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The extraction of general knowledge from individual episodes is
critical if we are to learn new knowledge or abilities. Here we
uncover some of the key cognitive mechanisms that characterise
this process in the domain of language learning. In five experi-
ments adult participants learned new morphological units embed-
ded in fictitious words created by attaching new affixes (e.g., -afe)
to familiar word stems (e.g., ‘‘sleepafe is a participant in a study
about the effects of sleep’’). Participants’ ability to generalise
semantic knowledge about the affixes was tested using tasks
requiring the comprehension and production of novel words con-
taining a trained affix (e.g., sailafe). We manipulated the delay
between training and test (Experiment 1), the number of unique
exemplars provided for each affix during training (Experiment 2),
and the consistency of the form-to-meaning mapping of the affixes
(Experiments 3–5). In a task where speeded online language pro-
cessing is required (semantic priming), generalisation was
achieved only after a memory consolidation opportunity following
training, and only if the training included a sufficient number of
unique exemplars. Semantic inconsistency disrupted speeded
generalisation unless consolidation was allowed to operate on
one of the two affix-meanings before introducing inconsistencies.
In contrast, in tasks that required slow, deliberate reasoning,
generalisation could be achieved largely irrespective of the above
constraints. These findings point to two different mechanisms of
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generalisation that have different cognitive demands and rely on
different types of memory representations.

� 2015 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
1. Introduction

Humans must draw on relevant past experiences in deciding how to respond to a new stimulus or
situation. One challenge in this process is that experience occurs as single instances or episodes. We
must combine information over multiple instances or episodes to arrive at the more general knowl-
edge that can best guide future behaviour. For example, despite retaining an episodic memory for
what the weather was like yesterday and on specific previous days, one’s decision about whether to
wear a raincoat today may be based on more general knowledge of the prevailing weather conditions
given the location, the season, and other factors. Researchers since Tulving (1972) have correspond-
ingly distinguished episodic memories of specific past experiences from semantic memory: a store
of abstract general knowledge that is used to guide decision-making, language processing, and other
forms of complex behaviour.

This distinction between episodic memory and more abstract, general knowledge is common to
many domains of cognition. Accordingly, debate concerning the functional mechanisms responsible
for acquiring and expressing these different forms of knowledge has a long history in cognitive
science. For example, in learning the structure of novel conceptual categories, two broad classes of
theory were initially proposed: exemplar theories in which generalisation is achieved by combining
representations of multiple individual instances (Medin & Schaffer, 1978; Nosofsky, 1986) and
abstractionist theories in which category representations are structured around more abstract knowl-
edge of the central tendency or prototype derived from many instances (Posner & Keele, 1968). These
accounts proved difficult to separate behaviourally (Minda & Smith, 2002; Zaki, Nosofsky, Stanton, &
Cohen, 2003; though see Mack, Preston, & Love, 2013, for relevant neural evidence), leading to recent
hybrid and multiple mechanism accounts (Kumaran & McClelland, 2012; Love, Medin, & Gureckis,
2004).

Here we use an artificial language learning method to explore the processes that yield general,
semantic knowledge from individual learned words. We will begin by describing various forms of
generalisation that are apparent in language learning, including the morphological regularities that
are the focus of the present work. We will then consider how modern dual-mechanism accounts of
episodic and semantic learning accommodate this type of generalisation, before laying out the specific
methodology and factors to be explored in the five experiments presented in the paper.
1.1. Generalisation in language and language learning

Language is one domain of complex human behaviour that reflects and requires the acquisition of
general knowledge from exposure to individual episodes. These generalisation processes character-
ise multiple levels of the language system. For example, in respect of single words, we extract infor-
mation about spelling-to-sound relationships from exposure to existing words (e.g., moon, noon,
loon, soon), and it is this general knowledge that allows us to decode unfamiliar words and non-
words (e.g., voon; e.g., Coltheart, 1978). Similarly, we extract information about how to express
past-tense status from exposure to existing words (e.g., jumped, walked, watched), and it is this gen-
eral knowledge that can lead to over-regularisation errors in young children (e.g., drinked, keeped,
teached; e.g., Marcus et al., 1992). In higher levels of language processing, it is our general knowl-
edge of the permissible syntactic structures of language that allows us to understand and to express
a near infinite number of phrases, sentences, and ideas (e.g., Tomasello, 2000); and of course, over-
generalisation processes at a conceptual level are at the heart of stereotyping (e.g., Cantor & Mischel,
1979).

http://creativecommons.org/licenses/by/4.0/
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One of the most powerful examples of linguistic generalisation at the level of single words arises in
the domain of morphology. In English, as in most other languages of the world, we combine stems
(e.g., trust, clean) with a small number of prefixes (e.g., un-, dis-) and suffixes (e.g., -er, -ly, -y) to form
the vast majority of word forms (around 85%; e.g., distrust, trusty, cleanly, unclean). The critical prop-
erty of this kind of combinatorial system is that language users have generalised knowledge of its
components: they are able to use the morphemic units of the language flexibly outside of the particu-
lar contexts in which they were learned to understand and to produce new meaningful words. For
example, the American public had no difficulty understanding George W. Bush when in 2006 he said,
‘‘But I’m the decider, and I decide what’s best’’, because they knew that the suffix [-er] conveys the
meaning ‘‘one who’’ in relation to a verb stem, yielding ‘‘one who decides’’. Around 70% of new words
entering the English language are simple recombinations of existing morphemic units (Algeo, 1991),
making morphology key to lexical productivity (e.g., gamification, which entered the language in 2012;
hackable and tweetable, which both entered the language in 2013; Oxford English Dictionary, 2014).
There is also a broad consensus that our general knowledge about morphemes is central to the recog-
nition (e.g., Marslen-Wilson, Tyler, Waksler, & Older, 1994; Rastle & Davis, 2008) and production (e.g.,
Treiman & Cassar, 1996; Zwitserlood, Bölte, & Dohmes, 2000) of spoken and written words.

The work presented in this article investigates how it is that we acquire knowledge about affix mor-
phemes that can be generalised outside of the particular contexts in which they were learned. Most
broadly, we are interested in the relationship between the learning of individual exemplars (i.e. of words
containing a particular affix) and the development of general morphemic knowledge that can be
deployed in the service of understanding the meaning of new morphemic constructions (e.g., decider,
hackable). Many models of lexical processing postulate abstract local morphemic representations
accessed during word recognition (e.g., Marslen-Wilson et al., 1994; Taft, 1994), perhaps in parallel with
whole-word representations (e.g., Caramazza, Laudanna, & Romani, 1988; Schreuder & Baayen, 1997).
Other models do not have explicit morphemic representations, yet represent morphological knowledge
as ‘islands of regularity’ in abstract internal units that mediate the mapping between word forms and
their meanings (e.g., Plaut & Gonnerman, 2000). Our work seeks to discover more about the processes
that give rise to these morphemic representations. Does the development of general morpheme knowl-
edge reflect the simple accumulation of encounters with whole words that contain the relevant mor-
phemes, or are there other more complex constraints on the acquisition of this knowledge?

In order to investigate this problem, we present a laboratory model of morpheme learning in which
adults are trained on sets of novel words comprising a familiar stem and a novel affix (e.g., buildafe,
sleepafe, teachafe) and are then assessed in a variety of ways as to their knowledge of the novel affix
(-afe, in this case; see also Merkx, Rastle, & Davis, 2011; Tamminen, Davis, Merkx, & Rastle, 2012).
Critically, this method allows us to measure both participants’ knowledge of the learning episodes
(i.e. their recollection of the individual trained novel words like buildafe, sleepafe), and the develop-
ment of generalised affix knowledge that permits understanding of untrained morphemic construc-
tions (e.g., sailafe). This method therefore allows us to assess the role of item-specific knowledge of
newly-learned words in learners’ ability to extract elements of underlying structure that support
generalisation to untrained words.

1.2. Generalisation through complementary learning systems

Dual-mechanism theories provide a potentially useful framework in which to consider general-
isation processes of learning and memory. As we introduced at the outset, early theories of general-
isation relied either on mechanisms that operated solely on episodic memory traces (e.g.,
Hintzman, 1986, 1988) or on mechanisms that involved the creation of abstract representations dur-
ing learning (e.g., Posner & Keele, 1968). The more recent dual-mechanism accounts on the other hand
postulate two dissociable neural mechanisms for encoding memories of new episodes and for laying
down long-term abstract representations of general semantic knowledge (Alvarez & Squire, 1994;
Marr, 1971; McClelland, McNaughton, & O’Reilly, 1995; Winocur & Moscovitch, 2011). One particu-
larly influential theory within this class is the Complementary Learning Systems (CLS) account
(McClelland, McNaughton, & O’Reilly, 1995; O’Reilly & Norman, 2002), which offers a detailed neu-
roanatomical and computational description of these operations. Like other dual-mechanism theories,
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this account proposes two learning systems, a hippocampal system that allows fast encoding of epi-
sodic memories, and a neocortical system that slowly integrates new memories with existing knowl-
edge for permanent storage.

One key property of the neocortical system is that it generates overlapping representations and
uses a single set of weighted connections to store long-term knowledge. In this account, information
is represented by the brain (or by a computational model simulating cognitive function) in patterns of
activity over a population of neurons (or units in a computational model). Activating semantic repre-
sentations of two similar concepts (e.g., two birds such as a robin and a canary) thus elicits two similar
patterns of activity that share a large number of active neurons. In this sense, then, the two semanti-
cally related concepts have overlapping representations. Such overlap allows the neocortical system to
represent similarities across memories or large bodies of knowledge. Long-term knowledge in the
neocortical system is stored in connection weights (i.e. the strength of the individual connections) that
link sets of neurons representing different forms of associated information. Connection weights that
support knowledge of one concept (e.g. linking the appearance of a bird to its ability to fly) will func-
tion similarly for a set of related concepts. Thus, overlapping neural representations, combined with
knowledge stored in overlapping sets of connections provide a powerful means for generalisation of
new memories: it allows the system to benefit from shared structure across a number of different
exemplars of a given semantic category, and to generalise these properties to novel exemplars of
the same category. For example, if a learner is introduced to a new type of bird, s/he is able to general-
ise typical properties of other, similar birds to the new exemplar (e.g., it is likely to have wings and
feathers, it is likely to be able to fly, etc., see Rogers & McClelland, 2004).

Overlapping representations and shared connection weights may come at a significant cost, how-
ever. Acquiring and integrating new information with existing information in a system like this must
proceed in a gradual manner to avoid interference between new and old knowledge. This means that
new information must be added to the neocortical store slowly, through repeated presentations that
interleave new learning with exposure to existing knowledge in the same semantic domain. Slow and
interleaved learning is necessary for connection weights to be jointly determined by the shared struc-
ture of the whole stimulus set rather than by the idiosyncratic properties of the new stimulus alone.
Interleaving is important, also, to allow existing information to be retained and also being modified by
relevant newly learned information. For example, if one learns additional facts about the vocal organ
or ‘‘syrinx’’ of a canary this leads to modifications to connection weights to ensure that this new
knowledge can be applied to other familiar birds whilst retaining relevant information on whether
these other birds can sing or not.

One illustration of the importance of interleaved learning is that computational models that
employ overlapping representations can be susceptible to catastrophic interference (French, 1999;
McCloskey & Cohen, 1989; Ratcliff, 1990). In the absence of interleaved learning, the introduction of
new information in newly learned items can overwrite pre-existing information and lead to catas-
trophic forgetting. Interleaving of new and old items, and slow learning can overcome this problem
(McClelland et al., 1995). These limitations are highly problematic however, because learning in natu-
ral environments typically needs to occur very rapidly on the basis of limited exposure. The CLS
account offers a solution to this problem in the form of the hippocampal system which employs pat-
tern separation to generate decorrelated, distinct representations of specific items or episodes. Such
distinct representations allow rapid encoding of new information without risk of catastrophic interfer-
ence between new and old knowledge (see Bowers, Vankov, Damian, & Davis, 2014, for a discussion of
how distinct representations solve a related problem of superposition interference in short-term
memory). These distinct episodic representations are then used to support the gradual development
of overlapping cortical representations during offline periods such as sleep. Thus offline consolidation
of hippocampal representations into the neocortex provides a mechanism for avoiding massed expo-
sure to new instances that might otherwise lead to catastrophic interference.

1.3. Is consolidation needed for generalisation in language learning?

Dual-mechanism theories such as the CLS have had some success in helping us to understand how
new words become integrated into the mental lexicon (e.g., Davis & Gaskell, 2009; Gaskell & Dumay,
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2003) but their application to the problem of generalisation has been more limited. Tamminen et al.
(2012) argued that if the CLS account of generalisation is correct, then we should find that a period of
consolidation facilitates the emergence of generalisation. They reasoned that individual learning epi-
sodes should be encoded rapidly in the hippocampus, but because these representations are non-
overlapping, they may not permit all forms of generalisation. If it is the discovery of shared structure
across multiple learning episodes that is required for generalisation then this would be supported by
the development of shared representations for similar items in the neocortex. According to the CLS
theory this process takes time since it depends on either the slow accumulation of new knowledge
during learning (with a training protocol that interleaves all relevant new and existing knowledge,
cf. Lindsay & Gaskell, 2013), or a form of interleaved learning that can only be achieved during offline
consolidation.

Tamminen et al. (2012) sought to test this prediction in the context of the acquisition of morpho-
logical knowledge, using the morpheme learning paradigm developed by Merkx et al. (2011). They
trained participants on novel words comprising familiar stems and novel affixes (e.g., sleepafe).
These novel words were associated with semantically-transparent and consistent meanings during
training (i.e. the meaning of the novel word was related to the stem, and all instances of -afe referred
to a person; e.g., ‘‘sleepafe is a participant in a study about the effects of sleep’’). Results provided some
support for the CLS prediction: in a test of speeded auditory repetition (shadowing), participants
responded faster to an untrained stimulus that contained a trained affix (e.g., sailafe) than an
untrained stimulus without one (e.g., sailnept), but only in a group tested two days after training.
Those participants tested immediately after training showed no benefit of having learned the novel
affix. This result seems to suggest that consolidation is required for the generalisation of learned mor-
phemic knowledge. However, Tamminen et al. (2012) also conducted a second, non-speeded test of
generalisation in which participants were asked to choose between two possible definitions for an
untrained stimulus with a trained affix (e.g., participants might have to decide whether sailafe could
refer to ‘‘someone who goes to sea every weekend to sail’’ or to ‘‘the hourly cost of learning how to sail
a yacht’’. If -afe in training always occurred in novel words referring to people, participants should
indicate the former option to be the more plausible one). These definitions either respected the mean-
ing of the affix in the trained set or took the meaning of a different novel affix. Participants were highly
accurate on this task and showed no performance differences as a function of day of testing.

On the basis of these data, Tamminen et al. (2012) argued that consolidation is required for the
development of neocortical representations that support generalisation in speeded tasks, while some
forms of generalisation in non-speeded tasks can be accomplished on the basis of episodic hippocam-
pal representations (e.g., by combining multiple episodes at the time of testing). However, the two
generalisation tests reported by Tamminen et al. (2012) differed not only in their task demands but
also in the nature of the information being probed. The test that appeared sensitive to consolidation
required a speeded response and probed participants’ knowledge of the phonological form of learned
affixes. The test that appeared insensitive to consolidation was not performed under time pressure
and probed participants’ knowledge of affix meaning. Thus, it remains unclear whether consolidation
is needed for generalisation, and if so, which aspects of generalisation may require consolidation. Is it
that consolidation is required for the development of sufficiently stable representations to impact on
speeded lexical processing? Or is it that the generalisation of form but not meaning requires
consolidation?

1.4. Further constraints on the generalisation of morphemic information

In the series of experiments reported here, we ask what it takes to acquire knowledge of a novel
affix that can be generalised to new (stem) contexts, under speeded and non-speeded conditions. In
contrast to our previous investigations of this problem which focused on the acquisition of knowledge
about affix forms (Merkx et al., 2011; Tamminen et al., 2012), we are particularly interested in the
acquisition of semantic properties of affixes, which are key to understanding and expressing new
words for existing or new concepts. In line with Tamminen et al. (2012), we consider affix learning
in the context of CLS theories of memory (e.g., McClelland et al., 1995). As described in detail above,
these theories distinguish two learning systems based on their anatomical organisation (hippocampal
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vs. neocortical), the representations of individual items (distinct representations for similar items in
the hippocampus, overlapping or shared representations for key aspects of similar items in the neo-
cortex) and the time-course of acquisition (rapid learning in the hippocampus, slower learning in
the neocortex). However, for the present purposes we focus on a functional distinction that we believe
is critical for the learning and generalisation of linguistic knowledge. We follow Kumaran and
McClelland (2012) in proposing that generalisation from distinct hippocampal representations
requires recurrent activation of multiple item representations and hence additional processing time.
In contrast, generalisation from neocortical representations can be achieved more rapidly since dis-
tributed representations can similarly process both familiar and novel items (as in parallel distributed
processing models of morphological processing (e.g., Rumelhart & McClelland, 1986)). Based on these
considerations, then, we predicted that one signature of hippocampal and neocortical language knowl-
edge would be the relative success and failure of generalisation in non-speeded vs. speeded test tasks.
To assess this prediction, we therefore designed a paradigm that examines the generalisation of affix
meanings, both in a speeded lexical processing situation and in a non-speeded situation.

Experiment 1 investigates the question of whether consolidation is required for the generalisation
of affix meanings, and whether its impact is equivalent across speeded and non-speeded tasks by
training participants on new affixes and then testing them either immediately after training (i.e. with
no consolidation opportunity) or one week after training (thus providing a long consolidation oppor-
tunity). Experiments 2–5 go on to examine two factors that are known to be important in adult mor-
phological processing: contextual diversity and semantic consistency.

Contextual diversity is an important variable for two reasons. Firstly, affixes that combine with
many stems (i.e. affixes that benefit from high contextual diversity) are recognised by adult readers
more easily than those that combine with few stems (De Jong, Schreuder, & Baayen, 2000; Ford,
Davis, & Marslen-Wilson, 2010; Marslen-Wilson, Ford, Older, & Zhou, 1996). Therefore this variable
may have a critical impact on learning as well. Secondly, models such as the CLS that use overlapping
representations make clear predictions about the impact of contextual diversity on learning, and
generalisation in particular. In a system where information is represented as a pattern of activity over
a population of processing units (such as neurons in the neocortex) we would expect the semantic
information that is shared across several related novel words to gradually become more distinct (or
independent of the individual words) as the number of learned words increases. Applied directly to
the affix learning paradigm, we expect that as we increase the number of unique stems with which
a given novel affix combines in a semantically consistent manner, the pattern of activity associated
with the affix becomes increasingly independent of the stems used in training, and consequently
increasingly generalizable. In Experiment 2 we test these predictions by training participants on novel
affixes that occur with many or few stems in the training session. Critically, unlike in natural language,
we can equate the frequency of novel affixes that differ in contextual diversity by manipulating the
frequency of words in the training set.

Semantic consistency also impacts on the ease of word recognition and word learning (e.g., Rodd,
Gaskell, & Marslen-Wilson, 2002; Rodd et al., 2012) whereby semantically consistent words (words with
few unrelated meanings) enjoy a processing benefit. This variable may also affect the overlapping repre-
sentations that the CLS account requires in order to generalise. Affixes that are associated with multiple
different meanings may provide a weaker degree of representational overlap than affixes that consis-
tently refer to the same semantic category. We test this prediction in Experiment 3. In Experiments 4
and 5 we test further predictions of the CLS account about the role of consolidation in allowing acquisi-
tion of semantically inconsistent affixes. In sum, the CLS account predicts that any factor which
enhances the discovery of this shared structure should benefit the generalisation process, while any fac-
tor that disrupts discovery of shared structure should disrupt the generalisation process. We test this
general hypothesis by taking advantage of the well-documented effects of memory consolidation, con-
textual diversity, and semantic consistency on language processing and learning.

1.5. The current experiments

In all the experiments reported here, we trained participants on novel words comprising a familiar
stem and a novel affix (e.g., sleepafe). Each novel word was given a semantically-transparent definition
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relating back to its familiar stem (e.g., ‘‘sleepafe is a participant in a study about the effects of sleep’’).
Participants were trained on several different exemplars using each affix, with each affix modifying
the meaning of its stem in a semantically-consistent manner (except in those experiments in which
we varied semantic consistency). In all cases, however, the meaning of the stem was transparently
preserved in the derived form (i.e. we did not include items analogous to ‘‘department’’ in which the
whole form meaning is not clearly related to the meaning of the stem, cf. Marslen-Wilson et al.,
1994). Test tasks were designed to assess both episodic memory for the novel words and general
knowledge of the meaning of the novel affixes. To assess participants’ episodic memory for the novel
words, we employed a yes/no recognition memory task, sometimes in combination with free recall. To
assess whether participants had acquired general knowledge of affix meanings that can be accessed in
a speeded task, we developed a sentence congruency task, in which participants are asked to read sen-
tence frames that are followed by a semantically-congruent or semantically-incongruent final word.
Previous research has demonstrated that semantic congruency between a sentence frame and the final
word of a sentence modulates processing time of the sentence-final word, with incongruent words
being more difficult to recognise (e.g., Tulving & Gold, 1963) or read aloud (e.g., West & Stanovich,
1978) than congruent words.

Our version of this task involved the speeded reading aloud of sentence-final untrained novel words
comprising a known stem and newly-learned affix (e.g., sailafe). These words were preceded by a sen-
tence frame (e.g., ‘‘The manager often argued with the . . .’’), which was semantically-congruent or
semantically-incongruent with the meaning of the affix (sentence frames were neutral to the mean-
ings of the stems). These sentence-final targets comprised untrained stems with trained novel affixes,
so offered an opportunity to assess the extent to which knowledge of the novel affixes generalised to
new stems. We took two measures from this task. First, we measured the time taken to read aloud the
sentence-final target, which appeared once participants indicated that they had read the sentence
frame. Note that this aspect of the task does not require generalisation of the affix meanings; the task
only requires participants to read the sentence-final pseudoword aloud. However, we reasoned that if
participants had developed a stored representation of the novel affix, then their processing of the sen-
tence-final target would be speeded in a semantically-congruent context. Second, we required partici-
pants to make a non-speeded explicit judgment about the semantic congruency of the sentence (e.g.,
‘‘The manager often argued with the sailafe’’ is congruent, if participants have learned that -afe refers
to a person, but incongruent if they have learned that -afe refers to a location, for example). This aspect
of the task thus required participants to generalise the meaning of the affix. Thus, this task provided
two measures of affix meaning generalisation – one measure in a speeded situation in which general-
isation of affix meanings was not required (i.e. the congruency effect on reading aloud) and one
measure in a non-speeded situation in which generalisation of affix meanings was required (i.e. the
accuracy of sentence congruency judgements).
2. Experiment 1

Experiment 1 was designed to address (a) whether exposure to a relatively small set of exemplar
words would result in the emergence of generalised knowledge about the meanings of the novel
affixes embedded in those words; and (b) the extent to which this generalisation process requires con-
solidation to be observed in speeded and non-speeded tasks. In order to investigate these issues, we
trained our participants on a set of novel affixes combined with familiar stems, and then tested them
either immediately after training or one week after training. Participants were tested using a recogni-
tion memory task and the sentence congruency task described above.

Using a similar learning paradigm as that used in this study, Merkx et al. (2011) and Tamminen
et al. (2012) already established that immediately after training, participants are able to extract the
meanings of novel affixes and apply them to new exemplars in a non-speeded task that requires expli-
cit generalisation. Based on these findings, we would expect participants in our study to be able to per-
form the non-speeded explicit congruency judgement task immediately following training. The more
intriguing question concerns whether a congruency effect will be observed on reading aloud latencies,
and whether this effect will require consolidation to emerge. While Tamminen et al. (2012) claimed
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that consolidation is required for generalisation to emerge in speeded language processing tasks, their
evidence was based on a task that does not test access to semantic representations (single-word
speeded shadowing). Critically, accounts of generalisation implementing dual-mechanisms predict
that any semantic congruency effect on reading aloud latencies should not be observed immediately
after training, because the discovery of shared semantic structure requires memory consolidation in
order for newly learned information to develop overlapping neocortical representations.

2.1. Method

2.1.1. Participants
Forty-eight native English-speaking participants were recruited. None reported suffering from dis-

orders affecting reading or hearing. Twenty-four were tested immediately after training (15 female, 3
left-handed, mean age = 20), and 24 were tested one week after training (18 female, 1 left-handed,
mean age = 21). All were students at Royal Holloway, University of London, and were paid for their
participation.

2.1.2. Materials
2.1.2.1. Learning phase. Eight novel affixes were selected from the set used by Merkx et al. (2011).
These fell into four orthographic structure groups: CVCV (nule, tege), VCV (afe, ude), CVCC (lomb, halk),
and VCC (esh, ort). The set was divided into two lists of four affixes each, with all CV structure types
used in both lists. One list was trained and the other remained untrained. The assignment of these lists
to training condition was counterbalanced across participants.

Thirty-two existing words were selected as stems for the trained novel words (yielding 8 per
trained affix). All stems were monosyllabic, monomorphemic, 3–5 letters long (M = 4.13), and of suffi-
ciently high CELEX frequency (Baayen, Piepenbrock, & van Rijn, 1993) to be familiar to all speakers of
British English (M = 22.92 occurrences/million). Audio recordings were made of each trained novel
word by a female native speaker of southern British English.

Thirty-two definitions were created for the trained novel words. Definitions were constructed by
using the meaning of each novel affix consistently to modify the meaning of each stem. The trained
novel affixes were each assigned to one meaning category based on the meanings captured by existing
affixes (see also Merkx et al., 2011; Tamminen et al., 2012). These included a place (e.g., -ery in bakery,
nunnery), a tool (e.g., -er in cooker, eraser), a cost (e.g., -age in postage, corkage), and a person (e.g., -ist
in creationist, feminist). Thus, meanings of the novel words were always transparently related to the
meanings of their stems, and each affix was used in a semantically-consistent manner across the train-
ing set. Sample definitions are provided in Table 1.

2.1.2.2. Testing phase. Participants’ knowledge of the novel affixes and novel words was assessed using
a sentence congruency task and a recognition memory task.

In the sentence congruency task, participants read aloud 64 novel word targets preceded by a sen-
tence frame (5–11 words long) that was semantically congruent or incongruent with the meaning of
the novel affix. The target novel words for reading aloud were formed by combining an untrained
existing word stem (not seen during the learning phase) with a trained novel affix. This formation
allowed us to make inferences about participants’ generalised knowledge of the novel affixes. The
novel words for reading aloud were divided into two lists, one to be used in the congruent condition
and the other to be used in the incongruent condition, with lists rotated through these conditions
across participants. The stems in the two lists were closely matched for frequency (77.59 vs. 79.74),
orthographic neighbourhood size (7.00 vs. 6.91), number of letters (4.03 vs. 3.97), and average produc-
tion latency of the initial phoneme (270.40 ms vs. 270.33 ms; Rastle, Croot, Harrington, & Coltheart,
2005). Each of the sentence frames was congruent with one of the four meanings for the novel affixes,
and was incongruent with the other three meanings. Sentence frames were all semantically neutral in
respect of the stem of each novel word target. Sentence frames in the incongruent condition were cre-
ated by scrambling congruent sentence + novel affix pairings, thus creating a semantic mismatch
between the sentence frame and the novel affix. In this way, the same stimuli (sentence frames and



Table 1
Examples of trained affixes and stems, their associated meanings, and untrained affixes in one
counterbalancing list.

Affix Examples of trained novel words and associated meanings

-nule Bricknule is the labourer who operates the oven which hardens clay to brick
Foxnule is someone who looks after a fox harmed in a car accident

-afe Crabafe is the zoo building where you can see exotic crab species
Gunafe is the section of an armoury where one can find a gun

-lomb Fetchlomb is an extendable arm used to fetch small items without getting up
Mowlomb is a popular machine which can mow the lawn automatically

-esh Warnesh is the yearly cost the state pays to warn expatriates of danger
Begesh is the amount children pay to gangsters to be allowed to beg

Note: The untrained list of affixes in this example consist of -tege, -ude, -halk, -ort.

Table 2
Examples of sentences used in the sentence congruency task.

Congruency condition Sentence Meaning of the affix

Congruent It was honour to be visited by the sandnule Person
The man rushed to get inside the beanafe Place
They were taught how to operate a warmlomb Tool
He thought it would help if he paid them a hurlesh Cost

Incongruent The company had just relocated to a peachnule Person
The manager often argued with a pigafe Place
They were arrested for not paying the required lynchlomb Tool
They always made fun of her for using a readesh Cost
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novel words) were used in both congruent and incongruent conditions, counterbalanced across par-
ticipants (see Table 2 for examples).

The recognition memory task involved presentation of successive novel words, and required par-
ticipants to indicate whether these novel words were trained in the learning phase or untrained (never
encountered before). The stimuli included all 32 trained novel words from the learning phase (e.g.,
sleepafe, bricknule) as well as 64 untrained novel words. These 64 untrained novel words were
constructed by combining trained and untrained stems and affixes in different configurations. They
consisted of 16 untrained stem + trained affix combinations (e.g., rockafe), 16 trained stem + untrained
affix combinations (e.g., bricktege), and 32 recombinant novel words created by combining a trained
stem with a trained affix which during the learning phase occurred with a different stem (recombinant
stem + affix combinations, e.g., brickafe, sleepnule). Therefore this task required selection of further 16
monosyllabic word stems which did not occur in the learning phase (mean frequency = 46.10, mean
number of letters = 4.13).

2.1.3. Procedure
Participants completed the learning phase before moving on to the testing phase, which was con-

ducted either immediately following learning or after a one week delay. Learning and testing tasks
were carried out on computers running DMDX (Forster & Forster, 2003), with standard keyboards used
for response collection in the learning phase, and button boxes in the test phase.

2.1.3.1. Learning phase. It is now well known that long-term memory benefits from retrieval practice
during a study session (e.g., Karpicke & Roediger, 2008). Therefore, to optimise the effectiveness of our
training regime, our learning phase included two different tasks: a typing task involving only study of
the materials and an active recall task involving retrieval practice. In the typing task, a novel word and
its definition were presented on the screen. The novel word was simultaneously heard once through
headphones. Participants were instructed to read the word and its definition, and then press a key. The



10 J. Tamminen et al. / Cognitive Psychology 79 (2015) 1–39
key press cleared the screen, and participants then typed the novel word. No time limit was imposed
in this task. In the recall task, a novel word definition was presented on the screen, and participants
were required to recall and type the novel word that corresponded to that definition. No time limit
was imposed. After this response, the correct novel word was displayed, allowing participants to
use each recall trial as a learning opportunity, irrespective of whether they could recall the word at
that time. The learning phase consisted of nine blocks of the typing task, with each novel word seen
once in each block. These nine blocks were interleaved by three recall blocks, always presented after a
sequence of three typing blocks. Each novel word appeared once in each recall block. Therefore, each
of the 32 novel words was encountered in total 12 times in the learning phase. This phase lasted
roughly one hour.

2.1.3.2. Testing phase. In the test phase, participants completed the sentence congruency task and then
the recognition memory task. The sentence congruency task started with the visual presentation of a
sentence frame with the final word missing. Participants were asked to read the sentence frame
silently and to press a button on the button box once they had finished. Upon the button press, the
screen was cleared and the final word of the sentence presented in the middle of the screen. The task
was now to read the final word aloud as quickly and as accurately as possible. The vocal response was
recorded by DMDX through a head mounted microphone. Four seconds after the onset of the word it
was replaced by the question ‘‘Did the sentence make sense?’’, upon which participants pressed a but-
ton labelled ‘‘Yes’’ or ‘‘No’’ on the button box. In the experimental trials, the final word of the sentence
was always an untrained novel word, but these were preceded by a block of four practice trials where
familiar words were used instead to familiarise participants with the task. Order of the experimental
trials was newly randomised for each participant by DMDX. This task took about 10 min to complete.

In the recognition memory task, a trial started with a fixation cross in the middle of the screen for
500 ms. This was followed by the presentation of one of the trained or untrained novel words.
Participants indicated whether the word was trained or untrained on the button box. They were asked
to respond as quickly and as accurately as possible within an eight second response window. Order of
trials was randomised, and the task lasted about five minutes.

2.2. Results

Reaction time (RT) data were analysed using mixed-effects modelling (Baayen, Davidson, & Bates,
2008) in R using the lme4 package. This decision allowed us to include participants and items
simultaneously in the same model. Random effects structure was always determined by comparing
a series of models with gradually simplifying structure, thus preserving those factors that contributed
significantly to the model fit. In lme4 there is at the time of writing no way to calculate p-values to
evaluate significance for mixed-effect models that include random slopes. We adopted the solution
of carrying out likelihood ratio tests to evaluate the significance of each fixed effect by comparing a
model which includes the effect to an identical model which does not include the effect (Barr, Levy,
Scheepers, & Tily, 2013). Accuracy data were analysed according to the same strategy using logistic
mixed-effects models. Here, the p-values are reported based on the Wald Z statistic for each fixed
effect (Jaeger, 2008). Finally, fixed effects were always centred to make main effects interpretable
in models including interactions.

2.2.1. Training
To ensure that both time-of-testing groups learned the novel words equally well, we analysed per-

formance at the end of training, in the last block of the recall task. The immediately tested group
recalled 96% (±0.99%1) of the words, while the delayed test group recalled 97% (±0.70%). A logistic
mixed-effects model with no random slopes showed no difference between accuracy in the two groups
(p = .30).
1 When we report means in the text, figures, or tables, these are accompanied by the standard error of the mean (indicated by
error bars in figures and the ±sign in text and tables). When the means are compared in a within-participants design, we report the
within-participant standard error which removes variance due to individual differences (O’Brien & Cousineau, 2014).
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2.2.2. Sentence congruency
Reading aloud latencies to the sentence-final words were manually determined using CheckVocal

(Protopapas, 2007). Erroneous responses (mispronunciations, hesitations, false starts; 5.3% of the data
in the immediately tested group, 5.9% in the delayed test group) were removed, as were extremely
long RTs (above 1500 ms; 2.7% of the data in the immediately tested group, 2.3% in the delayed test
group). The data were then log-transformed to better meet the assumption of normality and to reduce
the effect of remaining outliers. Data in all figures have been backtransformed to show the numbers in
an interpretable form. Congruency (congruent vs. incongruent) and time-of-testing (immediate vs.
delayed) were included as fixed factors. No random slopes were included, as they did not significantly
improve the model fit. The factor of congruency contributed significantly to the model, v2(1) = 10.76,
p = .001, but time-of-testing did not, v2(1) = 0.09, p = .77. Importantly, the interaction between the
two was significant, v2(1) = 4.89, p = .03. This interaction reflected the fact that while there was no
congruency effect observed for the group tested immediately after training, v2(1) = 0.56, p = .45, there
was a significant congruency effect for the group tested a week after training, v2(1) = 15.14, p < .001.
This interaction is depicted in Fig. 1A.

For the analyses of accuracy scores in the congruency judgement component of the sentence con-
gruency task, two participants’ data were excluded on the basis of very high error rates (one in the
delayed test condition for responding ‘‘does not make sense’’ on every trial, and one in the immediate
test condition for responding ‘‘does not make sense’’ in more than 99% of the trials). This pattern of
responding suggests that these participants did not understand the task correctly. Accuracy was very
high in both the immediately tested group (87 ± 2.10%) and the delayed test group (88 ± 2.25%). Time-
of-testing was included as a fixed factor, no random slopes were included. Accuracy in both conditions
was reliably above chance (both ps < .001), and no difference was observed between the time-of-test-
ing groups, z = 0.15, p = .88.
2.2.3. Recognition memory
Following Merkx et al. (2011) and Tamminen et al. (2012), we analysed recognition memory data

by calculating signal detection measures (d0) in order to take into account response bias. Memory of
novel word stems was evaluated by calculating the difference between z-transformed proportion of
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Fig. 1. (A) Reading latencies in Experiment 1 to words in semantically congruent or incongruent sentence contexts for
participant groups tested immediately after training (day 1) and one week after training (day 8). Error bars represent within-
participant standard error of the mean. (B) d-prime scores for the different knowledge types in the recognition memory task for
participants tested immediately after training and a week after training. Error bars represent between-participant standard
error of the mean. ns = not significant.
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accurate ‘‘yes’’ responses to trained novel words (hits) and incorrect ‘‘yes’’ responses to items with an
untrained stem and a trained affix (false alarms). Memory of newly learned affixes was measured by
calculating the difference between hits and incorrect ‘‘yes’’ responses to items with a trained stem and
an untrained affix. Memory for trained stem and affix pairings (i.e. whole word knowledge) was cal-
culated by comparing hits with ‘‘yes’’ responses to recombinant items. These data are presented in
Fig. 1B. Since item-level data are not available when analysing d0 values, we used analyses of variance
(ANOVAs) by participants. An ANOVA with knowledge type (stem, affix, whole-word) as a within-
participants factor and time-of-testing (immediate vs. delayed) as between-participants factor
showed a main effect of knowledge type, F(2,92) = 147.60, p < .001, a main effect of time-of-testing,
F(1,46) = 5.81, p = .02, and an interaction between the two factors, F(2,92) = 9.90, p < .001. To unpack
this interaction, we first assessed the effect of time-of-testing in the three knowledge type conditions.
This showed that stem knowledge declined significantly over time, t(46) = 3.85, p < .001, as did whole
word knowledge, t(46) = 2.31, p = .03. Affix knowledge did not change over time. Next we evaluated
the difference between knowledge types in both time-of-testing conditions. In the immediate test
condition whole-word knowledge was significantly poorer than either stem, t(23) = 8.19, p < .001, or
affix knowledge, t(23) = 7.44, p < .001. This was also true in the delayed test condition, t(23) = 9.20,
p < .001 and t(23) = 14.45, p < .001 respectively. Here also the difference between affix and stem
knowledge was significant, t(23) = �5.18, p < .001, with affix knowledge being better than stem
knowledge. Accuracy rates (in percent correct) in this task are presented in Appendix A (for all subse-
quent experiments as well).
2.3. Discussion

The results of Experiment 1 provided two sources of evidence that participants were able to gen-
eralise meanings of the novel affixes that they had learned to new stems. First, consistent with our
observations from similar offline generalisation tasks in previous work (Merkx et al., 2011;
Tamminen et al., 2012), participants were able to judge the sentential congruency of words formed
with novel affixes with a high degree of accuracy. Second, participants revealed a congruency effect
on reading aloud latencies for the sentence-final target words. Target words in which the novel affix
was semantically congruent with the sentence frame were read aloud more quickly than target words
in which the novel affix was semantically incongruent with the sentence frame. Recall that the sen-
tences were congruent or incongruent with regard to the meaning of the affix rather than the stem
of the sentence-final target word; therefore the congruency effects reflect participants’ generalised
semantic knowledge of the affix.

Interestingly, the time course of these two indices of generalisation differed. Participants were
highly successful in making explicit congruency decisions immediately after training, and perfor-
mance was statistically equivalent in the group tested one week after training. However, the semantic
congruency effect in reading aloud was only observed in the group of participants who were tested a
week after training. This result suggests that the affix representations necessary to permit general-
isation in this task are not available immediately after training; instead, it appears that the acquisition
of these representations requires a period of memory consolidation. This dual time-course was also
seen in the generalisation data reported by Tamminen et al. (2012) using speeded shadowing. In both
cases, participants were highly accurate at generalising immediately after training in a non-speeded,
explicit meaning judgement test, but a period of consolidation was required in order to observe
generalisation effects in a speeded test that did not explicitly require participants to generalise. The
present findings add to Tamminen et al. (2012) by showing that this difference is not due to test tasks
that tap different types of knowledge (form-based vs. meaning-based), but rather due to a difference
in the mechanisms that support generalisation before and after consolidation.

While the passing of time between training and testing appears to be beneficial for the emergence
of generalisation in affix learning, the recognition memory data showed a detrimental effect of time
for episodic memory. Recognition accuracy for the stems used in training (stem knowledge) as well
as memory of which stems occurred with which affixes (whole word knowledge) declined over the
week intervening between training and testing (Fig. 1B).
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It is also of interest to note that we observe a clear difference between the two components of the
sentence congruency task: the ability to generalise in the non-speeded explicit congruency judgement
component, and the reading latencies to the sentence-final words. While the reading aloud compo-
nent showed no effect of congruency immediately after training (and therefore no evidence for
generalisation), participants were able to generalise in the same session in the explicit judgement task.
This is unlikely to have been caused by reading aloud being a less sensitive task to measure general-
isation; after all, this task does successfully demonstrate generalisation in the delayed test condition.
Instead, we argue that this result suggests that generalisation can be achieved by relying on at least
two different mechanisms, depending on the demands of the particular task. We will return to this
issue, and its implications for existing theories of generalisation, in Section 7.
3. Experiment 2

As discussed in Section 1, effects of contextual diversity (i.e. the number of contexts in which a
sound sequence or letter string arises) have been observed at multiple levels of the language system.
Contextual diversity facilitates the recognition of printed words (Adelman, Brown, & Quesada, 2006;
McDonald & Shillcock, 2001); it enhances rule extraction in infants and adults (under the terminology
‘relative frequency’; Valian & Coulson, 1988 and ‘variability’; Gómez, 2002); and it plays a powerful
role in morphological processing (under the terminology ‘family size’; De Jong et al., 2000). In respect
of this latter body of evidence, it is well known that the recognition of morphologically-simple and
morphologically-complex words is faster when the stem is from a large morphological family (i.e. is
embedded in many morphologically-complex words; e.g., sign) than when it is from a small morpho-
logical family (i.e. is embedded in few morphologically-complex words; e.g., skull; e.g., De Jong et al.,
2000). Further, there is evidence that these effects extend to affixes, with affixes that combine with
many stems being recognised more easily than those that combine with few stems (Ford et al.,
2010; Marslen-Wilson et al., 1996).

In this experiment we investigate whether the diversity of stems with which an affix is trained
influences generalisation of that affix. In addition to shedding light on whether the morphological
family size effects observed in adult language processing may arise as a consequence of the morpheme
acquisition process, this experiment tests a critical prediction made by CLS and other dual-mechanism
accounts of memory. Recall that in these accounts generalisation emerges from stored knowledge of
the shared properties of events encoded in memory, made possible by the overlap between similar
memories. Family size in semantically consistent affixes (i.e. affixes which carry the same meaning
across many different words) constitutes a natural metric of such overlap: affixes with a large family
size are associated with a large number of lexical representations which all share a common element
(the novel affix). This should allow the system to extract a context-independent representation of the
affix which should be readily generalizable. Affixes with a small family size benefit much less from the
overlap in the neocortical architecture, and are consequently less likely to form representations that
are independent of the stem-contexts in which they were trained. We predict that an affix that par-
ticipates in many different novel words (i.e. occurs with many stems) will be discovered more easily,
and thus generalises to a greater degree than an affix that participates in few novel words (i.e. occurs
with few stems). Essentially, each additional context that an affix arises in offers greater opportunity
for learning the meaning of that affix.

To test these predictions, we again trained participants on new affixes. We varied family size so
that half of the affixes occurred during training with eight different stems (large family size), while
the other half occurred with two different stems (small family size). However, the number of expo-
sures to each affix was identical across the two family size conditions. To achieve equal number of
exposures to the small-family affixes, novel words in this condition were repeated four times as often
as words containing large-family affixes. This manipulation should enhance episodic memory for the
novel words and affixes in the small-family condition, allowing us to potentially dissociate episodic
memory strength from emerging generalisation effects. Thus, unlike in natural language, we can com-
pare the impact of contextual diversity on affix learning and affix representations whilst matching for
affix frequency.
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3.1. Method

3.1.1. Participants
Twenty-four native English-speaking participants were recruited (17 female, 5 left-handed, mean

age = 21). All were students at Royal Holloway, University of London, and paid for their participation.

3.1.2. Materials
3.1.2.1. Learning phase. Sixteen novel affixes were selected. These fell into the same four orthographic
structure groups used in Experiment 1: CVCV (nule, tege, labe, hoke), VCV (ane, ose, ude, ete), CVCC
(nept, tund, lomb, halk), and VCC (ort, aph, esh, uck). This set was divided into two lists of eight affixes
each with all CV structure types used in both lists. Each participant learned the affixes of one list only;
the other remained untrained. Allocation of lists to these conditions was counterbalanced across par-
ticipants. Sixty-four existing words were used as stems in the trained novel words. All were monosyl-
labic, monomorphemic, 3–5 letters long (M = 4.30), and of high enough CELEX frequency (Baayen
et al., 1993) to be familiar to speakers of British English (M = 49.61 occurrences/million).

Thirty-two of the stems (eight stems for each of the four affixes) were assigned to the large family
size condition, and another 32 to the small family size condition (counterbalanced so that all stems
were used in both conditions). However, in the small family condition, for any given participant only
eight of the stems were used, two stems for each of the four affixes. Across participants, however, all of
the stems were used. Audio recordings were made of each trained novel word by a female native
speaker of southern British English.

Definitions were created for the novel words using the same four meaning categories as in
Experiment 1. Again, each affix was consistently assigned to one meaning category. Two meaning
categories were used in the small family size condition, and another two in the large family size con-
dition. These were counterbalanced so that all meaning categories were used in both family size con-
ditions. Because we were training each participant on eight novel affixes (four in each family size
condition) but had only four meaning categories, each meaning category was assigned two different
affixes (see Table 3 for an illustration).

3.1.2.2. Testing phase. The sentence congruency task was designed in the same way as in Experiment 1,
except that the stimulus set was doubled to allow us to test for congruency effects in the two different
family size conditions. For this purpose we collected 128 monosyllabic word stems which were
divided into two lists matched on frequency (21.15 vs. 20.94 per million; Baayen et al., 1993), ortho-
graphic neighbourhood size (6.31 vs. 5.91), number of letters (4.36 vs. 4.27), and the average produc-
tion latency of the initial phoneme (267.11 ms vs. 267.57 ms; Rastle et al., 2005). These two lists were
assigned to the congruent or incongruent conditions. The lists were further divided into two sub-lists,
matched on the same variables as above, to be used in the two family size conditions. All lists were
rotated through the family size and congruency conditions for a fully counterbalanced design.
Sentence frames were 4–12 words long, and semantically neutral to the stem.
Table 3
Examples of novel words used in Experiment 2.

Family size Novel word Meaning category

Small Buildnule Cost
Small Bringane Tool
Small Crewose Cost
Small Girlhalk Tool
Large Knitlomb Person
Large Creepesh Place
Large Hairuck Person
Large Sheeptege Place

Note: The untrained list of affixes in this example con-
sist of -nept, -ort, -labe, -ude, -tund, -aph, -hoke, -ete.
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In the recognition memory task participants saw all 40 trained novel words from the learning
phase as well as 40 recombinant novel words, created in the same was as in Experiment 1. This
allowed a measure of whole word knowledge, but the other types of knowledge measured in
Experiment 1 were not included here due to the small number of trained stems in the small-family
condition.

3.1.3. Procedure
Participants completed the learning phase followed by the testing phase conducted one week later

to ensure that all novel words had been consolidated. The same equipment was used as in Experiment
1.

3.1.3.1. Learning phase. The learning phase was identical to that of Experiment 1 with the same tasks
and number of exposures to each novel word. The major difference was in the number of words to be
learned. In this experiment participants learned a total of 40 novel words: 32 in the large family size
condition (eight stems per affix) and eight in the small family size condition (two stems per affix).
Each large-family word was encountered 12 times, as in Experiment 1, once in each of the nine typing
task blocks, and once in each of the three recall blocks. This means that each large-family affix was
encountered 96 times in total (8 stems � 12 training blocks = 96 exposures). To match the number
of encounters with each large and small-family affix, we presented each small-family novel word four
times in each of the learning blocks (2 stems � 12 training blocks � 4 repetitions = 96 exposures). This
phase lasted roughly 90 min, and the presentation order within each block was randomised. The
learning phase ended with a free recall test. Participants were given a blank sheet of paper and asked
to write down as many of the newly learned words as possible. Recall of word meanings was not
required. Each participant was given five minutes to complete this task.

3.1.3.2. Testing phase. The test phase included sentence congruency and recognition memory tasks.
These tasks were conducted in an identical manner to Experiment 1.

3.2. Results

3.2.1. Training
To investigate whether both family size conditions were learned equally well, we analysed perfor-

mance in the last block of the recall task in the training session. Participants recalled an average of 90%
(±0.75%) of the large-family words, and 94% (±0.75%) of the small family words. A logistic mixed-
effects model with no random slopes showed this difference to be significant, z = 3.61, p < .001.

3.2.2. Free recall
At the end of the training session, participants recalled on average 48% (±1.21%) of the large family

size words, and 79% (±4.88%) of the small family size words. A logistic mixed effects model (with no
random slopes) showed this difference to be significant, z = 7.47, p < .001.

3.2.3. Sentence congruency
As in Experiment 1, incorrect responses (0.7% of the data) and extremely long RTs (above 1500 ms;

4.3% of the data) were removed. Congruency (congruent vs. incongruent) and family size (small vs.
large) were included as fixed factors. No random slopes were included. The factor of congruency
was not significant, v2(1) = 1.72, p = .19, while family size did reach significance, v2(1) = 7.22,
p = .007. Critically, we observed an interaction between these two factors, v2(1) = 4.09, p = .04. This
interaction reflected a significant congruency effect in the large family size condition, v2(1) = 5.66,
p = .02, but no congruency effect in the small family size condition, v2(1) = 0.20, p = .65. These data
are depicted in Fig. 2A.

Accuracy scores in the congruency judgment component of the sentence congruency task were
analysed to see if family size affected this more explicit measure. One participant’s data were excluded
from this analysis for responding ‘‘does not make sense’’ on every trial. Family size was included as a
fixed factor; random slopes for the effect of family size significantly benefited the model and were
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Fig. 2. (A) Reading latencies in Experiment 2 to words in semantically congruent or incongruent sentence contexts for affixes in
the two family size conditions. (B) d-prime scores for whole word knowledge in the recognition memory task. Error bars
represent within-participant standard error of the mean. ns = not significant.
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therefore included. Accuracy in both the large family size (70 ± 1.59%) and small family size
(67 ± 1.59%) conditions was reliably above chance (both ps < .001). A trend-level difference was
observed between the conditions, z = �1.70, p = .09, with slightly higher accuracy in the large-family
condition.
3.2.4. Recognition memory
Whole word knowledge was calculated using signal detection measures. A paired-samples t-test

comparing d0 between the large and small family size conditions showed that accuracy was signifi-
cantly higher in the small family size condition, t(23) = �2.45, p = .02 (Fig. 2B).
3.3. Discussion

In Experiment 2 we used the sentence congruence task to discover if generalisation for newly
learned affixes is modulated by the number of stems with which an affix occurs (critically, while hold-
ing affix frequency constant). Results again showed different patterns for the two measures of general-
isation, much like in Experiment 1. While low contextual diversity did not significantly reduce
participants’ ability to generalise in the explicit congruency judgment task, it did influence the size
of the congruency effect on reading aloud. Specifically, we observed a robust congruency effect for
affixes paired with many stems (replicating the delayed test condition of Experiment 1), which was
statistically greater than the null effect of congruency observed for affixes paired with few stems.

While generalisation of novel affixes in the speeded reading task required the high degree of vari-
ability afforded by multiple stems, episodic memory did not benefit from this. In fact, we observed a
clear dissociation between generalisation and strength of episodic memory. Episodic memory benefit-
ted from frequency of presentations during training, as shown by free recall rates being superior in the
small-family condition, and the recognition memory task showing significantly better whole-word
knowledge for the small-family words than for the large-family words. It therefore appears that accu-
mulation of learning episodes benefits episodic memory measures, but not generalisation, with
generalisation critically depending on the number of unique exemplars (unique stem + affix combina-
tions in our case) encountered during training.
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4. Experiment 3

Semantic consistency, that is, the consistency with which a word or a morpheme refers to one
meaning or semantic class, has a profound impact on language processing and there is emerging evi-
dence to show that it might also influence language acquisition. For example, many words have multi-
ple unrelated meanings (e.g., bank); this form-to-meaning ambiguity slows word recognition (e.g.,
Rodd et al., 2002). It is also more difficult to learn a new meaning for an existing word if that meaning
is inconsistent with the existing meaning than if it is consistent with it (for example, learning that hive
is a busy household is easier than learning that grin is a busy household; Rodd et al., 2012). Similarly,
form-to-meaning consistency facilitates word learning, with learning being easier when orthographic
form predicts the semantic category of a new word (Rueckl & Dror, 1994). In the domain of morphol-
ogy form-to-meaning consistency of affixes (i.e. whether an affix modifies the stems with which it
occurs in a consistent manner) influences the way that morphologically complex words using existing
affixes are stored and parsed (e.g., Bertram, Schreuder, & Baayen, 2000). Given that semantic inconsis-
tency abounds at several levels of language, it is critical to understand how it impacts on learning and
generalisation, and what the relevant implications are for theories of generalisation. In Experiments
3–5 we seek to establish whether and under what circumstances participants are able to learn affixes
with multiple unrelated meanings, and whether generalisation of these affixes occurs in spite of this
inconsistency.

Dual-mechanism theories of memory such as the CLS account are faced with a unique challenge
during the acquisition of semantically inconsistent information. This challenge arises because in archi-
tectures using overlapping representations, the overlapping features of new memories become stron-
ger as more materials with a high degree of similarity are encoded, while individuating features
become more weakly represented (Norman & O’Reilly, 2003). This characteristic of such models sug-
gests that semantically inconsistent affixes with multiple different meanings might result in weaker
representations than semantically consistent affixes, perhaps disrupting performance in general-
isation tasks. This prediction is supported by Plaut and Gonnerman’s (2000) connectionist model of
morphology which showed little morphological priming for semantically opaque words in a morpho-
logically impoverished language (modelled after English).

In Experiment 3 we compare the acquisition of semantically consistent and inconsistent novel
affixes. Participants were trained on novel affixes, half of which referred to one semantic category
(e.g., tools) in some novel words and referred to a different semantic category (e.g., people) in other
novel words. These semantically inconsistent affixes are common in natural language; for example
the affix -er can combine with wild to form the comparative wilder, and can also combine with teach
to refer to a person teacher. The other half of our novel affixes referred to one and the same semantic
category in all words (semantically consistent affixes). We predict that semantically consistent affixes
should support speeded generalisation following consolidation, as this condition replicates the pre-
vious two studies in which all the novel affixes were semantically consistent. However, as described
above, generalisation might be disrupted in semantically inconsistent affixes. By comparing the out-
come of speeded and non-speeded generalisation tests we can explore whether each of the two
mechanisms that potentially support generalisation in dual-mechanism models are differentially
affected by semantic inconsistency.
4.1. Method

4.1.1. Participants
Twenty-four native English-speaking participants were recruited (16 female, 2 left-handed, mean

age = 20). All were students at Royal Holloway, University of London, and paid for their participation.
4.1.2. Materials
4.1.2.1. Learning phase. The same 16 novel affixes were used as in Experiment 2. This set was divided
into two lists of eight affixes with all CV structure types used in both lists. Each participant learned the
affixes of one list only, the other remained untrained. These two lists were further divided into two



Table 4
Examples of novel words used in Experiments 3–5.

Semantic consistency Novel word (meaning category)

Consistent Buildnule (cost), Sleepnule (cost)
Consistent Bringane (place), Lockane (place)
Consistent Crewose (tool), Bombose (tool)
Consistent Girltege (person), Graintege (person)
Inconsistent Knitlomb (person), Swimlomb (tool)
Inconsistent Creepesh (place), Grabesh (cost)
Inconsistent Hairuck (cost), Gunuck (person)
Inconsistent Sheephalk (tool), Creamhalk (place)

Note: these are examples from one counterbalancing list. Across the
complete group of participants all affixes and stems were used in
both consistency conditions.
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sub-lists, one used in the semantically consistent, and the other in the inconsistent condition, with
two CV structure types in each sub-list. Allocation of all lists to these conditions was counterbalanced
across participants such that every affix served in all conditions across the trained/untrained and con-
sistent/inconsistent manipulations.

The same 64 existing word stems were used as in Experiment 2. Thirty-two of the stems (eight
stems for each of the four affixes) were assigned to the semantically consistent condition, and another
32 to the semantically inconsistent condition (counterbalanced so that all stems were used in both
conditions).

Definitions were created for the novel words using the same four meaning categories as before.
Each semantically consistent affix was associated with one meaning category. Each semantically
inconsistent affix on the other hand was associated with two different meaning categories. As
Table 4 illustrates, each meaning category was associated with three affixes, one consistent and
two inconsistent.

4.1.2.2. Testing phase. The sentence congruency task was designed in the same way as in Experiment 2,
and used the same stimuli.

Stimuli in the recognition memory task included all 64 trained novel words from the learning
phase and 128 untrained novel words. The untrained novel words consisted of 32 untrained
stem + trained affix combinations, 32 trained stem + untrained affix combinations, and 64 words
created by combining a trained stem with a trained affix which during the learning phase occurred
with a different stem (recombinant stem + affix combinations). The untrained stems had an average
frequency of 46.49 per million (Baayen et al., 1993) and an average length of 4.88 letters.

4.1.3. Procedure
The learning phase was followed by the testing phase conducted one week later. The same equip-

ment was used as in previous experiments.

4.1.3.1. Learning phase. Participants learned a total of 64 novel words: 32 in the semantically consis-
tent condition (eight stems per affix) and 32 in the semantically inconsistent condition (eight stems
per affix). All words were encountered 11 times, once in each of eight typing task blocks, and once
in each of three recall blocks. The blocks were ordered as follows: three blocks of typing, one block
of recall, three blocks of typing, one block of recall, two blocks of typing, one block of recall. The deci-
sion to drop one block of typing (compared to previous experiments) was taken to ensure the training
phase in this experiment which involves learning a larger number of words than the preceding experi-
ments would not exceed two hours for even the slower participants. This phase lasted on average
90 min, the presentation order within each block was randomised, therefore meaning that exemplar
words representing the two alternative affix-meaning mappings in the semantically inconsistent affix
condition were also randomly intermixed within the training session (see Fig. 3 for a graphical repre-
sentation of this training regime). The learning phase ended with a free recall test conducted exactly as
in Experiment 2.
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Fig. 3. Diagram illustrating the training regimes of semantically inconsistent affixes used in Experiments 3–5. In Experiment 3
novel words using the two affix-meaning mappings were randomly intermixed, in Experiment 4 they were blocked and
separated by 24 h, in Experiment 5 they were blocked with no intervening consolidation opportunity.
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4.1.3.2. Testing phase. Participants completed the sentence congruency and recognition memory tasks
in exactly the same manner as in previous experiments.
4.2. Results

4.2.1. Training
To investigate whether participants learned words in both semantic consistency conditions equally

well, we analysed performance in the last block of the recall task in the training session. Participants
recalled an average of 89% (±1.49%) of the words with a semantically consistent affix, and 86% (±1.49%)
of the words with an inconsistent affix. A logistic mixed-effects model with no random slopes showed
this difference to be significant, z = 2.30, p = .02.
4.2.2. Free recall
At the end of training, participants recalled on average 41% (±1.71%) of the words with a semanti-

cally consistent affix, and 37% (±1.71%) of the words with an inconsistent affix. A logistic mixed effects
model (with no random slopes) showed a trend-level difference, z = 1.78, p = .07, between the
conditions.
4.2.3. Sentence congruency
As before, incorrect responses (2.4% of the data) and extremely long RTs (above 1500 ms; 4.4% of

the data) were removed. Congruency (congruent vs. incongruent) and semantic consistency (consis-
tent vs. inconsistent) were included as fixed factors. No random slopes were included. The factor of
congruency was not significant, v2(1) = 1.66, p = .20, and neither was semantic consistency,
v2(1) = 0.11, p = .74. However, the interaction between the two factors was significant, v2(1) = 5.19,
p = .02. This interaction reflected a significant congruency effect in the semantically consistent condi-
tion, v2(1) = 6.14, p = .01, but no congruency effect in the semantically inconsistent condition,
v2(1) = 0.46, p = .50. These data are depicted in Fig. 4A.

One participant’s data were excluded from the analysis of accuracy scores in the congruency deci-
sion component of the sentence congruency task for responding ‘‘does not make sense’’ on every trial.
Accuracy in both the semantically consistent (75 ± 4.68%) and inconsistent conditions (59 ± 2.47%)
was above chance (both ps < .001). Semantic consistency was included as a fixed factor in the analysis,
and random slopes for the effect of consistency were included as they significantly improved the
model fit. A significant difference was observed between these conditions, z = �5.68, p < .001.
4.2.4. Recognition memory
Data from the recognition memory task are presented in Fig. 4B. An ANOVA on the d-prime values

with consistency and knowledge type revealed a significant main effect of consistency, F(1,23) = 5.03,
p = .04, and of knowledge type, F(2,46) = 167.21, p < .001. The interaction between the two was not
significant (p = .88).
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4.3. Discussion

Experiment 3 investigated the impact of semantic consistency on affix learning and generalisation.
When affixes carried more than one meaning, this reduced participants’ ability to make explicit con-
gruency judgments, although their performance remained significantly greater than chance. However,
while we observed a significant congruency effect on reading aloud for the semantically consistent
affixes (replicating Experiments 1 and 2), this effect was significantly greater than the null effect of
congruency observed for semantically-inconsistent affixes, indicating an absence of generalisation
for the inconsistent affixes in this speeded task.

Episodic memory appears also to have been affected by semantic consistency. In the free recall task
there was a trend-level effect towards better recall for newly learned words with consistent affixes. In
the recognition memory task participants were overall more accurate with stimuli in the consistent
condition. There was also a numerically small but statistically significant 2% advantage in the last
block of the recall task in training for words with affixes in the semantically consistent condition.
These data suggest that semantic consistency has a pervasive impact across many domains of lan-
guage. As outlined in the introduction to this experiment, semantic consistency affects both the pro-
cessing and the representation of various linguistic units. Here we show that semantic consistency
may also, at least under the current training regime, determine whether newly learned linguistic
representations (affixes in our case) can generalise, and that consistency affects the strength of episo-
dic representations that begins to emerge already during training.
5. Experiment 4

The failure of semantically inconsistent affixes to generalise in Experiment 3 in the speeded reading
aloud task is potentially problematic given that semantic inconsistency is a common feature of lan-
guage and morphology (e.g., the affix -er in wilder and teacher, as described earlier). The very same
problem is encountered in associative learning. In studies of associative learning, participants are
asked to learn paired stimuli (A–B; e.g., pairs of words). If after learning a study list (A–B) participants
are asked to learn an interference list where the first member of the original pair is now paired with a
new stimulus (A–C), memory for the study pairs becomes severely impaired, a form of catastrophic
interference (e.g., Bower, Thompson-Schill, & Tulving, 1994).
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CLS accounts of memory, however, offer a potential solution. These accounts suggest that new
information can be added to established neocortical memory without the kind of catastrophic inter-
ference seen in associative learning if the new information is added gradually and interleaved with
presentations of the old information. These conditions are met by holding new information back from
the neocortex at the time of learning, and allowing the information to be added to the neocortex off-
line during consolidation in a more gradual manner. The prediction, then, is that catastrophic interfer-
ence can be avoided by allowing the initial information (A–B) to consolidate prior to adding the new
overlapping information (A–C). A number of studies into associative learning have shown this to be
the case: interference can be avoided if a consolidation opportunity (best served by a period of sleep)
is allowed before training on the interference (A–C) pairs (Drosopoulos, Schulze, Fischer, & Born, 2007;
Ellenbogen, Hulbert, Jiang, & Stickgold, 2009; Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-
Schill, 2006; Sheth, Varghese, & Truong, 2012).

Based on these predictions we hypothesised that generalisation of semantically inconsistent newly
learned affixes should be possible if we allow the first affix-meaning mapping to consolidate before
training participants on the second affix-meaning mapping. Therefore we trained participants on
the same items as in Experiment 3, but spread over two days. Participants first learned new affixes,
all of which referred consistently to one semantic category. After a 24-h consolidation opportunity,
participants returned and now received more training on the same affixes. Importantly, for half of
the affixes the semantic category had now been changed (i.e. the affixes were now being made seman-
tically inconsistent) while for the other half the semantic category remained the same as it had been
the previous day (i.e. these affixes remained semantically consistent). This way we could ensure that,
unlike in Experiment 3, in the semantically inconsistent affixes one affix-meaning mapping had been
allowed to consolidate before introducing the second mapping (see Fig. 3).

5.1. Method

5.1.1. Participants
Twenty-four native English-speaking participants were recruited (18 female, 5 left-handed, mean

age = 20). All were students at Royal Holloway, University of London, and paid for their participation.

5.1.2. Materials
The materials in all phases and tasks were exactly the same as in Experiment 3.

5.1.3. Procedure
The learning phase was completed over two consecutive days followed by the testing phase one

week after the second training session. The same equipment was used as in previous experiments.

5.1.3.1. Learning phase. As in Experiment 3, participants learned a total of 64 novel words: 32 in the
semantically consistent condition (eight stems per affix) and 32 in the semantically inconsistent con-
dition (eight stems per affix). However, unlike Experiment 3, training in this experiment involved two
sessions conducted over two successive days. On the first day, participants learned 32 novel words
using 8 new affixes (4 stems per affix). Half of these words were in the semantically consistent con-
dition, and half were in the semantically inconsistent condition (Table 4). However, the exemplars
used in both of these conditions always used a consistent meaning for each affix. On the second
day, participants learned the other set of 32 novel words, using the same affixes as in the first session.
However, in the semantically inconsistent condition, now half of the affixes were associated with a
different meaning category than in the previous session (i.e. they became semantically inconsistent
as a result of training in this session), while the other half were associated with the same meaning
category (i.e. they remained semantically consistent). Participants were not told or warned about
the introduction of semantic inconsistency.

On both training days, all words were encountered 11 times, once in each of eight typing task
blocks, and once in each of three recall blocks (order of blocks was the same is in Experiment 3).
Each session lasted roughly 45 min and the presentation order within each block was randomised.
Both sessions ended with the free recall task.
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5.1.3.2. Testing phase. The test phase was identical to Experiment 3 in all respects.

5.2. Results

5.2.1. Training
To investigate whether participants learned words in both semantic consistency conditions equally

well, we analysed performance in the last block of the recall task in both training sessions. On the first
day, participants recalled an average of 88% (±3.02%) of the words in the semantically-consistent con-
dition, and 89% (±1.78%) of the words in the semantically-inconsistent condition (although at this
point in time these affixes were also still consistent and would become inconsistent only with further
training on the following day). On the second day, participants recalled an average of 88% (±2.35%) of
the words in the semantically-consistent condition, and 84% (±2.26%) of the words in the semanti-
cally-inconsistent condition. A logistic mixed-effects model with the fixed factors of consistency
and session but no random slopes showed a marginal main effect of session, z = �1.94, p = .053,
reflecting the small decline is recall on the second day. However, there was no main effect of semantic
consistency (p = .22) or interaction between semantic consistency and session (p = .48).

5.2.2. Free recall
One participant’s free recall data were lost due to experimenter error. At the end of the first training

session, the remaining participants recalled on average 61% (±3.78%) of the words in the semantically-
consistent condition, and 59% (±3.96%) of the words in the semantically-inconsistent condition. At the
end of the second training session, they recalled 53% (±3.68%) of the words in the semantically-con-
sistent condition, and 50% (±2.72%) of the words in the semantically-inconsistent condition. A logistic
mixed effects model with the fixed factors of consistency and session, and with random slopes for ses-
sion, showed a significant main effect of session, z = �2.31, p = .02 reflecting lower recall after the sec-
ond session. However, there was no main effect of semantic consistency (p = .28) or interaction with
session (p = .66).

5.2.3. Sentence congruency
Incorrect responses (9.8% of the data) and extremely long RTs (above 1500 ms; 5.5% of the data)

were removed. Congruency (congruent vs. incongruent) and semantic consistency (consistent vs.
inconsistent) were included as fixed factors. No random slopes were included. The factor of congru-
ency was significant, v2(1) = 10.84, p < .001, but semantic consistency was not, v2(1) = 1.66, p = .20.
There was also no interaction between the factors, v2(1) = 0.01, p = .91. The significant effect of con-
gruency coupled with the absence of an interaction suggests that the congruency effect was present
in both semantic consistency conditions. To confirm this conclusion, we evaluated the effect of con-
gruency separately in the two consistency conditions. A significant effect of congruency was found
both in the consistent, v2(1) = 6.58, p = .01, and inconsistent conditions, v2(1) = 4.71, p = .03. These
data are depicted in Fig. 5A.

One participant’s data were excluded from analysis of accuracy scores in congruence judgement for
responding ‘‘does not make sense’’ in nearly every trial. Levels of accuracy for the remaining partici-
pants were very similar to those in Experiment 3 both in the semantically consistent (76 ± 4.57%) and
inconsistent conditions (59 ± 2.93%). Semantic consistency was included as a fixed factor in the analy-
sis, and random slopes for the effect of consistency were included as they significantly improved the
model fit. This analysis revealed a significant effect of semantic consistency, z = �5.76, p < .001.
Nonetheless, accuracy scores in both conditions were significantly higher than chance (both ps < .001).

5.2.3.1. Congruency effect associated with meanings learned on day 1 vs. day 2. In order to establish
whether the congruency effect in reading aloud seen in the semantically inconsistent affixes was
observed both for the meaning category acquired on day 1 and for the category acquired on day 2
we restricted the analysis to inconsistent affixes and coded the congruent trials separately as being
congruent with respect to the meaning learned on day 1 or on day 2. To see whether this added factor
of day interacted with the overall congruency effect, we compared the magnitude of the congruency
effect across the two day conditions using the generalised linear hypothesis test implemented in the
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multcomp package in R. No such difference was found, z = 1.46, p = .16. As the congruency effect is not
modulated by day of learning, these data suggest that both meanings associated with an affix give rise
to a congruency effect.

5.2.4. Recognition memory
The recognition memory data are shown in Fig. 5B. An ANOVA on the d-prime scores showed no

effect of semantic consistency, F(1,23) = 0.28, p = .60, but did show a main effect of knowledge type,
F(2,46) = 191.36, p < .001. No significant interaction was observed (p = .21).

5.2.5. Comparison of the sentence congruency effect between non-spaced learning (Experiment 3) and
spaced learning (Experiment 4)

Data from Experiments 3 and 4 were combined to establish whether a statistically reliable differ-
ence in the sentence congruency effect could be observed between the two experiments. These com-
parisons are summarised in Fig. 6. The semantically consistent condition was analysed first, with
congruency and experiment included as fixed factors. No random slopes were included. No interaction
between the factors was observed, v2(1) = 0.01, p = .94, while the main effect of congruency did reach
significance, v2(1) = 12.70, p < .001, confirming that the congruency effect in the consistent condition
was equivalent across the two experiments. In contrast, in the inconsistent condition we did find a sig-
nificant interaction, v2(1) = 4.17, p = .04, while no significant main effects were observed. This inter-
action confirms that the difference in the congruency effect in the inconsistent condition across the
two experiments is statistically reliable.

5.3. Discussion

Experiment 4 explored one potential method for avoiding the disrupting effect of semantic incon-
sistency on generalisation by allowing the first meaning of a novel affix to consolidate before introduc-
ing a second, inconsistent meaning for the same affix. This training manipulation was modelled on
methods that have been shown to be effective in avoiding interference between inconsistent pairs
in associative learning experiments (Drosopoulos et al., 2007; Ellenbogen et al., 2006, 2009; Sheth
et al., 2012). This manipulation was successful: we now found a significant semantic congruency effect
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on reading aloud for both the consistent and inconsistent conditions. Furthermore, we were able to
establish that in the inconsistent affixes, both of the two meanings afforded semantic congruence
effects, demonstrating that these affixes had truly been associated with two different meanings. We
also showed that in the inconsistent affixes, the sentence congruency effect was significantly larger
in the current experiment than in Experiment 3, while no such difference was observed (or predicted)
in the consistent condition.

In the explicit congruence judgement task both conditions were significantly above chance,
although participants were again more accurate with consistent affixes. In Experiment 3 we saw
poorer decision performance in the same condition where we failed to see a congruency effect in read-
ing latency (i.e. the semantically inconsistent condition). In Experiment 4 we saw exactly the same
pattern in judgement performance but this did not stop the emergence of a congruency effect in read-
ing latency. This dissociation reinforces the view that these two tasks reflect very different cognitive
processes to achieve generalisation; we will return to these mechanisms in Section 7.
6. Experiment 5

We have argued that semantically inconsistent affixes in Experiment 4 were successfully general-
ised because consolidation was allowed to operate before introducing the second affix-meaning map-
ping, while in Experiment 3 generalisation was disrupted because the two mappings were presented
simultaneously in the same training session. However, the opportunity for consolidation was not the
only difference between the two experiments: it is possible that the critical factor was that the intro-
duction of meanings was blocked in the experiment. In Experiment 3 exemplars of both mappings
were intermixed; in Experiment 4 one mapping was extensively trained first, followed by extensive
(and exclusive) training of the second mapping. While CLS accounts might propose that it is consol-
idation that makes the difference, an episodic account might conversely propose that stimulus block-
ing (even without consolidation) would help to prevent interference between the two affix meanings
by providing an additional context that allows learners to keep the two meanings separate. To test
these predictions, in Experiment 5 we trained participants on the same stimuli as in Experiment 4,
with the only difference being that we eliminated the consolidation opportunity by training the first
affix-meaning mapping first, immediately followed by training of the second mapping on the same
day (see Fig. 3).
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6.1. Method

6.1.1. Participants
Thirty-two native English-speaking participants were recruited (24 female, 2 left-handed, mean

age = 22). All were students at Royal Holloway, University of London, and paid for their participation.

6.1.2. Materials
The materials in all phases and tasks were exactly the same as in Experiments 3 and 4.

6.1.3. Procedure
The learning phase was completed in one session on day 1, followed by the testing phase one week

later. The same equipment was used as in previous experiments.

6.1.3.1. Learning phase. The learning phase was identical to that of Experiment 4 except that the two
sessions which were separated by a day in Experiment 4 were now carried out in one session without
a break in between. Consistent with Experiment 4, participants were not told or warned about the
introduction of semantic inconsistency in the second half of the training session. The session lasted
roughly 90 min and the presentation order within each block was randomised. The session ended with
the free recall test.

6.1.3.2. Testing phase. The test phase was identical to Experiments 3 and 4 in all respects.

6.2. Results

6.2.1. Training
To investigate whether participants learned words in both semantic consistency conditions equally

well, we analysed performance in the last block of the recall task in the two halves of the training ses-
sion. At the end of the first half participants recalled an average of 92% (±1.49%) of the words in the
semantically-consistent condition, and 93% (±1.38%) of the words in the semantically-inconsistent
condition (although the inconsistency had not been introduced yet). At the end of the second half par-
ticipants recalled an average of 90% (±1.44%) of the words in the semantically-consistent condition,
and 90% (±1.59%) of the words in the semantically-inconsistent condition. A logistic mixed-effects
model with the fixed factors of semantic consistency and part of session (first vs. second half) (no ran-
dom slopes were included) showed a main effect of part of session, z = �2.60, p = .009, reflecting the
numerically small decline is recall in the second half.

6.2.2. Free recall
The free recall task was carried out at the end of the training session. We included semantic con-

sistency as well as the part of the training session in which the words were learned as fixed factors.
Participants recalled on average 43% (±4.03%) of the words learned in the first half in the semanti-
cally-consistent condition, and 45% (±3.78%) of the words in the semantically-inconsistent condition
(recall however that the inconsistency had not been introduced in the first half). They recalled 41%
(±3.36%) of the words learned in the second half with a semantically consistent affix, and 44%
(±3.50%) of the words with an inconsistent affix. A logistic mixed effects model with random slopes
for training session half showed no significant effects (semantic consistency p = .30, part of session
p = .61, interaction p = .79).

6.2.3. Sentence congruency
Incorrect responses (6.8% of the data) and extremely long RTs (above 1500 ms; 7.3% of the data2)

were removed. Congruency (congruent vs. incongruent) and semantic consistency (consistent vs.
2 This percentage is higher than in the other experiments due to two participants contributing a disproportionate number of
very slow trials. If these two participants were excluded, the proportion of removed trials would be highly similar to the other
experiments (4.9%). The exclusion of these participants would not change the results.
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inconsistent) were included as fixed factors. No random slopes were included. The factor of congruency
was not significant, v2(1) = 0.71, p = .40, and neither was semantic consistency, v2(1) = 0.52, p = .47. The
interaction between the factors, however, showed a trend-level effect, v2(1) = 2.78, p = .095. We again
evaluated the effect of congruency separately in the two consistency conditions. A marginally significant
effect of congruency was found in the consistent condition, v2(1) = 3.02, p = .08,3 but not in the inconsis-
tent condition, v2(1) = 0.29, p = .59. These data are depicted in Fig. 7A.

Accuracy scores in the congruence judgement component of the sentence congruency task were
analysed as before. Two participants’ data were excluded from this analysis for responding ‘‘does
not make sense’’ on every trial. Again, accuracy rates were similar to the previous two experiments
in the semantically consistent (77 ± 4.26%) and semantically inconsistent conditions (65 ± 2.74%).
Semantic consistency was included as a fixed factor in the analysis, and random slopes for the effect
of semantic consistency were included. A significant effect of semantic consistency was observed,
z = �5.30, p < .001, though accuracy scores in both conditions were significantly higher than chance
(both ps < .001).

6.2.3.1. The sentence congruency effect associated with meanings learned in the first half of the training
session vs. second half. To establish whether potential congruency effects in the semantically inconsis-
tent affixes could be observed for the meaning category acquired in the first half or for the category
acquired in the second half, the analysis was restricted to inconsistent affixes and the congruency
effect in the two meaning categories was compared in the same way as in Experiment 4. The congru-
ency effect did not differ between the two categories, z = �0.45, p = .65, suggesting that the effect in
semantically inconsistent affixes was absent both for meanings learned in the first and for meanings
learned in the second half of the training session.
3 It is difficult to judge with how much confidence one can reject the null hypothesis when marginally significant effects are
involved. Therefore we calculated the Bayes factor associated with the congruency effect here, using the Bayes calculator of Dienes
(2011). Based on data from Experiments 3 and 4 which include the same condition of semantically consistent affixes as Experiment
5, we represented our theory (that there should be a difference between reading latencies in congruent and incongruent
conditions) as a uniform distribution with a lower bound of 0 (no congruency effect) and an upper bound of 23 (the average
magnitude in milliseconds of the congruency effect across Experiments 3 and 4). This resulted in a Bayes factor of 2, meaning that
the alternative hypothesis (predicted by our theory) is twice as likely as the null hypothesis (that there is no difference between
the conditions).
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6.2.4. Recognition memory
Recognition memory data are shown in Fig. 7B. An ANOVA on the d-prime scores showed a main

effect of knowledge type, F(2,62) = 383.99, p < .001, but no main effect of semantic consistency
(p = .12) or an interaction between the two factors (p = .12).

6.2.5. Comparison of the sentence congruency effect between spaced learning (Experiment 4) and blocked
learning (Experiment 5)

The semantically consistent condition was analysed with congruency and experiment included as
fixed factors. No random slopes were included. A significant effect of congruency was observed,
v2(1) = 8.58, p < .001. No interaction between the factors was observed, v2(1) = 0.64, p = .42, confirm-
ing that the congruency effect in the consistent condition was equivalent across the training regimes.
In contrast, in the inconsistent condition we did find a significant interaction between congruency and
experiment, v2(1) = 3.87, p = .049, while no significant main effects were observed (Fig. 6). The inter-
action confirms that the difference in the congruency effect in the inconsistent condition across the
two experiments was statistically reliable.

6.3. Discussion

The only difference between Experiment 4 and the current experiment was that here we removed
the consolidation opportunity that in Experiment 4 followed the acquisition of the first affix-meaning
mapping in semantically inconsistent affixes. In Experiment 5 we saw that the consequence of this
was that the sentence congruency effect in reading aloud was lost for these affixes. Statistical compar-
ison of the effect across the two experiments confirmed the change was significant (Fig. 6). As in the
previous four experiments, we found a congruency effect for semantically consistent affixes (although
in this experiment it reached trend-level statistical significance only, it was not statistically different
from the congruency effect in Experiment 4). Performance in the explicit congruence judgement task
was perfectly consistent with the previous two experiments: both consistency conditions were above
chance, but accuracy in the semantically consistent condition was higher.
7. General discussion

Information that can be retrieved from memory ranges from detailed representations of individual
events (e.g., it rained yesterday) to general knowledge that has been extracted from an accumulation
of multiple individual events (e.g., it is likely to be sunny today given that it is summer and we find
ourselves in the south of England). While this is an uncontroversial observation, the nature of the
representations that support general knowledge and the processes by which those representations
are acquired are far from clear. For example, it is possible that general knowledge is extracted and
stored in the form of abstract representations that exist alongside episodic representations (e.g.,
McClelland et al., 1995). Alternatively, it might be that there is no need for storing abstract represen-
tations and that general knowledge can be computed when needed by retrieving and averaging multi-
ple episodic representations (e.g., Hintzman, 1986, 1988) to produce a temporary abstraction. We
argue that by mapping the processes involved in the acquisition of new general knowledge one can
better understand the nature of the representations that underlie this knowledge and the processes
involved in generalisation.

We conducted five experiments in which adult participants learned novel affixes embedded in
meaningful novel words (e.g., buildafe, sleepafe, teachafe). Following training, we assessed general-
isation of the meanings of the novel affixes to previously-untrained exemplars (e.g., sailafe), using
two measures taken from a sentence reading task. One measure assessed how well participants could
judge whether the sentence made sense; this measure forced participants with little time pressure to
compute the meanings of the untrained exemplars. The other measure assessed whether there was a
sentence congruency effect in speeded reading aloud. This measure did not require participants to
compute the meanings of the untrained exemplars, but we reasoned that if they had established an
affix representation, then a semantically-appropriate sentence frame should benefit reading aloud.
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Alongside these measures, we assessed participants’ episodic memory for the novel words they had
learned, using a standard recognition memory task.

The five experiments reported assessed how these two measures of generalisation were influenced
by three variables: (a) the opportunity for memory consolidation between training and testing; (b) the
contextual diversity of the novel affixes (i.e. the number of unique stems to which they attach); and (c)
the consistency with which the novel affix modifies the meaning of the stem. In all cases, these vari-
ables had differential effects on the two generalisation tasks. In respect of the explicit congruency
judgment task, performance was significantly above chance in all cases, and was unaffected by (a)
the opportunity for consolidation between training and test; and (b) the number of exemplars
assigned to each novel affix in the training set. These data from the explicit congruency judgments
indicate that participants gained sufficient experience from all of our training conditions to compute
the meanings of the novel affixes in unfamiliar context (i.e. to generalise their knowledge of the mean-
ings of the novel affixes). In contrast, evidence of a semantic congruency effect on speeded reading
aloud was restricted to particular training conditions, namely, (a) when there was an opportunity for
consolidation between training and test; (b) when novel affixes were paired with a sufficient number
of different exemplars during training; and (c) when novel affixes altered the meanings of stems in a
semantically-consistent manner, unless (d) the presentation of different meanings was broken by a
consolidation interval. Outside of these narrow conditions, no semantic congruency effect on reading
aloud was observed, suggesting that in this task untrained exemplars such as sailafe were given insuf-
ficient time to be processed in a meaningful way (i.e. participants were not generalising their knowl-
edge of the meanings of the novel affixes).

We believe that these findings pose serious challenges for any theory of generalisation based on a
single mechanism. As we introduced at the outset, functionally distinct episodic and abstractionist
single-mechanism theories have been proposed to explain how we acquire general knowledge from
exposure to a limited set of specific instances. These two classes of theory differ most clearly when
considering whether and how cognitive processes involved in initial acquisition contribute to later
generalisation. Episodic single-mechanism accounts propose that initial learning is achieved by laying
down representations of single instances or episodes. These episodes are then combined during retrie-
val to support generalisation (e.g., Hintzman, 1986, 1988). By these accounts, then, generalisation to
novel instances involves additional cognitive operations that blend multiple instances of relevant
learned items so as to generate the appropriate response. Such a theory provides no explanation how-
ever for why factors such as consolidation, contextual diversity, and semantic consistency should
operate differently on different indices of generalisation. For example, why does the opportunity for
consolidation between training and test modulate generalisation in the reading aloud task but not
in the explicit judgment task? Similarly, why is generalisation in the explicit judgment task unaffected
by contextual diversity within the training set, and yet low contextual diversity blocks generalisation
in the reading aloud task?

Abstractionist accounts propose that abstract, non-veridical representations are generated during
initial learning (e.g., Posner & Keele, 1968). In these accounts, generalisation is not achieved during
retrieval but by calling on representations of the general structure of particular sets of instances which
develop during initial acquisition. Again, it is difficult to understand how a single, abstractionist learn-
ing mechanism could lead to different patterns of generalisation in different tasks.

While our findings pose a challenge for purely episodic or purely abstractionist accounts of
generalisation, we believe that they are highly compatible with dual-mechanism accounts that com-
bine episodic and abstractionist representations. In the following, we therefore lay out a theory of lan-
guage learning and generalisation based in particular on the complementary learning systems
framework proposed by McClelland et al. (1995).

7.1. Two mechanisms that enable generalisation

One of the unique insights derived from the experiments reported here is that a comprehensive
theory of generalisation must take into account the specific cognitive demands of the situation in
which generalisation arises. Specifically, there appears to be a fundamental difference in the way that
generalisation is achieved in situations comprising online language comprehension and production
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tasks (as in our reading aloud task) as compared to situations in which one is required to deliberately
and purposefully, with little time pressure, to make a decision about a newly encountered stimulus
based on previously encoded knowledge (as in our explicit congruency judgement task). We refer
to the former type of generalisation as ‘‘online generalisation’’, to emphasise the notion that this type
of generalisation occurs during the course of automatic language processing without deliberate effort.
Conversely, we refer to the latter type as ‘‘offline generalisation’’. The diverging results from our two
different generalisation tasks suggest that the tasks reflect these different forms of generalisation, and
that they may rely on different representations that code the information acquired during training. In
the following we consider what we can learn about the nature of these representations from the series
of experiments presented here.

7.1.1. Offline generalisation
As outlined above, offline generalisation was largely unaffected by consolidation, family size, and

semantic inconsistency. We believe that these observations can be accommodated by a representa-
tional architecture that makes use of non-overlapping episodic representations that are available
immediately after training.

How might generalisation arise from distinct episodic representations? Kumaran and McClelland
(2012) recently developed a computational model of generalisation that makes theoretical predictions
about immediate generalisation (based on episodic memory only) that fit elegantly with our data.
They noted that there are several demonstrations of immediate generalisation (i.e. generalisation that
does not require consolidation to occur), and that generalisation in these circumstances appears to be
hippocampally mediated. To simulate the neural mechanisms underlying this immediate general-
isation, Kumaran and McClelland’s (2012) model of generalisation retains the largely non-overlapping
structure of hippocampal episodic representations, but is able to generalise by storing both a veridical
memory trace (e.g., a paired associate A–B) linked to its individual components (e.g., A and B) and by
allowing bidirectional activation of these two representational layers. However, while these
mechanisms are consistent with our notions of offline generalisation, we would argue that these
mechanisms are not sufficient to support online generalisation.

Indeed, Kumaran and McClelland (2012) themselves point out that although the hippocampus is
able to generalise in this manner, it is likely to support generalisation only over limited timescales
and in situations in which all relevant information is hippocampally represented. The hippocampus
has only limited storage capacity (Treves & Rolls, 1994), and semantic knowledge is eventually con-
solidated to the neocortex which stores a more stable and longer-lasting representation of semantic
similarity structure. Thus the most effective forms of generalisation for online language processing
should be supported by a different class of representations.4

7.1.2. Online generalisation
The impact that consolidation, family size, and semantic consistency have on speeded online

generalisation of novel affixes suggest that this type of generalisation is supported by representations
that emerge gradually over time and rely on an architecture of overlapping representations that are
shared among multiple affixed words. Overlapping representations allow the discovery of shared
structure amongst a set of items, and critically, the use of this shared information for the purposes
of generalisation. The latter conclusion is motivated by our findings from Experiment 2 in which only
affixes learned in a sufficient number of overlapping novel words lead to online generalisation. The
4 A reviewer suggested that if participants became explicitly aware of the meanings of the affixes during training, this explicit
knowledge alone might be sufficient to perform the offline generalisation task. Thus, the reviewer suggested that it may be
unnecessary to propose operations such as blending of episodic traces (e.g., Hintzman, 1986, 1988) or spreading activation across
multiple representational layers (Kumaran & McClelland, 2012). One way to evaluate this possibility would be to ask participants
at the end of the training to produce a ‘‘translation’’ for each affix. The current experiments did not include such assessment.
However, Tamminen et al. (2012) reported data from a related task, 2AFC definition selection, where participants immediately
after training showed highly accurate but very slow explicit judgements about affix meanings. While future studies should
evaluate explicit knowledge in more detail during and immediately after training, the effortful nature of getting to this information
suggests that explicit knowledge is not readily available immediately following training and requires additional time-consuming
cognitive operations.
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requirement for overlapping representations can also explain the failure of online generalisation for
affixes with inconsistent meanings in Experiment 3. Experiments 4 and 5, however, show that consol-
idation provides one critical mechanism by which overlapping but inconsistent affix representations
can by learned (by allowing one affix-meaning mapping to stabilise during consolidation before intro-
ducing a conflicting mapping).

Why is consolidation so critical for establishing overlapping but not distinct representations? The
CLS account of memory suggests that this reflects distinct computational specialisations of two differ-
ent forms of learning: the neocortex is a ‘‘slow learner’’; hence initial learning is achieved by episodic
memory systems (in the hippocampus) that encode more rapidly. The neocortex needs to adopt a slow
learning rate due to the nature of the information it stores. Unlike the hippocampal system which spe-
cialises in the encoding of individual learning episodes, the neocortex needs to discover the consistent
meaning of each of the novel affixes that is learned. This requires knowledge of the form to meaning
structure inherent in the entire ensemble of learning episodes (in our case, the ensemble constitutes
all the individual trained words, and the relevant structure is the semantic information shared by all
words that include a specific affix). According to the CLS theory discovery of the shared structure
requires repeated interleaved activation of the entire ensemble of learning events in order to allow
all the learning events to be reflected in weights that link form and meaning representations. This
form of extended, interleaved exposure can be most efficiently achieved after training, during offline
consolidation. This claim is consistent with the data from Experiment 1 in which online generalisation
was observed a week after training but not on the same day as training.

Finally, it is worth considering why overlapping representations might allow online generalisation
when distinct representations do not seem to do so. We suggest this is largely due to processing time
constrains. It may be that the computation of generalised information from episodic representations
involves time consuming operations, such as the activation and interaction of multiple representa-
tional layers as in the Kumaran and McClelland (2012) model, or the averaging of multiple episodic
traces as in the Hintzman (1986, 1988) model. On the other hand, overlapping neocortical representa-
tions directly encode the information that is to be generalised, and accessing these representations
may be faster than computing generalised representations anew at the time of every retrieval
occasion.

7.2. From distinct to overlapping representations

Taken together, the data from the five experiments presented here support a view of language
learning and generalisation that makes use of both episodic (distinct) and abstract (overlapping)
representational systems. Critically, we have presented evidence of a qualitative change in speed
and efficacy of generalisation that occurs before and after memory consolidation. Online general-
isation in our speeded reading task emerged only after a period of offline consolidation. In line with
CLS accounts, we therefore propose that efficient generalisation is achieved by overlapping represen-
tations in neocortical systems. In generating overlapping representations we follow McClelland et al.
(1995) and others in proposing a role for consolidation to solve the problem of catastrophic interfer-
ence (French, 1999; McCloskey & Cohen, 1989) where the adding of new information into overlapping
neocortical representations disturbs existing information. Consolidation allows gradual, interleaved
learning at the neocortical level, thus avoiding catastrophic interference with existing knowledge as
well as enabling the entire ensemble of learning events, rather than just the most recent individual
event, to contribute to the discovery of shared structure in the mapping from affix form to affix
meaning.

The neural processes that operate during consolidation are becoming increasingly well understood.
During consolidation the hippocampus is thought to replay episodic memories encoded earlier
(O’Neill, Pleydell-Bouverie, Dupret, & Csicsvari, 2010), allowing temporally controlled extended
reactivation of the neocortical memory trace, thus avoiding massed exposure of new knowledge that
might otherwise lead to catastrophic interference. Instances of language learning related to general-
isation have indeed been shown to involve hippocampal–neocortical interaction during consolidation.
Neural markers of hippocampal–neocortical dialogue that occurs during sleep (e.g., sleep spindles and
slow wave activity) have been associated with integration of new words in phonological and semantic
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neocortical memories (Tamminen, Lambon Ralph, & Lewis, 2013; Tamminen, Payne, Stickgold,
Wamsley, & Gaskell, 2010) and evidence from fMRI and MEG shows overnight changes in cortical
responses to novel spoken words consistent with the operation of consolidation mechanisms
(Davis, Di Betta, Macdonald, & Gaskell, 2009; Gagnepain, Henson, & Davis, 2012; Takashima,
Bakker, van Hell, Janzen, & McQueen, 2014). Further, consistent with a theoretical framework in which
consolidation supports the establishment of overlapping representations that support more effective
generalisation, there is some evidence that sleep-dependent consolidation facilitates abstraction of
new grammar in infants (Gómez, Bootzin, & Nadel, 2006) as well as the generalisation of new phonetic
learning in adults (Fenn, Nusbaum, & Margoliash, 2003).

Although we have identified consolidation after learning as a critical process for the strengthening
of neocortical representations and emerging generalisation, it is worth noting that the CLS account
does not suggest that consolidation is the only means to achieve neocortical learning. In the preceding
paragraph we described spontaneous reactivations of hippocampal memory traces which likely occur
mostly during sleep. However, spontaneous reactivations can be replaced by continuing training trials
(which can be thought of as externally rather than hippocampally driven reactivations). For example,
amnesic patients with extensive hippocampal damage are able to learn new semantic information,
and even generalise this to some degree, but require a larger number of learning trials over an
extended period of time to achieve this compared to control subjects (e.g., Hamann & Squire, 1995;
Knowlton & Squire, 1993). It is therefore possible (and an interesting avenue for future work) that
we could observe generalisation in our affix learning paradigm in the absence of a consolidation
opportunity if we significantly increased the number of training trials and spaced these over a day
(see Lindsay & Gaskell, 2013, for a similar demonstration in a spoken word learning paradigm which
however did not test generalisation).

7.3. Relationship between our artificial stimuli and natural morphological word formation processes

Before considering how our results might impact on models of lexical processing, it is important to
consider whether morpheme learning in our experiments is sufficiently similar to natural morphologi-
cal acquisition to support conclusions about lexical processing. One key question is whether the mor-
phemic regularities in our stimuli are like those that arise in natural language. Morphological word
formation comprises both derivational affixation and compounding. The key difference between these
processes is that derivational affixation involves attaching a bound form (i.e. one that cannot stand
alone) onto an existing root, while compounding involves combining independent word forms into
a single form. Derivational affixation can further involve attaching an affix to a bound root (e.g., –
mit, as in submit, permit) or to free-standing stems (e.g., dark in darkness, or kind in kindness).

These different types of derivation vary in the extent to which the meanings of the whole form can
be predicted from the meanings of the parts (i.e. compositionality). In English, derivational affixation
as applied to existing stems (e.g., darkness, kindness) tends to be highly compositional (e.g., –ness forms
abstract nouns that almost always refer to the quality or state of the adjective used as the stem), while
derivational affixation as applied to bound stems (e.g., submit, permit) or compounding tends to carry
more idiosyncratic information. For example, while the compounds snowman, milkman, chairman, and
fireman all relate in some way to a person, the relationship between the whole form and the con-
stituents are different in each case (e.g., a snowman is a man-like figure made of snow, but a milkman
is a person who delivers the milk each morning). However, while derivational affixation as applied to
existing stems tends to be more compositional than the other two varieties of morphological word for-
mation, it also allows idiosyncrasies (e.g., consider the affix –ist; a cyclist is someone who engages in
the act of cycling; a harpist is someone who plays the harp; a geologist is someone who specialises in
geology; a Calvinist is someone who adheres to the doctrine of Calvin; a racist is someone who
believes that one race is superior to another; a stylist is someone who arranges objects, clothes, or food
in a stylish way).

In order to facilitate learning and to discourage explicit hypothesis testing during learning about
the meanings of the novel affixes, we created semantically-rich definitions for our novel words which
tended to convey more idiosyncratic information than is the case for the most compositional types of
derivational affixation. Indeed, some of our novel affixes seem somewhat like compounds in the way
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in which they convey meaning (e.g., –afe in sleepafe, teachafe, buildafe resembles compounds using
‘man’). However, unlike in the case of compounds, participants in our experiments are never exposed
to the right-hand constituent (i.e. the affix) in isolation, which is the critical feature of compounding.
Thus, we suggest that our stimuli are more like derivational affixes than compounds. However, we
would also argue that which type of morphological word formation process more closely resembles
our artificial stimuli does not really matter for the conclusions that we draw. That is, none of our con-
clusions would be affected if future research were to show that simpler or less idiosyncratic affixes
could be more readily learned.

One final point concerns the fact that all of our experiments used suffixation, which raises the ques-
tion of whether the effects observed would extend to prefixes. While this question can only be settled
by further experiments directly comparing the acquisition of novel suffixes vs. prefixes, we predict
that acquiring new prefix representations might be more difficult and require more extensive training
than acquiring new suffix representations. This is mainly motivated by the suffixing preference, the
tendency to prefer suffix morphology over prefix morphology across the languages of the world
(e.g., Cutler, Hawkins, & Gilligan, 1985). Artificial language learning studies have shown that this pre-
ference may be due to suffixes being more informative cues to language structure than prefixes (St.
Clair, Monaghan, & Ramscar, 2009), further suggesting that language users might more readily acquire
new suffixes than prefixes.

7.4. Implications for models of lexical processing

Having established that our artificial stimuli closely resemble existing morphological formations,
we now consider the implications of our results for the further development of lexical processing
models. The majority of localist accounts of word recognition propose that lexical representations
are morphemically structured (e.g., Marslen-Wilson et al., 1994; Taft, 1994), or that morphemically-
structured representations are accessed in parallel with whole word representations (Caramazza
et al., 1988; Schreuder & Baayen, 1997). Both types of architecture include abstract localist represen-
tations of morphemic units that never occur in isolation (such as affixes). Yet, none of these models
makes any specific claims concerning how these abstract morphemic units might be acquired. The
experimental data reported in this paper therefore provide important constraints on how these mod-
els could be developed further to model the process that gives rise to abstract affix representations
sufficient to support generalisation. We have shown that the morphemic abstraction assumed by
localist models of lexical processing occurs only after consolidation and not during initial encoding.
Further, the development of these abstract representations would appear to depend on the acquisition
of a sufficient number of semantically-consistent affixed forms. One critical challenge for these models
will therefore be to offer some functional explanation as to why these factors appear to underpin this
abstraction process.

Distributed-connectionist models of lexical processing, on the other hand, appear to make more
specific proposals about the mechanisms supporting acquisition of morphemically-structured repre-
sentations (e.g., Plaut & Gonnerman, 2000; Rueckl & Raveh, 1999). In these accounts, morphemic
representations are encoded in hidden units that mediate the mapping between the forms of words
and their meanings. These representations are acquired by the operation of an error-correcting neu-
ral-network learning algorithm (typically back-propagation, though other algorithms would likely
lead to similar outcomes; see Plaut & Shallice, 1993, for simulations). These learning algorithms gen-
erate affix representations by virtue of the systematic relationships between the orthographic or
phonological form of specific affixes (-er), and the meanings of affixed forms (e.g., dancer, teacher
and thinker all refer to people). Unlike localist accounts, however, these representations are graded
as a function of the compositionality and frequency of the relationship between affixed forms and
their meanings, and so will emerge more strongly when affixes arise in multiple words in the training
set and modify the meanings of stems in a highly-consistent manner. One interesting characteristic of
these models, then, is that although they are trained on whole words, they come to acquire structured,
componential representations that act as abstract representations of morphemic units in supporting
generalisation. Thus, neural network learning algorithms appear able to acquire abstract morphemic
representations without requiring anything more than learning a sufficient number of
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morphologically related words, with sufficiently transparent form-to-meaning correspondences (see
Plaut & Gonnerman, 2000, for illustrative simulations of how changes to the structure of the network’s
vocabulary can impact on internal representations of morphemic units).

However, although existing distributed models of morphological processing use learning algo-
rithms to derive morphemic representations, these learning processes are seldom intended as a key
part of the theoretical account embodied by the model (Plaut & Gonnerman, 2000; Rueckl & Raveh,
1999). Instead, these networks are tested once learning is complete, and simulations are proposed
to capture aspects of the adult system rather than developmental profiles (though, see Plunkett &
Marchman, 1993, for a model of inflection acquisition). One challenge for these models in trying to
simulate how morphological knowledge is acquired is that they can show only a limited amount of
new learning (e.g., acquiring a new word or affix) without requiring additional training on pre-existing
knowledge (i.e. representations of previously learned words are rendered unstable by training on new
words). For example, a model taught a new pseudo-affixed word with high-frequency (such as the
word twitter referring to a microblogging internet service) might struggle to retain the knowledge that
words ending -er typically refer to people (as in dancer, teacher, etc.) unless these existing words were
relearned in parallel with acquisition of the new word twitter. This is the problem of catastrophic
interference, here described in the context of morphemic learning rather than associative learning
as initially demonstrated (cf. French, 1999; McCloskey & Cohen, 1989).

In response to this problem, proponents of connectionist learning models have typically invoked
the notion of complementary learning systems – specifically, a division between rapid medial tem-
poral/hippocampal and slower neocortical learning – in order to achieve a more appropriate trade-
off between stability of existing knowledge and plasticity in acquiring new knowledge (McClelland
et al., 1995). Several aspects of our data demonstrate that learning in human participants may be sub-
ject to similar limitations as learning in distributed-connectionist models. Like distributed-connec-
tionist models, human learning and generalisation appears to be highly vulnerable to new
information that contains inconsistencies, and effective generalisation appears to require an extended
timescale through a process of consolidation. Thus, far from being a reason to argue against dis-
tributed connectionist models and to favour localist accounts that lack this trade-off between stability
and plasticity (e.g., Page, 2000), it would seem that similar constraints on the speed of learning and
efficacy of generalisation are observed in adults learning novel affixes.

There are two ways in which the present results extend our understanding of the contribution of
complementary learning systems to morphological processing and language learning. The first is that
we see evidence for constrained forms of generalisation immediately after learning. As discussed in
connection with the Kumaran and McClelland (2012) model, representations encoded in the hip-
pocampus support some limited forms of generalisation that may be particularly evident in non-
speeded tasks which require participants to apply their knowledge to new problems. The second
and more interesting implication is that the representations initially encoded into short-term storage
in the medial temporal lobe ultimately constrain the degree of generalisation that can be observed
after consolidation. This is most apparent in comparing the results of Experiments 3, 4 and 5. These
studies showed that inconsistent affix meanings learned on the same day fail to generalise even after
consolidation, but that they do generalise if learning of the two meanings arises on separate days.
Thus, inconsistencies interfere with processes that discover shared structure in the training set
through overnight consolidation. In this way, episodic storage of recently acquired novel affixes acts
as a bottleneck for learning; only if a sufficient set of consistent affixed meanings are learned and
stored in episodic memory do we subsequently observe generalisation of affix representations. In this
respect, then, the results of Experiment 2 provide another constraint on this episodic bottleneck – a
sufficient number of related forms must be acquired if consolidation is to lead to abstract morphemic
representations.

7.5. Distinguishing speeded and non-speeded tasks in language learning

If speeded and non-speeded tasks indeed tap into different forms of generalisation of newly
learned affixes, it should be possible to observe this distinction in other language learning paradigms.
In fact, a similar distinction emerges as a common theme in a number of studies looking at various
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forms of adult word learning. For example, Tamminen et al. (2010) trained participants on spoken
novel words and found that in a speeded 2AFC recognition memory task participants’ reaction times
were significantly facilitated by a sleep-dependent period of overnight consolidation. Dumay and
Gaskell (2007) on the other hand found no overnight change in accuracy rates in a non-speeded ver-
sion of the same task (although their participants were close to ceiling). It is possible that the lack of
consolidation effects in Dumay and Gaskell (2007) was because participants could make the non-
speeded 2AFC decision on the basis of episodic memory, while speeded responses made by partici-
pants in Tamminen et al. (2010) were facilitated after consolidation by neocortically stored lexical
representations.

A similar conclusion can be reached by considering word learning data reported by Tamminen and
Gaskell (2013). Here participants learned novel written words and their definitions (e.g., that feckton is
a type of cat). Tests of memory for the meanings included non-speeded cued recall of the novel word
meanings (‘‘what does feckton mean?’’) and speeded lexical decision to familiar words primed (e.g.,
kitten) or unprimed (e.g., bat) by the recently learned novel words (e.g., feckton). While the non-
speeded recall task revealed excellent memory of the meanings immediately after training (which
declined over time after training), the novel word primes began to influence lexical decision reaction
times to familiar targets only after a period of consolidation. It is likely that participants were able to
retrieve the novel word meanings from episodic memory immediately after training, given a task with
no time constraints. However, semantic priming effects may require lexical knowledge that overlaps
for new and existing words in order to support priming of familiar words like kitten. Hence, the pres-
ence of such overlap was only revealed when measured by speeded, online language processing tasks
(speeded lexical decision in this case). Data such as these from a range of word learning paradigms
support our conclusion that speeded tasks tap into gradually emerging representations of newly
learned language, while non-speeded tasks can draw upon episodic information encoded immediately
during learning.

7.6. Conclusions and implications for pedagogy

We have presented evidence of two different forms of generalisation that are served by different
types of representations. We suggest that one form of generalisation is possible based on episodic
memory immediately after learning, possibly through a mechanism of reactivation and blending of
hippocampally-stored representations like the one proposed by Kumaran and McClelland (2012),
and analogous to that proposed in episodic accounts. However, this mechanism for generalisation is
severely constrained in several ways. For one, it is constrained by the time pressure on the forms of
generalisation that are required for comprehension and production of natural language. There is likely
to be insufficient time for the extensive computations required for hippocampal generalisation during
online language processing. Furthermore, since the hippocampus appears to have only a limited
capacity for retaining a longer-term store of language knowledge there may be a further limitation
of the range of circumstances, topics, or words over which this offline generalisation may be apparent.
For example, it might be that hippocampal generalisation is particularly vulnerable when learners fail
to retain sufficiently strong memories of key items. Therefore a second mechanism is needed which
allows instant access to generalised information and has less restrictive capacity limitations. We sug-
gest that this mechanism takes the form of overlapping neocortical representations that emerge
gradually during consolidation. Together these two forms of generalisation ensure that newly
acquired learning episodes can be used immediately to guide behaviour and decision making but
the integrity of existing semantic memory is protected by being learned at a slower rate during mem-
ory consolidation.

We further conclude that the operation of these mechanisms should be carefully considered in
teaching language and literacy. Learners in these domains are expected to do more than encode dis-
crete pieces of information. Indeed, the expectation is that learners will be able to extract something
more general from the whole of these discrete pieces of information. For example, by teaching begin-
ning readers the pronunciations of words such as clown, down, gown, frown, teachers may have the
expectation that pupils will learn something more general about the pronunciation of the trigraph -
own, even if this principle is not taught explicitly. Our findings together with our notion of the episodic
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bottleneck suggest clear strategies for enhancing generalisation in these kinds of situations.
Specifically, one would want to ensure that there were a sufficient number of exemplars presented
for learning and that these were highly consistent, so that inconsistent items like blown would be
introduced only following consolidation of the general principle being taught.

Similar constraints apply in learning to write morphological elements which is widely recognised
as important for accurate spelling (Bowers, Kirby, & Deacon, 2010; Nunes & Bryant, 2006). For
example, if children were being taught how to spell the -ing inflectional morpheme through the pre-
sentation of multiple exemplars (e.g., jumping, kicking, playing, showing), it would be important to
ensure that teaching materials do not include cases in which the same -ing ending appears in a
non-morphemic context (e.g., ceiling, pudding, morning). Furthermore, it might be that common ortho-
graphic alterations of the stems (e.g., swimming, dancing) should also be excluded during initial learn-
ing of simple stem + ing items. Our findings suggest that including such cases in a single lesson or set
of teaching materials may have the effect of blocking generalisation of the –ing affix that is being
taught. Rather than including small numbers of exceptional items in a single lesson, it would be better
to group items which include highly-systematic orthographic alterations into lessons taught on sub-
sequent days which focus exclusively on specific orthographic changes such as e-deletion (in dancing,
racing) or consonant duplication (in swimming, running). By grouping these items in this way it would
prevent these items from being learned as exceptions and instead allow learners to acquire and gen-
eralise all of the relevant principles involved in the spelling of the -ing affix.

Many theoretical and applied questions remain unanswered. For example, is generalisation in the
classroom enhanced by making the principle being taught explicit in the form of simple, verbalisable
rules (as in the use of phonics instruction for learning to read)? If so, what is the mechanism that
underpins that advantage? Similarly, what is the role of sleep (if any) in the acquisition of general
knowledge? If there is a role for sleep in the acquisition of general knowledge, then what are the peda-
gogical implications of poor sleep behaviour? If there are any very general conclusions to be drawn
from our work, one is certainly that there are great opportunities for engagement between scientific
theory and educational practice in language learning and generalisation. The other very strong conclu-
sion is that theories of language processing will be substantially enhanced by taking seriously the
problem of acquisition, in such a way that engages rigorously with the state-of-the-art in memory
research.
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Appendix A

See Tables A.1–A.5.
Table A.1
Accuracy rates in the recognition memory task in Experiment 1 (between-participant standard error in parenthesis).

Item type Time of test

Immediate Delayed

% correct Trained stem, trained affix 93% (±1.24%) 93% (±1.15%)
Untrained stem, trained affix 99% (±0.36%) 87% (±2.33%)
Trained stem, untrained affix 99% (±0.61%) 98% (±1.28%)
Recombinant words 79% (±2.96%) 64% (±3.65%)



Table A.2
Accuracy rates in the recognition memory task in Experiment 2
(within-participant standard error in parenthesis).

Item type Family size

Large family Small family

Trained stem, trained affix 84% (±3.40%) 95% (±3.50%)
Recombinant words 65% (±3.60%) 67% (±4.86%)

Table A.3
Accuracy rates in the recognition memory task in Experiment 3 (within-participant standard error in parenthesis).

Item type Semantic consistency

Consistent Inconsistent

% correct Trained stem, trained affix 85% (±3.50%) 83% (±2.66%)
Untrained stem, trained affix 97% (±1.65%) 97% (±1.41%)
Trained stem, untrained affix 98% (±1.45%) 97% (±1.63%)
Recombinant words 68% (±3.90%) 67% (±3.96%)

Table A.4
Accuracy rates in the recognition memory task in Experiment 4 (within-participant standard error in parenthesis).

Item type Semantic consistency

Consistent Inconsistent

% correct Trained stem, trained affix 86% (±3.24%) 86% (±3.72%)
Untrained stem, trained affix 96% (±1.31%) 96% (±1.24%)
Trained stem, untrained affix 97% (±1.55%) 96% (±1.54%)
Recombinant words 56% (±4.59%) 60% (±4.83%)

Table A.5
Accuracy rates in the recognition memory task in Experiment 5 (within-participant standard error in parenthesis).

Item type Semantic consistency

Consistent Inconsistent

% correct Trained stem, trained affix 86% (±2.31%) 84% (±2.31%)
Untrained stem, trained affix 95% (±1.09%) 96% (±1.31%)
Trained stem, untrained affix 98% (±1.03%) 98% (±1.05%)
Recombinant words 61% (±3.54%) 58% (±3.10%)
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