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Do the Impacts of Natural Amenities on Rural Population Growth Differ in New West versus 

Old West Places?  

 

Chairperson: Katrina Mullan 

 

This research examines how location-specific amenities affect rural population growth given 

demographic and cultural differences found in New West and Old West census tracts in the 

mountain west. In the 1970s, the United States experienced an unexpected turnaround in 

migration patterns as households began moving from urban to rural areas. Identifying different 

drivers of rural population growth is necessary for planning for and managing future growth in 

ways that optimize economic benefits while minimizing potential environmental degradation.  

Using cross-sectional, specially constructed, spatially explicit data, this research identifies how 

determinants of population growth differ in New West versus Old West census tracts. Marginal 

effects from an OLS model with interaction terms identifies that drivers of population change, 

namely natural amenity preferences, in New West versus Old West do differ.  
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1  Introduction 

In the 1970s, the US experienced an unexpected turnaround in migration patterns as households 

began moving from urban to rural areas. In particular, rural areas rich in natural amenities and 

with amenable climates experienced rapid population growth (Dearien et al. 2005; Deller et al. 

2001; Rickman and Rickman 2011). Traditional economic theory asserts that migration results 

from utility-maximizing households seeking higher wages and greater employment 

opportunities. However, technological advances in telecommuting and economic restructuring 

towards a service economy loosened geographic constraints on household location choices. 

Additionally, rising wages led to an increase in household preferences for natural amenities, 

shifting population migration patterns as households considered quality of life factors when 

making location choices. I examine how location-specific amenities affect population growth 

given demographic and cultural differences between New West and Old West census tracts in the 

mountain west. 

 

Empirical research identifies natural amenities as significant drivers of population growth 

(McGrannahan 1999, 2008; Deller et al. 2001; Rickman and Rickman 2011; Chen et al. 2013; 

Johnson and Beale 2002). Migrants are drawn to natural amenities, like mountains, rivers, and 

forests, for their recreational and aesthetic value (Waltert and Schlapfer 2010; Bastian et al. 

2002; Cragg and Kahn 1997; Johnson and Beale; 2002). From 1970-2000, counties rich in 

natural amenities experienced greater rates of population growth than counties with few natural 

amenities (McGranahan 1999; Rickman and Rickman 2011; Dearien et al 2005; Johnson and 

Beale 2002). Rapid population growth is especially prevalent in amenity-rich rural west 

(McGranahan 1999).  

 

Some empirical evidence demonstrates that not all amenity-rich areas equally attract migrants 

(Deller et al. 2001; Chen et al. 2013). For instance, Deller et al. (2001) find that rural counties, 

rich in both natural amenities and man-made amenities (e.g. ski resorts), experience higher rates 

of population growth than amenity-rich rural counties without man-made amenities. Changes in 

rural population have economic and environmental consequences. Rural areas experiencing rapid 

population growth may also experience environmental degradation if they are unable to manage 

and plan for such rapid growth. Conversely, rural areas experiencing population decline may be 

interested in identifying what attracts migrants to an area to induce growth. Researchers have 

investigated this disproportionate population growth using the concept of the “New West” 

(Rudzitis 1998; Shumway and Otterstrom 2001; Winkler et al 2007). New West and Old West 

locations differ in demographic and cultural composition. New West locations have economies 
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focused on professional services and tourism and have relatively high levels of cultural 

amenities, like art galleries and restaurants. Old West locations tend to depend on resource 

extraction for economic development.  

 

The New West conjures images of cattle ranches being converted to hobby ranches by footloose 

transplants. Places like Bozeman, MT exemplify the New West. Bozeman has attracted migrants 

from around the world who come for the access to Yellowstone National Park, several national 

forests, world-class ice climbing, and two ski resorts. A community trail system runs through 

Bozeman, easing access to downtown restaurants, parks, art galleries. The presence of such 

amenities draws certain types of people to the area.  

 

The demographic composition of New West and Old West places fundamentally differ. White 

Sulphur Springs, MT, located 80 miles north of Bozeman, is considered Old West. The 2010 

Census reports that approximately 50% and 12% of the population, 25 years old and over, in 

Bozeman and White Sulphur Springs respectively have a Bachelor’s degree or higher. In 2010, 

the median household income in Bozeman was $42,218 relative to $30,541 in White Sulphur 

Springs. Relative to White Sulphur Springs, the residents of Bozeman tend to be more educated, 

earn more money, and tend to be younger, with a 2010 median age of 27.2 compared to median 

age of 45.6 in White Sulphur Springs.  

 

Prior research examining the drivers of rural population growth has largely been at the county-

level and on a national scale (Chen et al. 2013; Beale and Johnson 1998; McGranahan 1999; 

Partridge et al. 2008; Rickman and Rickman 2011; Rupasingha et at. 2015; Deller et al. 2001). 

Specific to the New West research, Shumway and Otterstrom (2001) found that population 

growth was associated with New West counties in the Mountain West region while Winkler et al. 

(2007) explored the distribution of New West census places in the Inter-Mountain West and 

found that New West places are concentrated along the Rocky Mountains. However, these 

studies did not explore the different drivers of population change in New West areas. I fill this 

gap by examining how location-specific amenities affect population growth given demographic 

and cultural differences between New West and Old West census tracts in the mountain west. 

 

A better understanding of the mechanisms that drive population migration can help identify rural 

areas prone to rapid population growth. Population growth, and associated land development, 

may jeopardize the location-specific amenities that initially draw migrants to these regions. This 

is particularly important in this region as mountain ecosystems are especially vulnerable. 

Additionally, rural areas experiencing economic decline may be interested in identifying ways to 
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attract migrants to revitalize their economies. Identifying rural areas prone to growth, and 

subsequent development, is necessary to maximize potential economic benefits while 

minimizing environmental degradation.  

 

The study area encompasses Washington, Oregon, western Montana and Wyoming, 

northwestern Colorado, and northeastern Utah. This region offers dramatic topography, an 

abundance of public lands, mountain ranges, and undeveloped rivers, lakes, and coastline. The 

abundance of natural amenities offers exemplary scenic and recreational opportunities in places 

like Yellowstone and Olympic National Parks, the Sawtooth Mountains, and the Columbia 

River. All states in the study area, apart from Montana, have experienced higher rates of 

population growth from 1970-2015 than the national average (Headwaters Economics 2016). 

From 1970-2015, the national average percent change in population was 57.7% compared to 

109% in Washington, 130% in Idaho, 91% in Oregon, 75% in Wyoming, 45.1% in Montana, and 

181% and 145% in Utah and Colorado respectively. Also, on average, this region contains more 

public land, 46.3%, than the national average of 28% (Headwaters Economics 2016). Natural 

amenities clearly attract migrants but it is less clear how the impacts of natural amenities vary in 

New West versus Old West census tracts in attracting migrants (McGranahan 1999, 2008; 

Rappaport and Sachs 2003).  

 

I construct a New West index to quantify the degree to which a census tract is New West versus 

Old West. Old West areas tend to rely on extractive industry employment (e.g. mining or 

logging) or are areas that remain relatively undeveloped (Winkler et al. 2007). Winkler et al. 

(2007) characterize the New West as areas with relatively high employment in the arts, 

professional services, and tourism rather than extractive industries; income and education levels, 

prevalence of second home ownership, and relatively high median housing values. Thus, the 

New West index captures a combination of cultural and demographic determinants of population 

migration. These demographics are highly correlated with employment opportunity, urban 

cultural amenities, and natural amenities (McGranahan and Wojan 2007; Winker et al. 2007). To 

better understand the circumstances in which natural amenities drive population migration, I 

compare the impact of individual amenities in New West versus Old West locations.  

 

I estimate rural population growth between 1990-2010 at the census tract level as a function of 

remoteness, initial population level, and variation in climate and natural amenities. I use spatially 

explicit measures of amenities, capturing distance to different types of public lands and water 

bodies, topographic complexity and land cover, and travel time to ski areas. Migrants’ location 

choices are also influenced by climate so the following variables are included: average and 
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extreme summer and winter temperatures, precipitation (rain and snow), and hours of sunshine 

(Albouy et al. 2013; Deller et al. 2001; McGranahan 1999, 2008; Rappaport 2007; Rappaport 

and Sachs 2003). Using the New West index, I create a binary New West indicator variable, 

which categorizes census tracts as New West or Old West. I then interact the New West indicator 

variable with a climate factor variable, a vector of natural amenities, and remoteness factor 

variable. Interacted variables reveal the heterogeneous effects of location-specific characteristics 

on population change in New West versus Old West locations.  

 

2  Literature Review 

2.1  Traditional Drivers of Population Migration 

Traditional microeconomic theory views migration as a response to spatial disequilibria resulting 

from differences in economic opportunities. In other words, households migrate to areas with 

higher real wages or greater job opportunities while firms locate to areas with lower wages and 

rents (Carlino & Mills, 1987). Thus, in order to maximize utility, a household must first consider 

the costs of moving, including potential psychological costs (Sjaastad, 1962), and make 

decisions between alternative locations while lacking complete information.  

 

Traditional models failed to reveal the drivers of population migration from urban to rural areas 

that occurred in the 1970s because they did not account for location-specific natural amenities. 

This shift is largely attributed to an increase in overall wages, increasing households’ demand for 

quality of life factors like natural amenities (Rappaport 2007).  This prompted economists to 

consider models accounting for quality of life factors, like natural amenities, in understanding 

drivers of population migration.  

 

Expanding the traditional location choice model, Graves and Linneman (1979) developed a 

consumption theory of migration, which distinguished between traded and non-traded goods. 

They hypothesized that location specific, non-traded goods (e.g. weather and crime rates) 

influence household migration patterns. In this model, total utility is spatially constant. 

Generally, areas rich in natural amenities are expected, at equilibrium, to have lower levels of 

real wages. Households living in areas with low levels of non-traded goods are compensated 

through adjustments in real wages until locational indifference is achieved. In this view, 

migration is a product of a change in demand for non-traded goods that can be satisfied by 

moving to an alternative location. Additionally, households may earn higher wages by working 

for firms in low-amenity areas while living in high-amenity areas. Graves (1980) found that 

including climate variables, like humidity and temperature, greatly improved the predictive 
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power of gross migration flows into US cities. Graves’ (1980) findings demonstrate that 

differences in income and employment may not reflect utility differentials but capture the 

compensation required for locational indifference to be reached in the presence of location-fixed, 

non-traded goods like climate.  

 

Advancing the compensation differential model, Roback (1982) theorized that land constraints, 

and thus housing markets and land values, also determine the locational distribution of workers 

and firms. If firms and workers have identical preferences, they cannot occupy the same space; 

thus, both land and labor markets must clear as households and firms compete for scarce sites. In 

other words, Roback’s spatial equilibrium model asserts that utility is equalized across locations 

through wage differentials, land costs, or housing (i.e. rent or wages or both). Accounting for 

climate variables, like number of clear days and total snowfall, Roback (1982) finds that regional 

wage differences in the US are largely explained by local amenities. These theoretical 

equilibrium models are critical in highlighting the importance of including amenity variables 

when considering drivers of population migration.  

 

2.2  Natural Amenity Drivers of Population Migration 

In the early 1900s, firms relied heavily on the location of raw materials and transport links, like 

ports and rivers, in making location choices. In areas of high population density, where housing 

costs were higher, firms offered higher wages. In turn, households making location decisions 

began moving from rural to urban areas seeking higher wages and better employment 

opportunities. However, rising incomes led to shifts in household preferences for quality of life 

factors, like natural amenities. The advent of air conditioning also shifted migration patterns as 

air conditioning allows people to comfortably reside in areas with hot or humid climates 

(Rappaport 2007). Additionally, technological advances enabling telecommuting, make firms 

and households less location dependent and allow households to earn higher wages while living 

in high amenity areas.  

 

These developments, paired with the economic decline in natural resource extraction, have 

transformed demographic composition of the US as people migrate to areas rich in natural 

amenities. In the early 1990s, rural areas experienced population growth of over one million 

people (Deller et al. 2001). From 1970-2000, counties rich in natural amenities experienced 

greater rates of population growth than counties with few natural amenities (McGranahan 1999; 

Rickman and Rickman 2011; Dearien, Rudzitis, and Hintz 2005).  
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An abundance of empirical literature identifies natural amenities as critical drivers of population 

change (McGrannahan, 1999; Deller et al., 2001; Rickman & Rickman, 2011). Researchers have 

explored the role of natural amenities on quality of life (Rappaport 2007), economic 

development (Deller et al. 2001), and population change (McGranahan 1999). Some efforts have 

been made to develop a standard set of natural amenities in explaining the aforementioned 

phenomena. Notably, in investigating population growth in rural US counties, McGranahan 

(1999) developed a now widely used natural amenity index identifying counties rich in natural 

amenities, while Deller et al. (2001) designed five broad indices to explain the role of amenities 

on population change and rural economic growth in rural US counties. McGranahan’s (1999) 

index identifies mild climate, varied topography, and proximity to surface water as the primary 

variables driving population change. Deller et al (2001) finds that all five indices; climate, 

developed recreational infrastructure, land, water, and winter variables influence population 

change, with the climate index accounting for 46% of the variation in population change.. 

McGranahan (1999) does warn that the natural amenity index performs better across US regions 

rather than within US regions.  

 

While natural amenity indices may be a useful approach in investigating population migration 

patterns across large geographic regions, researchers generally focus on particular types of 

amenities of smaller geographic areas. Natural amenities may vary considerably by geographic 

region but key natural amenity variables are climate, water, topography, land cover, and public 

lands.   

 

Climate Amenities 

Households derive nonpecuniary utility from natural amenities. Economists calculate the value 

of climate amenities as total wages a household is willing to forego plus additional costs they are 

willing to pay to live in a place with a desirable climate. Estimating a household’s trade-off of 

wages for climate amenities reveals that households have an affinity for moderate temperatures, 

like cooler and less humid summers (Rappaport 2007; Sinha and Cropper  2013; Albouy et al. 

2013; Cragg and Kahn 1999). Sinha and Cropper (2013) found that households were willing to 

pay for less snowfall, reinforcing Rappaport’s (2007) findings that population growth increases 

as average daily maximum winter temperatures rise above the sample mean of 41ºF. However, 

some aspects of climate are perceived as disamenities. While rain is a disamenity, researchers 

find that its impact on population change is not as significant as increases in summer temperature 

and humidity (Rappaport and Sachs 2003; Rappaport 2007). Individuals’ preferences for 

moderate temperatures contribute to population growth along coasts, which tend to moderate 

extreme temperatures (Rappaport and Sachs 2003).  
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Coasts & Water Bodies 

The empirical literature finds that coastal proximity is strongly correlated with population growth 

(Rappaport and Sachs 2003). Historically, population densities were concentrated along the coast 

as firms located there for access to raw materials and transportation routes. However, after 

controlling for initial conditions, weather, and topography Rappaport and Sachs (2003) find that 

coastal population density, though historically driven by a productivity effect, are becoming 

more concentrated due to quality of life effects. Specifically, they find that counties adjacent to 

the Pacific Ocean have an expected population density of 1.4 times that of other counties (where 

the Pacific coast is the closest coast). Investigating household climate preferences, Sinha and 

Cropper (2013) and Albouy et al. (2013) use distance measures to the nearest coast. Sinha and 

Cropper (2013) find that distance to coast is sensitive to the model specification while Albouy et 

al. (2013) find that proximity to coasts contributes to a household’s quality of life.  

In addition to coastal proximity, access to lakes and rivers provide migrants with aesthetic and 

recreation value. McGranahan (1999, 2008) and Poudyal et al. (2007) use the proportion of water 

area in each county and find that water is highly correlated with county-level population change. 

Using principal component analysis, Deller et al. (2001) develop a vector of water variables and 

find that counties with highly developed water resources (e.g. marinas and guide services) tend 

to score higher on the water variable measure, suggesting these counties are more likely to 

experience population growth.  

 

Topography  

Topographic variation represents the variation in land formations ranging from plains and 

grassland to hills and mountains (Deller et al. 2001; McGranahan 1999). Empirical research 

finds that topography variation or complexity, positively influences population change 

(McGranahan 1999, 2008; Deller et al. 2001; Rappaport and Sachs 2003; Rappaport 2007; 

Rickman and Rickman 2011). In fact, in ranking counties by presence of natural amenities, 

Rickman and Rickman (2011) find that topographic variation is most correlated with a high 

amenity ranking. Rappaport and Sachs (2003) found that topography and coastal proximity were 

highly correlated, thus; topography significantly contributed to the high population density on 

the Pacific coast. Given the demonstrated importance of topographic variation, it is reasonable to 

expect this amenity to be a significant driver of population change in the northwestern United 

States, which is particularly mountainous.  
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Public Lands 

In a survey of migrants to high-amenity counties, Rudzitis (1996) found that counties with 

Wilderness Areas experienced three times the population growth relative to the national average.  

Rasker and Hansen (2001) find that Wilderness Areas, National Parks, and wildlife refuges are 

significant drivers of population change in rural counties. Johnson and Beale’s (2002) finding 

reinforce the importance of National Parks. They find that non-metropolitan counties with 

National Parks experience higher rates of population growth than the national average. Deller et 

al. (2001) finds that mountains, Forest Service land, and National Forest are positively associated 

with population growth.  

 

Land Cover 

There is evidence that inmigrants are drawn to particular types of land cover. Deller (2001) finds 

a positive correlation between grasslands and population growth. Using a simple measure of 

forest cover, percent of county with forest cover, Rasker and Hansen (2000) find positive 

correlation with forest cover and population growth in rural counties in the Greater Yellowstone 

Area. Exploring a more nuanced measure of forests, McGranahan (2008) finds that the impact of 

forests on population change is quadratic. For instance, counties with little to no forests generally 

experienced out-migration while counties composed of more than 90% forest experienced low 

rates of inmigration. It appears that households prefer moderate levels of forest mixed with open 

land; counties that were 45-60% forest experienced higher rates of inmigration. Thus, the simple 

presence of an amenity is not always a sufficient measure of its significance.  

 

2.3  Cultural and Demographic Drivers of Population Migration 

Location-specific natural amenities contribute to quality of life factors, influencing population 

migration. Similarly, cultural and demographic characteristics of a place may drive population 

change. Certain types of migrants may be attracted to areas with art galleries and restaurants or 

areas with people who share similar political views, education levels, or cultural backgrounds.  

 

In introducing the ideas of the “creative class” and the bohemian index, Florida (2002a; 2002b) 

asserts that regional development in metropolitan areas is influenced by innovative ideas and 

knowledge, which are more prevalent in certain occupations (e.g. finance and entertainment). 

Florida (2002b) finds that the presence of the bohemian class, a subset of the creative class, is a 

strong predictor of population growth. Furthermore, Florida (2002b) argues that the bohemian 

index (a measure of authors, musicians, artists, etc.) is a superior measure of cultural amenities 

than museums and restaurants, as it accounts for the actual producers of cultural amenities. Thus, 
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Florida argues that a certain demographic mix may improve quality of life in a given location, 

promoting population growth.  

 

Other demographic indices have also been developed to capture the complex composition of 

location-specific attributes that make a place interesting and “cool” to live. For instance, ethnic 

diversity and melting pot indices capture the cultural diversity of a region, which some migrants 

view as an amenity because greater ethnic diversity is associated with a broader range of foods, 

experiences, and entertainment (Florida 2002a; Olfert and Partridge 2011). Ultimately, these 

demographic indices represent the mix of people that create interesting places to live, 

contributing to quality of life and attracting further inmigration. 

 

Extending Florida’s work, McGranahan and Wojan (2007) and Olfert and Partridge (2011) more 

narrowly define the creative class and extend their analysis to include both rural and urban 

counties. Olfert and Partridge (2011) find that ethnic diversity has a positive and significant 

relationship to employment shares of the culture class, a subset of the creative class, but only in 

urban areas in Canada and not rural areas. However, this analysis, while incorporating climate 

variables, does not account for natural amenity variables, which also influence location choices. 

Accounting for natural amenities, McGranahan and Wojan (2007) find that the creative class is 

indirectly related to net migration in rural counties in the US. In fact, the authors find that the 

creative class is drawn to areas rich in natural amenities, particularly in the Mountain West. 

Specifically, the authors find the creative class is growing most rapidly in counties with 

mountains, a mix of forest and open area, little cropland, and sunny winters. Given this trend, it 

is reasonable to expect rural areas in my study area with both natural amenities and creative class 

demographic mix to experience population growth. 

 

The New West  

In the past several decades areas in the western US have witnessed an economic shift away from 

natural resource extraction and manufacturing towards a service economy (Brown and Deavers 

1988). The New West framework also accounts for industry composition of a location’s 

economy. While New West locations are rich in natural amenities, they are not dependent on 

resource extraction for economic development (Winkler et al. 2007). Old West areas tend to rely 

on extractive industry employment (e.g. mining or logging) or are areas that remain relatively 

undeveloped (Winkler et al. 2007).  

 

Another distinguishing characteristic of these categories is the demographic composition of New 

West and Old West. New West areas tend to attract migrants with higher education levels, higher 
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income levels, and work in the professional services industry. Relative to New West areas, Old 

West areas tend to have populations with lower incomes and lower educational attainment. In 

categorizing areas as New West or Old West, Winkler et al. (2007) use a set of variables in 

defining the New West that overlap with attributes of the creative class. Namely, New West 

places tend to have people employed in finance, insurance, real estate (FIRE) and tourism 

industries. The creative class, as defined by both Florida (2002a) and McGranahan and Wojan 

(2007), include individuals employed in finance and arts and entertainment. Additionally, in both 

the New West and in the creative class, individuals tend to be college educated with preferences 

for amenity-rich areas, particularly areas containing public lands (Florida 2002a, 2002b; 

McGranahan and Wojan 2007; Winkler et al. 2007). This suggests that the drivers of population 

change in New West places, relative to Old West places, are in part influenced by the 

contribution of demographic diversity, which provides additional quality of life, thereby 

inducing population growth.  

 

Spatial disequilibrium models, which account for location-specific amenities assume quality of 

life factors are equalized across space. Migration is induced by a change in preferences for 

location-specific amenities that contribute to quality of life. Natural amenities are well-

established drivers of population growth but what remains unclear are the impacts of natural 

amenities on population growth in areas with different demographic and cultural compositions, 

or New West and Old West places. Given that demographic and cultural mixes differ in New 

West and Old West locations, it is reasonable to assume that these groups of people have 

heterogenous preferences of location-specific amenities. Drivers of population growth in New 

West places versus Old West places may be due to a new type of rural growth induced by a 

specific mix of natural and cultural amenities.  

 

3  Study Area 

The study area (Figure 1), in the northwestern United States, consists of 2,836 census tracts in 

Washington, Oregon, Idaho, Wyoming, Colorado, Utah, and Montana. The study area contains 

several ecoregions, which vary in biophysical conditions, climate, and topographic complexity 

(USGS). The largest tracts of wildlands in the contiguous US, the Rocky Mountains and Cascade 

Ranges, are found in our study area (Wade and Theobald 2009). This region is rich in natural 

amenities and offers exemplary scenic and recreational opportunities in like the Columbia River, 

Yellowstone National Park, Sawtooth Mountains in Idaho, and Olympic National Park in 

Washington. These natural resources support biodiversity and provide ecosystem services to this 

region. The boundaries of the study area are ecological, rather than municipal, because I am 
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interested in capturing the effects of natural amenities on population growth in rural mountainous 

areas. Eastern Montana, Colorado, and Wyoming are not mountainous and are thus excluded 

from the study area.  

 

   

Figure 1: The Study Area Located in the Northwestern US. 

 

 

4  Data 

I use spatial data from multiple sources to measure the influence of climate, remoteness, 

demographic, and natural amenity variables on population change at the census tract-level. 

Census tract boundaries are standardized to 2010 census tract boundaries, allowing intertemporal 

comparisons across decades. Analysis at the census tract-level reduces aggregation bias often 

associated with county level analysis, as counties tend to be more heterogeneous than census 

tracts (Crandall and Weber 2004). I use GIS software, ESRI ArcGIS, R, and Stata to link 

demographic, economic, and amenity data to census tract boundaries, capturing characteristics of 

resident households and biophysical and geographic features of land. Spatially explicit data 
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allow for econometric analysis that captures spatial relationships of attributes. All spatial 

variables and indices included in my model are mapped and presented in the Appendix.  

 

The full study area contains 2,836 census tracts and is approximately 1,052,164 square 

kilometers in size. However, because public lands constitute roughly 60% of the study area, this 

inherently restricts where individuals may migrate. For example, an individual cannot migrate to 

Yellowstone National Park. Thus, only private land in the study area was used for analysis. I 

used an Albers equal-area conic projection which provides a more accurate measure of area by 

minimizing distortion, particularly for lands extending east to west, like my study area. I 

calculated census tract average values for all spatial variables, like forest complexity and 

distance to a national park, and population density using private land area in ArcGIS. Calculating 

variables using private land area provides a more precise measure of the characteristics of places 

where people may live. Private land area was calculated by fitting the private land data to the 

study area, yielding 2,803 census tracts with a total area of 416,401 square kilometers (Figure 2).  

Raster files are spatial files that contain data stored in pixels. A given census tract may contain 

thousands of pixels, translating to thousands of data points. For instance, a raster file measuring 

the distance to the Pacific Coast contains millions of pixels for this study area. Each pixel has a 

value measuring the distance, in minutes, to the Pacific Coast. This raster layer is then fitted to 

the private land area of a census tract where the average distance to the Pacific Coast is then 

calculated using the Spatial Analyst tool in ArcGIS. This process is repeated for all spatial 

variables used in the model.  

 

My research focuses on rural population growth; as such, urban census tracts are omitted from 

my study area. The Economic Research Service of the USDA provides a rural-urban continuum 

which identifies areas as urban or rural. However, this continuum is only available at the county 

level and not the census tract level (Figure 3). So, I dropped census tracts with initial population 

density in 1990 that were greater than 500/km2. The 500/km2 population density threshold 

eliminates highly urban census tracts from the study area, leaving 1,513 total census tracts 

(Figure 4).  
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Figure 2: Distribution of Private Land Area. 
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Figure 3: County-level distribution of the rural-urban continuum. 
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Figure 4: Distribution of Urban Census Tracts Removed from the Sample. 
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5  Variables 

Demographic and economic data for 1990 and 2000 are purchased from Geolytics. Census tract 

boundaries are adjusted, consolidated or split, every ten years according to population growth or 

decline, with the optimum population of 4,000 people (US Census Bureau 2010). Approximately 

35% and 31% of all US census tract boundaries changed from 1990-2000 and 2000-2010 

respectively (Logan, Xu, and Stults 2015). For example, a census tract in 1990 or 2000 that 

experienced population growth may be divided into two separate tracts in 2010. Conversely, if a 

census tract in 1990 or 2000 experienced population decline, it is consolidated into another 

tract(s). Figure 5 illustrates the different ways a given census tract change over time.  Changing 

boundaries clearly complicates analysis at the census tract-level. 

 

Figure 5: Three ways census tracts may merge or split. 

 

 

The Geolytics data are normalized to 2010 census tract boundaries, allowing intertemporal 

comparisons. Geolytics normalizes the 1990 and 2000 census data at the census block group 

level, the smallest geographic level where the full US Census Long Form data is available.  

Census blocks, which are smaller than census block groups, are used to track merges or splits 

within a census block group. When census blocks split, the demographic information must be 

reallocated between these two blocks. A weight is created to determine the distribution of 

demographic values by analyzing the presence of streets of a census block in 1990. Street 

presence is used because it is assumed that this is where people are located. So, if a census block 

splits, the half that had more streets in 1990 is assumed to have a higher population density and 

is weighted more heavily. Census blocks with greater weights will be allocated more of the 
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demographic values. The weight is then used to split or merge demographic data for blocks that 

have changed from 1990 to 2000. This same method is for census tracts.  

 

 

5.1  Dependent Variable 

The dependent variable is percent change in total tract population from 1990 to 2010. Population 

data are obtained from Geolytics, which estimate population data using the U.S. Census Bureau 

(Long Form: SF3). The log of population levels is used to calculate the percent change in 

population of a given census tract. Population densities, measured as the population per square 

kilometer of private land are reported in Table 1. While the median population densities of 

census tracts in 2000 and 2010 are less than the 1990 median value, the standard deviation is 

much greater, meaning the variation in population densities of census tracts was greater in 2000 

and 2010.  

 

 

Table 1: Summary Statistics of Population Density.  

Population Density (km2) Mean Median Std. dev. Min Max 

Pop density: 1990 161.06 154.47 74.73 0.1 432.1 

Pop density: 2000 158.96 50.14 247.18 0.0 2365.3 

Pop density: 2010 213.21 57.50 359.16 0.0 4217.0 

Observations 1513 1513 1513 1513 1513 

 

5.2  Independent Variables 

Table 2 describes the climate variables included in the model. Climate variables were obtained 

from the PRISM database for the year 1989, as 1990 was not available (PRISM Climate Group). 

Quadratics for climate variable are included, as nonlinear relationships often exist. For instance, 

population may increase in areas with warmer summers but beyond a temperature threshold 

warmer summer temperatures become a disamenity, deterring population growth. The winter 

temperature variable is the mean minimum temperature for January averaged over all days in the 

month while the summer temperature variables is the mean maximum temperature for July, 

averaged over all days in the month. Humidity is a measure of the daily minimum vapor pressure 

deficit, averaged over all days in the month, measured in kilopascals (kPa) with a kPa greater 

than 1.0 representing low humidity.  
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Table 2: Climate Variables Description and Summary Statistics. 

Climate 

Variable 

Description Unit of 

measurement 

Mean Std. 

dev. 
Min Max 

Winter 

temperature 

Mean minimum 

temperature for January 

˚C -4.51 5.47 -19.1 3.9 

Summer 

temperature 

Mean maximum 

temperature for July 

˚C 26.22 3.06 0.0 32.9 

Humidity Mean minimum vapor 

pressure deficit 

Kilopascal 

pressure unit  

(low value -> 

high humidity) 

0.82 0.72 -0.5 3.4 

Summer 

precipitation 

Mean precipitation for 

June-Sept 

Millimeters  35.85 16.22 0.0 111.0 

Annual 

precipitation 

Mean annual precipitation 

  

Millimeters  843.83 554.03 0.0 3320.1 

Observations   1513 1513 1513 1513 

 

The literature demonstrates that migrants prefer more moderate temperatures (McGranahan 

1999: Sinha and Cropper 2013; Rappaport 2007; Poudyal et al. 2008; Deller et al 2001; Albouy 

et al 2013). It is common to use a simple mean to measure winter and summer temperatures 

(Koirala and Bohara 2014; Sinha and Cropper 2013; Deller et al. 2001; McGranahan 1999). 

However, measuring the extremes of winter and summer temperatures may reveal household’s 

preferences or distaste (disamenity) for more extreme temperatures.  

 

Using factor analysis, a climate amenity index is created to capture different types of climates in 

the study area. Factor analysis uses observable and correlated variables to capture latent 

characteristics of the study area while reducing a set of explanatory variables to a single scalar 

measure. Factor analysis assumes observed variables are linearly related to underlying factor 

variables and are thus weighted linearly. An eigenvalue measures the amount of variance that is 

accounted for by the factor. Generally, an eigenvalue greater than 1.0 suggests a sufficient 

relationship between latent factors and observed variables. Factor 1, with an eigenvalue of 3.2, 

suggests that Factor 1 explains more of the variation of the climate index than the other factors, 

which have significantly lower values (Table 3). Factor loadings represent how variables are 

weighted. All the climate variables included in the index are weighed heavily, with summer 

temperatures and humidity being negative. Table 3 shows that a negative factor analysis score is 

associated with more moderate, humid, and wet climates while positive scores capture drier, 

warmer climates. This is expected as the study area contains coastal areas, where higher rates of 

precipitation and more moderate temperatures are expected relative to the rest of the study area. 

The distribution of climate types, illustrated in Figure 4, demonstrate clear spatial patterns 
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among census tracts with more wet and moderate climates concentrated near the Pacific Coast 

and drier, cooler climates dominating the inland area.  

 

 

Table 3: Climate variable factor loading and scores for private lands with pop density < 500. 

         Factor     Eigenvalue   Difference        Proportion      Cumulative 

----------------------------------------------------------------------------------------------------------------------------- --------------------------- 

        Factor1        3.19295      2.62932            0.8546           0.8546 

        Factor2        0.56363      0.34558            0.1509           1.0055 

        Factor3        0.21805      0.31356            0.0584           1.0638 

        Factor4       -0.09550      0.04744           -0.0256          1.0383 

        Factor5       -0.14294            .                  -0.0383          1.0000 

----------------------------------------------------------------------------------------------------------------------------- --------------------------- 

Factor loadings (pattern matrix) and unique variances 

------------------------------------------------------------------------------------------------------------------------------------- ------------------- 

        Variable            Factor1    Factor2   Factor3    Uniqueness  

--------------------------------------------------------------------------------------------------------------------------------------------------------  

    Annual precip           0.8939     0.0483    0.2756       0.1227   

    Summer precip        0.7214    -0.4928    0.1470      0.2150   

    Summer temp         -0.8414     0.1336    0.2536      0.2098   

    Winter temp            0.6468      0.5414    0.0821      0.2818   

    Humidity                  -0.8644    -0.0864    0.2223      0.1960   

--------------------------------------------------------------------------------------------------------------------------------------------------------  

Scoring coefficients (method = regression) 

----------------------------------------------------------------------------------------------------------------------------- --------------------------- 

        Variable           Factor1       Factor2       Factor3  

----------------------------------------------------------------------------------------------------------------------------- --------------------------- 

    Annual precip           0.40746     0.20296      0.87694  

    Summer precip        0.11483     -0.70132     0.12672  

    Summer temp         -0.25538     0.14652      0.48366  

    Winter temp            0.08906      0.51536      0.00798  

    Humidity                  -0.24724    -0.13075      0.52840  
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Natural Amenities  

Proximity to a natural amenity, like a national park, does not always translate to accessibility, 

particularly in mountainous regions with few roads. For instance, a park entrance may be located 

hours from an individual’s home despite Euclidean proximity. Rather than using a simple 

Euclidean measure of distance, distances were calculated using cost distance. Cost distance of 

travel time, in minutes, was calculated in ArcGIS using Dijkstra’s cost distance algorithm, which 

calculates the shortest path between a given point and all other points. Cost distance calculations 

assume: a) travel in a car, assuming speed limits are followed, b) anisotropic frictions, whereby 

travel time may vary according to slope (e.g. takes longer to travel uphill than downhill). Thus, 

cost distance provides a more accurate measure of access to a natural amenity. Cost distances 

were measured by clipping raster data to 2010 census tract boundaries. Each pixel in the raster 

data contains a value for travel time. The raster data were clipped to the private land area and 

average travel time for a census tract was calculated using the Spatial Analyst Tool in ArcGIS. 

All natural amenity variables, except for distance to ski resorts, were calculated and measured 

using this approach. 

 

Public land variables are derived from Theobald’s (2014) National Land Use dataset. Public 

lands provide attractive viewsheds and opportunities for recreation and have been demonstrated 

to attract migrants (Dearien et al. 2005; Rudzitis and Johansen 1989; Deller et al. 2001). As such, 

Forest Service (USFS), Fish and Wildlife Service (USFWS), and National Park Service (NPS), 

and some Bureau of Land Management (BLM), lands are included in the model. BLM lands tend 

to have small, if any, impacts on population change (Deller et al. 2001). However, National 

Monuments and Wilderness Areas fall under the jurisdiction of the BLM and so these BLM 

lands are included. Cost distance to public lands were calculated in the methods described in the 

preceding paragraph.  

 

Topographic complexity, derived from a USGS digital elevation map, captures the variation of 

land formations within a tract. Topographic complexity is calculated as the standard deviation of 

elevation of the center cell from the mean of all cells within a moving radius of 5.6km. A radius 

of 5.6km was used as it represents an ecologically relevant scale (Theobald et al. 2015). In other 

words, this radius captures the nuances of a location; a larger radius would smooth out 

heterogeneous features. More varied landscapes are considered attractive regions for migrants 

(McGranahan 1999). As such, tracts with greater topographic complexity are expected to 

experience higher rates of population growth relative to tracts with less topographic complexity.  
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Forest pattern is derived from the 1992 National Land Cover Database (Vogelman et al. 2001) 

and calculated as the standard deviation of the center cell to the mean of all cells within a moving 

radius of 5.6km. Since 1990 forest pattern data are not available, the closest year, 1992, was used 

to capture forest pattern conditions. Average values for forest complexity were calculated at the 

census tract level at a 90-meter resolution; cells were classified as forested or not forested. 

Larger standard deviations represent greater variation in forest pattern. Forest classes include no 

forest, coniferous, deciduous, and mixed forest (some combination of coniferous and deciduous). 

McGranahan (2008) finds that individuals are not simply attracted to the mere presence of a 

forest but rather a dynamic forest landscape, including composition of different tree species and 

heterogeneous patterns of forest and non-forest. Measuring the forest pattern of a tract, rather 

than a simple percent measure, provides a more nuanced understanding of how forest amenities 

influence population migration.  

 

Average tract cost distances to water bodies equal to or greater than 1km2 in size are calculated 

as travel time in minutes. Water body data are obtained from the USGS: National Hydrography 

Dataset (https://nhd.usgs.gov). Past research measures the water bodies as a percent of water in a 

given area (McGranahan 2008). However, using a simple area measure does not account for 

accessibility of water amenities or water in other tracts. Cost distance measures to water bodies 

will provide a more nuanced understanding of how migrants value water amenities like lakes and 

rivers.  

 

Ski resorts provide recreational opportunities and are expected to influence population growth 

(Deller et al. 2001). Distance to ski resorts is measured as the Euclidean distance, in meters. 

Again, census tract averages for distance were calculated by clipping the ski resort raster data to 

the study area polygons and calculating tract averages using the Spatial Analyst Tool in ArcGIS. 

Though cost distance measures are preferred, time constraints did not allow for this calculation. 

Ski resort data are derived for 2007, the most recent available, from the National Weather 

Service: National Operational Hydrologic Remote Sensing Center 

(http://www.nohrsc.noaa.gov/gisdatasets). 

 

 

 

 

 

 

 

https://nhd.usgs.gov/
http://www.nohrsc.noaa.gov/gisdatasets
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Table 4: Natural Amenity Variable Description. 

Natural Amenity Description Data Source and Year 

Pacific coast Cost distance to the Pacific coast (minutes) USGS: TIGER 

Water bodies Cost distance to water bodies 1km2 or larger (minutes) USGS: TIGER 

Topographic Complexity Captures landscape complexity using variation in 

elevation within a tract 

USGS 

 

Forest Complexity Captures the heterogeneity of a forest pattern by 

accounting for different forest types 

USGS: National Land 

Cover Data (1992) 

Ski Resorts Euclidean distance to nearest ski resort in meters National Weather Service: 

NOAA (2007) 

Public Land Cost distance to BLM, FS, and USFWS land (minutes) Theobald (2014) 

NPS Cost distance to National Parks (minutes) Theobald (2014) 

 

 

 

Table 5: Summary Statistics of natural amenity variables. 

Natural Amenity Variables 

(Measured as Distance in Minutes) 

Mean Std. dev. Min Max 

Public Land  47.39 39.10 0.3 262.8 

NPS  244.97 132.82 2.0 804.2 

Ski Resort 70338.60 43473.74 1436.8 254965.0 

Forest Complexity 32.47 15.66 0.1 49.0 

Topographic Complexity 5498.39 4125.32 105.9 24215.0 

Waterbody 70.12 76.02 0.5 743.2 

Observations 1513 1513 1513 1513 

 

The Pacific Coast raster data, measuring cost distance to the Pacific Coast, did not extend 

beyond 300,000 meters (Figure 6). Thus, to measure the impact of coastal proximity on 

population change for the entire study area, a categorical variable was created. The categorical 

variable for Pacific Coast ranges from 0-4: 4 representing census tracts less than 166 minutes to 

the coast; 3 being 166-370 minutes, 2 being 371-746 minutes, 1 being 746-22,821 minutes; and 0 

being greater than 22,821 minutes. Areas without data for coastal proximity were categorized as 

having no effect on population change, category 0. These distance thresholds were based on 

reasonable cost distances an individual would travel to the coast. The distribution of the 

categorical Pacific Coast variable is illustrated in Figure 7 with frequencies reported in Table 6.  
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  Figure 6: Original Measure of Proximity to Pacific Coast (Cost Distance in Minutes). 

 

 

 

Table 6: Frequency of Pacific Coast Categories at the Census Tract Level. 
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Figure 7: Distribution of Pacific Coast Categorical Variable: Cost distance in minutes. 

 

 

Following Winkler et al. (2007) I created a New West index using the following variables: 1) 

Percent of inmigrants from out-of-state; 2) percent of workers employed in finance, insurance, or 

real estate (FIRE); 3) percent of workers employed in extractive industries; 4) percent of all 

housing units used for seasonal or recreational use; 5) percent of all specified owner occupied 

housing units valued at $200,000 or more; 6) percent of people age 25 and over with a 

Bachelor’s degree or more; and 7) percent of workers employed in tourism industry (arts, 

recreation, food service). New West variables are derived from the US Census Bureaus (Long 

Form: SF3). Housing values are divided into four ranges and five homeowner-use categories 

with the expectation that higher housing values will be associated with New West tracts. The 

FIRE industry (finance, Insurance, Real Estate, and Rental and Leasing) and tourism industry 

variables identify New West tracts while the extractive industry variable is associated with Old 

West tracts. New West tracts are expected to experience higher rates of inmigration from out of 

state migrants while having higher levels of educational attainment, seasonal housing, and people 

employed in FIRE industries.  
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Following Winker et al. (2007), I create a New West continuum, ranging from Classic Old West 

to Model New West, to categorize each census tract. Table 7 describes explanatory variables 

used to determine how population growth may vary between New West and Old West census 

tracts. The New West Index captures the demographic and housing characteristics, and economic 

emphasis of a tract (e.g. extractive industry, finance, etc.).  

 

I used factor analysis to construct a New West factor score for each census tract. Using the factor 

scores, I created two New West indicator variables, 1) a binary New West variable that identifies 

a tract as either New West or Old West and 2) a four-level New West variable that identifies a 

tract as either Classic Old West, Old West, New West, and Model New West. Factor analysis 

results are reported in Table 8. All variables in the New West index yield positive scoring 

coefficients except percent of individuals employed in extractive industries. Percent of 

individuals with Bachelor’s degrees or higher has the strongest effect on the factor score, 

followed by percent of individuals employed in FIRE industries and housing value greater than 

$200,000. Thus, census tracts with positive factor scores represent New West tracts while 

negative factor scores capture Old West tracts. 
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Table 7: Descriptive and Summary Statistics for New West Variables: 1990. 

New West 

Variables 

Measure 

(Percent %) 

Description Mean 

(%) 

Std. dev. Min Max 

Education 

Attainment 

Percent of population with a 

bachelor’s degree or higher 

Highest level of education 

attained 

25.20 15.09 3.6 100 

Housing Value  Percent of housing values > 

$200,000 : home owner use 

categories: Owner-occupied, 

Vacant, Seasonal, Occasional 

Use, Recreational 

Housing Value Ranges: 

1. $200,000-$299,999 

2. $300,000-$499,999 

3. $500,000-$999,999 

4. ≥ $1,000,000 

 

49.71 11.70 14.0 100 

Extractive 

Industry 

 

Percent of population 

employed in the extractive 

industry 

Employment in Agriculture, 

Forestry, Fishing, Hunting, or 

Mining 

 

5.44 11.71 0.0 98.4 

FIRE Industry Percent of population 

employed in the FIRE 

industry 

Employment in Finance, 

Insurance, Real Estate, 

Rental and Leasing 

4.71 2.62 0.0 16.4 

Tourism 

Industry 

Percent of pop employed in 

tourism  

Employed in Arts, 

Entertainment, Recreation, 

Accommodation, Food 

Services 

 

9.77 9.97 0.0 100 

Housing Units Percent of houses being used 

seasonally 

 

Housing units being used 

occasionally or seasonally 

1.38 1.49 0.0 17.6 

Inmigration Out 

of State 

 

Percent of population that 

have moved from a different 

state  

People that lived in a 

different house in 1995 (in 

the US) 

 

26.13 28.78 0.0 100 

Observations   1,513    
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Table 8: New West factor loadings and scores. 

----------------------------------------------------------------------------------------------------------------------------------------------------- 

         Factor     Eigenvalue   Difference        Proportion   Cumulative 

    ----------------------------------------------------------------------------------------------------------------------------------------------------- 

        Factor1        1.89414      1.43327            1.0551       1.0551 

        Factor2        0.46087      0.39487            0.2567       1.3118 

        Factor3        0.06599      0.11998            0.0368       1.3485 

        Factor4       -0.05399      0.09770           -0.0301       1.3185 

        Factor5       -0.15168      0.03518           -0.0845       1.2340 

        Factor6       -0.18686      0.04631           -0.1041       1.1299 

        Factor7       -0.23318            .                  -0.1299       1.0000 

    ----------------------------------------------------------------------------------------------------------------------------------------------------- 

Factor loadings (pattern matrix) and unique variances 

  ----------------------------------------------------------------------------------------------------------------------------------------------------- 

        Variable              Factor1      Factor2   Factor3    Uniqueness  

    ----------------------------------------------------------------------------------------------------------------------------------------------------- 

    Pct Seasonal Housing           0.1216       0.4571     -0.0340       0.7751   

    Pct Employed Tourism         0.4293       0.2647     -0.0918       0.7372   

    Pct Employed Extraction     -0.4501      0.3214      0.1203       0.6797   

    Pct Employed FIRE                0.6538     -0.2019     -0.0529       0.5290   

    Pct Housing Value > 200k    0.6294      0.0386      0.1441        0.5816   

    Pct Born out State        0.4014      0.1901     -0.0846        0.7956   

    Pct Bachelor’s Degree          0.7126      0.0096      0.1060        0.4809   

    ----------------------------------------------------------------------------------------------------------------------------------------------------- 

Scoring coefficients (method = regression) 

    ----------------------------------------------------------------------------------------------------------------------------------------------------- 

        Variable           Factor1      Factor2      Factor3  

    ----------------------------------------------------------------------------------------------------------------------------------------------------- 

    Pct Seasonal Housing           0.04362      0.32944     -0.04062  

    Pct Employed Tourism         0.14118      0.21578     -0.11141  

    Pct Employed Extraction    -0.14808      0.25899      0.14308  

    Pct Employed FIRE                0.27089    -0.19981     -0.09293  

    Pct Housing Value > $200k  0.23692     0.04478       0.18586  

    Pct Born out State         0.12160      0.14935     -0.09652  

    Pct Bachelor’s Degree         0.32498      0.02352      0.15633  
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I used factor analysis to calculate a measure of remoteness for each census tract. Remoteness 

captures the degree to which a census tract has access to urban centers and transportation 

networks. Census tract averages of cost distances, in minutes, to roads, and urban centers of 

different sizes are included to account for traditional drivers of population growth. Railway data 

for 2015 are obtained from the Department of Transportation and measured as average Euclidean 

distance, in meters. Time constraints prevented me from calculating the average cost distance to 

railways. Access to railways are expected to be important in areas economically dependent on 

natural resource extraction (http://osav.usdot.opendata.arcgis.com). Highway and interstate data 

are obtained from the US Census Bureau (2010 TIGER shapefiles). Cost distances are calculated 

from the centroid of an urban center. Urban centers of one million; 250,000; 50,000; and 2,500 

people are considered for the year 2010 and obtained from the US Census Bureau. A single 

variable captures the shortest cost distance to urban centers of 250,000 people or 1 million 

people. In other words, if a pixel is located near an urban center of 250,000 and an urban center 

of 1 million people, this variable will account for the urban center with the shortest cost distance. 

Table 9 provides variable descriptions and summary statistics.  

 

Table 9: Summary Statistics: Market Access measured in cost distance (minutes). 

Remoteness Variables Description Mean Std. dev. Min Max 

Pop center: 2,500 Average cost distance from 

centroid of urban center of 2,500 

116.04 120.80 2.7 1411.5 

Pop center: 50k Average cost distance from 

centroid of urban center of 50,000 

135.74 183.16 2.4 1257.8 

Pop center:  

250k or 1 million 

Average cost distance from 

centroid of urban center of 

250,000 or 1 million  

492.50 882.47 5.0 17348.0 

Highway Average cost distance from a 

highway 

27.50 35.09 0.0 325.2 

Interstate Average cost distance from an 

interstate 

110.59 142.21 1.4 1015.6 

Rail Average Euclidean distance from 

a railway (meters) 

9603.38 14962.32 150.5 129834.3 

Observations  1,513    

 

Logged values of the remoteness variables created a more normal distribution of the data. Table 

10 reports the factor analysis results for the remoteness index using logged values of remoteness 

variables. Factor 1 is used as it has the largest eigenvalue and thus accounts for the greatest 

amount of variation. All remoteness variables are positive and weighed heavily in the factor 

loading. Log distance to urban centers of 50,000 people has the largest coefficient followed by 

log distance to highways and interstates. Thus, a positive remoteness factor score captures areas 

that are remote while negative scores capture areas close to urban areas and transportation links. 

http://osav.usdot.opendata.arcgis.com/
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Table 10: Remoteness factor loading and scores of private lands. 

   ------------------------------------------------------------------------------------------------------------------------------------------------------ 

         Factor     Eigenvalue   Difference        Proportion   Cumulative 

   ------------------------------------------------------------------------------------------------------------------------------------------------------ 

        Factor1        4.17574      4.00289            1.0105       1.0105 

        Factor2        0.17285      0.14451            0.0418       1.0524 

        Factor3        0.02835      0.07208            0.0069       1.0592 

        Factor4       -0.04374      0.02649           -0.0106       1.0486 

        Factor5       -0.07022      0.06055           -0.0170       1.0316 

        Factor6       -0.13077            .                  -0.0316       1.0000 

   ------------------------------------------------------------------------------------------------------------------------------------------------------ 

Factor loadings (pattern matrix) and unique variances 

   ------------------------------------------------------------------------------------------------------------------------------------------------------ 

        Variable     Factor1      Factor2     Factor3    Uniqueness  

   ------------------------------------------------------------------------------------------------------------------------------------------------------ 

   Highway   0.9001       -0.1679     -0.0451       0.1597   

   Interstate     0.8475        0.2307      0.0085       0.2284   

   Rail     0.7095        0.0731      0.1339      0.4734   

   Pop: 2,500     0.8337       -0.1535     -0.0095       0.2812      

   Pop: 50k      0.9270       -0.1383      0.0160       0.1213   

   Pop: 250k or 1 million      0.7679        0.2083     -0.0892       0.3590   

   ------------------------------------------------------------------------------------------------------------------------------------------------------ 

Scoring coefficients (method = regression) 

   ------------------------------------------------------------------------------------------------------------------------------------------------------ 

        Variable     Factor1     Factor2      Factor3  

   ------------------------------------------------------------------------------------------------------------------------------------------------------ 

   Highway   0.22659     -0.41274    -0.24298  

   Interstate     0.21042      0.62326     0.05283  

   Rail     0.07502      0.11136     0.24276  

   Pop: 2,500     0.12981     -0.20289   -0.01059   

   Pop: 50k      0.33906     -0.38866    0.18069  

   Pop: 250k or 1 million      0.11043      0.34623   -0.20970  
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6  METHODS 

Following Rappaport (2007), the theoretical approach for identifying the drivers of population 

migration is based on a spatial equilibrium model. I assume utility is spatially constant and 

migration occurs when household preferences for location-specific amenities change. I estimate 

the percent change in population from 1990 to 2010. The percent change in population (∆pop) is 

a function of remoteness (R), natural amenities (NA), climate variables (C), and New West 

characteristics (NW):  

 

%∆pop90to10 = f(R, NA, C, NW)  

 

However, factor mobility is imperfect and can require decades to adjust from one steady state to 

another, meaning current population density may differ from steady-state population density 

(Rappaport 2004). So, a positive partial correlation between current population density and 

independent variables may capture past, in addition to current, impacts of these variables on 

population change. Including initial population density accounts for agglomeration effects,  

allowing me to identify changes in preferences for natural amenities. Omitting initial conditions 

would bias the coefficients of explanatory variables by overstating the impact they have on 

population change 1.  

 

6.1  Ordinary Least Squares  

A cross-sectional ordinary least squares (OLS) regression model estimates the average impacts 

of natural amenities, climate, remoteness, and the degree to which a census tract is New West on 

population change from 1990-2010 (Eq. 1). The model includes the log of population density in 

1990, lnpopden90, to account for delayed agglomeration effects.  

 

Eq. (1) 

%∆𝑃𝑜𝑝90𝑡𝑜10𝑖 =  𝛽0 +  𝛽1𝑙𝑛𝑝𝑜𝑝𝑑𝑒𝑛90𝑖 + 𝛽2𝑛𝑒𝑤𝑤𝑒𝑠𝑡90𝑖 + 𝛽3𝑎𝑚𝑒𝑛𝑖𝑡𝑦𝑖 + 𝛽4𝑐𝑙𝑖𝑚𝑎𝑡𝑒89𝑖 +

 𝛽5𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠𝑖 + 𝛽6𝑠𝑡𝑎𝑡𝑒𝑠𝑖 +  𝜀𝑖    

 

                                                 
1 Initial conditions of population density in 1990 and a vector of climate variables for 1989 are included in the 

model. Ideally these variables would capture initial conditions for 1990; however, not all variables were available 

for that year. 
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The newwest90 variable is a continuous index, created using factor analysis, that captures 

differences in demographic compositions of census tracts by identifying a census tract as Classic 

Old West, Old West, New West, or Model New West. Amenity is a vector of natural amenity 

variables. Natural amenity variables measured as cost distances, like average cost distance to 

public lands, are incorporated into the model as logged values. Topographic and forest 

complexity are also included in the vector of natural amenities. The climate variable is a 

continuous index, created using factor analysis, that captures two major climate types found in 

the study area: a) wetter areas with moderate summer and winter temperatures and b) drier areas 

that experience greater fluctuations in summer and winter temperatures. Remoteness is also a 

continuous index created using factor analysis. This index includes the logged values of market 

and transportation access variables measured as cost distance in minutes, like distance to urban 

centers and highways. The coefficients of natural amenity variables estimate the changes in 

preferences for natural amenities on changes in population.  

 

The states variable is a vector of dummy variables for each state in the study area. State dummy 

variables are included to minimize endogeneity resulting from omitted variable bias. 

Endogeneity occurs when unobserved variables in the error term, 𝜀, are correlated with 

independent variables and the dependent variable, resulting in a biased an inconsistent estimator. 

State fixed effects help reduce omitted variable bias by accounting for unobserved, time-

invariant characteristics of a state, like state-level conservation and taxation policies, that may be 

correlated with the explanatory variables and influence population growth. This model also 

assumes that the error term is homoscedastic and does not suffer from autocorrelation. Robust 

standard errors are used to correct for heteroskedasticity. Even if the error term is homoscedastic, 

robust standard errors will simply yield OLS standard errors. The issue of autocorrelation is 

discussed later in this section. 

 

6.2  OLS with Interaction Terms 

I then added interaction terms to the base model to identify potential differences in population 

growth in New West versus Old West census tracts (Eq. 2). I interacted the binary New West 

variable, which identifies a census tract as New West or Old West, with the climate and 

remoteness indices and each individual natural amenity in the amenity vector. The average 

marginal effects of these interactions are computed using the margins command (dydx) in Stata. 

The marginal effects describe the impacts explanatory variables (remoteness, amenities, and 

climate) have on percent population change in New West versus Old West census tracts. For 

instance, the coefficient of the marginal effect of the binary New West variable interacted with 

forest complexity (𝛽2𝑏𝑖𝑛𝑎𝑟𝑦_𝑛𝑒𝑤𝑤𝑒𝑠𝑡90 ∗ 𝑓𝑜𝑟𝑒𝑠𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) describes how forest 
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complexity impacts the percent change in population from 1990-2010 in New West versus Old 

West census tracts. I run the same interaction model using a four-level New West variable, 

four_newwest90, to explore how explanatory variables impact percent change in population in 

Classic Old West, Old West, New West, and Model New West census tracts (Eq. 3).  

 

Eq. (2) 

%∆𝑃𝑜𝑝90𝑡𝑜10𝑖 =  𝛽0𝑖 +  𝛽1𝑙𝑛𝑝𝑜𝑝𝑑𝑒𝑛90𝑖 + 𝜷𝟐𝒃𝒊𝒏𝒂𝒓𝒚_𝒏𝒆𝒘𝒘𝒆𝒔𝒕𝟗𝟎𝒊 ∗ 𝒂𝒎𝒆𝒏𝒊𝒕𝒚 + 𝜷𝟑𝒃𝒊𝒏𝒂𝒓𝒚_𝒏𝒆𝒘𝒘𝒆𝒔𝒕𝟗𝟎𝒊 ∗

𝒄𝒍𝒊𝒎𝒂𝒕𝒆𝟖𝟗𝒊 +  𝜷𝟒𝒃𝒊𝒏𝒂𝒓𝒚_𝒏𝒆𝒘𝒘𝒆𝒔𝒕𝟗𝟎𝒊 ∗ 𝒓𝒆𝒎𝒐𝒕𝒆𝒏𝒆𝒔𝒔 + 𝛽5𝑠𝑡𝑎𝑡𝑒𝑠𝑖 + 𝜀𝑖   

 

Eq. (3) 

%∆𝑃𝑜𝑝90𝑡𝑜10𝑖 =  𝛽0𝑖 +  𝛽1𝑙𝑛𝑝𝑜𝑝𝑑𝑒𝑛90𝑖 + 𝜷𝟐𝒇𝒐𝒖𝒓_𝒏𝒆𝒘𝒘𝒆𝒔𝒕𝟗𝟎𝒊 ∗ 𝒂𝒎𝒆𝒏𝒊𝒕𝒚 + 𝜷𝟑𝒇𝒐𝒖𝒓_𝒏𝒆𝒘𝒘𝒆𝒔𝒕𝟗𝟎𝒊

∗ 𝒄𝒍𝒊𝒎𝒂𝒕𝒆𝟖𝟗𝒊 +  𝜷𝟒𝒇𝒐𝒖𝒓_𝒏𝒆𝒘𝒘𝒆𝒔𝒕𝟗𝟎𝒊 ∗ 𝒓𝒆𝒎𝒐𝒕𝒆𝒏𝒆𝒔𝒔 + 𝛽5𝑠𝑡𝑎𝑡𝑒𝑠𝑖 + 𝜀𝑖 

 

Complications in estimating the drivers of population change arise due to spatial autocorrelation. 

Tobler’s (1970) first law of geography, “Everything is related to everything else, but near things 

are more related than distant things” best describes the basic tenet of spatial autocorrelation. 

However, before I test for spatial autocorrelation, I must determine how to define “near”.  

 

6.3  Spatial Weight Matrices 

Spatial weight matrices are constructed to capture weighted averages of data by measuring the 

spatial relationship, or correlation, between all pairs of locations. For instance, the first row of 

the spatial weight matrix represents the spatial relationship between the centroid of one census 

tract and all other census tracts.  

 

However, spatial relationships can be defined in different ways. A Rook’s case adjacency (Fig. 

8) requires census tracts to share an edge, or border, with another census tract to be considered 

adjacent; whereas a Queen’s case adjacency (Fig. 9) allows census tracts to share a corner, in 

addition to edges. Because census tracts are irregularly shaped, and due to limitations on matrix 

sizes in Stata, I use an inverse-distance spatial weight. Let us assume the matrix in Figure 10 

uses an inverse-distance spatial weight. If each element, wij, depends on the distance between 

locations i and j, then the spatial weight is calculated as 1/wij. A threshold distance is often used 

to identify a distance at which weights no longer have an impact. However, with only 1,513 

census tracts in the study area, and therefore 1,513 centroids, I allow the weight matrix to 

account for all other centroids from a given location.   
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 Fig 8.            Fig. 9       Fig. 10  W = [

𝑤11 ⋯ 𝑤1𝑛

⋮ ⋱ ⋮
wn1 ⋯ wnn

] 

 

It is common practice to experiment with different weight matrices and so I use inverse distance, 

queen adjacency, and rook adjacency spatial weight matrices to estimate SAR, SEM, and mixed 

spatial regression models. Researchers often experiment with different spatial weight matrices to 

determine the best fit model.  

 

Spatial autocorrelation measures the correlation of the same measurement taken in different 

points or locations. The most widely used test for spatial autocorrelation is Moran’s-I, where the 

null hypothesis assumes no spatial association. Figure 11 is useful in visualizing spatial 

relationships captured by Moran’s I. Generally speaking, Moran values greater than .30 indicate 

clustering, values less than -.30 indicate dispersion, and a value of zero indicates no spatial 

relationship.  

Figure 11: Illustration of Spatial Patterns Accounted by in the Moran’s I Test. 

 

It is especially important to test and account for spatial autocorrelation as many of the variables 

in the model are spatially explicit. Figure 12 illustrates the distribution of the residuals of 

Equation 3 which clearly demonstrates a relationship among the residuals. The presence of 

spatial autocorrelation violates the assumption of independence among the error terms. While 

estimators are still unbiased and consistent, they are no longer efficient resulting in biased 

standard errors. Spatial autocorrelation biases the standard errors, thereby biasing t-values.  
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  Figure 12: Distribution of the residuals: OLS regression with four-level New West Indicator. 

 

 

6.4  Spatial Regression Models 

To account for spatial autocorrelation of the dependent variable, percent population change from 

1990-2000, a spatial autoregressive model (SAR) is used.  A spatial autoregressive model is 

simply a standard linear regression model with a spatially lagged dependent variable where 𝜌 is 

the autoregressive parameter and W is the spatial weights matrix. The formal SAR model states 

that the dependent variable, y, is dependent on y in neighboring areas (Eq. 4):  

 

Eq. (4) 

y=𝜆𝑊𝑦 + 𝑋𝛽 +  𝜇 

 

A spatial error model (SEM) is used to account for spatial autocorrelation of the error term where 
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𝜆 is the autoregressive parameter and W is the spatial weight matrix. The formal spatial error 

model accounts for spatial relationships in the error term (Eq. 5):  

 

Eq. (5) 

𝑦 = 𝑋𝛽 + u 

𝑢 =  𝜌𝑊𝑢 +v 

 

A mixed autoregressive spatial model is simply a spatial error model with a spatially lagged 

dependent variable. However, it is common practice to run a mixed model (Eq. 6) which 

incorporates a spatially lagged dependent variable and an autoregressive parameter in the error 

term. 

 

Eq. (6) 

y=𝜆𝑊𝑦 + 𝑋𝛽 +  𝑢 

𝑢 =  𝜌𝑊𝑢 + 𝑣 

 

Thus, a mixed spatial model would be estimated using Equation 7:  

 

Eq. (7) 

 

%∆𝑃𝑜𝑝90𝑡𝑜10𝑖 =  𝛽0 + 𝜌𝑊%∆𝑃𝑜𝑝90𝑡𝑜10𝑖 +  𝛽1𝑙𝑛𝑝𝑜𝑝𝑑𝑒𝑛90𝑖 + 𝛽2𝑛𝑒𝑤𝑤𝑒𝑠𝑡90𝑖 + 𝛽3𝑎𝑚𝑒𝑛𝑖𝑡𝑦𝑖

+ 𝛽4𝑐𝑙𝑖𝑚𝑎𝑡𝑒89𝑖 + 𝛽5𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠𝑖 + 𝛽6𝑠𝑡𝑎𝑡𝑒𝑠𝑖 +  𝜀𝑖, 𝑤ℎ𝑒𝑟𝑒 𝜀𝑖 =  𝜆𝑊𝜀 + 𝜇 

 

Ideally, I would have estimated the spatial models of equations 2 and 3 to reveal how impacts of 

explanatory variables differ in New West versus Old West census tracts. However, I was unable 

to run spatial models with interaction terms in Stata and while I could run the spatial models with 

interaction terms in R, I was unable to estimate the marginal effects. Additionally, I was not able 

to calculate the Moran’s I for the inverse distance spatial models as the Stata spatial package did 

not have this option. Table 11 reports the results for spatial autocorrelation and goodness of fit of 

the four models discussed above. In all three spatial models the Moran’s test shows that the 

residuals area spatially independent. This suggests that the spatial models sufficiently accounted 

for the spatial autocorrelation. While I could not run a Moran’s test for the OLS models, I used 

robust standard errors and found that the standard errors and t-statistic improved. The Akaike 

Information Criteria is a measure of goodness of fit and often used to compare model 

performance. A lower AIC is associated with a better fit model and I find that the AIC scores are 

similar. While the spatial models tend to have lower AIC scores, I use a cross-sectional OLS 
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regression with interaction terms to estimate the marginal effects of the primary explanatory 

variables. Specifically, I am interested in the marginal effects of the interaction terms to identify 

if the drivers of population growth have different impacts in New West versus Old West census 

tracts. I was not able to calculate the marginal effects of the interaction terms of the spatial 

models due to limitations of Stata and R. However, I could calculate the marginal effects of the 

interaction terms using an OLS regression and the AIC scores of the OLS regressions are not 

substantially different from the AIC scores of the other models. As such, I used the OLS 

equations, 1 and 2, to estimate the models using robust standard errors and state dummy 

variables to account for time-invariant unobserved state characteristics.  

 

Table 11: Testing for Spatial Autocorrelation and Goodness of Fit. 

 

 

 

Model Equation 
Queen Contiguity Rook Contiguity 

Inverse 

Distance 
No Weight Matrix 

Moran’s-I AIC Moran’s-I AIC AIC AIC 

OLS 

Indices 1 n/a n/a n/a n/a n/a 1496.58 

Binary NW 

Interaction 
2 n/a n/a n/a n/a n/a 1489.01 

Four-level NW 

Interaction 
3 n/a n/a n/a n/a n/a 1484.41 

SAR 

Indices 1 -0.0131 1462.1 -0.0154 1455.8 1453.41 n/a 

Binary NW 

Interaction 
2 -0.1113 1464.6 -0.0144 1458.6 n/a n/a 

Four-level NW 

Interaction 
3 -0.0133 1462.8 -0.0162 1456.8 n/a n/a 

SEM 

Indices 
1 -0.0070 1485.3 -0.0071 1482.2 1422.25 n/a 

Binary NW 

Interaction 
2 -0.0064 1486.2 -0.0065 1484.2 n/a n/a 

Four-level NW 

Interaction 
3 -0.0069 1485.8 -0.0070 1483.4 n/a n/a 

Mixed 

Indices 
1 -0.0036 1473.8 -0.0036 1467.5 1423.92 n/a 

Binary NW 

Interaction 
2 -0.0051 1485.0 -0.0055 1480.1 n/a n/a 

Four-level NW 

Interaction 
3 -0.0063 1481.7 -0.0069 1478.5 n/a n/a 
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7  RESULTS 

Table 12 reports the percent change in population from 1990-2010 by New West category. The 

median percent change in population is positive for all four categories of the New West indicator 

with the median percent change of Model New West more than twice as large as Classic Old 

West. Rural census tracts in the study area overwhelmingly experience growth with 96% of New 

West tracts and 90% of Old West tracts experiencing increases in population. This supports 

previous research identifying a trend in rural population growth in the West (Dearien et al. 2005; 

Deller et al. 2001; Rickman and Rickman 2011). However, New West census tracts are growing 

at a faster rate than Old West census tracts.  

 

Table 12: Summary Statistics of Dependent Variable by New West Indicator. 

% Change Population  

(1990-2010) 
Obs. Median Std. Dev. Min Max 

Classic Old West 380 0.20 0.33 -0.29 2.61 

Old West 526 0.31 0.41 -1.61 2.55 

New West 229 0.45 0.62 -1.53 4.11 

Model New West 378 0.51 0.70 -2.21 5.93 

 

 

Table 13 presents estimation results for all four models using equation 1. The sign and 

significance of remoteness, a traditional driver of population change, is negative and statistically 

significant at the one percent level across all four models. As expected, an increase in the 

average cost distance, in minutes, to urban centers and transportation links is associated with 

slower rates of population growth from 1990-2010. The sign and significance of initial 

population density in 1990 is also negative and statistically significant at the one percent level in 

all four models. Thus, census tracts with higher initial population density experience lower rates 

of agglomeration.  
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Table 13: Regression of Indices and Natural Amenity Variables (OLS is the preferred model).  

Standard errors in parentheses (* p < 0.10, ** p < 0.05, *** p < 0.01) 

 

Dep Var: Log Population Change: 

1990-2010 

OLS 

(1) 

SAR 

(2) 

SEM 

(3) 

MIX 

(4) 

 

Initial Pop Density: 1990 

 

-0.48463*** 

 

-0.44964*** 

 

-0.45590*** 

 

-0.44985*** 

 (0.03916) (0.01772) (0.01749) (0.01751) 

     

NPS 0.02949 0.05241*** 0.05189** 0.05223*** 

 (0.02552) (0.01763) (0.02227) (0.02010) 

     

Public Land 0.01136 0.00152 0.01857 0.01139 

 (0.01754) (0.01244) (0.01330) (0.01293) 

     

Waterbody -0.01639 -0.02026 -0.01686 -0.02248 

 (0.02535) (0.02289) (0.02447) (0.02357) 

     

Ski resort 0.02049 0.02525 -0.00518 -0.00074 

 (0.02086) (0.01952) (0.02296) (0.02128) 

     

Forest complexity 0.00257** 0.00214** 0.00371*** 0.00299*** 

 (0.00104) (0.00097) (0.00113) (0.00105) 

     

Topographic complexity -0.00001*** -0.00001** -0.00001*** -0.00001*** 

 (0.00000) (0.00000) (0.00000) (0.00000) 

     

Pacific Coast 0.02534* -0.00433 0.05007** 0.03465* 

 (0.01483) (0.01563) (0.02275) (0.01994) 

     

Climate -0.08449*** -0.08219*** -0.08021*** -0.08435*** 

 (0.02141) (0.02113) (0.02471) (0.02267) 

     

Remoteness -0.14651*** -0.09239*** -0.12950*** -0.09666*** 

 (0.02839) (0.02784) (0.02957) (0.02896) 

     

New West Factor 0.10335*** 0.08384*** 0.08539*** 0.07652*** 

 (0.01857) (0.01454) (0.01597) (0.01522) 

     

Washington -0.02968 -0.08246 -0.02618 -0.04127 

 (0.07481) (0.06097) (0.08623) (0.07208) 

     

Oregon -0.07886 -0.12258** -0.14492* -0.12830* 

 (0.07822) (0.06127) (0.08647) (0.07245) 

     

Idaho 0.07517 0.01402 0.00285 0.01487 

 (0.08163) (0.06134) (0.08038) (0.06922) 

     

Montana -0.00813 -0.02033 -0.03336 -0.00537 

 (0.08152) (0.06528) (0.08585) (0.07382) 

     

Wyoming -0.12647 -0.14846* -0.07820 -0.07196 

 (0.09131) (0.07916) (0.09397) (0.08574) 

     

Colorado -0.10165 -0.07880 -0.07539 -0.05155 

 (0.08539) (0.06317) (0.08375) (0.07158) 

Observations 1513 1513 1513 1513 

R2 0.47    
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The coefficient of the climate factor is negative and statistically significant at the one percent 

level. Thus, census tracts with drier, more extreme temperatures experience higher rates of 

population growth than warmer, more wet census tracts. 

 

Proximity to the Pacific Coast is positive and statistically significant in all but one model, the 

SAR model. Positive coefficients for proximity to the Pacific Coast indicate that closer proximity 

to the Pacific Coast is associated with higher rates of population growth from 1990-2010. This is 

consistent with the findings of Rapapport and Sachs (2003). Though not statistically significant, 

the coefficients on the average distance to a waterbody greater than 1km2 maintains the expected 

sign in all four models. That is, an increase in the cost distance to a water body is associated with 

slower rates of population growth from 1990-2010.  

 

While other studies have found that topographic complexity is associated with an increase in 

population migration (Deller et al 2001, McGranahan 1999), I find that the coefficients 

measuring average topographic complexity of a census tract is statistically significant and 

negative in all four models. Though inmigrants prefer areas with a complex and varied 

landscape, very high levels of topographic complexity represent steep, mountainous areas which 

prohibit development, thereby limiting inmigration to these areas. Thus, these negative 

coefficients likely represent geographic constraints.  

 

The coefficients for average cost distance from public lands are counter-intuitive. An abundance 

of empirical evidence exists that suggests public land is a significant driver of population change 

(Deller et al 2001). Yet, I find that the coefficients for the average cost distance to a public land 

are positive and statistically insignificant in all four models. This suggests that as the cost 

distance, in minutes, to public lands increase, population is expected to increase. A lack of 

significance may be explained by the abundance of public land in the study area. Roughly 60% 

of the study area comprises public lands, potentially diminishing the importance of public lands 

on an individual’s natural amenity preferences.  

 

The coefficients for the average cost distance to a National Park are positive and statistically 

significant for all models, except OLS. Thus, it is expected that census tracts with higher average 

cost distances, in minutes, to a National Park will experience high rates of population growth 

from 1990-2010. These results run counter to other findings in the literature (Deller et al 2001, 

Rasker and Hansen, 2000). It is possible that areas adjacent to National Parks are more likely to 

have policies in place that restrict development. So, the National Park variable may be correlated 

with an omitted variable, like a zoning policy regulating development.  



 
40 

The coefficients of average forest complexity for a census tract are positive and statistically 

significant in all four models. An increase in the average level of forest complexity is associated 

with higher rates of population growth from 1990-2010. These results are consistent with other 

empirical findings (McGranahan 1999).  

 

The coefficients for Euclidean distance to a ski resort are inconsistent and statistically 

insignificant. Positive coefficients, in the OLS and SAR models, suggest that census tracts near 

ski resorts will experience slower population growth while negative coefficients, in the SEM and 

Mixed models, suggest that census tracts far from ski resorts will experience faster rates of 

population growth. The former results run counter to the findings of Deller et al. (2001). 

However, Deller et al. use principal component analysis to create a “winter” index which 

includes “acres of mountains”, “acres of forestland”, “acres of Federal land”, and the ski resort 

variable, which is measured as skiable acreage. Thus, it is possible that these conflicting results 

are a result of methodology and measurement. Measuring distance to ski resorts as cost distance 

rather than Euclidean distance may change the coefficients of the ski resort variable. It is also 

possible that ski resorts are correlated with things that restrict development, like steep terrain.   

 

The coefficients for the New West factor variable are positive and highly statistically significant 

at the one percent level in all four models. Thus, higher New West factor scores are associated 

with faster rates of population growth in 1990-2010. These results support existing empirical 

evidence that New West census tracts experience faster population growth than Old West census 

tracts (Winkler et al 2007, Rudzitis 1999, Shumway and Ottterstrom 2001).  

 

The preceding four models provide basic insight of population growth in the rural mountainous 

northwest. Exploring how results vary by New West and Old West census tracts provides a more 

nuanced understanding how drivers of population growth in rural areas may vary.  

 

Table 14 reports the marginal effects of each of the explanatory variables from a model using an 

interaction between a binary New West variable and these explanatory variables. Table 15 

reports the marginal effects from a model interacting a four-level New West indicator variable 

with the explanatory variables.  

 

The binary New West model finds that the effect of remoteness is twice as strong in Old West 

census tracts than New West census tracts. The effect is negative and statistically significant with 

remoteness being associated with a .20% and .07% decrease in the rate of population growth 

from 1990-2010 in Old West and New West census tracts respectively. The four-level New West 
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model reveals a more nuanced impact of remoteness on population growth. Remoteness is 

negative and statistically significant in Classic Old West, Old West, and New West census tracts. 

Interestingly, the magnitude of the effect increases as a census tract moves towards Classic Old 

West, having no statistical impact in Model New West census tracts. This suggests that 

individuals moving to Model New West census tracts do not prioritize access to urban areas.  

 

The marginal effects of climate are negative and statistically significant in both New West and 

Old West census tracts. These results suggest that census tracts with drier, more volatile 

temperatures experience faster rates of growth than census tracts with more moderate and wet 

climates, regardless of the New West factor score.  

 

The coefficients measuring the average cost distance, in minutes, to the Pacific Coast are positive 

for all Pacific Coast and New West categories. The binary New West model finds that proximity 

to the Pacific Coast has a greater effect in New West census tracts when census tracts are 166 to 

370 minutes from the coast (Pacific Coast =3) relative to census tracts that are greater than 

22,821 minutes from the Pacific Coast (Pacific Coast=0). The four-level New West model finds 

the strongest effects in this category as well, with the greatest statistical significance in New 

West census tracts and no significance in Classic Old West census tracts. Proximity to the Pacific 

Coast of less than 166 minutes is statistically significant for New West census tracts and nearly 

significant in Old West census tracts, relative to census tracts that are greater than 22,821 

minutes from the Pacific Coast. It is possible that Pacific Coast category 3 outperforms category 

4 because there is a significant amount of public land along coastal areas, prohibiting 

development. Thus, it appears that Old West, New West, and Model New West census tracts 

with an average cost distance of 166-370 minutes, relative to average cost distance greater than 

22,821 minutes, experience faster rates of population growth. For census tracts very distant from 

the coast (746-22,821 minutes), relative to census tracts greater than 22,821 minutes from the 

coast, the binary New West model finds the coefficient is only statistically significant in Old 

West census tracts. However, the four-level New West model reveals that the coefficients of very 

distant census tracts are positive and statistically significant for Old West and New West census 

tracts, while being nearly significant for Classic Old West census tracts.  

 

The coefficients for average cost distance to a waterbody of 1km2 behave as expected. That is, in 

the four-level New West model, the coefficients for New West and Model New West census 

tracts are negative and statistically significant for Model New West census tracts and nearly 

significant for New West census tracts. The coefficients are positive for Old West and Classic 

Old West census tracts while only statistically significant for Classic Old West census tracts. 
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Thus, Classic Old West census tracts experience faster rates of population growth as the average 

cost distance to a waterbody increases. A decrease in the average cost distance to a waterbody is 

associated with faster rates of population growth in Model New West census tracts.  

 

The coefficients for average topographic complexity are negative in both models and for all New 

West categories while distance to ski resorts was statistically insignificant. Topographic 

complexity is only statistically significant in the four-level New West model for Old West census 

tracts. As mentioned before, it is likely that these negative coefficients represent areas that are 

not conducive to development or timber harvesting while the ski resort variable may be capturing 

uninhabitable areas with very steep terrain.  

 

The coefficients for average cost distance to public lands is statistically insignificant in both 

models and for all New West categories. It may that the abundance of public land, roughly 60%, 

in the study area diminishes the effect of public lands on population change. Distance to a 

National Park is positive for both models but only statistically significant in Old West census 

tracts. A 1% increase in the distance to a National Park is associated with a .05% point increase 

in population change in Old West census tracts. The uniqueness of this study area, which is 

roughly 60% percent public land and contains eight unique National Parks, may attract a very 

specific type of migrant to New West areas that the model is not capturing.  

 

Forest complexity has a positive and statistically significant impact on population change in Old 

West tracts, with the largest impact on Classic Old West tracts. Forest complexity is not 

statistically significant for New West or Model New West tracts in either model. The strong 

effects of forest complexity in Classic Old West and Old West tracts may result from historical 

or current dependence on natural resource extractive industries, like timber harvesting. Thus, Old 

West tracts may be more likely to be located near forests relative to New West tracts. 

Additionally, it may be the case that an abundance of public land results in massive swaths of 

forests rather than complex compositions of forests (e.g. forests mixed with grasslands).  

 

These results demonstrate that natural amenities impact population change differently in New 

West versus Old West census tracts. Specifically, proximity to waterbodies and the Pacific Coast 

are important drivers of population growth in New West census tracts while increased forest 

complexity and distance to a National Park were important drivers of population change in Old 

West census tracts. An increase in remoteness significantly decreased population growth rates in 

Old West tracts but was less significant in New West census tracts. Thus, it appears the impact of 
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natural amenities on population growth do vary in the presence of different demographic and 

cultural mixes which distinguish New West and Old West areas.  

 

Table 14: Marginal effects of the explanatory variables when interacted with a binary New West variable.  

Dep Var: Pop Change 1990-2010 (log) (500 Robust) 

                              dy/dx       Std. Err.       t        P>|t|          [95% Conf. Interval] 

----------------------------------------------------------------------------- 

NPS        

    nw_tract  

          0     .0443849   .0185412     2.39   0.017      .008015    .0807548 

          1     .055641     .0502362     1.11   0.268    -.0429007    .1541827 

----------------------------------------------------------------------------- 

Public Land 

    nw_tract  

          0     .0102633   .0173451     0.59   0.554    -.0237602    .0442869 

          1     .0191929   .0280266     0.68   0.494    -.0357831     .074169 

----------------------------------------------------------------------------- 

Waterbody 

    nw_tract  

          0     .0287961   .0283414     1.02   0.310    -.0267975    .0843897 

          1    -.0881462   .0437493    -2.01   0.044    -.1739634   -.0023291 

----------------------------------------------------------------------------- 

Ski Resort    

    nw_tract  

          0     .0163666    .025837      0.63   0.527    -.0343144    .0670476 

          1    -.0373848   .0318862    -1.17   0.241    -.0999317    .0251621 

----------------------------------------------------------------------------- 

Forest Complexity 

    nw_tract  

          0     .0051542    .001039      4.96   0.000     .0031161    .0071923 

          1    -.0024869   .0022138    -1.12   0.261    -.0068294    .0018556 

----------------------------------------------------------------------------- 

Topographic Complexity 

    nw_tract  

          0    -6.82e-06   4.41e-06    -1.55   0.122    -.0000155    1.83e-06 

          1    -9.91e-06   7.89e-06    -1.26   0.209    -.0000254    5.56e-06 
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----------------------------------------------------------------------------- 

Pacific Coast (1: far) 

    nw_tract  

          0     .1520519   .0618725     2.46   0.014     .0306848    .2734189 

          1     .1850955   .1325547     1.40   0.163    -.0749196    .4451106 

----------------------------------------------------------------------------- 

Pacific Coast (2) 

    nw_tract  

          0     .0553729    .049173      1.13   0.260    -.0410833    .1518292 

          1     .0576237   .0619671     0.93   0.353    -.0639291    .1791764 

----------------------------------------------------------------------------- 

Pacific Coast (3) 

    nw_tract  

          0    .1679595   .0632091     2.66   0.008     .0439705    .2919485 

          1    .3344343   .10018         3.34   0.001     .1379244    .5309442 

----------------------------------------------------------------------------- 

Pacific Coast (4:close) 

    nw_tract  

          0     .1125844   .0808622     1.39   0.164    -.0460323    .2712012 

          1     .1876108   .1068662     1.76   0.079    -.0220145    .3972362 

----------------------------------------------------------------------------- 

Climate     

    nw_tract  

          0    -.0895047   .0327699    -2.73   0.006     -.153785   -.0252244 

          1    -.1033876   .0406532    -2.54   0.011    -.1831315   -.0236436 

----------------------------------------------------------------------------- 

Remoteness     

    nw_tract  

          0    -.2035375   .0362599    -5.61   0.000    -.2746638   -.1324113 

          1     -.071769    .0460461    -1.56   0.119    -.1620916    .0185537 
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Table 15: Marginal effects of the explanatory variables when interacted with a 4-level New West variable.  

Dep Var: Pop Change 1990-2010 (log) (500 Robust) 

                              dy/dx       Std. Err.       t        P>|t|          [95% Conf. Interval] 

-------------------------------------------------------------------------------- 

NPS       

nw_indicator_90  

             0     .0408705    .024411     1.67   0.094    -.0070134    .0887544 

             1      .047423   .0192994     2.46   0.014     .0095659      .08528 

             2     .0539754   .0363594    1.48   0.138    -.0173461    .1252969 

             3     .0605279   .0586901    1.03   0.303    -.0545967    .1756524 

-------------------------------------------------------------------------------- 

Public Land   

nw_indicator_90  

             0    -.0025496    .020932    -0.12   0.903    -.0436092      .03851 

             1     .0088788   .0154568     0.57   0.566    -.0214407    .0391983 

             2     .0203072   .0206836     0.98   0.326    -.0202651    .0608794 

             3     .0317355   .0316993     1.00   0.317    -.0304448    .0939159 

--------------------------------------------------------------------------------  

Waterbody 

nw_indicator_90  

             0     .0782783   .0369692     2.12   0.034     .0057608    .1507959 

             1     .0117556   .0241115     0.49   0.626    -.0355407     .059052 

             2    -.0547671   .0294789    -1.86   0.063     -.112592    .0030578 

             3    -.1212898   .0472191    -2.57   0.010    -.2139134   -.0286663 

-------------------------------------------------------------------------------- 

Ski Resort       

nw_indicator_90  

             0     .0472038    .032546      1.45   0.147    -.0166374     .111045 

             1      .017829   .0223417      0.80   0.425    -.0259958    .0616537 

             2    -.0115459   .0224689    -0.51   0.607    -.0556201    .0325284 

             3    -.0409207   .0328077    -1.25   0.212    -.1052752    .0234338 

-------------------------------------------------------------------------------- 

Forest Complexity 

nw_indicator_90  

             0     .0053639   .0013212     4.06   0.000     .0027723    .0079556 

             1     .0028806   .0009794     2.94   0.003     .0009594    .0048017 
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             2     .0003972   .0015261     0.26   0.795    -.0025964    .0033908 

             3    -.0020862   .0024198    -0.86   0.389    -.0068327    .0026604 

-------------------------------------------------------------------------------- 

Topographic Complexity 

nw_indicator_90  

             0    -7.49e-06   5.52e-06    -1.36   0.175    -.0000183    3.35e-06 

             1    -8.04e-06   4.01e-06    -2.01   0.045    -.0000159   -1.77e-07 

             2    -8.58e-06   5.61e-06    -1.53   0.126    -.0000196    2.42e-06 

             3    -9.13e-06   8.76e-06    -1.04   0.298    -.0000263    8.06e-06 

-------------------------------------------------------------------------------- 

Pacific Coast (1:far) 

nw_indicator_90  

             0     .1352878   .0684699     1.98   0.048     .0009794    .2695962 

             1     .1759568   .0627436     2.80   0.005     .0528809    .2990326 

             2     .2166257   .0986592     2.20   0.028     .0230989    .4101525 

             3     .2572947   .1485893     1.73   0.084    -.0341734    .5487627 

-------------------------------------------------------------------------------- 

Pacific Coast (2) 

nw_indicator_90  

             0     .0675385   .0543039     1.24   0.214    -.0389824    .1740594 

             1     .0617199   .0431248     1.43   0.153    -.0228725    .1463122 

             2     .0559012   .0494831     1.13   0.259    -.0411633    .1529657 

             3     .0500826   .0686688     0.73   0.466    -.0846159    .1847811 

-------------------------------------------------------------------------------- 

Pacific Coast (3) 

nw_indicator_90  

             0     .1137279   .0780222     1.46   0.145     -.039318    .2667738 

             1     .2089547   .0546868     3.82   0.000     .1016828    .3162266 

             2     .3041815   .0718169     4.24   0.000     .1633077    .4450553 

             3     .3994083   .1121987     3.56   0.000     .1793229    .6194936 

-------------------------------------------------------------------------------- 

Pacific Coast (4:close) 

nw_indicator_90  

             0     .1095112   .1013485     1.08   0.280    -.0892908    .3083131 

             1     .1363611   .0696327     1.96   0.050    -.0002282    .2729504 

             2     .1632111    .078668      2.07   0.038     .0088984    .3175238 
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             3      .190061   .1195464      1.59   0.112    -.0444374    .4245595 

-------------------------------------------------------------------------------- 

Climate 

nw_indicator_90  

             0     -.093186   .0359251     -2.59   0.010    -.1636555   -.0227165 

             1     -.099779   .0269978     -3.70   0.000    -.1527371    -.046821 

             2     -.106372   .0332599     -3.20   0.001    -.1716136   -.0411305 

             3    -.1129651   .0492202    -2.30   0.022    -.2095139   -.0164163 

-------------------------------------------------------------------------------- 

Remoteness 

nw_indicator_90  

             0    -.2507807   .0453477    -5.53   0.000    -.3397333   -.1618281 

             1    -.1728758   .0299333    -5.78   0.000    -.2315921   -.1141596 

             2     -.094971   .0328765     -2.89   0.004    -.1594605   -.0304815 

             3    -.0170661   .0510979    -0.33   0.738    -.1172982     .083166 

 

8  Discussion 

In the mountainous northwestern US, dry and more extreme climates and access to urban areas 

and transportation links drive population growth while public lands and topographic complexity 

deter growth. Overall, New West census tracts experienced higher rates of population growth 

than Old West census tracts.  

 

Determinants of population growth in New West versus Old West census tracts do differ to some 

extent. Remoteness, a traditional driver of population change, was a very strong driver in Old 

West census tracts, suggesting that access to urban areas is particularly important to individuals 

in the Old West. Thus, it is reasonable to expect that remote Old West census tracts will 

experience slower rates of growth or even population decline. Interestingly, remoteness is 

statistically insignificant in Model New West tracts which suggests that access to urban areas is 

not be valued by migrants to these areas. This also suggests that, counter to traditional economic 

theory, even remote places may experience population growth. It appears that individuals drawn 

to Model New West areas are significantly different from not only individuals drawn to Old 

West area but perhaps even New West areas.  

 

Proximity to waterbodies, the Pacific Coast, and ski resorts were more important in New West 

areas than Old West areas. Individuals in New West areas place a higher premium on access to 
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these amenities for their recreational and scenic value relative to individuals in the Old West. 

However, forest complexity only drove population growth in Old West census tracts. Old West 

areas were historically dependent on natural resource extraction, like timber harvesting. It is 

possible the positive association between forest complexity and population growth in these areas 

is due to past dependence on forests for timber. Theoretically, inmigrants to New West tracts 

would be positive but it is possible that this study area lacks the type of forest complexity that 

New West migrants seek. This may be attributed to the abundance of public land which may 

preserve large swaths of forests rather than patches of forest and grassland. Again, it appears that 

migrants to New West and Old West areas have different natural amenity preferences driving 

population growth. 

 

The study area contains two primary climate types: moderate climates in areas near the Pacific 

Coast and more extreme climates found east of the Cascade Mountains. Both New West and Old 

West census tracts in inland areas, which experience more volatile temperatures and tend to be 

dry, experienced higher rates of population growth than areas with more moderate climates. 

Migrants appear to be drawn to inland areas for the drier, warmer summer temperatures and low 

humidity.  

 

The negative and statistically significant coefficients on public lands and National Parks run 

counter to the expected impact on population change. The initial study area was restricted to 

private land to capture the impacts of the explanatory variables on developable land, areas where 

people could live. New West tracts tend to be clustered around urban centers and near National 

Parks. As such, it is possible that this proximity to both urban centers and National Parks is 

confounding the impacts of National Parks on population growth. 

 

These results suggest that traditional drivers of population growth, like access to markets and 

transportation links, are still important in Old West places while becoming less important in New 

West places. It may be that migrants to Model New West places represent a different type of 

rural rebound in that individuals are willing to forgo cultural amenities found in urban areas 

because they themselves are willing to generate these cultural amenities in more remote areas. 

This aligns with McGranahan and Wojan’s (2007) research which suggests that the “creative 

class” are attracted to high-amenity areas that need not be metropolitan.  
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9  Conclusion 

In the 1970s, the US experienced an unexpected turnaround in migration patterns as households 

began moving from urban to rural areas. In particular, rural areas rich in natural amenities and 

with amenable climates experienced rapid population growth (Dearien et al. 2005; Deller et al. 

2001; Rickman and Rickman 2011). Relative to New West areas, Old West areas tend to have 

populations with lower incomes and lower educational attainment (Winkler et at. 2007). Old 

West areas tend to rely on extractive industry employment (e.g. mining or logging) or are areas 

that remain relatively undeveloped (Winkler et al. 2007). Winkler et al. (2007) characterize the 

New West as areas with relatively high employment in the arts, professional services, and 

tourism rather than extractive industries; income and education levels, prevalence of second 

home ownership, and relatively high median housing values.  

 

The New West variable captures the variation impacts of location-specific natural amenities on 

population growth change given differences in the demographic and cultural compositions of 

those places. This research affirms that drivers of population growth in New West and Old West 

census tracts do differ. Using more accurate measures of cost-distance to natural amenities, I 

found that proximity to waterbodies, the coast, and ski resorts promote growth in New West 

areas while access to markets and forest complexity promote growth in Old West areas.  

 

As incomes rise and employment becomes increasingly less location-dependent, households’ 

mobility increases as do their preferences for natural amenities. Thus, identifying rural areas 

prone to experience rapid population growth is critical if communities wish to plan for such 

growth. New West areas may be interested in protecting the natural amenities drawing people to 

the area. This is of particular interest in mountainous areas where fragile ecosystems are 

sensitive to disturbances, like development. Additionally, Old West areas experiencing economic 

decline may be interested in understanding that natural amenities and cultural and demographic 

amenities are needed to rapidly increase population growth.  

 

It is possible that other location-specific amenities are driving population growth in New West 

areas. For instance, some effort has been made to capture the uniqueness of an area by measuring 

ethnic diversity, the density of gay people, and even a “coolness” index (Florida 2002, Olfert and 

Partridge 2011). The inclusion of variables that capture these characteristics may improve the 

predictive power of my models and provide a more robust picture of what drives growth in these 

areas.  Further research is required to understand the different drivers of population change so 
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policy makers and land managers can anticipate and plan for future growth while protecting 

natural amenities that attract people to these areas. 
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APPENDIX 

 

 

Figure 13: Distribution of the Climate Index: Negative scores represent drier more extreme    

temperatures while positive scores represent more wet areas with moderate temperatures.  
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Figure 14: Distribution of Distance to Public Land in Minutes.  
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Figure 15: Distribution of Distance to National Parks in Minutes. 
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Figure 16: Distribution of Topographic Complexity: Higher values represent areas with greater       

topographic complexity.  
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Figure 17 : Distribution of Forest Complexity: Higher values represent areas with greater forest 

complexity.  
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Figure 18: Distribution of Distance to Waterbodies.  
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Figure 19: Euclidean Distance to a Ski Resort in Meters. 
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Figure 20: Distribution of the Four-Level New West Indicator Variable.  
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Figure 21: Distribution of the Remoteness Index: Higher values represent more remote areas.  
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