assumes that η ∼ s ∼ T 3, and estimates Dη = 3ηD ln T from
the leading order equation of motion

D ln T = −
1
3
∇ · u, ∂τ ln T = −

1
3τ

, (6.4)

where the second equation holds in the local rest frame. One then gets

πµν
= ησµν

− τπ

[
⟨Dπµν

⟩ +
4
3
πµν
∇ · u

]
+

λ1

η2 ⟨π
µ

λπ νλ
⟩ + O(∇3) . (6.5)

Eq. (6.5) generalizes the Müller–Israel–Stewart hydrodynamics in which the only second order
transport coefficient is the relaxation time τπ (the coefficient of ∂τ in the local rest frame). It is
useful to recall how this equation has been obtained. First, the term quadratic in π in Eq. (6.5)
results from the substitution of the leading order constitutive equation πµν

= ησµν in the original
equation (6.3). Second, Eq. (6.5) is written in such a way that the coefficients of τπ and λ1 transform
separately homogeneously under Weyl transformations [7]. As a result, in addition to τπ , another
second order transport coefficients, λ1, appears in the description of a conformal fluid [37]. These
coefficients have been calculated in kinetic theory, and for massless particles, are given by8 [38]

τπ =
5η
sT

, λ1 =
5
7
ητπ . (6.6)

Eq. (6.5) can be simplified in the case of Bjorken flow, where the gradients of the flow four-
velocity are proportional to 1/τ . For instance, using coordinates (τ , ξ ), with t = τ cosh ξ , z =
τ sinh ξ , we get

σ
ξ

ξ = −
4
3τ

, ∇ · u =
1
τ

, (6.7)

8 These values correspond to a momentum independent relaxation time, hence directly comparable to those that we
can extract from our equations.
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where we have used the fact that the only nonzero component of ∇µuν is ∇ξuξ = τ . In fact, for
Bjorken flow, there is only one independent component of the viscous tensor that is allowed by
symmetry. Then, defining Π = π

ξ

ξ = −2π
x
x = −2π

y
y, one can rewrite Eq. (6.5) in the simpler

form

Π = −
4η
3τ
− τπ

[
∂τΠ +

4
3

Π

τ

]
+

λ1

2η2 Π2. (6.8)

In the hydrodynamic regime, Π can be identified to the pressure difference and thus to L1, viz.

Π =
2
3
(PL − PT ) = c0L1 . (6.9)

As we have just recalled, Eq. (6.8) has been obtained after simplifications that involve the use
of both the leading order equation of motion, and the leading order relation between πµν and the
shear tensor σµν . In terms of the L-moments, as we shall see more explicitly in the next subsection,
these manipulations involve both the direct expansion of L1 in gradients, the constitutive equation,
and the mixing, via the equations of motion, of terms coming form the expansion of L2 to the
same order. This is manifest in the fact that two independent linear combinations of the transport
coefficients λ1 and τπ appear in the Chapman–Enskog expansions of L1 and L2, as shown in [22]
(see also Appendix C). More precisely, and in the notation of the present paper, these two linear
combinations are

4
3τ 2 (λ1 − ητπ ) =

α
(2)
1

τ 2 ,

4
3τ 2 (λ1 + ητπ ) =

α
(2)
2

τ 2 . (6.10)

where, in the conformal case (see Section 4.3)

α
(2)
1 = −τ 2

R ε b1(2− a1) = −
32
315

τ 2
R ε,

α
(2)
2 = τ 2

R ε b1b2 =
64
105

τ 2
R ε. (6.11)

It follows that λ1/τ
2
R ε = 4/21, and ητπ/τ 2

R ε = 4/15, so that in particular λ1/ητπ = 5/7, in
agreement with (6.6).

Without the constraint of conformal covariance, the form appearing in Eq. (6.8) is not unique. For
instance, the following form of hydrodynamic equation of motion is advocated in Refs. [23] and [39]

Π = −
4η
3τ
− τπ∂τΠ − βππτπ

Π

τ
−

χτ 2
π

η

Π2

τ
, (6.12)

where βππ and χ are dimensionless second order and third order transport coefficients, respec-
tively. For massless Bosons these coefficients can be evaluated in kinetic theory and found to be
[39]

βππ =
38
21

, χ =
72
245

. (6.13)

What we shall do in the rest of this section is to show how these simple forms of viscous
hydrodynamic equations emerge from the moment equations, with the appropriate values of the
transport coefficients given in terms of the coefficients an, bn, cn. In fact the second order viscous
hydrodynamic equations involve only the two-moment truncation, while the moment L2 enters
explicitly the third order equation.

6.2. Second order viscous hydrodynamics from the two-moment truncation

We start with the equations of the two-moment truncation, Eqs. (2.31). By using the relation
(6.9), Π = c0L1, one can rewrite these equations as follows, using a notation more familiar in the
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hydrodynamic context

∂τ ε = −
4
3

ε

τ
−

Π

τ
, (6.14a)

Π = −
τR

τ
b1c0ϵ − τR∂τΠ − a1

τR

τ
Π ↔ Π = −

4η
3τ
− τπ∂τΠ − βππτπ

Π

τ
. (6.14b)

Note that to obtain the second equation, we have used the leading order relation (4.9) to eliminate
L0 in the equation for L1, as well as the expression for the viscosity η = (b1/2)ετR. Except for
the third order viscous term in Eqs. (6.12), (6.14b) and (6.12) are identical, provided conformal
symmetry is realized, so that

ϵ = 3P and τπ =
5η
sT
= τR . (6.15)

In addition, we notice that the second order transport coefficient βππ is precisely the coefficient a1.
In fact, subtle ambiguities arise when relating Eq. (6.14b) to the hydrodynamic equation. These

come in particular from how one relates the factor 1/τ , to tensor structures involving gradients in
the Bjorken flow. Indeed we have

1
τ
= ∇ · u = −

3
4
σ

ξ

ξ = −
3
4

Π

η
+ O(1/τ 2) (6.16)

Since the leading order relation gives Π ∝ 1/τ , we may substitute the factor 1/τ in the last term
of Eq. (6.14b) by either ∇ · u or σ = σ

ξ

ξ , or any linear combination of these, and obtain equivalent
results at order 1/τ 2. Additionally, interchanging 1/τ and Π (or L1/c0) within second order terms
is also allowed, since such substitutions only modify the equation with viscous corrections at the
next order. As already mentioned, such ambiguities are fixed in the BRSSS hydrodynamics [7] by
requiring that the stress tensor be homogeneous under scale transformations, which then amounts
to consider in the equations only two possible second order terms,

∂τΠ +
4
3

Π

τ
and Π2 . (6.17)

Applying this strategy to Eq. (6.14b) one obtains then

Π = −
4
3

η

τ
− τR

(
∂τΠ +

4
3

Π

τ

)
+

3
4

(
a1 −

4
3

)
τR

η
Π2
+ O

(
1
τ

)3

, (6.18)

where the last term in Eq. (6.16) has been used. Eq. (6.18) is nothing but the BRSSS hydrodynamic
equations of motion, Eq. (6.8), with the second order transport coefficient identified as

λ1 =
3
2

(
a1 −

4
3

)
ητπ =

5
7
ητπ , (6.19)

in agreement with Eq. (6.6).
In all the derivations of this subsection, only the leading order term of L1 in the 1/τ expansion

has been taken into account, as we have emphasized. The role of higher terms and the moment L2
will be discussed in the next subsection.

6.3. Third order viscous hydrodynamics, and the effect of the moment L2

Third order viscous corrections from the moment equations can be found by considering the
equations of the three-moment truncation

∂τL0 +
1
τ
(a0L0 + c0L1) = 0 ,

∂τL1 +
1
τ
(b1L0 + a1L1 + c2L2) = −

L1

τR
,

∂τL2 +
1
τ
(b2L1 + a2L2) = −

L2

τR
. (6.20)
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It is convenient to define a new quantity

Σ = c0L2, (6.21)

in analogy to Eq. (6.9) relating L1 to Π . On can then rewrite the system of Eqs. (6.20) as follows
(here, we identify τR and τπ a priori),

∂τ ε +
4
3

ε

τ
= −

Π

τ
, (6.22a)

Π = −
4η
3τ
− τπ∂τΠ − a1τπ

Π

τ
+

c1τπΣ

τ
, (6.22b)

Σ = −
τπb2Π

τ
− τπ

(
a2Σ
τ
+ ∂τΣ

)
. (6.22c)

When restricted to the late time behavior, these equations present a systematic generalization of
the second order viscous hydrodynamics, with the third order viscous correction (Σ) adding to
the second order equations of motion. From Eq. (6.22c) Σ appears naturally as a new dynamical
variable (an explicit time derivative is present in Eq. (6.22c), whose evolution is coupled to Π and
to the energy density. In fact, for the third order hydrodynamics, one only needs the first term in
the right-hand side of Eq. (6.22c), that is

Σ ≃ −τπb2
Π

τ
=

4b2
3

ητπ

τ 2 =
3b2τπ

4
Π2

η
, (6.23)

where Eq. (6.16) has been used to get the last two relations. The other terms in Eq. (6.22c) involve
indeed higher order terms in the gradient expansion. Note that the second equality in Eq. (6.23) is
nothing but the leading order expansion of L2, Eq. (4.1). More precisely, using Eq. ((6.10), on finds

λ1

ητπ

=
b2
c0
− 1 =

5
7

. (6.24)

in agreement with Eq. (6.19). Note however the presence of the coefficient b2 in this expression,
whereas no trace of the second moment is present in the expression (6.19). This is another aspect
of the ambiguity alluded to earlier concerning the writing of second order hydrodynamic equations.
Here this ambiguity, associated with the possibility of reshuffling various terms using equations of
motion or lower order relations, rests on relations between the coefficients an, bn, cn. The relation
involved here is b2− c0 = a1− a0. It is because of such relations that the gradient expansion of the
solution eventually exists, but we lack insight on the systematics of such relations.

Finally, by using the last expression of Σ in Eq. (6.23) for the last term in Eq. (6.22b) one
determines the third order transport coefficient

χ = −
3
4
b2c1 =

72
245

, (6.25)

which reproduces Eq. (6.12). Note that this particular transport coefficient involves the two coupling
constants that relate L1 and L2 in their respective equations of motion.

7. Conclusions

We have considered a simple kinetic description of an ultra-relativistic plasma undergoing
boost invariant longitudinal expansion, solving a Boltzmann equation within the relaxation time
approximation. By using a special set of moments of the distribution function, we have replaced
the kinetic equation by an infinite hierarchy of equations for these moments. We have found that a
simple two-moment truncation, that involves only the monopole and the quadrupole components
of the momentum distribution, works extremely well, even in the case of purely free-streaming
motion where many moments get populated. We argued that this is because the free streaming
solution of the hierarchy of equations is controlled by two fixed points which are already present
in the two-moment truncation, and whose locations are only moderately modified by the coupling
to higher moments. Collisions produce a damping of all higher moments, and drive the system to the
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hydrodynamic regime, characterized by a fixed point of a different nature, where all the moments
decay according to well specified power laws. An attractor solution can be defined to which any
solution converges rapidly. The two-moment truncation is analyzed in detail, providing semi-
analytic control on most aspects of the solution. The two-moment and three-moment truncations
contain all the information needed to derive second and third order viscous hydrodynamics, and
provide a direct and simple estimate of the corresponding transport coefficients.

The interest of the kinetic framework is to provide a complete description of the time evolution
of the system, from the initial pre-equilibrium regime all the way to the late time hydrodynamic
regime. Hydrodynamics emerges, as expected, when a few collisions have had time to occur, that is
for times of the order of a few times the relaxation time. Observe that viscous hydrodynamics starts
to become an accurate description when the ratio PL/PT is still far from unity, typically of order
0.6. Such a value is often considered as an indication of a strong deviation from local equilibrium.
We have observed however that this corresponds to a ratio of the angular moments L1/L0 ≈ 0.15.
From that point of view the deviation is not so large. A similar ratio PL/PT ≈ 0.6 is also observed at
the onset of viscous hydrodynamics in other pictures of the initial evolution, such as that provided
by holographic, strong coupling, techniques [9]. The strong coupling picture has no obvious direct
connection with the kinetic description, and the similarity of the values of PL/PT at the onset of
hydrodynamics calls for an interpretation within hydrodynamics itself. In the present setting, the
breakdown of hydrodynamics occurs naturally when the expansion rate exceeds the collision rate
and the successive orders in the gradient expansion start to diverge strongly.

Finally, we note that although the present paper has focused on a simple kinetic equation, with a
relaxation time approximation for the collision kernel, we believe that many features of our analysis
are robust. We have in fact indications that this is indeed the case from solving the Boltzmann
equation for a plasma of gluons, with gluon elastic scattering treated in the small scattering angle
approximation [40].
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Appendix A. Analysis of the function Fn(x)

The function Fn(x) is defined in Eq. (2.20) of the main text, which we reproduce here for
convenience:

Fn(x) ≡
∫ 1

0
dy
[
1− (1− x2)y2

]1/2
P2n

(
xy[

1− (1− x2)y2
]1/2

)
, (A.1)

where P2n is a Legendre polynomial.
The first moment can be given a simple analytical expression in terms of elementary functions.

For instance,

F0(x) =
1
2

(
x−

i cosh−1(x)
√
1− x2

)
, (A.2)

with cosh−1(z) defined with a branch cut on (−∞, 1]. We can also write this function as

xF0(x) =
1
2

⎡⎣x2 +
arctan

√
1
x2
− 1

1
x2
− 1

⎤⎦ . (A.3)

The first few moments can then be conveniently expressed in terms of F0 and its successive
derivatives. Thus, the first moment is given by

F1(x) =
3
2
xF ′0(x)−

1
2
F0(x), (A.4)
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Fig. 16. (Color online.) The moment F0(x) and its expansions to 6th order near x = 0 (left) and to 4th order near x = 1
(right). Near x = 1 the convergence is smooth as the order of the expansion increases (the curves from bottom to top
represent orders 1, 2, 3 and 4, while the dashed line is the exact result).

and the second moment by

F2(x) =
7
12

F0(x)+
5
12

F1(x)−
35
8

x2F ′′0 (x). (A.5)

Let us focus now on the zeroth moment F0(x), in order to illustrate a generic properties of the
functions Fn(x), and their expansions near x = 0 and x = 1 which exhibit very different convergence
behaviors. As shown in Fig. 16, while the expansion near x = 1 exhibits apparent convergence
even when extrapolated near x = 0, this is not the case of the expansion near x = 0 whose
extrapolation near x = 1 is not smoothly convergent. As we shall see, this is related to the non
uniform convergence of the integral in Eq. (A.1).

Near x = 1, the Taylor expansion of Fn(x) is indeed regular and can, in particular, be obtained
simply by differentiating with respect to x under the integral sign in Eq. (A.1). We get, for the first
few Fn,

F0(x) = 1+
1
3
(x− 1)+

1
15

(x− 1)2 −
1
35

(x− 1)3 +
4

315
(x− 1)4 + O(x− 1)5

F1(x) =
8
15

(x− 1)+
4

105
(x− 1)2 −

4
105

(x− 1)3 + O(x− 1)4

F2(x) =
32
105

(x− 1)2 −
128
1155

(x− 1)3 +
184
1505

(x− 1)4 + O(x− 1)5

F3(x) = −
512
3003

(x− 1)3 + O(x− 1)4

F4(x) =
2048
21879

(x− 1)4 + O(x− 1)5. (A.6)

Note that the coefficients of the leading contributions are related to the coefficients bn. We have
indeed, modulo a sign,

dFn(x)
dxn

⏐⏐⏐⏐
x=1
=

1
n!

b1 · · · bn. (A.7)

When x → 0, the simple strategy of expanding the integrand with respect to x in Eq. (A.1)
does not work, except for the first two coefficients (beyond these first two terms, one generates
divergent integrals, and more elaborate techniques must be used). We obtain, for the first few
moments (restricting ourselves, for n ≥ 3, to the first two terms in the small x expansion)

F0(x) =
π

4
+

πx2

8
−

x3

3
+

3πx4

32
−

4x5

16
+ O(x6)

F1(x) = −
π

8
+

5πx2

16
−

4x3

3
+

33πx4

64
−

28x5

15
+ O(x6)

F2(x) =
3π
32
−

57πx2

64
+ 8x3 −

1191πx4

256
+

112x5

5
+ O(x6)
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Fig. 17. Left: the moment L1 calculated in the truncations with three (blue) and four (green) moments, compared to
the exact result (dashed line). Right: the moment L2 calculated in the truncations with three (green), four (red) and five
(blue) moments, compared to the exact result (dashed line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

F3(x) = −
5π
64
+

205πx2

128
+ O(x3)

F4(x) =
35π
512
−

2485πx2

1024
+ O(x3). (A.8)

It is easily verified that the ratios Fn(0)/F0(0) coincide with the coefficients An given in Eq. (3.3).

Appendix B. Moment truncations in the free streaming regime

In this appendix, we complement the discussion in the main text by providing more details
on the truncations of the moment equations in the free streaming regime. We first give below the
explicit expressions for the moments Ln(t) corresponding to the truncations involving the first three
and four moments, respectively. The results are expressed in terms of t = ln(τ/τ0).

For the truncation involving the first three moments L0,L1,L2, we get

L0(t) = 0.96 e−1.06t + 0.04 e−1.92t cos[0.46t] − 0.51e−1.92t sin[0.46t],
L1(t) = −0.39 e−1.06t + 0.39 e−1.92t cos[0.46t] − 0.42 e−1.92t sin[0.46t],
L2(t) = 0.63 e−1.06t − 0.63 e−1.92t cos[0.46t] − 1.18e−1.92t sin[0.46t]. (B.1)

Keeping the first four moments, one gets

L0(t) = 0.31 e−2.15t + 0.71 e−0.97t − 0.02 e−1.77t cos[1.36t] − 0.013 e−1.77185t sin[1.36t],
L1(t) = 0.38 e−2.15t − 0.39 e−0.97t + 0.01 e−1.77t cos[1.36t] − 0.06e−1.77t sin[1.36t],
L2(t) = 0.10 e−2.15t + 0.16 e−0.97t − 0.26 e−1.77t cos[1.36t] − 0.07e−1.77t sin[1.36t],
L3(t) = 0.43 e−2.15t − 0.35 e−0.97t − 0.08 e−1.77t cos[1.36t] + 0.32 e−1.77t sin[1.36t]. (B.2)

To illustrate the convergence of the truncation scheme, we compare in Fig. 17 the moment L1 ob-
tained from Eqs. (B.1) and (B.2) with the exact result. The various curves are nearly indistinguishable.
On the right panel, a similar comparison is made for the moment L2. Not surprisingly in this case
the convergence is slower, and it would be even slower if higher moments were considered.

Recall that in Eqs. (B.1) and (B.2), the coefficients of t in the exponents are the eigenvalues of
the linear problem associated with the considered truncation. A pattern emerges as we continue ex-
ploring higher truncations, which is already visible on the expressions above. We note in particular
the presence of two eigenvalues that are close to −1 and −2, respectively. These eigenvalues are
already present in the two dimensional problem discussed in the main text (see Eqs. (3.8)), and they
are associated with the two fixed points of the free streaming, as discussed in Section 3.3. Fig. 18
shows how the eigenvalue corresponding to the stable fixed point converges to −1 as the order of
the truncation increases. A similar convergence pattern is observed for the other eigenvalues.
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Fig. 18. The convergence of the lowest eigenvalue towards −1.

Starting with the three-moment truncation, one notes the appearance of a complex eigenvalue,
whose real part is close to −1.75. As one considers higher truncations, such complex eigenvalues
remain present and, as the order n of the truncation increases, their real part converges indeed to
7/4, while the imaginary part grows with n. Such a behavior can be easily understood from the
following rough argument. Let us just focus on the three modes, Ln−1,Ln,Ln+1 and ignore their
coupling with the other modes. The matrix M to be diagonalized is then

M =

(an−1 cn−1 0
bn an cn
0 bn+1 an+1

)
. (B.3)

Using the asymptotic values an ≃ 7/4, bn ≃ −cn ≃ n/2, one finds the eigenvalues: 7/4, and
7/4± in/

√
2. This qualitatively corresponds to what one finds in the direct solution of the complete

eigenvalue problem. The presence of complex eigenvalues signals oscillatory behavior in the time
dependence of the moments. However, the oscillations are quickly damped and not visible in any
of the plots shown in this paper.

Appendix C. Gradient expansion from Chapman–Enskog expansion

Our goal in this section is to show that the expansion (4.1) of the moments Ln, with n ≥ 1
follow from the Chapman–Enskog expansion.9 To derive this expansion, it is convenient to write
the kinetic equation in its covariant form

pµ∂µf = −
u · p
τR

(f − feq), (C.1)

where feq is the local equilibrium distribution function, which is a function of u · p/T . The
temperature is determined by the Landau matching condition, Eq. (2.5). Assuming that the ‘‘true’’
distribution f differs only slightly from the local equilibrium one, feq, we write

f = feq + δf , δf = δf (1) + δf (2) + · · · , (C.2)

9 This expansion has been considered in greater generality in [39].
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where δf (1) is first order in gradient, δf (2) is second order, etc. We may then rewrite Eq. (C.1) as
follows

f = feq −
τR

u · p
pµ∂µf , (C.3)

and solve this equation iteratively. The leading order is obtained by substituting feq for f in the right
hand side of Eq. (C.3). One gets

f (1) = feq −
τR

u · p
pµ∂µfeq = feq + δf (1). (C.4)

By substituting f (1) in the right hand side of Eq. (C.3), one obtains the second order correction

δf (2) =
(

τR

u · p

)
pµ∂µ

(
τR

u · p
pν∂ν

(u · p
T

)
f ′eq

)
, (C.5)

and repeating recursively the procedure, one obtains at order n

δf (n) = (−τR)n
(

1
u · p

)[
p · ∂

1
p.u

]n−1
p · ∂ feq. (C.6)

For the boost invariant system, the velocity field is entirely determined by the symmetry,
uµ
= (t/τ , 0, 0, z/τ ). The correction δf (n) emerges then explicitly as a term of order (τR/τ )n. The

angular dependence is also made explicit in terms of Legendre polynomials. Thus, the leading order
correction reads

δf (1) = −
τR

u · p
pµ∂µ

(u · p
T

)
f ′eq

=
τR

τ

(
cos2θ +

d ln T
d ln τ

)
p0
T
f ′eq

=
τR

τ

2
3
P2(cos θ )f̄ ′eq, (C.7)

where the prime denotes the derivative with respect to u ·p/T , and in the last line we have defined
f̄ ′eq ≡ (p/T )f ′eq. To obtain the last line, we have used the leading order relation d ln T/d ln τ = −1/3.
Note that this particular value of d ln T/d ln τ has the effect of canceling a potential scalar contri-
bution to δf (1), leaving a contribution proportional to P2(cos θ ). This cancellation is a consequence
of the Landau matching condition which forces the temperature to drop as τ−1/3 in leading order.
Note that this leading order correction is independent of whether τR is chosen constant, or time
dependent (as in the conformal setting for instance).

In second order, we have, with f̄ ′′eq ≡ (p/T )2f ′′eq and constant τR,

δf (2) =
τ 2
R

τ 2

{
8
35

(
f̄ ′′eq − f̄ ′eq

)
P4 +

1
63

(
62f̄ ′eq + 8f̄ ′′eq

)
P2 +

4
45

(
f̄ ′′eq + 4f̄ ′eq

)
P0

}
. (C.8)

To obtain this result, we have used ∂ ln T/∂ ln τ = − 1
3 , and ignored the second derivative of T (of

higher order in 1/τ ). The last term, proportional to P0 (P0 = 1), suggests a correction to the energy
density, given by

δ2L0 =

∫
p
δf (2)(p)pP0

=
4
45

τ 2
R

τ 2

∫
p

(
p3

T 2 f
′′

eq + 4
p2

T
f ′eq

)
=

16
45

τ 2
R

τ 2L0, (C.9)

where we have used the following integrals∫
p
p2

∂ feq
∂p
= −4L0,

∫
p
p3

∂2feq
∂p2
= 20L0. (C.10)
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However, the Landau matching condition forbids such a correction. There is in fact an additional
contribution at this order, coming from the correction to δf (1)(p). We have indeed

δf (1) =
τR

τ
p0

(
2
3
P2(cos θ )+

1
3
+

g0
4

)
1
T
f ′eq

≃
τR

τ
p0

(
2
3
P2(cos θ )+

4
45

τR

τ

)
1
T
f ′eq. (C.11)

where we have used (see Eqs. (D.3))

d ln T
d ln τ

=
g0
4
= −

1
3
+

4
45w
+ · · · (C.12)

and the gradient expansion of g0. It can be verified that this is just what is needed to cancel δ2L0.
We can repeat the calculation for the conformal case. We get, in place of (C.8),

δf (2) =
τ 2
R

τ 2

{
8
35

(f̄ ′′ − f̄ ′)P4 +
(

8
63

f̄ ′′ +
16
21

f̄ ′
)
P2 +

4
45

(
f̄ ′′ + 4f̄ ′

)
P0

}
. (C.13)

Clearly, the coefficients of P4 and P0 are the same as in the constant τR case. We then calculate

δ2L1 =

∫
p
δf (2)(p)pP2(cos θ )

=
τ 2
R

τ 2

∫
p
pP2

2 (cos θ )
(

8
63

f̄ ′′ +
16
21

f̄ ′
)

=
τ 2
R

τ 2

1
5

(
8
63

20L0 −
16
21

4L0

)
= −

32
315

τ 2
R

τ 2L0, (C.14)

in agreement with the results obtained in Section 4.3.
Finally let us remark that it is relatively easy to isolate the coefficient of the polynomial P2n in

f (n), as this is the term that involves the largest number of derivatives of u.p. For instance, keeping
only the terms with the largest number of derivatives of p · u, one gets

δf (3) ←−3
τ 3
R

p5
[p · ∂u · p]3 f ′eq + 3

τ 3
R

p4
[p · ∂u · p]3 f ′′eq −

−τ 3
R

p3
[p · ∂u · p]3 f ′′′eq . (C.15)

A simple calculation then yields

δL3 = −
τ 3
R

τ 3

16
3003
[−12− 60− 120] = −

τ 3
R

τ 3

1024
1001

= −
τ 3
R

τ 3 b1b2b3. (C.16)

This is the expected result.

Appendix D. Gradient expansions in the two-moment truncation

In this appendix we collect a few results on the gradient expansions of various quantities, within
the two-moment truncation. These are most conveniently obtained from the differential equation
obeyed by g0(w), namely

w
dg0
dw
+ g2

0 + (a0 + a1 + w) g0 + a1a0 − c0b1 + a0w = 0 (D.1)

for constant relaxation time, and, for the conformal case,

w

(
1+

g0
4

) dg0
dw
+ g2

0 + (a0 + a1 + w)g0 + wa0 + a0a1 − b1c0 = 0. (D.2)
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where we have used the fact that L0(τ ) = ϵ(τ ) ∝ T 4(τ ) so that
d ln T
d ln τ

=
g0
4

. (D.3)

D.0.1. Gradient expansion of g0(w)
To derive the gradient expansion, we look for a solution of the form

g0(w) =
∑
n=0

γn

wn . (D.4)

By plugging this expansion into either one of the two equations above, we can determine the
coefficients γn for the corresponding choice of τR. We obtain then, for the case τRT = Cste,

γ0 = −a0 = −
4
3
, γ1 = b1c0 =

16
45

, γ2 =
b1c0
4

(3a0 − 4a1 + 4) =
64
945

,

γ3 = −
b1c0
8

(
−3a20 + 2 (5a1 − 8) a0 − 8a21 + 24a1 + 6b1c0 − 16

)
= −

1216
33075

. (D.5)

For the case τR = Cste, we get

γ0 = −a0 = −
4
3
, γ1 = b1c0 =

16
45

, γ2 = b1c0 (1+ a0 − a1) =
176
945

,

γ3 = b1c0
(
a20 + (3− 2a1) a0 + a21 − 3a1 − b1c0 + 2

)
= −

15616
99225

. (D.6)

D.0.2. Gradient expansion of g1(w)
The expansion of g1[w] can be obtained from that of g0[w] by using the relation (5.28) between

g0 and g1. Keeping terms up to order w−2, one gets

g1[w] = −a1 −
γ2 b1c0

γ 2
1
−

(
γ1γ3 − γ 2

2

)
b1c0

γ 3
1 w

−

(
γ 3
2 − 2γ1γ3γ2 + γ 2

1 γ4
)
b1c0

γ 4
1 w2

(D.7)

With the values of the coefficients γi given above, one easily obtains, for the sum of the two constant
terms, g1(∞) = −1− 3

4a0, and g1(∞) = −1−a0, for the cases τRT = Cste and τR = Cste, respectively.
These values agree with the general result (4.7).

D.0.3. Gradient expansion of L0(w)
The expansion of the moment L0 can be easily obtained by integrating the expansion for g0. We

do that first for the case of a constant τR. Then we have
d lnL0(w)
d lnw

= g0 = γ0 +
γ1

w
+

γ2

w2 +
γ3

w3 + · · · (D.8)

which can be easily integrated to give (to order w−3)

L0(w) ≃ wγ0

(
1−

γ1

w
+

γ 2
1 − γ2

2w2 +
−γ 3

1 + 3γ2γ1 − 2γ3

6w3

)
(D.9)

with (using the values of the coefficients γi appropriate for constant τR)

γ0 = −a0, γ1 = b1c0, γ 2
1 − γ2 = (b1c0)2 − b1c0(1+ a0 − a1). (D.10)

Thus, up to order w−2, the expansion of L0(w) reads

L0(w) ≃ wγ0

(
1−

b1c0
w
+

(b1c0)2 − b1c0(1+ a0 − a1)
2w2

)
, (D.11)

which agrees with the expression (4.17) obtained using a different method.
In the conformal case, we use

d lnL0(w)
d lnw

=
g0

1+ g0/4
(D.12)
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together with the gradient expansion of g0(w). We get

L0(w) ≃ w
4γ0

γ0+4

⎛⎜⎝1−
16γ1

(γ0 + 4) 2w
+

256γ 2
1

(γ0+4)4
−

16
(
(γ0+4)γ2−γ 2

1

)
(γ0+4)3

2w2

⎞⎟⎠ (D.13)

Using the values of the coefficients γi appropriate for the conformal case, we obtain
4γ0

γ0 + 4
= −2. (D.14)

Note that this corresponds indeed to the expected behavior of ideal hydrodynamics since w 2 ∼

τ−2(τRT )2T−2 ∼ τ−4/3.

D.0.4. Gradient expansion of L1(w)/L0(w)
The ratio L1/L0 can be obtained directly in terms of g0 by writing the first equation (2.31) as

follows
L1(w)
L0(w)

= −
1
c0

(a0 + g0)

= −
1
c0

(γ1

w
+

γ2

w2 +
γ3

w3

)
(D.15)

which hold for any choice of the relaxation time. For the constant relaxation time we get
L1(w)
L0(w)

= −
b1
w
−

b1(1+ a0 − a1)
w2 , (D.16)

and for the conformal case
L1(w)
L0(w)

= −
b1
w
−

b1
4w2 (3a0 − 4a1 + 4). (D.17)

These results are consistent with Eq. (4.18).

Appendix E. Stability analysis near the hydrodynamical fixed point

To proceed with the stability analysis, we generalize the temperature dependence of the
relaxation time τR, and write, as in [16],

τR ∝ (1/T )∆ , (E.1)

via a constant ∆. The conformal case corresponds to ∆ = 1, while a constant τR is obtained for
∆ = 0. This effectively changes dw/dτ into

dw
dτ
= 1+

∆

4
g0, (E.2)

so that the equations for g0 becomes

w

(
1+

∆

4
g0

)
g ′0 + g2

0 = −a0g0 + b1c0 − (a1 + w)(a0 + g0), (E.3)

Our goal now is to linearize this equation near the hydrodynamical fixed point. To do so, we
rewrite the equation above as follows

G′
(
1+

∆

4
G
)
= −SG+

β

w
G−

G2

w
+

C
w

S2, (E.4)

with G = S(g0 + a0) and

S =
(
1−

∆a0
4

)−1
, β = −(a1 − a0)

(
1−

∆a0
4

)−1
, C = b1c0. (E.5)
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Fig. 19. (Color online.) The function βBD(w, g0) (Eq. (E.10)). The curves corresponding to various values of w cross at
g0 = −a0 corresponding to a stable pseudo fixed point and hydrodynamics, and at g0 = −a0 − (8/3)Cη/Cλ1 which
corresponds to an unstable pseudo fixed point.

Note that at large w, g0 + a0 ≃ b1c0/w, independently of the value of ∆. We then set G = Ḡ+ δG,
with

Ḡ =
CS
w
+ O(1/w2), (E.6)

and substitute this in Eq. (E.4). We get, after dropping the terms that are either quadratic in the
fluctuation, or of order 1/w2,

δG′
(
1+

∆

4
CS
w

)
= −SδG+

β

w
δG. (E.7)

The solution of this equation at large w behaves as

δG(w) ∝ e−Swwβ+CS2/4. (E.8)

This is compatible with the expression (41) in Ref. [16], except for the value of β . Note, however, that
this result pertains to the two-moment truncation. Had we started from the BRSSS hydrodynamic
equation (6.18), and used the standard substitutions η/s = Cη , λ1 = Cλ1η/T , CR = τRT , one would
have obtained the following equation (for the case ∆ = 1)

wg ′0
(
1+

g0
4

)
+ (g0 + a0)2

[
1+

3w
8

Cλ1

Cη

]
+ w(g0 + a0)−

16
9

Cη

CR
= 0. (E.9)

It is easily verified that the same stability analysis as that presented above yields a value of β that
agrees with that quoted in Ref. [21]. Note that, by construction, the two equations (E.3) and (E.9)
yield the same hydrodynamic behaviors in leading orders in the expansion in 1/w. However, the
pseudo fixed point structures of the two equations are different. For the sake of comparison, we
show in Fig. 19 the function

βBD(g0) = − (g0 + a0)2
[
1+

3w
8

Cλ1

Cη

]
− w(g0 + a0)+

16
9

Cη

CR
, (E.10)

corresponding to Eq. (E.9). This is to be compared to Fig. 11. The stable pseudo fixed point
corresponding to hydrodynamics behaves in the same way in both cases, but Eq. (E.9) admits a
second, unstable, pseudo fixed point located at a finite value of g0, g0 = −a0 − (8/3)Cη/Cλ1 .
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Appendix F. Insights from the exact solution

Our goal in this appendix is illustrate the very different natures of the expansions which are
valid for small and large values of r0, the ratio of the collision to the expansion rates. We do this by
starting directly from the exact equation for the energy density, or equivalently from the general
equation for the moments, Eq. (2.19), which we rewrite here for convenience:

Ln(τ ) = D(τ , τ0)L(0)
n (τ )+

∫ τ

τ0

dτ ′

τR(τ ′)
D(τ , τ ′)L0(τ ′)(τ ′/τ )Fn(τ ′/τ ) , (F.1)

Recall that this equation is valid for arbitrary initial conditions, isotropic or not, these initial
conditions being entirely coded in the free streaming moments L(0)

n (τ ) given by Eq. (2.24). In the
course of this study, we shall also recover results that we have obtained by other means, although
this is not our main goal here.

F.1. Expansion at early time

We consider first the small time behavior and calculate the time derivative of the first two
moments. By taking the derivative of Eq. (F.1) with respect to τ , we get

τ0
dLn

dτ
= −

τ0

τR(τ0)
L(0)

n (τ0)+ τ0
dL(0)

n

dτ

⏐⏐⏐⏐⏐
τ0

+
τ0

τR(τ0)
L0(τ0)Fn(1). (F.2)

Recall that for n ≥ 1, Fn(1) = 0, while for F0(1) = 1. Also, for n = 0, L0(τ0) = L(0)
0 (τ0) = ε0. We

get then

τ0
dL0

dτ
= τ0

dL(0)
0

dτ

⏐⏐⏐⏐⏐
τ0

τ0
dL1

dτ
= −

τ0

τR(τ0)
L(0)

1 (τ0)+ τ0
dL(0)

1

dτ

⏐⏐⏐⏐⏐
τ0

. (F.3)

The first equation shows that the energy density decreases initially with time in the same way as in
free streaming. The derivative of L1 on the other hand depends explicitly on the relaxation time τR,
so that the moment L1 is immediately sensitive to the collisions. To calculate τ0dL

(0)
0 /dτ we may

use Eq. (2.24) and the relations given in Appendix A. We then easily reproduce the results given in
Section 5.2, Eqs. (5.9) and (5.10).

We could in principle continue and expand for τ ≪ τ0 by taking further derivatives, but we are
in fact interested in the regime τ0 ≪ τR, and we want an expansion valid for τ ≲ τR, i.e. not limited
to very small τ ≪ τ0. In line with the time-dependent perturbation theory that we have used in
Section 5.1, we look for an expansion that treats the effect of the collisions as a correction to free
streaming. In more precise terms, we look for an expansion in powers of r0 ≡ τ0/τR, the ratio of
the collision rate to the expansion rate.

Let us then rewrite here Eq. (F.1) for the moment Ln, for a constant τR, and after performing the
change of variables τ = zτ0:

Ln(τ ) = e−r0(z−1)L(0)
n (τ )+ r0

∫ z

1
dz ′e−r0(z−z

′)L0(τ ′)
(
z ′

z

)
Fn

(
z ′

z

)
. (F.4)

We note that, in leading order in the expansion parameter r0, Ln(τ ) is given by the first term in
Eq. (F.4), which is the free streaming solution multiplied by the exponential factor e−r0(z−1). (This
factor, for τ ≲ τR and τ0 ≪ τR is nearly equal to unity.) We then insert this whole first term into
the integral, and repeat iteratively the operation. We shall be satisfied here with the leading order.
We get then

Ln(τ ) = e−r0(z−1)L(0)
n (τ )+ r0e−r0(z−1)

∫ z

1
dz ′ L(0)

0 (z ′)
(
z ′

z

)
Fn

(
z ′

z

)
, (F.5)
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Fig. 20. (Color online.) The ratio PL/PT as a function of τ/τR for various initial conditions. The solid (black) lines represent
the exact solution of the kinetic equation and the dashed (green) lines are the small r0 expansion in leading order.

where we have used the fact that the free streaming solution is indeed a function of τ ′/τ0 = z ′.
This solution captures the leading order of time-dependent perturbation theory, and it can be
easily checked that the slope at the origin is correctly reproduced, for both L0 and L1. The present
expansion can be seen as a generalization of the perturbative approach of Section 5.1, which is not
limited here to the two-moment truncation, but includes implicitly the effects of all the moments
(the perturbative approach of course assumes that r0(z−1)≪ 1 so that the exponential factors are
approximately equal to unity). We show in Fig. 20 the ratio PL/PT obtained in this approximation
(keeping the exponential factors in Eq. (F.5)). The small time behavior is clearly well reproduced. In
fact, even the late time behavior is well captured for all initial conditions. Indeed Eq. (F.5) can be
used as the starting point for a numerical iterative solution of the full kinetic equation [41].

F.2. Expansion in powers of τR at late times

In the small r0 regime, as we have seen, the contribution of the integral in Eq. (F.4) is subleading
since it is proportional to r0. In the hydrodynamic regime, when τR → 0, the integral plays
an essential role and it is the first term in Eq. (F.1) which can be then neglected. Because of
the exponential factor, the integrand is localized in the region τ ′ ≲ τ . Set τ ′ = τ − τ ′′. Then∫ τ

τ0
dτ ′ →

∫ τ−τ0
0 dτ ′′ and we get, for the case of a constant τR,

L0(τ ) ≃
∫ τ−τ0

0

dτ ′′

τR
e−τ ′′/τRL0(τ − τ ′′)((τ − τ ′′)/τ )F0((τ − τ ′′)/τ ). (F.6)

We can then extend the upper bound of the integration to infinity, and expand the integrand for
small τ ′′/τ (τ ′′ ≲ τR, τ ≫ τR). We get

L0(τ ) ≃ L0(τ )
(
1−

4
3

τR

τ

)
− τR∂τL0

(
1−

8
3

τR

τ

)
, (F.7)

that is, we recover the leading order relation

4
3

τR

τ
L0(τ ) = −τR∂τL0. (F.8)

We can proceed systematically by using integrations by parts, noting that

eτ ′/τR = τR
deτ ′/τR

dτ ′
. (F.9)
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Inserting this relation into Eq. (F.6), integrating by parts, and ignoring exponentially small con-
tributions, one reproduces iteratively the gradient expansion that we have obtained by other
means.
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