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Abstract  i 
 
 
Hinton, Michael, Doctorate of Philosophy, 2008      Chemistry 
 
Donald E. Kiely, Ph.D. 
 

This dissertation describes the nitric acid oxidation of the pentoses D-xylose, L-

arabinose, D-arabinose, and D-ribose to produce xylaric acid, L-arabinaric acid (L-

lyxaric acid), D-arabinaric acid (D-lyxaric acid), and ribaric acid, respectively, or salts 

therefrom. Isolation of the aldaric acids from nitric acid has proven difficult in prior 

reports and an improved nitric acid oxidation and isolation method for each aldaric 

acid is described.  

Aldaric acids are the starting monomers for a class of polymers known as 

polyhydroxypolyamides (PHPAs) or “hydroxylated nylons,” produced through 

condensation polymerization of the esterified aldaric acid and a diamine of choice. In 

an effort to obtain larger polymers synthetic routes were varied to initially produce 

smaller polyamides labeled as “prepolymers.” Of these prepolymers, poly 

(hexamethylene xylaramide) was subjected to three post production treatments to 

further increase their size.  

Additionally, in an effort to better predict physical and chemical properties and 

potential applications of PHPAs, the conformation of the aldaryl monomer units in 

solution were investigated using 1H NMR, and molecular mechanics modeling. 

Limitations inherent to 1H NMR and MM3(96) computational modeling required the 

use of glutaramides and pentaramides as small molecule mimics of the PHPA’s aldaryl 

monomer unit. A converging Monte Carlo Metropolis search coupled to MM3(96) was 

employed to search the conformational space afforded the diamides. A Boltzmann 

distribution was applied to the resultant conformational ensemble which was analyzed 

for structural detail. Theoretical average 1H vicinal coupling constants were compared 

to experimental 1H NMR coupling constants. Dependence of experimental 1H NMR 

coupling constants on solvent composition was investigated. MM3(96) lowest energy 

conformations of the diamides had structural detail consistent with their corresponding 
1H NMR and x-ray crystal data. 
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1. Nitric Acid Oxidation of D-Xylose, D-Arabinose, L-Arabinose, and 

D-Ribose to Xylaric, D-Arabinaric (D-Lyxaric), L-Arabinaric (L-

Lyxaric), and Ribaric Acids 

 
1.1 Introduction 
 

The overall goal of the research in this dissertation is directed towards the 

synthesis of polyhydroxypolyamides (PHPAs) from monomer pentaric acids and 

alkylenediamines employing condensation polymerization methods. As none of the four 

possible stereoisomeric pentaric acids were commercially available they were targeted for 

synthesis from the appropriate aldopentoses. The target pentaric acids were: xylaric acid 

(1), D-arabinaric acid (D-lyxaric acid) (2), L-lyxaric acid (L-arabinaric acid) (3), and 

ribaric acid (4) (Figure 1.1). Every possible pentaric acid stereoisomer has been 

synthesized; xylaric acid and ribaric acid are meso compounds, D-arabinaric and D-

lyxaric acids are identical with L-arabinaric and L-lyxaric acids, and the two identical as 

their respective enantiomers L-arabinaric and L-lyxaric acids. The nitric acid oxidation of 

the aldopentoses, D-xylose, D-arabinose, L-arabinose, and D-ribose to their pentaric acids 

is described in this report.  

COOH

HHO
OHH

OHH
COOH

COOH

OHH
OHH

OHH
COOH

COOH

HHO
HHO

OHH
COOH

COOH
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Ribaric AcidD-Arabinaric Acid
(D-Lyxaric Acid)

Xylaric Acid L-Lyxaric Acid
(L-Arabinaric Acid)

(1) (2) (3) (4)  

Figure 1.1  Four aldaric acids derived from aldopentoses 
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 1.1.1 D-Xylose, L-Arabinose, D-Arabinose, and D-Ribose 
 

D-Xylose, L-arabinose, D-arabinose, and D-ribose (Figure 1.2) are naturally 

occurring aldopentoses with the chemical formula C5H10O5, and commonly occur in their 

pyranose and/or furanose ring forms as illustrated for D-xylose in Figure 1.3. Their 

commercial availability arises from acid, base, or enzymatic hydrolysis of hemicellulose 

with subsequent purification of the monosaccharide. The hemicellulose can be any of 

several heteropolymers present in the cell wall of plants.  

 

HO
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OH

OH

D-Xylose

HO

O
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OH

OH

L-Arabinose

HO

O
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OH
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D-Arabinose
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O
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OH

D-Ribose  
 
Figure 1.2 Acyclic structures of D-xylose, L-arabinose, D-arabinose, and D-ribose 

showing differences in stereochemistry along the carbohydrate backbone 

 

 
 
Figure 1.3 Cyclic forms of D-xylose 
 

Improved methods for the nitric acid oxidation of the aforementioned 

monosaccharides to their aldaric (pentaric) acid forms (Figure 1.4) or corresponding salts 

are described. Historically, nitric acid oxidations of monosaccharides have resulted in 

poor yields of aldaric acids contaminated with side products, due to the difficulty of 

removing the nitric acid from the aldaric acid product and to the relatively harsh reaction 
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conditions employed. As a result, multiple chemical transformations of the aldaric acids 

have been employed to eliminate impurities with subsequent regeneration of the desired 

pure aldaric acid or salt. The literature relating to the oxidations of aldopentoses is 

reviewed in sec 1.1.2. The improved methods of oxidation and isolation relative to 

methods reported in the literature are given in the Results and Discussion, Section 1.2 

pg.24. 
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Ribaric Acid

OH OH OH OH

O O O OOH

Figure 1.4 Aldaric acid oxidation products of D-xylose, L-arabinose, D-arabinose, and   

D-ribose  

 1.1.2 Oxidation of Aldopentoses to Aldaric Acids 
 
  1.1.2.1  Nitric Acid Oxidation of Aldopentoses and Alditol to Aldaric Acids 
 

Kiliani first reported the nitric acid oxidation of pentoses in 1889.[1] Both D-xylose 

and D-arabinose were oxidized and their respective diacids isolated as their calcium salts. 

Hardegger and co-workers[2] also reported nitric acid oxidation of D-arabinose; the 

product was isolated as 2,3,4-tri-O-acetyl-D-arabinaramide, following removal of the 

acetate groups to give D-arabinaramide. Whistler and coworkers [3] reported the nitric 

acid oxidation of D-xylose according to the method of N.V. Chalov (1948)[4] and xylaric 

acid was isolated as its crystalline zinc salt (III) in a yield of 53.5 %. Cantrell et al.[5] 

reported the nitric acid oxidation of an aqueous solution of D-xylose to yield xylaric acid 

in a yield of 44 %. Kiely et al.[6] described the nitric acid oxidation of aqueous D-xylose, 

wherein oxygen was bubbled into the reaction mixture during the oxidation and crude 
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xylaric acid was isolated as a fine powder in 83.1% yield. No assessment of purity was 

reported. Williams and co-workers reported the nitric acid oxidation of D-arabinitol and 

isolation of D-arabinaric acid, however the isolation procedure was not fully detailed and 

the product was heavily contaminated with oxalic acid.[7] The yield of D-arabinaric acid 

relative to D-arabinitol was 9.78 %. 

1.1.2.2 Alkaline Oxidation of D-Xylose to Aldaric Acids 
 

Fleche reported the preparation of xylaric acid by the degradative oxidation of 5-

ketogluconic acid in alkaline medium.[8]  A crude product containing sodium salts of 

xylaric, formic, glycolic, glyceric, tartaric, malic, and tartronic acid and disodium 

sulphate was isolated with a molar yield of 51.4 % sodium xylarate, relative to the 5-

ketogluconate. Subsequent isolation of xylaric acid was reported as 99.2 % pure, mp 145 

ºC, but no yield was reported.  

1.2 Results and Discussion 
 
 1.2.1 Oxidations of D-xylose, D-arabinose, L-arabinose, and D-ribose 
 

The oxidation of monosaccharides in nitric acid is an exothermic reaction. 

Without a method to control the temperature of the reaction, the reaction mixture will 

quickly warm resulting in boiling of aqueous solvent and the violent evolution of NOx 

gases. Such an uncontrolled reaction leads to extensive by-product production, especially 

oxalic acid. In an effort to better control the temperature of the reaction, a LabMax 

reactor with a jacketed reaction vessel was used for the nitric acid oxidation of D-xylose, 

D-arabinose, and L-arabinose. The LabMax reactor was also used to control pressure 

within the closed reaction vessel. The oxidation of D-ribose was performed on a smaller 
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scale using conventional glassware and not in the LabMax reactor due to an insufficient 

amount of D-ribose available and its relatively high cost.  

Extensive experimentation was performed to find the experimental profiles 

(temperature and pressure ramps) necessary for nearly complete consumption of the 

starting monosaccharide with limited by-product formation. Utilization of the Labmax 

reactor allowed for controlled positive pressure to be applied in the closed reaction vessel 

and aided in the oxygen-driven oxidation of nitric oxide to nitrogen dioxide, and 

ultimately regeneration of nitric acid. A small amount of sodium nitrite was used as an 

oxidation initiator. The general progression of the oxidation is illustrated in Figure 1.5 

and a generic experimental profile is given in Figure 1.6. In all cases, nitric acid oxidation 

of the monosaccharide to its corresponding aldonic acid was rapid and highly exothermic. 

Subsequent oxidation of the aldonic acid at the terminal carbon to the aldaric acid is by 

comparison a slower and more difficult reaction.  

HHO
OHH

CH2OH

OHH
CHO

D-Xylose

HHO
OHH

CH2OH

OHH
CO2H

HHO
OHH
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OHH
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OHH
CO2H

Xylaric Acid

[O]1 [O]2 [O]3

D-Xylonic Acid L-Xyluronic Acid  
 
Figure 1.5 The general reaction progression of nitric acid oxidation from aldopentose 

to aldaric acid illustrated with D-xylose 
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25 OC
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2. Add oxygen 
to 0.25 bar

3. Dose aqueous sugar solution
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0.5 bar pressure with O2
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High
Temp.

Start Reaction End Reaction
 

Figure 1.6  General experimental profile for a nitric acid oxidation of an aqueous 

sugar solution (applicable to D-xylose, D-arabinose, and L-arabinose) 

 
The initial reactor parameters employed for the oxidation of D-xylose, D-

arabinose, and L-arabinose to their corresponding aldaric acids were the same. As D-

xylose has greater solubility (62.5% w/w) in water than do D-arabinose and L-arabinose 

(50.0% w/w), it was found that the additional water necessary to dose 750 mmol of D-

arabinose and L-arabinose into the reaction vessel greatly retarded product formation due 

to dilution of the nitric acid. Consequently, additional nitric acid was used to offset this 

dilution. However, it was determined that the second oxidation of D-arabinose and L-

arabinose at C-5 was much slower than with D-xylose at 35 ºC and thus required a 

significantly higher temperature of 50 ºC after the initial exotherm. The higher reaction 

temperature necessary for the second oxidation of D-arabinose and L-arabinose also 

increased the amount of NOx gases released into the headspace of the reaction vessel 

resulting in pressure increases above the set pressure parameter (0.5 bar). Because the 

reaction vessel was not fitted with a computer controlled pressure release valve, the 
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vessel was vented manually. It was not possible to directly determine the composition of 

the headspace gases in the reactor, however, it was observed that during manual addition 

of oxygen an immediate pressure increase occurred followed by a subsequent pressure 

decrease until another gradual increase in pressure occurred. These observations suggest 

the headspace is comprised of NOx gases, particularly NO, that are reactive with oxygen 

and that the reaction vessel is deficient in oxygen when the pressure increase begins.  

 Nitric acid oxidations of D-ribose were performed in a ventilated hood using a 

warm oil bath and conventional small scale glassware. Little experimentation was 

performed to optimize the reaction conditions, but fortuitously D-ribose is converted 

primarily to ribaric acid with relatively little by-product formation. It appears that ribaric 

acid and ribaric acid-1,4 (5,2)-lactone are relatively stable and do not significantly 

degrade under the oxidation conditions employed. Thus ribaric acid can be isolated as 

ribaric acid-1,4 (5,2)-lactone in yields comparable to those of xylaric acid, disodium D-

arabinarate, and disodium L-arabinarate, despite the high reaction temperatures 

employed.   

 1.2.2 Isolation and Characterization of oxidation products 
 
 1.2.2.1 Xylaric Acid Isolation 
 
 The isolation of xylaric acid was performed by two different methods. In each 

case GC-MS and NMR results indicated a single, pure product was obtained. Both 

isolation methods started with the removal of the oxidation mixture from the reaction 

vessel and concentration of the mixture by rotary evaporation. Concentration of the 

reaction mixture by rotary evaporation is governed by the negative azeotrope of an 

aqueous nitric acid solution resulting in removal of the water and then the nitric acid. As 
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a result the concentrated reaction mixture is a thick syrup consisting of carbohydrate 

acids and residual nitric acid. The syrup can be dissolved in water and concentrated again 

to remove additional nitric acid, but each repeat of the process removes smaller amounts 

of nitric acid and does not completely remove the nitric acid. 

 Method 1. The syrup resulting from the rotary evaporation process was seeded 

with powdered xylaric acid. Upon standing it crystallized. The crystals were stirred with 

acetone and separated by filtration. The yield was 33% and the melting point 144-145 ºC. 

Guy Fleche reported the isolation of xylaric acid by this method with 99.2 % purity and a 

melting point of 145 ºC.[8] Whistler et al. reported a melting point range of 151-152 ºC of 

xylaric acid.[3] Neither Whistler nor Fleche gave a percent yield based on their starting 

material. 

 Method 2. Xylaric acid may also be obtained through a method incorporating a 

nanofiltration step, Figure 1.7. The reaction syrup obtained from the rotary evaporation 

process described earlier was made basic with aqueous 5M sodium hydroxide. At pH 3.5-

4.0 a solid results and can be removed by filtration. This solid was later characterized as 

impure disodium 2,2,3,3-tetrahydroxybutanedioate and will be discussed later in section 

1.2.2.3 of this dissertation. The resulting filtrate was then taken to pH 9 with addition of 

sodium hydroxide to yield carbohydrate acid disodium salts and sodium nitrate. The 

mixture was then passed through nano-filter unit, which had been build in-house, to 

separate the small carbohydrate acid salts and sodium nitrate from the disodium xylarate. 

Although complete separation of the disodium xylarate (retentate) from the sodium 

nitrate (permeate) was not achieved, the retentate solution was concentrated, and dried 

under vacuum. The solid was stirred with ethanol to remove residual water, removed by 
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filtration, and dried again to give a dry solid product. This material was dissolved in 

water and the solution treated with acidic form ion exchange resin to give a solution of 

carbohydrate acids and a significantly reduced amount of residual nitric acid. The 

solution was concentrated to a syrup by rotary evaporation and seeded with powdered 

xylaric acid as before. The resulting xylaric acid was obtained in significantly higher 

yield (50 %) but with a slightly depressed melting point 138-140 ºC. 
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Figure 1.7 Xylaric acid isolation employing a nanofiltration step  
  
 1.2.2.2 Disodium D-Arabinarate (Disodium D-Lyxarate) and Disodium L-

Arabinarate (Disodium L-Lyxarate) Isolation and 

Characterization 

 The relatively harsh reaction conditions necessary to obtain significant conversion 

of L(D)-arabinose to L(D)-arabinaric acid resulted in the formation of by-products in 

greater amounts than from D-xylose oxidation. In addition the L(D)-arabinaric acid did not 
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crystallize from the concentrated reaction mixture as had the xylaric acid from D-xylose 

oxidation, but rather formed a mixture of lactone acids which also did not crystallize. As 

a result isolation methods used for D-xylose were not applicable to the isolation of 

arabinaric acid and an alternative isolation method was developed to isolate L(D)-

arabinaric acid as its disodium salt (Figure 1.8). 
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Figure 1.8 Isolation of disodium L-arabinarate (disodium L-lyxarate) 
 
 The L(D)-arabinaric acid oxidation mixture was treated in exactly the same way as 

the xylaric acid oxidation mixture utilizing the nanofiltration method (Method 2) up until 

the actual filtration. Instead of purifying the mixture utilizing the nanofilter, the disodium 

L(D)-arabinarate was treated with a solution of methanolic HCl to yield a crude mixture 

of dimethyl L(D)-arabinarate, methyl-1,4 L(D)-arabinaric lactone, methyl-5,2 L(D)-

arabinaric lactone, sodium chloride, and excess methanolic HCl. The solid sodium 
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chloride was removed by filtration and the filtrate concentrated to a syrup thereby 

removing much of the excess HCl. Ethanolic methylamine was added to a methanol 

solution of the syrup from which N,N’-dimethyl L(D)-arabinaramide precipitated. Solid 

N,N’-dimethyl L(D)-arabinaramide was isolated by filtration, dried, dissolved in water, 

and treated with a slight excess of sodium hydroxide to give disodium L(D)-arabinarate in 

nearly 48 percent yield relative to L(D)-arabinose. Excess sodium hydroxide appeared 

trapped in the resulting material, resulting in unsatisfactory elemental analysis results. 

However, GC and low resolution mass spectrometry (Figure 1.10) of disodium L(D)-

arabinarate as its per-O-trimethylsilyl derivative confirmed its identity. Observed 

fragments are explained in Figure 1.9. The 1H NMR spectrum of the material was 

consistent with the assigned structure and also indicated a lack of organic impurities. 

Further purification of the material was not needed for the purposes of subsequent 

experimentation. However in an effort to obtain L(D)-arabinarate salts with satisfactory 

elemental analysis, calcium L and D-arabinarate were synthesized from disodium L and D-

arabinarate. Both L and D salts gave almost identical carbon and hydrogen analysis but 

still did not meet calculated values even when hydration was included. The calcium salts 

were also analyzed by ion chromatography and found to have one slight impurity of 

undetermined structure and composition.     
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Figure 1.9 GC-MS chromatogram and observed fragments of GC-FID 

chromatogram (A) and MS fragmentation pattern (B) of per-O-

trimethylsilyl D-arabinarate 
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 1.2.2.3 Isolation and Characterization of Disodium 2,2,3,3-

tetrahydroxybutanedioate (8) 

 A reaction mixture of either nitric acid oxidized D-xylose or L(D)-arabinose was 

concentrated by rotary evaporation and the resulting syrup dissolved in water. Sodium 

hydroxide was added dropwise to pH 4.5. A colorless gas was emitted from the solution 

as evidenced by the evolution of bubbles, while a white solid precipitated from solution. 

This solid material was isolated through filtration and subjected to GC/MS analysis as its 

per-O-trimethylsilyl derivative. A mass fragmentation pattern search in a NIST library 

tentatively identified the material as the per-O-trimethylsilyl derivative of 2,2,3,3-

tetrahydroxybutanedioic acid. Consequently, the insoluble white solid was tentatively 

identified as disodium 2,2,3,3-tetrahydroxybutanedioate.  

 To confirm this structure, disodium 2,2,3,3-tetrahydroxybutanedioate (8) was 

synthesized through bromine oxidation of dihydroxyfumaric acid with subsequent 

basification, as reported by Burnett et al.[9] GC retention times and mass fragmentation 

pattern, Figure 1.10, of the per-O-trimethylsilyl derivatives of the synthesized (8) and the 

side-product from nitric acid oxidations of D-xylose and L(D)-arabinose were identical. 

Additionally, decomposition of disodium 2,2,3,3-tetrahydroxybutanedioate upon heating 

matched the observation as reported by Lachman.  
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Figure 1.10 GC-FID chromatogram (A) and MS fragmentation pattern (B) of per-O-

trimethylsilyl disodium 2,2,3,3-tetrahydroxybutanedioate  

 
 1.2.2.4 Disodium Ribarate Isolation and Characterization 
 
 The nitric acid oxidation of D-ribose was performed under much harsher 

conditions then those employed to D-xylose and L(D)-arabinose oxidations. A mixture of 
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nitric acid, solid D-ribose, and solid sodium nitrite was stirred and refluxed in an oil both 

set to 65 ºC for 7 h. Evolution of NOx gases was initially violent and persisted in a 

vigorous fashion for approximately 1 h. At the end of the 7 h oxidation the solution was 

concentrated by rotary evaporation to yield a white solid. To remove residual oxalic acid 

and nitric acid the solid was extracted by stirring with ether and filtered (five times). The 

resulting solid [ ribaric acid-5,2 (1,4)-lactone (6)], from which an x-ray crystal structure 

was obtained, was then made basic with sodium hydroxide to yield disodium ribarate. As 

with the disodium salt of arabinaric acid, residual sodium hydroxide was present and 

contributed to unsatisfactory elemental analysis of the disodium salt. However, GC-MS 

of per-O-trimethylsilyl disodium ribarate showed a single peak with a mass 

fragmentation pattern matching the per-O-trimethylsilyl derivative of per-O-

trimethylsilyl D-arabinarate as shown in Figure 1.9. 

 1.2.2.5 X-Ray Analysis of Ribaric Acid-5,2 (1,4)-Lactone (6) 
 
The geometry of monoclinic crystalline ribaric acid-5,2-monolactone (6) with atom 

labeling is shown in Figure 1.11.  

 

Figure 1.11  The geometry of ribaric acid-5,2 (1,4)-lactone (6) showing atom labeling 
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Figure 1.12 displays the hydrogen bonding schematic of monoclinic crystalline 6 

which has a crystal density of 1.761 g cm-3. Compound 6 has one hydrogen bond 

acceptor [O5···H5-O3, 2.078Å, 155.41º] bonded to the hydroxyl hydrogen of an adjacent 

molecule. The hydroxyl group oxygen of O(4) [O4-H6···O3, 1.942Å, 167.50 º] is acting 

as a hydrogen bond donor to the O(3) hydroxyl group of an adjacent molecule. The 

carboxylic acid group hydrogen (H1) is hydrogen bonded [O6-H1···O1, 1.873Å, 178.88 º] 

to the carboxylic acid group carboxyl oxygen of an adjacent molecule. 

 

 

Figure 1.12  Hydrogen bonding schematic of ribaric acid-5,2-monolactone (6) with 

hydrogen bond distances in angstroms 

Summary of Nitric Acid Oxidations 

 Oxidations of D-xylose, D-arabinose, L-arabinose, and D-ribose using nitric acid 

oxidation were employed to give all four of the possible stereoisomeric pentaric acids; 

xylaric acid, D-arabinaric acid (D-lyxaric acid), L-lyxaric acid (L-arabinaric acid), and 

ribaric acid, respectively. Isolation methods were developed for xylaric acid, disodium D-

arabinarate (disodium D-lyxarate) and disodium L-lyxarate (disodium L-arabinarate), and 

ribaric acid-5, 2-lactone with typical yields of roughly 50 percent.  
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 1.2.2.6 1H NMR Assignment of N,N’-Dihexyl-D-Arabinaramide  

A small scale nitric acid oxidation of D-[2-2H]-arabinose was carried out in order to 

obtain deuterium labeled D-arabinaric acid for correct 1H NMR assignment of the C2-C4 

protons. N,N’-Dihexyl-D-arabinaramide (11) was chosen as an appropriate D-arabinaric 

acid derivative for this study. 

 The nitric acid oxidation of D-[2-2H]-arabinose and synthesis of N,N’-dihexyl-D-

arabinaramide is described in the experimental section, section 1.3. The 1H NMR 

experiments described here were performed on a Varian 500 MHz spectrometer using 

DMSO-d6 as NMR solvent. Figure 1.13 and Figure 1.14 are 1H NMR spectra of N,N’-

dihexyl-D-arabinaramide and N,N’-dihexyl-D-[2-H2]-arabinaramide (11). The signal at δ 

4.04 (Figure 1.13) is missing in Figure 1.14 and demonstrates the chemical shift of the 

proton on C2. Selective 1D NOESY 1H NMR experiments were performed using N,N’-

dimethyl-L-arabinaramide. The equivalence of amide and aldaryl protons between N,N’-

dihexyl-D-arabinaramide and N,N’-dimethyl-L-arabinaramide can be seen in NMR 

spectra of each, Figures 1.13 and 1.15, respectively. Amide protons H8 and H9 are not 

equivalent and interact through “through space” interactions with the nearby protons (H2, 

H3, H4) of the aldaryl unit. Thus selective 1D NOESY 1H NMR experiments can be used 

to assign the 1H NMR spectrum of N,N’-dihexyl-D-arabinaramide and N,N’-dimethyl-L-

arabinaramide. Both H8 and H9 were irradiated individually and NMR spectra recorded, 

Figure 1.15 and Figure 1.16, respectively. The selective 1D NOESY 1H NMR spectra 

show the proximity of H8 and H2 and the proximity of H9 and H4, Figures 1.17 and 

1.18, respectively. 
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Figure 1.13 1H NMR spectrum of N,N’-dihexyl-D-arabinaramide 
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Figure 1.14 1H NMR spectrum of N,N’-dihexyl-D-[2-H2]-arabinaramide (11) 
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N,N'-dimethyl-L-Arabinaramide
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Figure 1.15 1H NMR spectrum of N,N’-dimethyl-L-arabinaramide 
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Figure 1.16 Selective 1D NOESY 1H NMR spectrum of N,N’-dimethyl-L-

arabinaramide with H8 irradiated 
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N,N'-dimethyl-L-Arabinaramide
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Figure 1.17 Selective 1D NOESY 1H NMR spectrum of N,N’-dimethyl-L-

arabinaramide with H9 irradiated 

1.3 Experimental 
 

Materials and General Methods 

D-Xylose, D-arabinose, and L-arabinose were purchased from Hofmann 

International, ACS grade nitric acid (70% w/w) and HPLC grade methanol from EMD 

Biosciences, Inc, ACS grade sodium nitrite from Acros, acetyl-chloride (99+ %) from 

Alfa Aesar, Tri-Sil Reagent from Pierce, NMR solvents from Cambridge Isotope 

Laboratories, Inc. Sodium hydroxide was purchased from J.T. Baker. All other chemicals 

were purchased from Aldrich and used without further purification. X-ray crystal analysis 

was performed as specified in Chapter 4.  

Concentrations of solutions were carried out under reduced pressure. Drying of 

samples was carried out under vacuum using a Fischer Scientific Isotemp Vacuum Oven 
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Model 280A at room temperature. Elemental analyses were performed by Atlantic 

Microlab, Inc., Norcross, Georgia. Melting points were obtained with a Fisher-Johns 

melting point apparatus and are reported uncorrected.  

Oxidations of D-xylose, D-arabinose, and L-arabinose were performed using a 

Mettler Toledo RC-1 LabMax fitted with a Mettler Toledo PG5002-S Delta Range top-

loading balance, ProMinent Fluid Controls Inc. Model G/4b1201TT1 liquid feed pump, 

Sierra 830/840/860 Series Side-Trak & Auto-Trak Mass Flow Meter and Controller flow 

valve, FTS Maxi Cool recirculation chiller, and appropriate gas bubbler, pressure 

manifold with safety valves and gauges, condenser, pH meter, stir rod, thermometer, and 

temperature controlled jacketed reaction flask. The system is operator controlled through 

Camile TG v1.2 software enabling temperature and pressure control within the 2L 

reaction vessel. Concentration of nitric acid was carried out under reduced pressure with 

a system consisting of a Buchi Rotovapor R-205, Buchi Vacuum Controller V-800, 

Buchi Heating Bath B-490, Brinkmann Model B-169 Vacuum Aspirator, and a Thermo 

Haake compact refrigerated circulator DC30-K20 in conjunction with a Thermo Haake 

EK45 immersion circulator cooling coil.  

 Nanofiltration was performed on a unit built in-house consisting of the necessary 

valves, pump, tubing, pressure gauge, and an appropriate membrane such as GE 

DL2540F using reverse osmosis purified water obtained in-house. 

GC-MS analyses were performed on an Agilent 6890N GC interfaced to an 

Agilent 5973 MS detector. A Phenomenex ZB-5 GC column, 30 m x 0.25 mm x 0.25 µm, 

composed of 5%-phenyl 95% dimethylpolysiloxane was used for all GC-MS analysis. 

Samples for GC-MS analyses were prepared as per-O-trimethylsilyl derivatives. Tri-Sil 
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Reagent (1.0 mL) was added to dried sample (5.0 mg) in a 7 mL vial and the mixture 

heated at 50 ºC for 60 min. The sample was cooled to room temperature and heptane (6 

mL) added. The mixture was centrifuged and the liquid portion (3 mL) transferred to a 7 

mL vial. Heptane (3 mL) was added to the liquid portion and an aliquot taken for GC-MS 

analysis.   

 High-Performance Liquid Chromatography (HPLC) was performed on two 

Aminex® HPX-87H columns in series where used with a refractive index (RI) detector. 

The first column was heated to 35˚C and the second column to heated to 85˚C. A 0.005 

M H2SO4 eluent heated to 70˚C under an argon atmosphere and samples run isocratically 

at a 0.5 mL/min flow rate.  

One dimensional 1H NMR spectra were obtained using a 400 MHz Varian Unity 

Plus spectrometer or a 500 MHz Varian spectrometer. NMR spectra were processed 

using ACD/SpecManager 1D NMR software Version 9.13. Chemical Shifts were 

expressed in parts per million relative to t-BuOH (1.203 ppm) for D2O.  

IC was performed on a Dionex ICS-2000 Ion Chromatography system consisting 

of a Dionex IonPac AS II analytical column and a sodium hydroxide EluGen cartridge in 

conjunction with Chromeleon software. Samples were analyzed using a 35mM sodium 

hydroxide isocratic elution method with a flow rate of 1.5 mL/min running with the 

suppressor current at 186 mA. IC method development was carried out by Cara-Lee 

Davey from the University of Waikato, Hamilton, New Zealand. 

 1.3.1 Xylaric Acid (1) - Nitric Acid Oxidation of D-Xylose 

The oxidation was carried out using the LabMax reactor. The parameters were 

programmed in a series of stages for the oxidation. Stage 1. The reactor vessel was set at 
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25 ºC, the stirring rod speed was set at 200 rpm (held constant throughout the remaining 

stages), concentrated nitric acid (70%, 3 mol, 187 mL) was added, the vessel was closed 

to the atmosphere, and time set for 3 min. Stage 2. Oxygen was added to the reaction 

vessel to increase the pressure to 0.25 bar. Stage 3. D-Xylose [181.16 g of an aqueous 

62.5% solution containing sodium nitrite (1.16 g, 16.8 mmol)] was added over 120 min. 

Stage 4. A one minute stabilization period, i.e. no change in reaction conditions. Stage 5. 

Reactor temperature was raised to 35 ºC and the pressure raised by addition of oxygen to 

0.5 bar over 60 min. Stage 6. Reaction was held at 35 ºC and 0.5 bar of pressure for 210 

min. Stage 7. Reaction mixture was cooled to 25 ºC over 10 min and the vessel opened to 

the atmosphere.  

1.3.2. Isolation of Xylaric Acid (1) – Concentration Method 

 The D-xylose oxidation mixture, taken directly from the Mettler Toledo LabMax 

reactor, was concentrated to a thick syrup at 50 ºC.  Water (200 mL) was added to 

dissolve the syrup and the resulting solution concentrated to a syrup. This concentration 

process was repeated twice. The resulting syrup was seeded with xylaric acid (< 1.0 mg) 

and left undisturbed at room temperature for three days. Cold acetone (300 mL) was 

added to the semi-solid mixture and the mixture stirred at room temperature for 12 h. The 

mixture was cooled (ice bath) and white solid xylaric acid was obtained by filtration. (1, 

44.58 g, 247.5 mmol, 33.00 % yield): mp 144-145 ºC ( Lit. 151 ºC),[3] 1H NMR (D2O) δ 

4.45(d, 2H, J 4.33 Hz,  H-1, H-3) δ 4.22(t, 1H, H-2) Anal. Calcd for C5H8O7 (180.11): C, 

33.34; H, 4.48. Found C, 33.31; H, 4.34. GCMS (ESI) m/z Calcd for C20H48O7Si5 [M – 

C11H28O3Si3, C9H20O4Si2
+] 292.6 Found 292; GCMS (ESI) m/z Calcd for C20H48O7Si5 [M 

– 15,  C19H45O7Si5]+ 525.2. Found 525. 
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 1.3.3.  Isolation of Xylaric Acid (1) – Nanofiltration Method 

The D-xylose oxidation mixture, taken directly from the LabMax reactor, was 

concentrated to a thick syrup at 50 ºC. Water (200 mL) was added to dissolve the syrup, 

the solution cooled (ice bath), and sodium hydroxide (5M) added with stirring to bring 

the mixture to pH 4.5. A white precipitate formed, which was removed by filtration, and 

characterized as 2,2,3,3-tetrahydroxybutanedioate (8, 8.39 g, 37.1 mmol, 4.94 % yield, 

dec. 142 ºC). The filtrate was cooled (ice bath) and sodium hydroxide (5M) added with 

stirring to bring the solution to pH 10. The solution was concentrated under reduced 

pressure at 50 ºC to dryness to give a brown solid to which absolute ethanol (300 mL) 

was added and the mixture stirred at room temperature for 12 h. The solid was removed 

by filtration and dried to yield a crude brown solid of disodium xylarate (156.9 g). The 

solid was dissolved in reverse osmosis water (3,500 mL) and the solution passed through 

a G.E. Water & Process Technologies, model # DL2540F1072 nanopore filter. When the 

permeate volume reached 1,000 mL, reverse osmosis (RO) water (1,000 mL) was added 

to the feedstock. The typical rate of permeate flow was 48 mL/min. After 2,000 mL of 

permeate had been removed another 1,000 mL of RO water was added to the feedstock. 

This was repeated until 4,000 mL of RO water had been added to the feedstock. Filtration 

continued until the permeate flow slowed to a trickle. The retentate contained 

predominantly organic acid sodium salts and the permeate predominately inorganic 

sodium nitrate, as determined by HPLC analyses.  The retentate of disodium xylarate was 

concentrated at 50 ºC to 200 mL and treated with an excess of Amberlite IR-120H+ resin 

(1.32 L, 2.5 mol, 3 h) to give aqueous diacid. The resin was removed by filtration and 

rinsed with water (500 mL). The combined filtrate and rinse was concentrated at 50 ºC to 
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a thick syrup, seeded with xylaric acid (< 1 mg), and allowed to remain undisturbed at 

room temperature for 3 days. Cold acetone (300 mL) was added to the near solid product 

and the mixture stirred at room temperature for 12 h. The mixture was cooled (ice bath) 

and white solid xylaric acid was separated by filtration. (1, 67.10 g, 372.55 mmol, 49.67 

% yield): mp 138-140 ºC (lit. 151 ºC),[3] 1H NMR (D2O) δ 4.45(d, 2H, H-1, H-3) δ 4.22(t, 

1H, H-2).  

1.3.4 L-Arabinaric Acid (L-Lyxaric Acid), (2) -Nitric Acid Oxidation of L-

Arabinose  

The oxidation was carried out using the LabMax reactor as described for D-

xylose. The following reaction parameters for the oxidation were programmed into the 

Recipe Menu accessed on the LabMax Camile TG v1.2 software in the following series 

of stages. Stage 1. The reactor vessel was set at 25 ºC, the stirring rod speed was set at 

200 rpm (held constant throughout the remaining stages), concentrated nitric acid (70%, 

5.13 mol, 320 mL) was added, the vessel was closed to the atmosphere, and time set for 3 

min. Stage 2. Oxygen was added to the reaction vessel to increase the pressure to 0.25 

bar. Stage 3. L-arabinose [226.62 g of an aqueous 50.0% solution containing sodium 

nitrite (1.76 g, 25.5 mmol)] was added over 90 min. Stage 4. A one minute stabilization 

period, i.e., no change in reaction conditions. Stage 5. Reactor temperature was raised to 

50 ºC and the pressure raised by addition of oxygen to 0.5 bar over 45 min. Stage 6. 

Reaction was held at 50 ºC and 0.5 bar of pressure for 180 min. Stage 7. Reaction 

mixture was cooled to 25 ºC over 10 min and the vessel opened to the atmosphere.  
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1.3.5.   Isolation of Disodium L-Arabinarate (Disodium L-Lyxarate) (3)  

 The L-arabinose oxidation mixture was taken directly from the LabMax reactor, 

concentrated to a syrup at 50 ºC and dissolved in cold (ice bath) water (200 mL). Sodium 

hydroxide (5M) was added with stirring to bring the mixture to pH 4.5. A white 

precipitate formed, was removed by filtration and identified as disodium 2,2,3,3-

tetrahydroxybutanedioate (8, 7.95 g, 35.2 mmol, 4.69%, mp (dec.) 142 ºC). The filtrate 

was cooled (ice bath) and sodium hydroxide (5M) added with stirring to bring the 

mixture to pH 10. The solution was concentrated at 50 ºC to give a brown solid which 

was stirred with absolute ethanol (300 mL) at room temperature for 12 h. The solid was 

removed by filtration and dried, to yield a crude brown solid of disodium L-arabinarate 

(3) (148.83 g). Acetyl chloride (118.7 g, 1.52 mol) was added to cold methanol and the 

resulting solution was added with stirring to a mixture of crude solid disodium L-

arabinarate and cold (ice bath) methanol (100 mL). The reaction mixture was stirred at 

room temperature (4 h) after which a white, insoluble precipitate, sodium chloride was 

removed by filtration, and the filtrate concentrated to a thick syrup at 40 ºC. The thick 

syrup was dissolved in methanol (100 mL), a solution of methylamine in ethanol (33% 

b/w, 87.01 g, 265 mL, 2.80 mol) was added dropwise to the cold (ice bath) solution, and 

the resulting reaction mixture stirred at room temperature (24 h). A white solid was 

removed by filtration and dried. Aqueous sodium hydroxide (2M, 0.760 mmol, 380.1 

mL) was added at room temperature and the mixture stirred 3 days, after which it was 

concentrated at 40 ºC and the resultant solid stirred with absolute ethanol (300 mL). The 

solid wa removed by filtration and the stirring process with ethanol was repeated three 

times to give a final white amorphous solid of disodium L-arabinarate (3, 79.88 g, 356.5 
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mmol, 47.53%) 1H NMR (D2O) δ 4.15(d, 1H, J 1.47 Hz) δ 4.03(d, 1H) δ 3.99 (d, 1H). 13C 

NMR (D2O): 180.60, 180.05, 74.20, 74.16, 72.94 ppm. Anal. Calcd for C5H6Na2O7 

(224.08): C, 26.80; H, 2.70. Found C, 23.69; H, 2.97. GCMS (ESI) m/z Calcd for 

C20H48O7Si5 [M – C11H28O3Si3, C9H20O4Si2
+] 292.6 Found 292; GCMS (ESI) m/z Calcd 

for C20H48O7Si5 [M – 15,  C19H45O7Si5]+ 525.2. Found 525. Optical rotation -0.80º 

1.3.6 D-Arabinaric Acid (D-Lyxaric acid) (4) -Nitric Acid Oxidation of D-

Arabinose 

The oxidation was carried out using the LabMax reactor as described for L-

arabinose. Stage 1. The reactor vessel was set at 25 ºC, the stirring rod speed was set at 

200 rpm (held constant throughout the remaining stages), concentrated nitric acid (70%, 

5.13 mol, 320 mL) was added, the vessel was closed to the atmosphere, and time set for 3 

min. Stage 2. Oxygen was added to the reaction vessel to increase the pressure to 0.25 

bar. Stage 3. D-arabinose [226.62 g of an aqueous 50.0% solution containing sodium 

nitrite (1.76 g, 25.5 mmol)] was added over 90 min. Stage 4. A one minute stabilization 

period, i.e. no change to reaction conditions. Stage 5. Reactor temperature was raised to 

50 ºC and the pressure raised by addition of oxygen to 0.5 bar over 45 min. Stage 6. 

Reaction was held at 50 ºC and 0.5 bar of pressure for 180 min. Stage 7. Reaction 

mixture was cooled to 25 ºC over 10 min and the vessel opened to the atmosphere.  

1.3.7.   Isolation of Disodium D-Arabinarate (Disodium D-Lyxarate) (5)  

 The D-arabinose oxidation mixture was taken directly from the LabMax reactor, 

concentrated to a syrup at 50 ºC and dissolved in cold (ice bath) water (200 mL). Sodium 

hydroxide (5M) was added with stirring to bring the mixture to pH 4.5. A white 

precipitate formed and was removed by filtration and identified as disodium 2,2,3,3-
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tetrahydroxybutanedioate (8, 6.25 g, 27.7 mmol, 3.69%, mp (dec.) 142 ºC). The filtrate 

was cooled (ice bath) and sodium hydroxide (5M) added with stirring to bring the 

mixture to pH 10. The solution was concentrated at 50 ºC to give a brown solid which 

was stirred with absolute ethanol (300 mL) at room temperature for 12 h. The solid was 

removed by filtration and dried, to yield a crude brown solid of disodium D-arabinarate 

(142.45 g). Acetyl chloride (118.7 g, 1.52 mol) was added dropwise to cold methanol and 

the resulting solution was added with stirring to a mixture of crude solid disodium D-

arabinarate and cold (ice bath) methanol (100 mL). The reaction mixture was stirred at 

room temperature for 4 h after which white insoluble sodium chloride, was removed by 

filtration and the filtrate concentrated to a thick syrup at 40 ºC. The thick syrup was 

dissolved in methanol (100 mL), a solution of methylamine in ethanol (33% b/w, 87.01 g, 

265 mL, 2.80 mol) was added dropwise to the cold (ice bath) solution, and the resulting 

reaction mixture stirred at room temperature (24 h). A white solid was removed by 

filtration and dried. Aqueous sodium hydroxide (2M, 0.760 mmol, 380.1 mL) was added 

at room temperature and the mixture stirred 3 days, after which it was concentrated at 40 

ºC and the resultant solid stirred with absolute ethanol (300 mL), before filtration. This 

process with ethanol was repeated three times to give a final white amorphous solid of 

disodium D-arabinarate (disodium D-lyxarate) (5, 77.34 g, 345.16 mmol, 46.02%) 1H 

NMR (D2O) δ 4.15(d, 1H, J 1.47 Hz) δ 4.03(d, 1H) δ 3.99 (d, 1H). 13C NMR (D2O): 

180.60, 180.05, 74.20, 74.16, 72.94 ppm. GCMS (ESI) m/z Calcd for C20H48O7Si5 [M – 

C11H28O3Si3, C9H20O4Si2
+] 292.6 Found 292; GCMS (ESI) m/z Calcd for C20H48O7Si5 [M 

– 15,  C19H45O7Si5]+ 525.2. Found 525. Optical rotation +0.95º. 
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1.3.8 Ribaric Acid-1,4 (5,2)-Lactone (6) - Nitric Acid Oxidation of D-Ribose 

To a 500 mL round bottom flask was added concentrated nitric acid (70%, 75 mL, 

1.80 mol) to which solid D-ribose (30.372 g, 202.32 mmol) and solid sodium nitrite (< 1 

mg) were added. The flask was immediately fitted with a water-cooled Liebig condenser 

and the resulting solution warmed with stirring in an oil bath (65 ºC, 7 h). Within one 

minute the solvent warmed to boiling and brown gases were violently evolved. At the end 

of the reaction process the resulting solution was concentrated under reduced pressure to 

yield a white solid, which was dissolved in water (100 mL) and the solution concentrated 

to dryness. The resultant solid was redissolved in water and concentrated to dryness, and 

then the process was repeated. The solid product was stirred with ethyl ether (300 mL, 1 

h) and the solid removed by filtration; the trituration and filtration procedure was 

repeated five times. The filtrate for each iteration was tested for acidity using pH paper. 

The fifth filtrate having a neutral pH. The white solid was dried under vacuum overnight 

to yield ribaric acid-1,4 (5,2)-lactone (6, 16.25 g, 100.2 mmol, 49.54 % yield) 1H NMR 

(D2O) δ 5.01(s, 1H) δ 4.66(d, 1H) δ 4.62 (d, 1H) mp 163-166 ºC. Calcd for C5H6O6 

(162.10): C, 37.05; H, 3.73; Found C, 36.87; H, 3.71. 

1.3.9 Isolation of Disodium Ribarate (7) 
 
To a solution of ribaric acid-1,4 (5,2)-lactone (6, 10.01 g, 61.78 mmol) in water (50 mL) 

was added sodium hydroxide (5M, 30.0 mL, 150 mmol) dropwise with stirring at room 

temperature. The solution was stirred at room temperature for 12 h and then concentrated 

at 35 ºC to a white solid. The solid was stirred with methanol (100 mL, 1 h) and a white 

solid isolated by filtration. This process was repeated three times. The resulting white 

solid was dried to yield disodium ribarate (7, 13.24 g, 59.08 mmol, 95.65%). 1H NMR 
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(D2O) δ 4.062(s, H2,3,4). 13C NMR (D2O): 179.84, 75.42, 74.03 ppm. Anal. Calcd for 

C5H6Na2O7 (224.08): C, 26.80; H, 2.70. Found C, 25.55; H, 2.99. GCMS (ESI) m/z Calcd 

for C20H48O7Si5 [M – C11H28O7Si13, C9H20O4Si2
+] 292.6 Found 292; GCMS (ESI) m/z 

Calcd for C20H48O7Si5 [M – 15, C19H45O7Si5
+] 525.2. Found 525. 

1.3.10   Synthesis of Disodium 2,2,3,3-tetrahydroxybutanedioate (8) 

The procedure described by Fenton and modified by Burnett was used for the preparation 

of disodium 2,2,3,3-tetrahydroxybutanedioate.[9] 

 To a solution of dihydroxyfumaric acid (0.193 g, 1.300 mmol) in water (5 mL) was 

added glacial acetic acid (1 mL) dissolved in cold (ice bath) water (1 mL). Bromine 

(0.276 g, 1.727 mmol) was added dropwise with stirring to cold (ice bath) glacial acetic 

acid (1.5 mL) and the resulting bromine/glacial acetic acid solution was added dropwise 

to the cooled dihydroxyfumaric acid/acetic acid solution over 3 h. Solid sodium 

bicarbonate was added until bubble formation stopped and a precipitate was formed and 

removed by filtration. The solid was washed with acetone (3 x 2 mL), isolated by 

filtration and the solid dried to give disodium 2,2,3,3-tetrahydroxybutanedioate dihydrate 

(8, 0.2399 g, 0.915 mmol, 70.41%): mp (dec.) 142 ºC (lit. 150-160 ºC) [9] (Calcd for 

C4H8Na2O10 (262.08): C, 18.33; H, 3.08. Found C, 18.12; H, 3.07. LRMS (ESI) m/z 

Calcd for C22H54O8Si6 [M – C11H27O4Si3, C11H27O4Si3
+] 307.59. Found 307; LRMS (ESI) 

m/z Calcd for C22H54O8Si6 [M – C8H18O4Si2, C14H36O4Si4
+] 380.7 Found 380. 

 Disodium 2,2,3,3-tetrahydroxybutanedioate (8) obtained from nitric acid oxidation 

of D-xylose and L(D)-arabinose yielded (8, 0.2399 g, 0.915 mmol, 70.41%): mp (dec.) 

142 ºC (lit. 150-160 ºC) [9] LRMS (ESI) m/z Calcd for C22H54O8Si6 [M – C11H27O4Si3, 
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C11H27O4Si3
+] 307.59. Found 307; LRMS (ESI) m/z Calcd for C22H54O8Si6 [M – 

C8H18O4Si2, C14H36O4Si4
+] 380.7 Found 380. 

1.3.11  Synthesis of Calcium L-Arabinarate (Calcium L-Lyxarate) (9) 

 To a solution of disodium L-arabinarate (0.502 g, 2.240 mmol) in water (4 mL) was 

added saturated calcium chloride (2 mL) and the solution stirred 1h. A precipitate was 

formed and removed by filtration. The solid was washed with water (3 x 2 mL), isolated 

by filtration, and the solid dried to give calcium L-arabinarate (calcium L-lyxarate) (9, 

0.381 g, 1.748 mmol, 78.40%) (Calcd for C5H6CaO7 (217.97): C, 27.53; H, 2.77. Found 

C, 22.59; H, 3.18.  

1.3.12  Synthesis of Calcium D-Arabinarate (Calcium D-Lyxarate)(10) 

 To a solution of disodium D-arabinarate (0.517 g, 2.240 mmol) in water (4 mL) was 

added saturated calcium chloride (2 mL) and the solution stirred 1h. A precipitate was 

formed and removed by filtration. The solid was washed with water (3 x 2 mL), isolated 

by filtration, and the solid dried to give calcium D-arabinarate (calcium D-lyxarate) (10, 

0.360 g, 1.652 mmol, 73.74%) (Calcd for C5H6CaO7 (217.97): C, 27.53; H, 2.77. Found 

C, 22.73; H, 3.13. 

1.3.13 N,N’-Dihexyl-D-[2-2H]-Arabinaramide - Nitric Acid Oxidation of D-

[2-2H]-Arabinose (11) 

To a 25 mL round bottom flask was added concentrated nitric acid (70%, 0.4 mL, 

6.710 mmol) to which solid D-[2-2H]-arabinose (0.124 g, 0.819 mmol) and solid sodium 

nitrite (< 1 mg) were added. The flask was immediately fitted with a water-cooled Liebig 

condenser and the resulting solution warmed with stirring in an oil bath (60 ºC, 6 h). 

Within one minute the solvent warmed to boiling and brown gases were violently 
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evolved. At the end of the reaction process the resulting solution was concentrated under 

reduced pressure to yield a clear syrup. To methanol (1.5 mL) was added acetyl-chloride 

(0.029 mL, 0.410 mmol) and the syrup dissolved in the methanolic HCl then stirred for 2 

h. The solution was concentrated to a thick syrup, dissolved in methanol (1 mL), and 

hexylamine (0.249g, 0.325 mL, 2.457 mmol) added dropwise with stirring. A solid 

precipitated within 30 min. and the mixture was allowed to stir for another 3 h. The 

mixture was pipetted into an 8 dram vial and centrifuged; the supernant was decanted and 

the solid washed with methanol (3x, 0.5 mL) then dried under vacuum overnight to yield 

N,N’-dihexyl-D-[2-2H]-arabinaramide (11, 0.091 g, 0.262 mmol, 31.93 % yield) 1H NMR 

(DMSO-d6) δ 7.90 (s, 1H, NH) δ 7.53(s, 1H, NH) δ 5.56 (d, 1H, J 5.08, OH) δ 5.51 (s, 

1H, OH) δ 4.71 (d, 1H, J 5.88, OH) δ 3.87 (1H) δ 3.82 (1H) δ 3.06 (m, 2H, CONHCH2) 

δ 1.40 (m, 2H, CONHCH2CH2) δ 1.23 (6H, CH2) δ 0.85 (t, 3H, CH3) 

1.3.14   Ribaric acid-5,2 (1,4)-lactone (6) 

Crystals were obtained by dissolving ribaric acid-5,2-lactone (6) in methanol and 

allowing the methanol to evaporate. The resulting crystals were colorless needles, mp 

164-166 ºC. 
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2. Synthesis of Polyhydroxypolyamides from Xylaric Acid, L-

Arabinaric Acid (L-Lyxaric Acid), and Ribaric Acid 

2.1 Introduction 

 The focus of the work presented here was the synthesis of 

polyhydroxypolyamides (PHPAs) derived from three pentaric acids, meso-xylaric acid, L-

arabinaric acid (L-lyxaric acid), and meso-ribaric acid, Figure 2.1. 
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Figure 2.1 meso-Xylaric acid, L-Arabinaric acid, and meso-Ribaric acid 

 Natural polymers are ubiquitous throughout nature. Cellulose, starch, proteins, 

DNA, RNA, collagen, rubber, chitin, and silk are all naturally occurring polymers 

making up the backbone upon which biological systems operate. Cellulose is a structural 

polysaccharide for plants built from 1,4-β-D-glucopyranose linked monomers, whereas 

the polysaccharide starch employs α-D-glucopyranose units in 1,4-α- and 1,6-α-

glycosidic linkages. Sources of cellulose other than cotton include sugar beets, trees, and 

agricultural waste such as corn husks and wheat stalks. Starch, is the primary food 

polysaccharide, and is obtained from corn, wheat, rice, potatoes, and other food crops. 

 Hemicellulose is a collective term for a variety of naturally occurring plant 

polysaccharides composed of different sugar residues, especially those of the D-pentose 

series of monosaccharides and to a lesser extent L-pentose monosaccharides. Unlike 

cellulose, hemicellulose consists of branched and unbranched polymers that prevent 

efficient packing within the polymer matrix and result in an amorphous material that is 
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more easily hydrolyzed than cellulose. The hydrolysis products of hemicellulose are the 

main source of D-xylose and L-arabinose, two of the base starting materials for the 

PHPAs presented here. D-Ribose is a carbohydrate constituent of nucleic acids found in 

plant and animal cells and is obtained from hydrolysis of yeast nucleic acids. 

 Polyhydroxypolyamides (PHPAs) are step growth polymers synthesized through 

polymerization of multifunctional monomers resulting in ABAB co-block polymers, 

Figure 2.2. As the polymerization progresses growing chains may react with each other to 

form even longer chains of varying length. The chemical and physical properties of a 

polymer changes as a function of its size, referred to as degree of polymerization (DP). 

The DP value is the number of repeating units (n) in the polymer chain, Figure 2.2.  

X X

O O
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OH

OH

H2N
NH2 + *

H
N

H
N

O O
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OH
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Step-Growth Polymerization  

Figure 2.2 An example of a step-growth polymerization 

 

In this work the average DP is calculated by 1H NMR end group analysis as discussed 

later. The number average molar mass (Mn) of a polymer is calculated from the average 

DP. Mn is defined in equation 1.1, where Ni is the number of polymer chains of a molar 

mass Mi. Alternatively, Mn can be calculated by multiplying the average DP by the 

molecular weight of the repeating unit, Mr, as in equation 1.2. 
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Because the chemical and physical properties of a polymer are dependent on 

molecular weight, considerable effort has been undertaken by polymer chemists to 

increase and control polymer molecular weights. Wallace Carothers, in an effort to obtain 

larger polymers of Nylon 6,6, the first commercially successful synthetic polymer, 

separated the polymerization of adipic acid (1,6-hexanedioic acid) with 

hexamethylenediamine (1,6-hexanediamine)[1,2]  into two steps: Step 1, the formation of a 

diammonium salt (hexamethylenediammonium adipate) to obtain a 1:1 molar ratio of 

starting monomers; Step 2, polymerization at elevated temperatures (ca. 250 ºC). Use of 

hexamethylenediammonium adipate as the source of monomers for Nylon 6,6 overcame 

the “stoichiometric problem” which until then prevented the synthesis of large polymers 

(> 10,000 Daltons) produced by step-growth polymerizations.  

PHPAs are structurally analogous to Nylon 6,6 and Nylon 5,6, Figure 2.3, and 

similarly are synthesized from diacids and diamines. Unlike polymerizations yielding 

Nylons, PHPA’s do not require the high temperatures necessary for polymerization. 

Hoagland demonstrated the polymerization of diethyl xylarate with 

hexamethylenediamine at room temperature.[3, 4] Diethyl xylarate underwent an 

intramolecular condensation reaction to form a γ-lactone which subsequently reacted with 

hexamethylenediamine through an intermolecular condensation reaction to generate the 

polyamide. 
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Figure 2.3  An example of a poly(hexamethylene pentaramide) and Nylon 5,6 

 Ogata et. al. in the 1970’s reported PHPAs synthesized by esterification of an 

aldaric acid with subsequent addition of a diamine to yield a PHPA.[5-16] Kiely et. al. have 

more recently contributed knowledge in this area through preparations of PHPAs from 

unprotected esterified aldaric acids derived from nitric acid oxidation of D-glucose, D-

mannose, D-galactose and D-xylose.[17-30] Some attention has been given to D-xylose 

derived PHPAs but there has been no report of PHPAs derived from D-arabinose, L-

arabinose, D-lyxose, L-lyxose and D-ribose using the synthetic strategies described in 

these earlier reports. 

 Kiely and co-workers have successfully synthesized a variety of poly(alkylene 

aldaramides) including poly(alkylene xylaramides).[17,18,20,21,23-26,28-30] The primary 

structural differences between different PHPAs are the number of carbons and 

stereochemistry in the aldaryl monomer unit as well as the length of the diamine unit. 

These structural differences result in significantly different chemical and physical 

properties within the class of PHPAs. 

 In an effort to obtain large PHPAs from starting pentaric acids and diamines of 

choice, three sets of reaction conditions, falling into two general synthetic routes, Figure 



Chapter 2  59 

2.4, were employed. Route 1 proceeds through an esterified aldaric acid which is then 

reacted with a diamine of choice. Route 2 proceeds through a diammonium aldarate salt 

which is esterfied with methanolic HCl to produce a mixture of bis-ammonium dichloride 

salt, dimethyl aldarate, and methyl aldarate-1,4 (5,2)-lactone which is then neutralized 

and allowed to polymerize. The diammonium aldarate salts utilized in this study are 

depicted in Figure 2.5. 
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Figure 2.4 Synthetic routes 1 and 2 to obtain PHPAs derived from pentaric acids 
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 (4) R=-(CH2)2     ethylenediammonium L-arabinarate
 (5) R=-(CH2)4     tetramethylenediammonium L-arabinarate
 (6) R=-(CH2)6     hexamethylenediammonium L-arabinarate

 (7) R=-(CH2)2     ethylenediammonium ribarate
 (8) R=-(CH2)4     tetramethylenediammonium ribarate
 (9) R=-(CH2)6     hexamethylenediammonium ribarate

 

Figure 2.5 Ethylenediammonium, tetramethylenediammoium, and 

hexamethylenediammonium salts of xylaric acid, L-arabinaric acid, and 

ribaric acid 
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2.2 Results and Discussion 

Xylaric acid, disodium L-arabinarate (disodium L-lyxarate), and disodium ribarate 

were used as starting diacid monomer sources for polymerizations with three diamine 

monomers (ethylenediamine, tetramethylenediamine, and hexamethylenediamine) using 

three different reaction conditions. Because disodium D-arabinarate and disodium L-

arabinarate are enantiomers and thus have the same chemical properties, only one of 

these salts (disodium L-arabinarate) was used in the following polymerization 

experiments.  

Because disodium L-arabinarate (disodium L-lyxarate) and disodium ribarate were 

used as starting materials for the polymerization experiments an additional acidification 

step not shown in Figure 2.4 was applied. In route 1, after esterification of the disodium 

salt with methanolic HCl, the mixture was filtered to remove the sodium chloride. In 

route 2, the disodium salt was dissolved in water, treated with a slight excess of acid form 

cation exchange resin for 5 minutes, the resin removed by filtration followed by addition 

of the diamine to form the diammonium aldarate salt.  

 In the triethylamine method, method (1), route 2 (Figure 2.4), a 3.0 molar excess 

of triethylamine as base was employed to neutralize the ammonium chloride salt. The 

sodium methoxide/triethylamine method, method (2), route 2 (Figure 2.4), utilized a 1.6 

molar equivalent of sodium methoxide and 0.8 molar equivalent of triethylamine as base. 

A sodium methoxide/triethylamine mixture was used to neutralize the ammonium 

chloride salt because sodium methoxide is a much stronger base and the ability of 

triethyamine to neutralize a primary ammonium ion was in question. The ester/amine 

method, method (3), utilized route 1 (Figure 2.4), and a 0.5 molar equivalent of 
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triethylamine as a base to neutralize any residual HCl left over from the concentration 

step. The twenty seven resulting PHPAs are referred to as “prepolymers” and were 

isolated and characterized. The different prepolymer reaction conditions yielded 

polymers of varying size and chemical and physical properties, discussed later in this 

section. Additionally, in an effort to obtain larger polymers in a post-production 

treatment, and ascertain the best reaction conditions to do so, poly(hexamethylene 

xylaramide) prepolymers resulting from the three different prepolymer reaction 

conditions were stirred in three different postpolymer solvent mixtures [Mixture 1, 

MeOH/TEA/EG; Mixture 2, MeOH/TEA/DMSO; Mixture 3, MeOH/TEA].  

All diammonium aldarate salts were soluble in water and consequently their NMR 

spectra were recorded in D2O with chemical shifts referenced to t-butanol. The 1H NMR 

spectrum of hexamethylenediammonium xylarate (3) is typical of these spectra and is 

shown in Figure 2.6. Hydroxyl and ammonium protons are not seen due to the rapid 

exchange of protons with deuterium in the D2O. The methylene groups alpha (H1’, H6’, 

triplet, δ 2.95 ppm) and beta (H2’, H5’, multiplet, δ 1.63 ppm) to the ammonium groups 

have baseline separation and are shifted downfield of the internal methylene (H3’, H4’, δ 

1.37 ppm) protons of the hexamethylenediammonium unit. The symmetrical nature of the 

example meso compound 3 can be seen as there are only two proton signals for the three 

protons on the xylarate unit. The protons alpha to the carboxylate groups (H2 and H4, δ 

4.08 ppm) are split into a doublet by the inner triplet proton (H3, δ 4.03 ppm). 
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Figure 2.6 1H NMR spectra of hexamethylenediammonium xylarate (3) 

1H NMR spectra from all mixtures of alkylenediammonium dichloride salts, 

dimethyl aldarates, and methyl aldarate-1,4 (5,2)-lactones (Route 2, Figure 2.3) were 

recorded in DMSO-d6 with chemical shifts referenced to TMS. DMSO-d6, unlike D2O, is 

a non-exchangeable solvent and the hydroxyl and ammonium protons should be visible 

and relatively sharp. However, broad 1H NMR signals from the hydroxyl and ammonium 

groups of alkylenediammonium dichloride salt mixtures are observed, resulting most 

likely from OH and NH proton exchange due to residual methanol used in the 

esterification reaction. Figure 2.7 shows the 1H NMR spectra of the mixture of 

hexamethylenediammonium dichloride, dimethyl xylarate, methyl xylarate-1,4-lactone, 

and methyl xylarate-5,2-lactone. The 1H NMR spectrum of methyl xylarate-5,2-lactone is 

identical to methyl xylarate-1,4-lactone which is depicted in Figure 2.7. This mixture was 
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made from the methanolic HCl esterification of hexamethylenediammonium xylarate in 

accordance with the experimental procedure for 12, except that after the mixture was 

concentrated under a stream of nitrogen and dried overnight, the 1H NMR spectrum was 

obtained in DMSO-d6 without further manipulation.  

 

Figure 2.7 1H NMR spectrum of a mixture of hexamethylenediammonium dichloride, 

dimethyl xylarate, and the equivalent methyl xylarate-1,4-lactone and 

methyl xylarate-5,2-lactone 

PHPAs synthesized through routes 1 and 2 exhibited variable solubility in 

different solvents, the solubility being dependent upon the aldaryl monomer and the 

length of the diamine unit. Because 1H NMR end group analysis is used to determine the 

polymer’s size, baseline resolution of proton signals used in the analysis was necessary 

and the NMR solvent choice is critical. 1H NMR end group analysis was performed in 
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D2O, a mixture of DMSO-d6 (0.6-0.7 mL) and TFA-d (< 0.10 mL), or neat TFA-d, with 

D2O as the preferred solvent. Polymers not soluble in water were typically soluble in 

DMSO-d6 although the 1H NMR proton signals necessary for end group analysis often 

overlapped with the residual DMSO-d6 signal. Therefore, a solvent mixture of DMSO-d6 

and TFA-d was sometimes employed. This solvent mixture separated the 1H NMR 

signals of the methylene group alpha to the terminal amine from the residual DMSO-d6 

solvent peak, and the terminal amine unit was converted into an ammonium group. TFA-

d was used as a solvent only when the polymer was insoluble in D2O or a mixture of 

DMSO-d6 and TFA-d. PHPAs are unstable over time in TFA-d, thus requiring that 1H 

NMR spectra be obtained as quickly as possible when TFA-d was used as the NMR 

solvent. 

The size of the polymers in this work is reported as an average degree of 

polymerization (DP) and as a number average molar mass (Mn). DP calculations were 

performed in this investigation utilizing 1H NMR end group analysis by setting the 

integration value of the methylene protons alpha to the terminal amine or its 

corresponding ammonium salt to a value of 0.5. The resulting ratio of integration value of 

the methylene protons alpha to the amide to that of the methylene protons alpha to the 

terminal amine or ammonium unit is a good approximation of the DP value, Figure 2.8. 
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Figure 2.8 Assigned 1H NMR spectra of poly(hexamethylene xylaramide) (37) DP = 

18.0 

Pre-polymerizations 

In an effort to compare the relative size of PHPAs starting from pentaric acids and 

diamines of choice, three sets of reactions conditions were employed to investigate the 

best reaction conditions for each polymer. Prepolymer polymerization results for 

poly(alkylene aldaramides) with DP, Mn, and percent yields are reported in Table 2.1. 

There is a corresponding trend between increasing percent yields and larger DP values. 

Additionally, independent of the method employed the ethylenediamine polymers gave 

the smallest DP values while the hexamethylene polymers were typically the largest.   

The three methods employed were method (1), route 2 (Figure 2.4); sodium 

methoxide/triethylamine method, method (2), route 2 (Figure 2.4); ester/amine method, 
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method (3), utilized route 1 (Figure 2.4). The triethylamine method which used three 

molar equivalents of triethylamine as base and gave the largest pre-polymers for ribaric 

and L-arabinaric acid derived PHPAs. The ester/amine method gave higher DP values for 

xylaric acid derived pre-polymers. The poly(alkylene xylaramide)s synthesized using the 

triethylamine method have percent yields and DP values similar to those of the other 

poly(alkylene L-arabinaramide)s and poly(alkylene ribaramide)s synthesized which were 

considerable higher than for the sodium methoxide/triethylamine and ester/amine 

methods. 

The sodium methoxide/triethylamine method generally had the smallest DP 

values and percent yields for the three methods, with the exception of poly(ethylene L-

arabinaramide). A sodium methoxide/triethylamine mixture was used because the ability 

of triethylamine to neutralize a primary ammonium chloride ion was in question. Sodium 

methoxide, a much stronger base, was considered a good candidate for the neutralization 

of the ammonium chloride salt although the experimental results refute this assertion. 

Because the reactions were not carried out in dry methanol, it is possible that the 

methanol had absorbed a significant amount of water from the air which could allow the 

esterified aldaric acids to undergo hydrolysis in the basic solvent system, thereby 

preventing polymerization.  

As Carothers demonstrated, step-wise polymerizations produce the largest 

polymers when there are equal molar equivalents of monomers A and B in the reaction 

mixture as was the case in the prior two methods. The ester/amine method does not 

incorporate a 1:1 salt and is therefore sensitive to unequal molar amounts of monomers A 

and B. The poly(alkylene xylaramide) pre-polymers synthesized by the ester/amine 
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method were significantly larger than poly(alkylene xylaramide) pre-polymers 

synthesized by the other two methods and also larger than the poly(alkylene L-

arabinaramide) and poly(alkylene ribaramide) pre-polymers synthesized by the 

ester/amine method. In this study, the ester/amine polymerizations of esterified xylaric 

acid were less sensitive to laboratory measurements because they were on a larger scale 

than those of esterified L-arabinaric and esterified ribaric acids. The sensitivity to 1:1 

molar ratios of monomers A and B is most likely the cause for these observations.  

Table 2.1  Results of Pre-polymerizations - Degree of polymerization, molar average 

molecular weights, and percent yield using three different reaction 

conditions 

Results for poly(alkylene pentaramide) prepolymers using TEA Method (1)(a)

 

Polymer DP Mn Yield % 
Poly(ethylene xylaramide) 3 720 79.9 
Poly(tetramethylene xylaramide) 9.4 2520 69.6 
Poly(hexamethylene xylaramide) 7.9 2330 85.5 
Poly(ethylene-L-arabinaramide) 2.9 690 42.7 
Poly(tetramethylene-L-arabinaramide) 6.7 1790 73.6 
Poly(hexamethylene-L-arabinaramide) 18.4 5440 69.5 
Poly(ethylene ribaramide) 4.3 1030 87.1 
Poly(tetramethylene ribaramide) 17.8 4770 90.0 
Poly(hexamethylene ribaramide) 30.8 9110 90.9 

 
Results for poly(alkylene pentaramide) prepolymers using NaOMe/TEA Method (2)(b) 

 

Polymer DP Mn Yield % 
Poly(ethylene xylaramide) 4.4 1050 37.4 
Poly(tetramethylene xylaramide) 4.3 1150 61.6 
Poly(hexamethylene xylaramide) 5.0 1480 41.5 
Poly(ethylene-L-arabinaramide) 7.2 1730 96.6 
Poly(tetramethylene-L-arabinaramide) 3.0 800 59.1 
Poly(hexamethylene-L-arabinaramide) 9.6 2840 35.4 
Poly(ethylene ribaramide) 3.3 790 82.3 
Poly(tetramethylene ribaramide) 8.2 2190 88.9 
Poly(hexamethylene ribaramide) 12.1 3580 83.7 
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Table 2.1 Continued 
 

Results for poly(alkylene pentaramide) prepolymers using Ester/Amine Method (3)(c)

 

Polymer DP Mn Yield % 
Poly(ethylene xylaramide) 9.1 2210 89.3 
Poly(tetramethylene xylaramide) 4.8 1280 81.2 
Poly(hexamethylene xylaramide) 18.6 5500 48.5 
Poly(ethylene-L-arabinaramide) 2.0 480 25.7 
Poly(tetramethylene-L-arabinaramide) 3.5 930 27.0 
Poly(hexamethylene-L-arabinaramide) 2.9 850 31.1 
Poly(ethylene ribaramide) 4.4 1050 92.8 
Poly(tetramethylene ribaramide) 9.3 2490 87.7 
Poly(hexamethylene ribaramide) 12.1 3580 85.7 

 
a. Route 2, Figure 2.3, 3.0 molar excess of triethylamine 
b. Route 2, Figure 2.3, 1.6 molar equivalence of sodium methoxide, 0.8 molar equivalent                         

of triethylamine 
c. Route 1, Figure 2.3, 0.5 molar equivalence of triethylamine 
 
Post-polymerizations 

In an effort to understand the reaction conditions necessary to increase the 

solubility of PHPAs and produce even larger polymers, pre-polymers of 

poly(hexamethylene xylaramide) from each pre-polymer method underwent three 

different post-polymermerization treatments. In each solvent mixture triethylamine was 

used as a base to neutralize any remaining ammonium chloride salt that may be present in 

the pre-polymer material. Figure 2.9 depicts the post-polymerization treatment. Results 

for poly(hexamethylene xylaramide) post-polymers are reported in Table 2.2.  

Poly(hexamethylene xylaramide) post-polymers derived from pre-polymer route 2 

(utilizing a 1:1 salt mixture) had significantly larger gains in average DP than those of 

route 1 utilizing the ester/amine method. Signficant post-polymerization gains in the DP 

values of PHPAs synthesized through pre-polymer route 2 (utilizing a 1:1 salt mixture) 

illustrates that within the pre-polymer material there are significant quanitites of 
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ammonium chloride salts that prevent further polymerization. Additionally, the size of 

the post-polymer was independent of solvent composition as all post-polymers of 

poly(hexamethylene xylaramide) showed DP values of approximately 21 and average 

molecular weights of 6220. This is most likely due to reaching the limitations in 

solubility with increasing DP value. 
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Figure 2.9 Post-polymerization using triethylamine as base and varying solvent 

mixtures 
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Table 2.2  Poly(hexamethylene xylaramide) postpolymer results from three postpolymerization methods 
 

 
Prepolymer 

Method 
Postpolymer Method Starting 

DP 
Starting 

Mn

New 
DP 

New 
Mm

Yield
% 

Change in 
DP/Mn

TEA 
Method 1 

MeOH\TEA\EG 
Mixture 1 

7.83     2320 18.0 5330 97.1
10.2 , 3010 

TEA/NaOMe 
Method 2 

MeOH\TEA\EG 
Mixture 1 

5.04     1490 12.7 3760 93.1
7.7 , 2270 

Ester/Amine 
Method 3 

MeOH\TEA\EG 
Mixture 1 

18.6     5510 21.0 6220 98.3
2.4 , 710 

        
TEA 

Method 1 
DMSO\TEA\MeOH 

Mixture 2 
7.83     2320 18.5 5480 97.4

10.7 , 3160 
TEA/NaOMe 

Method 2 
DMSO\TEA\MeOH 

Mixture 2 
5.04     1490 15.9 4710 85.5

10.9 , 3220 
Ester/Amine 

Method 3 
DMSO\TEA\MeOH 

Mixture 2 
18.6     5510 20.0 5920 47.1

1.4 , 410 
        

TEA 
Method 1 

TEA\MeOH 
Mixture 3 

7.83     2320 23.2 6870 86.0
15.4 , 4550 

TEA/NaOMe 
Method 2 

TEA\MeOH 
Mixture 3 

5.04     1490 21.7 6420 65.3
16.7 , 4930 

Ester/Amine 
Method 3 

TEA\MeOH 
Mixture 3 

18.6     5510 18.2 5390 77.8
-0.4 , -120 
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2.3 Experimental 
 
General Methods 
 

One dimensional 1H NMR spectra were obtained using a 400 MHz Varian Unity 

Plus spectrometer or a 500 MHz Varian spectrometer. NMR spectra were processed 

using ACD/SpecManager 1D NMR software Version 9.13. Chemical Shifts were 

expressed in parts per million relative to tertiary-butyl alcohol (1.203 ppm) for D2O, 

tetramethylsilane (0.00 ppm) for DMSO-d6 and chloroform-d, and to the solvent peak 

(11.50 ppm) for TFA-d. All NMR solvents were obtained from Cambridge Isotope 

Laboratories, Inc. NMR solvent listed as “DMSO/TFA” signifies a mixture of deuterated 

DMSO (0.6-0.7 mL) and deuterated TFA (< 0.03 mL). NMR data is presented in the first 

experimental procedure reported for a given molecule. All chemicals were purchased 

from Aldrich and used without further purification. Solvent concentrations were 

performed under reduced pressure. Samples were dried under vacuum at room 

temperature. In all instances deionized water was used. 

 2.3.1 Synthesis and Characterization of Diammonium Salts 

Ethylenediammonium xylarate (1). 

To a solution of xylaric acid (5.541 g, 30.77 mmol) in methanol (20 mL) was 

added ethylenediamine (2.219 g, 36.92 mmol) in methanol (5 mL) and the resulting 

reaction mixture stirred at room temperature for 1 h. The solid was isolated by filtration 

and washed with methanol (3 x 5 mL). The final solid was isolated by filtration and dried 

12 h to yield ethylenediammonium xylarate (1, 6.340 g, 26.39 mmol, 85.8%). 1H NMR 

(D2O) δ 4.11 (d, 2H, J 2.93 Hz, H-2, H-4), 4.04 (t, 1H, H-3), 3.26 (s, 4H,). Anal. Calcd 

for C7H16N2O7 (240.21): C, 35.00; H, 6.71; N, 11.66. Found C, 34.69; H, 6.77; N, 12.47. 
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Tetramethylenediammonium xylarate (2). 

Prepared according to the procedure for 1: xylaric acid (5.336 g, 29.79 mmol) in 

methanol (20 mL) was added tetramethylenediamine (3.152 g, 35.75 mmol) in methanol, 

then reaction mixture then stirred at r.t. for 1 h. The solid was isolated, washed with 

methanol (3 x 5 mL), and dried (12 h) to yield tetramethylenediammonium xylarate (2, 

6.432 g, 23.98 mmol, 80.5%).1H NMR (D2O) δ 4.09 (d, 2H, J 2.93 Hz), 4.03 (t, 1H) 2.99 

(s, 4H), 1.70 (s, 4H). Anal. Calcd for C9H20N2O7 (268.26): C, 40.29; H, 7.51; N, 10.44. 

Found C, 40.34; H, 7.68; N, 10.43 

Hexamethylenediammonium xylarate (3). 

Prepared according to the procedure for 1: xylaric acid (6.288 g, 34.91 mmol) in 

methanol (20 mL) was added hexamethylenediamine (4.869 g, 41.90 mmol) in methanol 

(5 mL), the reaction mixture then stirred at room temperature for 1 h. The solid was 

isolated, washed with methanol (3 x 5 mL), and dried (12 h) to yield 

hexamethylenediammonium xylarate (3, 8.390 g, 28.31 mmol, 81.09%).1H NMR (D2O) δ 

4.08 (d, 2H, J 2.93 Hz), 4.02 (t, 1H), 2.95 (t, 4H), 1.63 (s, 4H), 1.37 (s, 4H). Anal. Calcd 

for C13H30N2O7 (296.32): C, 44.59; H, 8.16; N, 9.45. Found C, 44.04; H, 8.08; N, 9.31. 

Ethylenediammonium L-arabinarate (ethylenediammonium L-lyxarate) (4). 

To a solution of disodium L-arabinarate (1.011 g, 4.315 mmol) in water (7 mL) 

was added Dowex 50WX cation exchange resin (7 mL, 14.7 mmol) and the mixture was 

stirred at r.t. for 5 min. The resin was removed by filtration and a solution of 

ethylenediamine (0.3257 g, 5.419 mmol) in water (3 mL) was added to the filtrate. The 

solution was stirred at room temperature 1 h and concentrated to nearly a tacky solid. The 

tacky solid was stirred with ethanol (25 mL) at r.t. for 3 days, The resulting solid was 
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isolated by filtration and dried overnight to yield ethylenediammonium L-arabinarate 

(ethylenediammonium L-lyxarate). (4, 0.850 g, 4.169 mmol, 96.5%). 1H NMR (D2O) δ 

4.14 (s, 2H), 3.99 (s, 1H), 2.70 (s, 4H). Anal. Calcd for C7H16N2O7 (240.21): C, 35.00; H, 

6.71; N, 11.66. Found C, 31.79; H, 5.42; N, 7.86. 

Tetramethylenediammonium L-arabinarate (tetramethylenediammonium L-

lyxarate) (5).   

Prepared according to the procedure for 4: disodium L-arabinarate (1.004 g, 4.285 

mmol) in water (7 ml), Dowex 50WX (7 mL, 14.7 mmol), the mixture stirred at r.t. for 5 

min. The resin was removed, tetramethylenediamine (0.4737 g, 5.374 mmol) in water (3 

mL) was added, the solution stirred for 1 h, and concentrated. The tacky solid product 

was stirred with ethanol (25 mL), at r.t. for 3 h, the resulting solid was isolated, and dried 

overnight to yield tetramethylenediammonium L-arabinarate 

(tetramethylenediammonium L-lyxarate) (5, 0.8862 g, 3.305 mmol, 77.14%). 1H NMR 

(D2O) δ 4.15 (s, 1H) 3.98 (s, 2H) 2.99 (s, 4H) 1.71 (s, 4H). Anal. Calcd for C9H20N2O7 

(268.26): C, 40.29; H, 7.51; N, 10.44. Found C, 40.32; H, 7.59; N, 10.55. 

Hexamethylenediammonium L-arabinarate (hexamethylenediammonium L-

lyxarate) (6). 

Prepared according to the procedure for 4: disodium L-arabinarate (1.019 g, 4.351 

mmol) in water (10 mL), Dowex 50WX (10 mL, 21.0 mmol), the mixture was stirred at 

r.t. for 5 min. The resin was removed, hexamethylenediamine (0.634 g, 5.457 mmol) in 

water (5 mL) was added, the solution stirred at r.t. for 1 h,  and concentrated. The tacky 

product was stirred with ethanol (3 x 25 mL) for 4 h, isolated, and dried to yield 

hexamethylenediammonium L-arabinarate (hexamethylenediammonium L-lyxarate) (6, 



Chapter 2  75 

0.8735 g, 2.954 mmol, 67.81%). 1H NMR (D2O) δ 4.14 (s, 2H), 3.98 (s, 2H), 2.92 (t, 4H), 

1.62 (s, 4H), 1.37 (s, 4H). Anal. Calcd for C13H30N2O7 (296.32): C, 44.59; H, 8.16; N, 

9.45. Found C, 42.75; H, 8.39; N, 8.98. 

Ethylenediammonium ribarate (7). 

To a solution of disodium ribarate (1.092 g, 5.279 mmol) in water (10 mL) was 

added Dowex 50WX cation exchange resin (10 mL, 21.0 mmol) and the mixture was 

stirred at r.t. for 5 min. The resin was removed by filtration and a solution of 

ethylenediamine (0.381 g, 6.335 mmol) in water (3 mL) was added to the filtrate. The 

solution was stirred at r.t. for 1 h and concentrated to a tacky solid. The tacky solid was 

stirred with ethanol (3 x 25 mL) for 4 h and isolated by filtration. The resulting solid was 

dried 12 h to yield ethylenediammonium ribarate (7, 0.9588 g, 4.545 mmol, 86.13%). 1H 

NMR (D2O) δ 4.07 (s, 3H, H-2, H-3, H-4), 3.27 (s, 4H,). Anal. Calcd for C7H16N2O7 

(240.21): C, 35.00; H, 6.71; N, 11.66. Found C, 31.61; H, 5.34; N, 7.51. 

Tetramethylenediammonium ribarate (8). 

Prepared according to the procedure of 7: disodium ribarate (1.025 g, 4.574 

mmol) in water (7mL), Dowex 50WX (7 mL, 14.7 mmol), the mixture stirred at r.t. for 5 

min. The resin was removed, tetramethylenediamine (0.484 g, 5.489 mmol) in water 

(3mL) was added. The solution was stirred 1 h, and concentrated to a tacky solid which 

was triturated with ethanol (3 x 25 mL). The resulting solid was dried 12 h to yield 

tetramethylenediammonium ribarate (8, 0.9588 g, 3.574 mmol, 78.14%). 1H NMR (D2O) 

δ 4.06 (s, 3H, H-2, H-3, H-4), 2.99 (s, 4H,), 1.70 (s, 4H). Anal. Calcd for C9H20N2O7 

(268.26): C, 40.29; H, 7.51; N, 10.44. Found C, 40.41; H, 7.70; N, 10.47. 

Hexamethylenediammonium ribarate (9). 
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Prepared according to the procedure for 7: disodium ribarate (1.553 g, 6.930 

mmol) in water (10 mL), Dowex 50wx (10 mL, 21.0 mmol), the mixture stirred at r.t. for 

5 min. The resin was removed, hexamethylenediamine (1.127 g, 9.702 mmol) in water (3 

mL). The solution stirred at r.t. for 1 h and concentrated. The tacky product was stirred 

with methanol (50 mL) at r.t. for 2 h and isolated, stirred with ethanol (50 mL) for 2 h, 

and isolated. The solid stirred with acetone (25 mL) for 2 h, isolated, dried 12 h to yield 

hexamethylenediammonium ribarate (9, 1.495 g, 5.048 mmol, 72.85%). 1H NMR (D2O) 

δ 4.06 (s, 3H, H-2, H-3, H-4), 2.95 (t, 4H,), 1.63 (s, 4H), 1.37 (s, 4H). Anal. Calcd for 

C13H30N2O7 (296.32): C, 44.59; H, 8.16; N, 9.45. Found C, 40.00; H, 7.36; N, 10.39. 

 2.3.2 Polymerizations of Diammonium Salts – Method 1 – Triethylamine 

Method 

Poly(ethylene xylaramide) Prepolymer (10). 

To a solution of acetyl chloride (0.537 mL, 7.599 mmol) in methanol (4 mL) was 

added ethylenediammonium xylarate (6, 0.608 g, 2.533 mmol) and the mixture was 

stirred at room temperature for 3 h. The reaction mixture was concentrated under a 

stream of nitrogen and dried overnight. The resulting syrup was dissolved in methanol 

(7.2 mL) to which triethylamine (1.058 mL, 7.599 mmol) was added dropwise and the 

mixture was stirred at room temperature for 24 h. The solid was isolated by 

centrifugation, rinsed with cold methanol (3x 2 mL), isolated by centrifugation and dried 

overnight to yield poly(ethylene xylaramide) prepolymer (10, 0.414 g, 2.026 mmol, 

79.9%, dp 3.0). 1H NMR (D2O) δ 4.27 (s, 2H), 4.09 (s, 1H), 3.38 (s, 4H). 

Poly(tetramethylene xylaramide) Prepolymer (11). 
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Prepared according to the procedure for 10: acetyl chloride (0.478 mL, 6.759 

mmol) in methanol (4 mL), tetramethylenediammonium xylarate (7, 0.604 g, 2.253 

mmol), stirred at r.t. for 3 h, reaction mixture concentrated, and dried overnight. The 

resulting syrup was dissolved in methanol (7.0 mL), triethylamine (0.941 mL, 6.759 

mmol) was added dropwise and the mixture stirred at r.t. for 24 h. The solid was isolated, 

rinsed with cold methanol (3 x 2 mL), isolated, and dried to yield poly(tetramethylene 

xylaramide) prepolymer (11, 0.364 g, 1.567 mmol, 69.6%, dp 9.4). 1H NMR (TFA) δ 

4.85 (s, 2H), 4.74 (s, 1H), 3.45 (s, 4H), 1.70 (s, 4H). 

Poly(hexamethylene xylaramide) Prepolymer (12). 

Prepared according to the procedure for 10: acetyl chloride (0.363 mL, 5.131 

mmol) in methanol (4 mL), hexamethylenediammonium xylarate (8, 0.507 g, 1.710 

mmol) stirred at r.t. for 3 h, reaction mixture concentrated and dried overnight. The 

resulting syrup was dissolved in methanol (7.3 mL), triethylamine (0.714 mL, 5.131 

mmol) was added dropwise, and the mixture stirred at r.t. for 24 h. The solid was 

isolated, rinsed with cold methanol (3 x 2 mL), isolated, and dried to yield 

poly(hexamethylene xylaramide) prepolymer (12, 0.380 g, 1.460 mmol, 85.5%, dp 7.93). 

1H NMR (DMSO/TFA) δ 4.14 (d, 2H), 4.00 (s, 1H), 3.16 (s, 4H), 1.49 (d, 4H), 1.32 (s, 

4H). 

Poly(ethylene L-arabinaramide) [Poly(ethylene L-lyxaramide)] Prepolymer (13). 

To a solution of acetyl chloride (0.186 mL, 2.626 mmol) in methanol (2 mL) was 

added ethylenediammonium L-arabinarate (4, 0.210g, 0.875 mmol) and the mixture was 

stirred at room temperature for 3 h. The reaction mixture was concentrated under a 

stream of nitrogen and dried overnight. The resulting syrup was dissolved in methanol 
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(3.5 mL) to which triethylamine (0.366 mL, 2.625 mmol) was added dropwise and the 

mixture was stirred at room temperature for 24 h. The solid was isolated by 

centrifugation, rinsed with cold methanol (3 x 2 mL), isolated by centrifugation and dried 

overnight to yield poly(tetramethylene L-arabinaramide) [Poly(ethylene L-lyxaramide)] 

prepolymer (13, 0.077 g, 1.389 mmol, 43.0%, dp 4.38). 1H NMR (DMSO/TFA) δ 4.24 (s, 

1H), 4.13 (s, 1H), 3.94 (m, 1H), 3.24 (s, 4H). 

Poly(tetramethylene L-arabinaramide) [Poly(tetramethylene L-lyxaramide)] 

Prepolymer (14). 

Prepared according to the procedure for 13: acetyl chloride 0.400 mL, 5.662 

mmol) in methanol (4 mL), tetramethylenediammonium L-arabinarate (5, 0.506g, 1.887 

mmol) and the mixture stirred at r.t. for 3 h, concentrated, and dried overnight. The 

resulting syrup was dissolved in methanol (7 mL), triethylamine (0.788 mL, 5.662 mmol) 

was added dropwise, and the mixture stirred at r.t for 24 h. The solid was isolated, rinsed 

with cold methanol (3 x 2 mL), isolated and dried to yield poly(tetramethylene L-

arabinaramide) [Poly(tetramethylene L-lyxaramide)] prepolymer (14, 0.323 g, 1.389 

mmol, 73.6%, dp 6.74). 1H NMR (DMSO/TFA) δ 4.14 (d, 1H), 3.91 (dd, 2H), 3.12 (s, 

4H), 1.43 (s, 4H). 

Poly(hexamethylene L-arabinaramide) [Poly(hexamethylene L-lyxaramide)] 

Prepolymer (15). 

Prepared according to the procedure for 13: acetyl chloride (0.366 mL, 5.181 

mmol) in methanol (4 mL), hexamethylenediammonium L-arabinarate (6, 0.511g, 1.727 

mmol) and the mixture stirred at r.t. for 3 h, concentrated, and dried overnight. The 

resulting syrup was dissolved in methanol (7 mL), triethylamine (0.721 mL, 5.181 mmol) 
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was added dropwise, and the mixture stirred at r.t. for 24 h. The solid was isolated, rinsed 

with cold methanol (3 x 2 mL), isolated, and dried to yield poly(hexamethylene L-

arabinaramide) [Poly(hexamethylene L-lyxaramide)] prepolymer (15, 0.312 g, 1.201 

mmol, 69.5%, dp 18.4). 1H NMR (DMSO/TFA) δ 4.08 (s, 1H), 3.91 (dd, 2H), 3.11 (s, 

4H), 1.43 (s, 4H), 1.27 (s, 4H). 

Poly(ethylene ribaramide) Prepolymer (16). 

To a solution of acetyl chloride (0.244 mL, 3.456 mmol) in methanol (4 mL) was 

added ethylenediammonium ribarate (7, 0.275 g, 1.152 mmol) and the mixture was 

stirred at room temperature for 3 h. The reaction was concentrated under a stream of 

nitrogen and dried overnight. The resulting syrup was dissolved with methanol (4.0 mL) 

to which triethylamine (0.481 mL, 3.456 mmol) was added dropwise and the mixture was 

stirred at room temperature for 24h. The solid was isolated by centrifugation, rinsed with 

cold methanol (3 x 2 mL), isolated by centrifugation and dried overnight to yield 

poly(ethylene ribaramide) prepolymer (16, 0.205 g, 1.004 mmol, 87.1%, dp 4.34). 1H 

NMR (DMSO/TFA) δ 4.06 (s, 2H, H-3, H-4), 4.00 (s, 1H, H-3), 3.24 (s, 4H). 

Poly(tetramethylene ribaramide) Prepolymer (17). 

Prepared according to the procedure for 16: acetyl chloride (0.158 mL, 2.241 

mmol) in methanol (4 mL), tetramethylenediammonium ribarate (8, 0.200 g, 0.747 

mmol) and the mixture stirred at r.t. for 3 h, concentrated, and dried overnight. The 

resulting syrup was dissolved in methanol (4.0 mL), triethylamine (0.312 mL, 2.241 

mmol) was added dropwise, and the mixture stirred at r.t. for 24h. The solid was isolated, 

rinsed with cold methanol (3 x 2 mL), isolated, and dried to yield poly(tetramethylene 
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ribaramide) prepolymer (17, 0.158 g, 0.679 mmol, 90.9%, dp 17.8). 1H NMR (DMSO) δ 

4.01 (s, 3H, H-2, H-3, H-4), 3.11 (s, 4H), 1.43 (s, 4H). 

Poly(hexamethylene ribaramide) Prepolymer (18). 

Prepared according to the procedure of 16: acetyl chloride (0.180 mL, 2.553 

mmol) in methanol (4 mL), hexamethylenediammonium ribarate (9, 0.252 g, 0.851 

mmol), the mixture stirred at r.t. for 3 h, concentrated, and dried overnight. The resulting 

syrup was dissolved in methanol (4.0 mL), triethylamine (0.356 mL, 2.553 mmol) was 

added dropwise, and the mixture stirred at r.t. for 24h. The solid was isolated, rinsed with 

cold methanol (3 x 2 mL), isolated, and dried to yield poly(hexamethylene ribaramide) 

prepolymer (18, 0.198 g, 0.760 mmol, 89.3%, dp 30.8). 1H NMR (DMSO/TFA) δ 3.99 (s, 

3H, H-2, H-3, H-4), 3.11 (s, 4H), 1.42 (s, 4H), 1.25 (s, 4H). 

 2.3.3 Polymerizations of Diammonium Salts – Method 2 –  Sodium 

Methoxide/Triethylamine Method 

Poly(ethylene xylaramide) Prepolymer (19). 

To a solution of acetyl chloride (0.561 mL, 7.921 mmol) in methanol (4 mL) was 

added ethylenediammonium xylarate (1, 0.317 g, 1.320 mmol) and the mixture was 

stirred at room temperature for 3 h. The reaction mixture was concentrated under a 

stream of nitrogen and dried overnight. The resulting syrup was dissolved in methanol (1 

mL) to which sodium methoxide in methanol (4.22 mL, 2.112 mmol) and triethylamine 

(0.147 mL, 1.056 mmol) were added dropwise and the mixture was stirred at room 

temperature for 24 h. The solid was isolated by centrifugation, rinsed with cold methanol 

(3 x 2 mL), isolated by centrifugation and dried overnight to yield poly(ethylene 

xylaramide) prepolymer (19, 0.101 g, 0.494 mmol, 37.4%, dp 4.42). 
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Poly(tetramethylene xylaramide) Prepolymer (20). 

Prepared according to the procedure of 19: acetyl chloride (0.500 mL, 7.054 

mmol) in methanol (4 mL), tetramethylenediammonium xylarate (2, 0.631 g, 2.351 

mmol), stirred at r.t. 3 h, concentrated, dried overnight, treated with sodium methoxide in 

methanol (7.525 mL, 3.762 mmol) and triethylamine (0.262 mL, 1.881 mmol), and 

stirred at r.t. for 24 h. The solid was isolated, rinsed with cold methanol (3 x 2 mL), 

isolated, and dried overnight to yield poly(tetramethylene xylaramide) prepolymer (20, 

0.337 g, 1.449 mmol, 61.6%, dp 4.31). 

Poly(hexamethylene xylaramide) Prepolymer (21). 

Prepared according to the procedure for 19: acetyl chloride (0.736 mL, 10.39 

mmol) in methanol (4 mL), hexamethylenediammonium xylarate (3, 0.513 g, 1.730 

mmol), stirred at r.t. for 3 h, concentrated, dried overnight, treated with sodium 

methoxide in methanol (5.542 mL, 2.771 mmol) and triethylamine (0.193 mL, 1.390 

mmol), and stirred ar r.t. for 24 h. The solid was isolated, rinsed with cold methanol (3 x 

2 mL), isolated, and dried overnight to yield poly(hexamethylene xylaramide) 

prepolymer (21, 0.187 g, 0.717 mmol, 41.5%, dp 5.04). 

Poly(ethylene L-arabinaramide) [Poly(ethylene L-lyxaramide)] Prepolymer (22). 

Prepared according to the procedure for 19: acetyl chloride (0.202 mL, 2.592 

mmol) in methanol (4 mL), ethylenediammonium L-arabinarate (4, 0.208 g, 0.864 mmol), 

stirred at r.t. for 3 h, concentrated, dried overnight, treated with sodium methoxide in 

methanol (2.766 mL, 1.383 mmol) and triethylamine (0.091 mL, 0.691 mmol), and 

stirred at r.t. for 24 h. The solid was isolated, rinsed with cold methanol (3 x 2 mL), 
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isolated, and dried to yield poly(ethylene L-arabinaramide) [Poly(ethylene L-lyxaramide)] 

prepolymer (22, 0.171 g, 0.835 mmol, 96.62%, dp 7.22). 

Poly(tetramethylene L-arabinaramide) [Poly(tetramethylene L-lyxaramide)] 

Prepolymer (23). 

Prepared according to the procedure for 19: acetyl chloride (0.186 mL, 2.388 

mmol) in methanol (4 mL), tetramethylenediammonium L-arabinarate (5, 0.213 g, 0.796 

mmol), stirred at r.t. for3 h, concentrated, dried overnight, dissolved with methanol (2 

mL), treated with sodium methoxide in methanol (2.547 mL, 1.273 mmol) and 

triethylamine (0.084 mL, 0.637 mmol), and stirred at r.t. for 24 h. The solid isolated, 

rinsed with cold methanol (3 x 2 mL), isolated, and dried to yield poly(tetramethylene L-

arabinaramide) [Poly(tetramethylene L-lyxaramide)] prepolymer (23, 0.109 g, 0.470 

mmol, 59.08%, dp 3.06). 

Poly(hexamethylene L-arabinaramide) [Poly(hexamethylene L-lyxaramide)] 

Prepolymer (24). 

Prepared according to the procedure for 19: acetyl chloride (0.172 mL, 2.214 

mmol) in methanol (4 mL), hexamethylenediammonium L-arabinarate (6, 0.219 g, 0.738 

mmol), stirred at r.t. for 3 h, concentrated, dried overnight, dissolved with methanol (2 

mL), treated with sodium methoxide in methanol (2.236 mL, 1.181 mmol) and 

triethylamine (0.078 mL, 0.591 mmol), and stirred at r.t. for 24 h. The solid was isolated, 

rinsed with cold methanol (3 x 2 mL), isolated, and dried to yield poly(hexamethylene L-

arabinaramide) [Poly(hexamethylene L-lyxaramide)] prepolymer (24, 0.068 g, 0.261 

mmol, 35.40%, dp 9.56). 

Poly(ethylene ribaramide) Prepolymer (25). 
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Prepared according to the procedure for 19: acetyl chloride (0.49 mL, 6.921 

mmol) in methanol (4 mL), ethylenediammonium ribarate (7, 0.277 g, 1.152 mmol), 

stirred at r.t. for 3 h, concentrated, dried overnight, dissoleved in methanol (1.0 mL), 

treated with sodium methoxide in methanol (3.69 mL, 1.846 mmol) and triethylamine 

(0.128 mL, 0.923 mmol), and stirred at r.t. for 24 h. The solid was isolated, rinsed with 

cold methanol (3 x 1 mL), isolated, and dried to yield poly(ethylene ribaramide) 

prepolymer (25, 0.194 g, 0.949 mmol, 82.3%, dp 3.29). 

Poly(tetramethylene ribaramide) Prepolymer (26). 

Prepared according to the procedure for 19: acetyl chloride (0.325 mL, 4.497 

mmol) in methanol (4 mL), tetramethylenediammonium ribarate (8, 0.201 g, 0.751 

mmol), stirred at r.t. for 3 h, concentrated,dried overnight, dissolved in methanol (1.6 

mL), treated with sodium methoxide in methanol (2.401 mL, 1.201 mmol) and 

triethylamine (0.082 mL, 0.600 mmol), and stirred at r.t. for 24 h. The solid was isolated, 

rinsed with cold methanol (3 x 2 mL), isolated, and dried to yield poly(tetramethylene 

ribaramide) prepolymer (26, 0.155 g, 0.667 mmol, 88.9%, dp 8.16). 

Poly(hexamethylene ribaramide) Prepolymer (27). 

Prepared according to the procedure for 19: acetyl chloride (0.360 mL, 5.086 

mmol) in methanol (4 mL), hexamethylenediammonium ribarate (9, 0.251 g, 0.848 

mmol), stirred at r.t. 3 h, concentrated, dried overnight, dissolved in methanol (2.25 mL), 

treated with sodium methoxide in methanol (2.713 mL, 1.267 mmol) and triethylamine 

(0.128 mL, 0.923 mmol), and stirred at r.t. for 24 h. The solid was isolated, rinsed with 

cold methanol (3 x 2 mL), isolated, and dried to yield poly(hexamethylene ribaramide) 

prepolymer (27, 0.185 g, 0.710 mmol, 83.69%, 12.09). 
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 2.3.4  Polymerization of dimethyl aldarates, and methyl aldarate-1,4 (5,2) 

lactone with Diamines – Method 3  

Poly(ethylene xylaramide) Prepolymer (28). 

To a solution of acetyl chloride (0.747 mL, 10.56 mmol) in methanol (4 mL) was 

added xylaric acid (0.459 g, 2.551 mmol) and the mixture was stirred at room 

temperature for 3 h. The solution was concentrated under a stream of nitrogen and dried 

overnight. The resulting syrup was dissolved in methanol (7.8 mL) to which 

triethylamine (0.178d mL, 1.276 mmol) and ethylenediamine (0.153 g, 2.551 mmol) were 

added dropwise and the mixture was stirred at r.t. for 24 h. The solid was isolated by 

centrifugation, rinsed with cold methanol (3 x 2 mL), isolated by centrifugation and dried 

overnight to yield poly(ethylene xylaramide) prepolymer (28, 0.465 g, 2.277 mmol, 89.29 

%, dp 9.15). 

Poly(tetramethylene xylaramide) Prepolymer (29). 

Prepared according to the procedure for 28: acetyl chloride (0.184 mL, 2.612 

mmol) in methanol (4 mL), xylaric acid (0.314 g, 1.741 mmol), stirred at r.t. for 3 h, 

concentrated, dried overnight, dissolved in methanol (7.8 mL), treated with triethylamine 

(0.182 mL, 1.306 mmol) and tetramethylenediamine (0.153 g, 1.437 mmol), and stirred at 

r.t. for 24 h. The solid was isolated, rinsed with cold methanol (3 x 2 mL), isolated and 

dried to yield poly(tetramethylene xylaramide) prepolymer (29, 0.328 g, 1.413 mmol, 

81.19 %, dp 4.82). 

Poly(hexamethylene xylaramide) Prepolymer (30). 

Prepared according to the procedure for 28: acetyl chloride (0.175 mL, 2.478 

mmol) in methanol (4 mL), xylaric acid (0.149 g, 0.826 mmol), stirred at r.t. for 3 h, 



Chapter 2  85 

concentrated, dried overnight, dissolved in methanol (4.5 mL), treated with triethylamine 

(0.172 mL, 1.239 mmol) and hexamethylenediamine (0.100 g, 0.826 mmol), and stirred 

at r.t. for 24 h. The solid was isolated, rinsed with cold methanol (3 x 2 mL), isolated, and 

dried to yield poly(hexamethylene xylaramide) prepolymer (30, 0.104 g, 0.400 mmol, 

48.47 %, dp 18.61). 

Poly(ethylene L-arabinaramide) Prepolymer (31). 

 To a solution of dimethyl L-arabinarate and lactones (47, 137.48 mg mL-1, 15 mL, 

11.45 mmol) in methanol were added triethylamine (0.797 mL, 5.725 mmol) and 

ethylenediamine (0.688 g, 11.45 mmol) dropwise with stirring. The reaction mixture 

stirred at r.t. for 24 h. The solid was isolated by centrifugation, rinsed with cold methanol 

(3 x 2 mL), isolated by centrifugation and dried overnight to yield poly(ethylene L-

arabinaramide) prepolymer (31, 0.600 g, 2.941 mmol, 25.7 %, dp 1.96). 

Poly(tetramethylene L-arabinaramide) Prepolymer (32). 

 Prepared according to the procedure for 31: solution of dimethyl L-arabinarate 

and lactones (47, 137.48 mg mL-1, 15 mL, 11.45 mmol) in methanol, triethylamine (0.797 

mL, 5.725 mmol), tetramethylenediamine (1.009 g, 11.45 mmol), stirred at r.t. for 24 h.  

The solid was isolated, rinsed with cold methanol (3 x 2 mL), isolated, and dried to yield 

poly(tetramethylene L-arabinaramide) prepolymer (32, 0.718 g, 3.093 mmol, 27.0 %, dp 

3.53). 

Poly(hexamethylene L-arabinaramide) Prepolymer (33). 

 Prepared according to the procedure for 31: solution of dimethyl L-arabinarate 

and lactones (47, 137.48 mg mL-1, 15 mL, 11.45 mmol) in methanol, triethylamine (0.797 

mL, 5.725 mmol), hexamethylenediamine (1.331 g, 11.45 mmol), stirred at r.t. for 24 h. 
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The solid was isolated, rinsed with cold methanol (3 x 2 mL), isolated, and dried to yield 

poly(hexamethylene L-arabinaramide) prepolymer (33, 0.926 g, 3.560 mmol, 31.1 %, dp 

2.91). 

Poly(ethylene ribaramide) Prepolymer (34). 

To a solution of acetyl chloride (0.200 mL, 2.829 mmol) in methanol (4 mL) was 

added ribaric acid-1,4-lactone (0.437 g, 2.693 mmol) and the mixture was stirred at room 

temperature 3 h. The reaction mixture was concentrated under a stream of nitrogen and 

dried overnight. The resulting syrup was dissolved in methanol (7.0 mL) to which 

triethylamine (0.187 mL, 1.347 mmol) and ethylenediamine (0.162 g, 2.693 mmol) were 

added dropwise and the mixture was stirred at r.t. for 24 h. The solid was isolated by 

centrifugation, rinsed with cold methanol (3 x 2 mL), isolated by centrifugation and dried 

overnight to yield poly(ethylene ribaramide) prepolymer (34, 0.510 g, 2.500 mmol, 92.8 

%, dp 4.44). 

Poly(tetramethylene ribaramide) Prepolymer (35). 

Prepared according to the procedure for 34: acetyl chloride (0.200 mL, 2.829 

mmol)in methanol (4 mL), ribaric acid-1,4-lactone (0.459 g, 2.833 mmol), stirred at r.t. 

for 3 h, concentrated, dried overnight, dissolved in methanol (7.0 mL), treated with 

triethylamine (0.197 mL, 1.417 mmol) and tetramethylenediamine (0.250 g, 2.833 

mmol), stirred at r.t. for 24 hours. The solid was isolated, rinsed with cold methanol (3 x 

2 mL), isolated, and dried to yield poly(tetramethylene ribaramide) prepolymer (35, 

0.577 g, 2.485 mmol, 87.7 %, dp 9.32). 

Poly(hexamethylene ribaramide) Prepolymer (36). 
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Prepared according to the procedure for 34: acetyl chloride (0.200 mL, 2.829 

mmol) in methanol (4 mL), ribaric acid-1,4-lactone (0.478 g, 2.946 mmol), stirred at r.t. 

for 3 h, concentrated, dried overnight, dissolved in methanol (7.0 mL), treated with 

triethylamine (0.205 mL, 1.473 mmol) and hexamethylenediamine (0.432 g, 2.946 

mmol), stirred at r.t. for 24 h. The solid was isolated, rinsed with cold methanol (3 x 2 

mL), isolated, and dried to yield poly(hexamethylene ribaramide) prepolymer (36, 0.657 

g, 2.524 mmol, 85.7 %, dp 12.1). 

 2.3.5 Post-Polymerizations of Poly(hexamethylene xylaramide) 

Prepolymers – Comparison of Methods 

Poly(hexamethylene xylaramide) Postpolymer (37). 

The procedure to prepare 12 was utilized to obtain poly(hexamethylene 

xylaramide) prepolymer with a dp 7.83. To DMSO (1.0 mL), triethylamine (0.40 mL), 

and ethylene glycol (0.50 mL) was added 12 (0.099 g), and the mixture stirred at 50 ºC 

for 48 h. The solid was isolated by centrifugation, rinsed with cold methanol (3 x 1 mL), 

isolated by centrifugation and dried overnight to yield poly(hexamethylene xylaramide) 

postpolymer (37, 0.096 g, 97.1 %, dp 18.02) 

Poly(hexamethylene xylaramide) Postpolymer (38). 

Prepared according to the for 37: the procedure to prepare 21 was utilized to 

obtain poly(hexamethylene xylaramide) prepolymer with a dp 5.04. To DMSO (1.0 mL), 

triethylamine (0.40 mL), and ethylene glycol (0.50 mL) was added 21 (0.101 g), and the 

mixture stirred at 50 ºC for 48 h. The solid was isolated, rinsed with cold methanol (3 x 1 

mL), isolated, and dried overnight to yield poly(hexamethylene xylaramide) postpolymer 

(38, 0.094 g, 93.1 %, dp 12.66). 
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Poly(hexamethylene xylaramide) Postpolymer (39). 

Prepared according to the procedure 37: the procedure to prepare 30 was utilized 

to obtain poly(hexamethylene xylaramide) prepolymer with a dp 18.66. To DMSO (1.0 

mL), triethylamine (0.40 mL), and ethylene glycol (0.50 mL) was added 30 (0.103 g), the 

mixture stirred at 50 ºC for 48 h. The solid was isolated, rinsed with cold methanol (3 x 1 

mL), isolated, and dried overnight to yield poly(hexamethylene xylaramide) postpolymer 

(39, 0.107 g, 103%, dp 117.6) 

Poly(hexamethylene xylaramide) Postpolymer (40). 

Prepared according to the procedure for 37: the procedure to prepare 12 was 

utilized to obtain poly(hexamethylene xylaramide) prepolymer with a dp 7.83. To DMSO 

(1.0 mL), triethylamine (0.40 mL), and methanol (1.0 mL) was added 12 (0.099 g), the 

mixture stirred at 50 ºC for 48 hours. The solid was isolated, rinsed with cold methanol (3 

x 1 mL), isolated, and dried overnight to yield poly(hexamethylene xylaramide) 

postpolymer (40, 0.098 g, 97.4%, dp 18.45) 

Poly(hexamethylene xylaramide) Postpolymer (41). 

Prepared according to the procedure for 37: the procedure to prepare 21 was 

utilized to obtain poly(hexamethylene xylaramide) prepolymer with a dp 5.04. To DMSO 

(0.5 mL), triethylamine (0.20 mL), and methanol (0.50 mL) was added 21 (0.048 g), the 

mixture stirred at 50 ºC for 48 h. The solid was isolated, rinsed with cold methanol (3 x 1 

mL), isolated, and dried overnight to yield poly(hexamethylene xylaramide) postpolymer 

(41, 0.041 g, 85.5%, dp 15.86) 
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Poly(hexamethylene xylaramide) Postpolymer (42). 

Prepared according to the procedure for 37: the procedure to prepare 30 was 

utilized to obtain poly(hexamethylene xylaramide) prepolymer with a dp of 18.66. To 

DMSO (0.25 mL), triethylamine (0.10 mL), and methanol (0.25 mL) was added 30 

(0.028 g), the mixture stirred at 50 ºC for 48 h. The solid was isolated, rinsed with cold 

methanol (3 x 1 mL), isolated, and dried overnight to yield poly(hexamethylene 

xylaramide) postpolymer (42, 0.013 g, 47.14 %, dp 20.01) 

Poly(hexamethylene xylaramide) Postpolymer (43). 

Prepared according to the procedure for 37: the procedure to prepare 12 was 

utilized to obtain poly(hexamethylene xylaramide) prepolymer with a dp 7.83. To 

triethylamine (0.20 mL) and methanol (0.50 mL) was added 12 (0.049 g), the mixture 

stirred at 50 ºC for 48 hours. The solid was isolated, rinsed with cold methanol (3 x 0.5 

mL), isolated, and dried overnight to yield poly(hexamethylene xylaramide) postpolymer 

(43, 0.042 g, 86.0%, dp 23.24) 

Poly(hexamethylene xylaramide) Postpolymer (44). 

Prepared according to the procedure for 37: the procedure to prepare 21 was 

utilized to obtain poly(hexamethylene xylaramide) prepolymer with a dp 5.04. To 

triethylamine (0.15 mL) and methanol (0.40 mL) was added 21 (0.035 g), the mixture 

stirred at 50 ºC for 48 h. The solid was isolated, rinsed with cold methanol (3 x 0.5 mL), 

isolated, and dried overnight to yield poly(hexamethylene xylaramide) postpolymer (44, 

0.023 g, 65.33 %, dp 21.73) 
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Poly(hexamethylene xylaramide) Postpolymer (45). 

Prepared according to the procedure for 37: the procedure to prepare 30 was 

utilized to obtain poly(hexamethylene xylaramide) prepolymer with a dp 18.66. To 

triethylamine (0.10 mL) and methanol (0.25 mL) was added 30 (0.019 g), the mixture 

stirred at 50 ºC for 48 h. The solid was isolated, rinsed with cold methanol (3 x 0.25 mL), 

isolated, and dried overnight to yield poly(hexamethylene xylaramide) postpolymer (45, 

0.015 g, 77.8 %, dp 18.18) 

Dimethyl xylarate (46), Methyl xylarate-1,4-lactone (47), Methyl xylarate-5,2-

Lactone (48). 

Xylaric acid (0.501g, 2.781mmol) was dissolved in methanol (4 mL). Acetyl-

chloride (0.424 mL, 6.000 mmol) was added dropwise to cold (ice bath) methanol (3 

mL). The solution was added dropwise to the methanolic xylaric acid and stirred for 3 

hours at room temperature. The mixture was concentrated under a stream of nitrogen and 

dried overnight to yield a mixture of dimethyl xylarate, methyl xylarate-1,4-lactone, and 

methyl xylarate-5,2-lactone (46-48, 0.569 g, 2.731 mmol, 98.2%). 1H NMR (DMSO) δ 

4.12-4.11 (d,2H, J 4.39 Hz) 3.91-3.89 (t, 1H) 

Dimethyl-L-arabinarate (49), Methyl-L-arabinarate-1,4-lactone (50), and Methyl-L-

arabinarate-5,2-lactone (51).  

Disodium L-arabinarate (1.091 g, 4.556 mmol) was charged into a 100 ml round 

bottom flask to which dry methanol (15 mL) was added. Acetyl chloride (1.215 g, 15.57 

mmol) was added dropwise to cold (ice bath) methanol (5 mL). The solution was added 

to the mixture and stirred 30 min at room temperature. A white precipitate resulted and 

was isolated by filtration. The filtrate was concentrated and dried for 4 hours to yield a 
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mixture of dimethyl L-arabinarate, methyl-L-arabinarate-1,4-lactone, and methyl-L-

arabinarate-5,2-lactone (49-51, 1.0363 g, 4.98 mmol, 109.3%). 1H NMR (DMSO) δ 5.12 

(d,1H, J 3.52 Hz), 4.52 (b, 1H), 4.28 (b, 1H), 3.74 (s, 6H). 
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3. A computational study directed to understanding the 

conformational preferences of pentaric acids and their 

corresponding polyamides 

3.1 Introduction 
 
 Polyhydroxypolyamide (PHPA) preparation by condensation polymerization of 

unprotected, esterified aldaric acids with primary diamines was discussed in chapter 2 of 

this dissertation. Of interest is the conformational preference of these polyamides, and 

particularly, the aldaryl monomer unit in solution. Thus, the driving force of this study 

was to determine how steric and electrostatic interactions influence the conformational 

preferences of the aldaryl monomer unit thereby resulting in a better understanding of the 

chemical and physical properties and potential applications of PHPAs. To this end, we 

report here a Monte Carlo MM3(96) investigation of four classes of compounds: Class 1 - 

glutaramide (1) and N,N’-dimethylglutaramide (2); Class 2 - xylaramide (3), N,N’-

dimethylxylaramide (4), xylaric acid (5), dimethyl xylarate (6), and 2,3,4-tri-O-acetyl-

N,N’-dimethylxylaramide (7); Class 3 - L-arabinaramide (8), N,N’-dimethyl-L-

arabinaramide (9), L-arabinaric acid (10), and 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-

arabinaramide (11); Class 4 - ribaramide (12),  N,N’-dimethylribaramide (13), ribaric acid 

(14), and 2,3,4-tri-O-acetyl-N,N’-dimethylribaramide (15). The pentaramides 3, 4, 7, 8, 9, 

11, 12, 13, and 15 are good model compounds for PHPAs because they incorporate the 

chiral moiety of the aldaryl monomer as well as the amide bond present in the 

polyamides, Figure 3.1.  
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Figure 3.1 Depiction of polyhydroxypolyamide and an N,N’-dimethylpentaramide 

(aldaramide) model for the aldaradiamido unit 

Additionally, compounds 1-15, Figure 3.2, afford the opportunity to computationally 

compare the glutaramides (1 and 2) and pentaramides (3, 4, 7, 8, 9, 11, 12, 13, and 15), 

the latter diamides being more conformationally restricted due to the presence of pendant 

hydroxyl or acetoxyl groups. Computational modeling of diacids (5, 10, and 14) and the 

dimethyl ester of xylaric acid (6) provides an opportunity to compare steric and 

electrostatic interactions of the carboxylic acid and ester groups of these molecules to the 

influence of the amido and N-methyl amido groups of the pentaramides. 

R1 R1

R2

R2R2

O O

Aldaryl Monomer Unit

Compound (1)              R1 = NH2       , R2 = H
Compound (2)              R1 = NHCH3    R2 = H
Compound (6)              R1 = OCH3    , R2 = H
Compound (3, 8, 12)    R1 = NH2       , R2 = OH
Compound (4, 9, 13)    R1 = NHCH3  , R2 = OH
Compound (5, 10, 14)  R1 = OH         , R2 = OH
Compound (7, 11, 15)  R1 = NHCH3  , R2 = OAc  

Figure 3.2 Aldaryl monomer unit illustrating varying pendent groups 

The O-acetylated pentaramides (7, 11, and 15) are of interest because the somewhat 

bulky pendent acetyl groups serve to conformationally restrict the molecules as well as 

prevent intramolecular hydrogen bonding associated with the pendant hydroxyl groups. 
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This conformational restriction also allows a better comparison of computationally 

calculated 1H NMR vicinal coupling constants with experimental values than from the 

conformationally more flexible unprotected diamides.  

A starting point for this study was to determine the preferred conformations of the 

polymethylene unit in the glutaryl unit of glutaramide (1) and N,N’-dimethylglutaramide 

(2). As background for the evaluation the conformation of the simple hydrocarbons 

butane and pentane were first considered. Applying quantum mechanical calculations, 

During and coworkers established that the experimental energies for the trans (anti)-

gauche (T-G) rotamers, Figure 3.3, of butane differed from 0.5-0.9 kcal/mol[1] and that 

the T conformation is favored by 0.75 kcal/mol.[2]  

 

Figure 3.3 Trans and gauche conformations of butane 

The same conformational result was found for n-pentane where the TT-to-GG energy 

change experimentally ranges from 0.46[3] to 0.56[4] kcal/mol, compared to 0.76 kcal/mol 

derived from quantum mechanical calculations.[5] An investigation of a series of X-ray 

crystallographic studies of oligomeric models of polyamides indicated that the central 

methylene carbons of the diacyl unit usually adopted a trans (anti) conformation.[6] This 

was reinforced in early studies of crystalline phase Nylon 6,6 that established the 
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conformational preference for the methylene carbons was an all trans (anti) relationship 

based upon a comparison of results from molecular dynamics computer simulations and 

experimental NMR spectroscopy.[7] However, Navarro et. al. established that the 

preference for an all trans (anti) conformation may decrease for some acyclic amides.[6-8] 

When a small number of methylene carbons are present in the diacyl unit, a repulsive 

interaction between parallel dipoles of the amide groups can induce folding of the 

molecule into a gauche conformation. This results in a more favorable orientation of the 

dipoles despite the gauche orientation of the methylene carbon atoms. Navarro and co-

workers performed ab Initio HF/6-31G* quantum mechanical calculations on glutaramide 

(1) and found the TTTTTT or fully extended conformation to be less stable than the 

TTGGTT or folded (sickle) conformation by 2.7 kcal/mol, Figure 3.4.[6] Thus we were 

interested in applying molecular mechanics to investigate the influence of the dipole-

dipole interaction on the conformations of glutaramide (1) and N,N’-dimethylglutaramide 

(2), and their hydroxylated derivatives (3, 4, 8, 9, 12, and 13).  

 

Figure 3.4  Glutaramide depicted in a trans (T) or TTTTTT and gauche (G) or 

TTGGTT rotamers 
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It has been suggested that unfavorable steric interactions resulting from hydroxyl 

group oxygens that are in eclipsed 1,3-parallel arrangements cause acyclic carbohydrates, 

in an extended conformation, to undergo a 120º rotation about a C-C bond to alleviate 

this interaction resulting in a sickle conformation.[9] For such molecules these interactions 

are similar to a 1,3-syn-diaxial interaction (1.9 kcal/mol) of hydroxyl groups in chair 

conformations of cis-1,3-cyclohexanediol.[10] Vicinal coupling constant data were used 

by Sweeting et al. as a means of computational comparison of six per-acetylated 

hexonitriles.[11] The hexononitriles conformationally preferred an extended conformation 

except when an eclipsed 1,3- parallel interaction was present, as with penta-O-acetyl-D-

glucononitrile, wherein a sickle conformation was preferred. Hexa-O-acetyl-D-glucitol 

also preferred a sickle conformation as determined from 1H NMR conformational studies 

carried out by Angyal and co-workers.[12] Molecular modeling of N,N’-

dimethylxylaramide and N,N’-dihexyl xylaramide using MacroModel V2.0[13] found, for 

both molecules, that two sickle conformations were lower in energy than the extended 

conformation. The sickle conformations allowed for the alleviation of the eclipsed 1,3-

parallel interaction present in the extended conformation between hydroxyls at C(2) and 

C(4).  

MM3 and MM3(96) conformational analyses of a series of D-glucaric acid 

derivatives were performed by Zhang et al. [14, 15] and Styron et. al., respectively.[16] D-

Glucaramide modeling was carried out at a dielectric constant of 3.5 and 6.5,[10] and 

2,3,4,5-tetra-O-acetyl-N,N’-dimethyl-D-glucararamide was carried out at a dielectric 

constant of 2.0.[14-15]   
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A model building approach was used by Zhang et al. to calculate the low energy 

conformations of 2,3,4,5-tetra-O-acetyl-N,N’-dimethyl-D-glucararamide.[14] Calculations 

were performed in Alchemy 2000 using MM3. Based upon 1H NMR vicinal coupling 

constant data some angular restrictions were assumed and all other unknown 

conformational preferences were computed individually using model compounds as 

mimics, the results of which were combined to obtain the lowest energy conformations. 

In all cases, the lowest energy conformations have no eclipsing 1,3-parallel acetyl group 

interactions present.[14,15] All low energy conformers were in sickle conformations 

suggesting that eclipsing 1,3-parallel acetyl group interactions are energetically 

unfavorable.  

            In the MM3(96) modeling of D-glucaramide, nine torsional angles were varied; 

five in the aldaryl unit backbone and four for the hydroxyl groups.[16] At dielectric 

constant 3.5, ten conformations were found within 1 kcal/mol of the global minimum. 45-

50% of the population were in sickle conformations where there were no eclipsing 1,3-

parallel hydroxyl group interactions. Five conformations comprising an insignificant 

percent of the total population had eclipsing 1,3-parallel hydroxyl group interactions. 

Styron suggested that conformations having an eclipsed 1,3-parallel hydroxyl group 

interaction were stabilized by intramolecular hydrogen bonding between hydroxyl 

groups. 

            At dielectric constant 6.5, thirty-five conformations were found within 1 kcal/mol 

of the global minimum. 52-59% of the population had no eclipsing 1,3-parallel hydroxyl 

group interactions. Eclipsing 1,3-parallel hydroxyl interactions were displayed in ~28% 

of the population and 13% had two pairs of eclipsing hydroxyl group interactions. Styron 
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concluded that at lower dielectric constants eclipsing 1,3-parallel hydroxyl interactions 

were increasingly more destabilizing and less favored.  

In light of these findings, a Monte Carlo MM3(96) program written by Dr. 

Michael K. Dowd[17] was applied to calculate the low-energy conformations of each 

molecule (1-15) at dielectric constants ranging from 1.5-10.0. By varying dielectric 

constant, the strength of intramolecular electrostatic interactions is varied thereby 

implicitly accounting for solvent effects. To test convergence of the computational 

simulation and thereby support the validity of the computational results, six different 

starting conformations of each molecule were simulated at each dielectric constant. By 

starting simulations with conformers from different regions of conformational space and 

obtaining the same result each time, one can be reasonably assured that all 

conformational space had been searched. Thus, a conformational ensemble comprised of 

hundreds or thousands of conformers and considered to be representative of the global 

population is generated. The percent population for each conformer was then calculated 

according to a Boltzmann distribution and standardized to 100%. This was necessary due 

to the number of conformers found in each conformational ensemble and the relatively 

small contribution of high energy conformers to the total percent population. The percent 

population (PPA) analyzed is therefore reported for each simulation and is typically 

greater than 90 percent. Individual conformers not analyzed did not contribute 

significantly to the global population. The conformers were then grouped into 

conformational families consisting of rotamers with the same backbone conformations, 

and analyzed for structural detail. Theoretical average 1H vicinal coupling constants for 

each molecule were compared to experimental values obtained by 1H NMR. 
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Experimental 1H NMR vicinal coupling values of 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-

arabinaramide were calculated with varying NMR solvent mixtures and found to be 

highly dependent on solvent composition.  

3.1.1 MM3(96) as a Molecular Force Field 
 

MM3(96) was the force field chosen for this study because of the wide use with 

carbohydrate molecules, including previous studies from this lab.[13-16] Prior studies have 

utilized MM3(96) as the preferred empirical force field method for mono- and 

disaccharide molecules because of the functional groups present and the large number of 

calculations necessary for the study. MM3(96) does have some limitations. Chains of 

hydrogen bonding (donor-acceptor-donor-acceptor) and explicit solvent effects cannot be 

taken into account. MM3(96) does allow for the changing of the dielectric constant to 

alter the strength of hydrogen bonding. By raising the value of the dielectric constant, the 

contribution of hydrogen bonding to the overall steric energy decreases exponentially; 

therefore simulations at higher dielectric constants model solvation in more polar 

solvents. Smaller dielectric constant values (< or = 1.0) are suitable for simulating 

molecules in vacuum and, a value of 1.5 for comparison to non-polar solvents.  

3.1.2 Modifications to MM3(96) 
 
Because MM3(96) like all other molecular mechanics programs treats bonds as 

springs, empirical data must be used to determine individual force constants and 

equilibrium values for geometries. MM3(96) does this by defining an atom type 

according to each atoms hybridization and molecular environment. Thus atom type, bond 

angle, bond length, torsion parameters, and atom connectivity are all very important. The 

atom types employed in this study are listed in Table 3.1. 
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Table 3.1  Atom types in MM3 (96) 

ATOM TYPE  DESCRIPTION        AT WT   LTG  LT3  LT4  LT5  LTP  MPL  CRD 
  1   C   CSP3                12.000   0    0    0    0    0    0    0 
  3   C   CSP2 CARBONYL       12.000   0    0    0    0    0    3    0 
  5   H   EXCEPT ON N,O,S     1.008    0    0    0    0    0    0    0 
  9   N   NSP2                14.003   0    0    0    0    0    9    0 
 28   H   H-N-C=O (AMIDE)     1.008    0    0    0    0    0    0    0 
 75   O   O-H, O-C (CARBOXYL) 15.995   6    6    6    6    0    0    0 
 78   O   O=C-O-C (ESTER)     15.995   7    0    0    0    7    0    0 
 79   O   O=C-N<  (AMIDE)     15.995   7    0    0    0    7    0    0 
  21 H   O-H (HYDROXYL) 1.008    0    0    0    0    0    0    0 

    AT WT = ATOMIC WEIGHT 
    LTG   = REPLACABLE ATOM TYPE FOR GENERAL     LOCALIZED    (LTYPEG)    
    LT3   = REPLACABLE ATOM TYPE FOR 3-MEM       LOCALIZED    (LTYPE3)    
    LT4   = REPLACABLE ATOM TYPE FOR 4-MEM       LOCALIZED    (LTYPE4)    
    LT5   = REPLACABLE ATOM TYPE FOR 5-MEM       LOCALIZED    (LTYPE5)  
    LTP   = REPLACABLE ATOM TYPE                 DELOCALIZED  (LTYPEP)    
    MPL   = ATOM HAVING OUT-OF-PLANE BENDING IF NOT ZERO      (KOUTP) 
    CRD   = ATOM HAVING 4-COORDINATE BOND IF NOT ZERO         (ITCOORD) 

 
 

The majority of torsion parameters required in this study were included in 

MM3(96) although two torsion angle parameters present in aldaramides and their 

acetylated derivatives were not present. The atom type sequence associated with an ester 

group or a hydroxyl group adjacent to an amide (9-3-1-75) was input in the constant file 

of MM3(96) as V1= -2.157, V2= -0.592 and V3= 0.466. The sequence of an ester group 

adjacent to a carbonyl group (3-1-75-3) was input into the constant file as V1=0.7246, 

V2=-0.6033 and V3=0.2583. These were performed according to the suggestion of Dr. 

Jenn-Huei Lii at the Center for Computational Chemistry, The University of Georgia.[16] 

A full list of torsion parameters is given in Table 3.2. 
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Table 3.2 Selected torsion parameters of MM3 (96)*

W       ANGLE             V1        V2        V3        
0    1001001001         0.1850    0.1700    0.5200        (  1 T1) 
0    1001001003         0.0000    0.4000    0.0100        ( 11 T1) 
0    1001001005         0.0000    0.0000    0.2800        ( 42 T1) 
0    1001075003        -2.2800    1.0000    0.0000        ( 93 T1) 
0    1003075001         1.0500    7.5000   -0.2000        ( 95 T1) 
0    1001003009         0.7000   -1.1000    0.3000        (178 T1) 
0    1003009001         1.1000    3.8000    0.0000        (180 T1) 
1    1003009028         0.0000    3.8000    0.0000        (468 T1) 
1    5001009028         0.0000    0.0000    0.0800        (470 T1) 
0    3001001005         0.0000    0.0000    0.1800        ( 51 T1) 
0    5001001005         0.0000    0.0000    0.2380        ( 69 T1) 
0    5001003075         0.2500    0.8500    0.0000        (118 T1) 
0    5001075003         0.0100    0.0000    0.0000        (120 T1) 
0    5001009003         0.0000    0.0000    0.0100        (191 T1) 
0   78003075001        -2.6600    7.5000    0.2000        (142 T1) 
2   75001003009        -2.1570   -0.5920   -0.4660          
2    3001075003         0.7246   -0.6033    0.2583          
 

*        W    = RELIABILITY                                                      
                  0 : FINAL 
                  1 : RELIABLE, BUT NOT FINAL  (*) 
                  2 : CRUED (TEMPORARY)        (**) 
     ANGLE    = TORSIONAL ANGLE 

     V1,V2,V3 = TORSIONAL CONST             
 

Energy change optimizations where terminated using the default Alchemy2000 

value of 0.0003*n, where n is the number of atoms. An energy change optimization 

termination value of 0.00008*n was used for the computational analysis of xylaric acid 

(3). 

3.1.3 Establishing Convergence of the Simulation 
 

A concern to any investigator performing computational simulations, especially 

when employing a directed random search method, is how to obtain a valid representative 

dataset, also known as achieving convergence, while limiting the computational resources 

expended in the endeavor. The Monte Carlo search method employed here is an 

inherently incomplete search method as the computational search is intentionally biased 

toward the lower energy conformations. Therefore conformations of higher energy were 

considered less important in this simulation and were often not found during the 
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computational search. Convergence of Monte Carlo based searches is usually ‘tested’ by 

either (1) extending a run to see if additional low-energy structures are found or (2) by 

conducting multiple runs in parallel with different initial structures to see if consistent 

populations of low-energy structures are found. In this computational investigation both 

‘tests’ were performed. In test (1) the lack of having identified any new “important” 

structures is generally taken as an indication that the search has found the low-energy 

conformations and thus converged. In test (2) the results from multiple runs starting in 

different areas of conformational space should be identical or to it. Additionally, test (3), 

symmetric molecules or enantiomers should show (+/-) gauche interactions equally 

populated.  

In this work more low-energy conformers were found at higher dielectric 

constants, thus the convergence test (1) was performed with 100,000 steps at the highest 

dielectric constant of interest for each molecule. Six conformations of each molecule 

(e.g., Figure 3.5) were also analyzed at each dielectric constant to meet the requirements 

for test (2). Acetylated and unprotected molecules were run at 40,000 and 20,000 steps, 

respectively. At 40,000 and 20,000 steps usually ~90% of the global population had been 

found and any conformer found past this value did not contribute significantly to the 

global population. Test (3) for symmetric molecules or enantiomers, which should show 

(+/-) gauche interactions equally populated, was also achieved.  
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Figure 3.5  An example of six starting rotamers corresponding to different areas of 

conformational space illustrated using N,N’-dimethylxylaramide (4) 

Additionally, the ability to model at high temperatures is needed to ensure the 

simulation is capable of jumping from one region of conformational space to another. 

This is accomplished by a process called temperature shaking. In the temperature shaking 

process a Boltzmann factor [P = (-∆E/RT)] is calculated, where P stands for probability 

and E is the energy of the new conformer and the conformer of the last step in the 

simulation. A random number generator called EFACT then produces a number between 

0 and 1. When the value of the Boltzmann factor is larger than the randomly generated 

number, the conformation is accepted as a starting conformation for the next step. 10,000 
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K is a sufficiently high temperature to make the value of the Boltzmann factor near 1 

resulting in a high probability of the conformation being accepted for the next step.  

3.1.4 Statistical Analysis of Molecules Simulated 
 

The global population was used to calculate the percent population of each 

conformer using the following equations. 

 
                         Na/No = exp (∆E/RT)    (eq 1) 
 

 Pa = [(Na/No) / Σ(Ni/No)] × 100  (eq 2) 
 

 
Na/ No is the molar ratio of some conformer “a” to the most stable conformer o. ∆E 

represents the energy difference between conformer “a” and conformer o. Pa is the 

percent population of conformer “a” among all the other conformers i. The summation of 

Pa will always equal 100 %. 

For each molecule simulated proton vicinal coupling constants corresponding to 

the protons on C2, C3, and C4 (H13-C2-C3-H14 and H14-C3-C4-H15) were calculated 

for each conformer using Haasnoot’s adaptation of the Karplus equation.[18] The 

theoretical average coupling constant for J13,14 and J14,15 was calculated based on the 

equation: 

Jcalcd = ∑ Pa · Ji    (eq 3) 
 

Pa is the percent population of each conformation and Ji is the corresponding calculated 

coupling constant for that particular conformation. Computational vicinal coupling 

constants values were compared between chosen dielectric constants and with 

experimentally determined 1H NMR in an appropriate solvent (D2O and/or chloroform-

d).  
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3.2 Results and Discussion 
 

3.2.1 Simulation of Glutaramide (1) and N,N’-Dimethylglutaramide (2) – 

Class 1 

 The compounds in Class 1 have an axis of symmetry through carbon C3 meaning 

a 120 degree rotation about the C2-C3 bond corresponds to a -120 degree rotation of the 

C3-C4 bond producing two different conformations that are energetically equivalent and 

have (+/-) gauche interactions. Only one conformation from the two energetically 

equivalent conformations with (+/-) gauche interactions will be discussed.  

Glutaramide (1) 

 Six rotamers of glutaramide (1) were searched at a dielectric constant of 1.5, 3.5, 

6.0, and 10.0 to a coefficient of variance of 0.98, 1.61, 0.00, and 1.37 with an average of 

83, 91, 75, and 80 conformations found, respectively. Figures 3.7-3.10 depict the lowest 

energy conformations from various backbone families for 1 at dielectric constants 1.5, 

3.5, 6.0, and 10.0. The energy range of the lowest energy conformer from the least 

populated family relative to the lowest energy conformer was 1.759, 1.599, 0.449, and 

1.369 kcal/mol, respectively.  The calculated percent populations are shown in Table 3.3. 

The number scheme for 1 is shown in Figure 3.6. 
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Figure 3.6  Numbering scheme for glutaramide (1) 
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Figure 3.7 The two lowest energy conformations 1a (2G+3G+) and 1b (2G-3G+) and 

hydrogen bond length in angstroms at DIELEC 1.5 

 
Figure 3.8  The four lowest energy conformations 1c (3G-), 1d (2G+,3G+), 1e (2G-

,3G+), and 1f (extended) and hydrogen bond length in angstroms at DIELEC 3.5 

 
 
Figure 3.9  The three lowest energy conformations 1g (3G-), 1h (2G+3G+), and 1i 

(extended) and hydrogen bond length in angstroms at DIELEC 6.0 
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Figure 3.10     The four lowest energy conformations 1j (3G-), 1k (2G+3G+), and 1l 

(extended) at DIELEC 10.0 

 
Table 3.3   Calculated percent population for 1 at dielectric constant 1.5, 3.5, 6.0, and          

10.0 and the percent population analysis (PPA) 

DIELEC 3G-           2G-3G+       2G+3G+ Extended PPA 
 

 1.5        0.000       15.75 (1b)    84.24 (1a) 0.000 96.13  
 

 3.5        31.62 (1c)  0.000       47.20 (1d) 21.18 (1f) 91.15  
 
6.0        51.60 (1g)  0.000       9.728 (1h) 38.67 (1i) 90.84  
 
10.0        52.00 (1j)  2.142 (1e)    1.215 (1k) 44.64 (1l) 90.34 
 
 The sickle 2G+3G+ is the dominant conformation (ca. 84%) at dielectric constant 

1.5 and progressively decreases with increasing dielectric constant were eventually at 

dielectric constant 10.0 it is the least populated conformation at 1.2% of the population. 

The hydrogen bond (1.899 Å) at dielectric constant 1.5 is no longer present at higher 

dielectric constants, thereby allowing the observation of the parallel dipole-dipole 
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interaction at dielectric constants 3.5, 6.0 and 10.0. This illustrates the decreasing 

strength of electrostatic interactions with increasing dielectric constant. The increasing 

population of the extended conformation with increasing dielectric constant is not 

surprising due to the decreaseing influence of the destabilizing electrostatic parallel 

dipole-dipole interaction with increasing dielectric constant. However, in agreement with 

prior work by Novarro,[6] the sickle 3G- or TTGGTT (gauche) conformation is of lower 

energy than the extended or anti conformation at all dielectric constants simulated above 

1.5.    

 
N,N’-Dimethylglutaramide (2) 
  

 Six rotamers of N,N’-dimethylglutaramide (2) were searched at dielectric constant 

1.5, 3.5, 6.0, and 10.0 to a coefficient of variance of 2.29, 2.12, 1,96, and 1.46 with an 

average of 321.6, 343.5, 371.6, and 384.7 conformations found, respectively. Figures 

3.12-3.15 depict the lowest energy conformations from various backbone families for 2 at 

dielectric constants 1.5, 3.5, 6.0, and 10.0.  The energy range of the lowest energy 

conformer from the least populated family relative to the lowest energy conformer was 

0.000, 1.523, 1.071, and 0.751 kcal/mol, respectively. The calculated percent populations 

are shown in Table 3.4. The number scheme for 2 is shown in Figure 3.11. 
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Figure 3.11  Numbering scheme for N,N’-dimethylglutaramide (2) 
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Figure 3.12 The one lowest energy conformation is 2a (sickle 2G+3G+) and hydrogen 

bond length in angstroms at DIELEC 1.5 

 
 
Figure 3.13  The four lowest energy conformations 2b (3G-), 2c (2G+3G+), 2d (2G-

3G+), and 2e (extended) and hydrogen bond length in angstroms at 

DIELEC 3.5 
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Figure 3.14  The four lowest energy conformations 2f (3G-), 2g (2G+3G+), 2h (2G-

3G+), and 2i (extended) and hydrogen bond length in angstroms at DIELEC 

6.0 

 
  

 
Figure 3.15  The three lowest energy conformations 2j (3G-), 2k (2G+3G+), and 2l 

(extended) at DIELEC 10.0 
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Table 3.4  Calculated percent population for 2 at DIELEC 1.5, 3.5, 6.0, and 10.0 and 

percent population analyzed (PPA) 

DIELEC 3G- 2G-3G+ 2G+3G+ Extended PPA       
 

 1.5 0.000 0.000 100 (2a) 0.000 99.48  
 

 3.5 26.43 (2b) 11.78 (2d) 49.10 (2c) 12.69 (2e) 89.13  
 
6.0 47.89 (2f) 0.699 (2h) 18.90 (2g) 32.51 (2i) 89.30  
 
10.0 49.96 (2j) 0.000 8.489 (2k) 41.00 (2l) 87.27 
 
 
 Glutaramide (1) and N,N’-dimethylglutaramide (2) differ in that 1 has primary 

amide groups and 2 has secondary N-methyl amido groups. The two compounds were 

found to have similar percent populations for the observed conformations at each 

dielectric constant. In addition, the conformational preference of each molecule similarly 

changes from the preferred sickle (gauche) rotamer at low (1.5) dielectric constant to the 

increasingly populated extended rotamer (anti) with increasing dielectric constant. With 

increasing simulated dielectric constant the conformational change can be attributed to 

the decrease in the stabilizing, intramolecular hydrogen bonding betweening the terminal 

amido functions as well as a decrease in the magnitude of the repulsive dipole-dipole 

interaction. In agreement with Aleman[5] and Novarro,[6] the gauche (TTGGTT) or sickle 

3G- conformation is lower in energy than the extended conformation for these diamides.  

3.2.2 Simulations of Xylaramide (3), N,N’-Dimethylxylaramide (4), Xylaric 

acid (5), Dimethyl Xylarate (6), and 2,3,4-Tri-O-acetyl-N,N’-

dimethylxylaramide (7) – Class 2 

 All compounds in Class 2 are similar to Class 1 in that they have an axis of 

symmetry through the C3 carbon. The compounds in class 2 and 4 are meso compounds 
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because they have stereocenters and have energetically equivalent (+/-) gauche 

interactions. Again, only one conformation of the energetically equivalent (+/-) gauche 

interactions will be depicted.  

Xylaramide (3) 

 Six rotamers of xylaramide (3) were searched at dielectric constant 3.5, 6.0, and 

10.0 to a coefficient of variance of 1.36, 2.61, and 2.21 with an average of 345, 487, and 

596 conformations found, respectively. Figures 3.17-3.19 depict the lowest energy 

conformations from various backbone families for 3 at dielectric constants 3.5, 6.0, and 

10.0.  The energy range of the lowest energy conformer from the least populated family 

relative to the lowest energy conformer was 2.304, 2.187, and 0.826 kcal/mol, 

respectively.  The calculated percent populations are shown in Table 3.7. The number 

scheme for 3 is shown in Figure 3.16. Because the results of 3 and N,N’-

dimethylxylaramide (4) are very similar, discussion of 3 and 4 follows the computational 

results of 4. 
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Figure 3.16  Numbering scheme for xylaramide (3) 
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Figure 3.17  The three lowest energy conformations 3a (2G-), 3b (extended), and 3c 

(2G-,3G-) and hydrogen bond length in angstroms at DIELEC 3.5 

 
Figure 3.18  The three lowest energy conformations 3d (2G-), 3e (extended), and 3f 

(2G-,3G-) and hydrogen bond length in angstroms at DIELEC 6.0 
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Figure 3.19  The two lowest energy conformations 3g (2G-) and 3h (extended) at 

DIELEC 10.0 

Table 3.7   Calculated percent population for 3 at DIELEC 3.5, 6.0, and 10.0 
 
DIELEC        2G-               2G-, 3G-     Extended        PPA 

 
3.5     79.07 (3a)            0.626 (3c)         20.30 (3d)      93.87 
 
6.0     81.46 (3d)           0.026 (3f)         18.51 (3e)      95.72 
 
10.0     83.86 (3g)           0.000         16.14 (3h)      92.01 
 
N,N’-Dimethylxylaramide (4) 
 
 Six rotamers of N,N’-dimethylxylaramide (4) were searched at dielectric constant 

3.5, 6.0, and 10.0 to a coefficient of variance of 0.93, 2.48, and 2.49 with an average of 

345, 552, and 621 conformations found, respectively. Figures 3.21-3.23 depict the lowest 

energy conformations from various backbone families for 4 at dielectric constants 3.5, 

6.0, and 10.0.  The energy range of the lowest energy conformer from the least populated 

family relative to the lowest energy conformer was 1.281, 0.904, 0.849 kcal/mol, 

respectively.  The calculated percent populations are shown in Table 3.8. The number 

scheme for 4 is shown in Figure 3.20. 
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Figure 3.20  Numbering scheme for N,N’-dimethylxylaramide (4) 
 

 
Figure 3.21  The two lowest energy conformations 4a (2G-) and 4b (extended) at 

DIELEC 3.5 

 

Figure 3.22  The two lowest energy conformations 4c (2G-) and 4d (extended) and 

hydrogen bond length in angstroms at DIELEC 6.0 
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Figure 3.23  The two lowest energy conformations 4e (2G-) and 4f (extended) at 

DIELEC 10.0 

Table 3.8  Calculated percent population for 4 at dielectric constant 3.5, 6.0, and 10.0 
 
DIELEC 2G- Extended PPA 

                      (4a, 4c, 4e)          (4b, 4d, 4f) 
 

3.5  78.54 (4a) 21.46 (4b) 91.65 
 
6.0 84.46 (4c) 15.54 (4d) 90.61 
 
10.0 82.63 (4e) 17.37 (4f) 91.73 
 
 Xylaramide (3) and N,N’-dimethylxylaramide (4) structurally differ from one 

another in the same way as glutaramide (1) and N,N’-dimethylglutaramide (2), 3 has 

primary diamide groups while 4 has secondary N-methyl amido groups. Compounds 3 

and 4 preferred the same conformations, sickle 2G- and extended, in almost identical 

percentages at each dielectric constant simulated. Therefore the N-methyl pendent group 

has little to no effect on the preferred conformations of 3 and 4. The lower energy sickle 

2G- conformation (ca. 80%) had no evidence of intramolecular hydrogen bonding and 

was stabilized by the alleviation of the eclipsed 1,3-parallel hydroxyl interaction that is 

present in the extended conformation (ca.20%). Unlike 1 and 2, the preferred 

conformations of 3 and 4 did not change significantly with increasing dielectric constant 
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signifying, a lack of hydrogen bonding at all dielectric constants simulated. Additionally, 

the destabilizing parallel amide dipole interaction present in 1 and 2 could not be 

observed in simulations of 3 and 4.  

 Kiely et al.[14] performed Macromodel V.2 energy minimizations of 4 at dielectric 

constant 8.6 and found the preferred conformations to be sickle 2G- (1.94 kcal/mol, 

36.7%), sickle 3G+ (2.14 kcal/mol, 26.2%), and extended (3.08 kcal/mol, 16.4%). As 

discussed earlier, 4 is a meso compound and the sickle 2G- and sickle 3G+ conformations 

should be calculated as energetically equivalent. By addition of the sickle 2G- (36.7%) 

and sickle 3G+ (26.2%) percent population found using MacroModel V.2, one reaches a 

percent population value for the sickle 2G- conformation of 62.9% compared to the 

~82% value calculated in this study. MacroModel V.2 results for the extended 

conformation agree with the calculated results by MM3(96). 

Xylaric Acid (5) 

 Six rotamers of xylaric acid (5) were searched at dielectric constant 3.5 to a 

coefficient of variance of 5.18 and an average of 921.2 conformations found. The four 

lowest energy conformations 5a-5e with an energy range of 1.582 kcal/mol are shown in 

Figure 3.25. The calculated percent populations for each conformation are given in Table 

3.5. The number scheme for 5 is shown in Figure 3.24. 
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Figure 3.24  Numbering scheme for xylaric acid (5) 

 

 
Figure 3.25  The four lowest energy conformations 5a (2G-), 5b (2G-3G-), 5c (2G-

3G+), and 5d (extended) and hydrogen bond length in angstroms at 

DIELEC 3.5  
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Table 3.5      Calculated percent population and percent population analyzed (PPA) for the 

conformational families of 5 at DIELEC 3.5 

DIELEC       2G-  2G-3G-       2G-3G+ Extended          PPA 
 
3.5  92.54(5a) 1.588 (5b)   1.538 (5c)       4.329 (5d)    84.21 
 

 The computational results of xylaric acid (5) are in agreement with the results for 

xylaramide (3) and N,N’-dimethylxylaramide (4) which prefer conformations without 

eclipsed 1,3-parallel hydroxyl interactions. The overwhelming preferred and therefore 

lowest in energy conformation was the sickle 2G- conformation (ca. 93%) which has 

undergone a –120 degree rotation about the C2-C3 bond to alleviate the eclipsed 1,3-

parallel hydroxyl interaction. The three other conformational states are not significantly 

populated and will not be discussed.  

 

Dimethyl xylarate (6) 

 Six rotamers of dimethyl xylarate (6) were searched at dielectric constant3.5 to a 

coefficient of variance of 0.95 with an average of 837.3 conformations found. The three 

lowest energy conformations 6a-6c with an energy range of 1.516 kcal/mol are shown in 

Figure 3.27 and the calculated percent populations are given in Table 3.6. The number 

scheme for 6 is shown in Figure 3.26. 
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Figure 3.26 Numbering scheme for dimethyl xylarate (6) 
 

 
Figure 3.27 The three lowest energy conformations 6a (2G-), 6b (2G-3G+), and 6c 

(extended) and hydrogen bond length in angstroms at DIELEC 3.5. 

Table 3.6 Calculated percent population and percent population analyzed (PPA) for 6 at 

DIELEC 3.5 

DIELEC 2G- 2G-3G+ Extended           PPA 
 
3.5           94.24 (6a)       4.571 (6b)        1.196 (6c)       80.61 
 
 Dimethyl xylarate (6) like that of xylaramide (3), N,N’-dimethylxylaramide (4), 

and xylaric acid (5) preferred the sickle 2G- conformation (ca. 94%) overwhelmingly at 

dielectric constant 3.5. As with compounds 3, 4, and 5 this corresponds to the alleviation 

of the destabilizing eclipsed 1,3-parallel hydroxyl group interaction with no evidence of 

stabilizing intramolcular hydrogen bonding. Xylaric acid (5) and dimethyl xylarate (6) 

structurally differ from the 3 and and 4 in that they are a diacid and diester, respectively, 

and therefore lack the same ability of the amido functionality to hydrogen bond. 

Compounds 3 and 4 were modeled because the ability of the terminal amido groups to 
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intramolecularly hydrogen bond was unknown. Interestingly, the extended conformation 

in compounds 5 and 6 is less populated than for the diamides 3 and 4, ~1.2% vs ~20%, 

respectively. This indicates that the terminal amido groups have weak electrostatic 

interactions (hydrogen bonds) falling outside the definition of a hydrogen bond. With the 

latter most likely the case because there could be a stabilizing hydrogen bond between the 

amide hydrogen and the hydroxyl oxygen which is alpha to the amide carbonyl with a 

hydrogen bond angle (donor-hydrogen····acceptor) that falls below 110 degrees.  

2,3,4-Tri-O-acetyl-N,N’ dimethylxylaramide (7) 

 Six rotamers of 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide (7) were searched at 

dielectric constants 1.5 and 3.5 to a coefficient of variance of 2.33 and 3.03 with an 

average of 1942 and 2290 conformations found, respectively. Figures 3.29 and 3.30 

depict the lowest energy conformations from various backbone families for 7 at dielectric 

constants 1.5 and 3.5. The energy range of the lowest energy conformer from the least 

populated family relative to the lowest energy conformer was 2.446 and 1.302 kcal/mol, 

respectively. The calculated percent populations are shown in Table 3.9. The number 

scheme for 7 is shown in Figure 3.28. 
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Figure 3.28  Numbering scheme for 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide (7) 
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Figure 3.29  The three lowest energy conformations 7a (2G-), 7b (2G+), and 7c (2G-

,3G-) and hydrogen bond length in angstroms at DIELEC 1.5 

 

 
Figure 3.30  The four lowest energy conformations 7d (2G-), 7e (2G+), 7f (2G-,3G-), 

and 7g (extended) and hydrogen bond length in angstroms at DIELEC 3.5 

 
 
 
 
 
 
 
 
 



Chapter 3 127

Table 3.9   Calculated percent population for 7 at DIELEC 1.5 and 3.5 
 
DIELEC  2G-             2G+        2G-,3G-              Extended                  PPA 

 
1.5     8.064 (7a)   1.935 (7b)      90.00 (7c)           0.000               95.55 
 
3.5    45.08 (7d)   10.07 (7e)      30.45 (7f)           14.40 (7g)                   87.27 
 
 2,3,4-Tri-O-acetyl-N,N’-dimethylxylaramide (7) unlike compounds 3-6 was 

simulated at dielectric constant 1.5 in an effort to understand the preferred conformations 

of the aldaryl monomer unit in a nonpolar solvent where intramolecular hydrogen 

bonding would be more likely to be observed. The preferred sickle 2G-3G- conformation 

(90.0%) shows an intramolecular hydrogen bond between amide hydrogen, H18, and 

carbonyl oxygen, O8, but no eclipsed 1,3-parallel interactions. This preferred sickle 2G-

3G- conformation at dielectric constant 1.5 was no longer the preferred conformation at 

dielectric constant 3.5 with only a 30.45 percent population value indicating a decrease in 

the stabilizing effects of electrostatic interactions. Instead the sickle 2G- conformation, 

which does not have a hydrogen bond or steric eclipsed 1,3-parallel interactions, became 

the preferred conformation at dielectric constant 3.5 with a percent population value of 

45% compared to 8% at dielectric constant 1.5. Compound 7 is the O-acetylated 

derivative of N,N’-dimethylxylaramide (4) and consequentially significant differences in 

the preferred conformations at dielectric constant 3.5 result between the two compounds. 

At dielectric constant 3.5, 7 populated the sickle 2G-3G- and 2G+ conformations (30% 

and 10% respectively) whereas 4 did not. The sickle 2G-3G- conformation of 7 was 

stabilized by an intramolecular hydrogen bond between O8 and H18 at dielectric 

constants 1.5 and 3.5, 1.957 and 2.077 angstroms, respectively, with the longer hydrogen 

bond at dielectric constant 3.5 signifying a weaker hydrogen bond. The extended 
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conformations of 4 and 7 were nearly equally preferred indicating that the hydroxyl 

groups ability to hydrogen bond in 4 did not influence the preferred conformation at 

dielectric constant 3.5 and that steric interactions were the main driving force 

determining the conformational preference. 

 
3.2.3 Simulations of L-Arabinaramide (8), N,N’-Dimethyl-L-arabinaramide 

(9), L-Arabinaric Acid (10), and 2,3,4-Tri-O-acetyl-N,N’-dimethyl-L-

arabinaramide (11) – Class 3 

 
L-Arabinaramide (8) 

 Six rotamers of L-arabinaramide (8) were searched at dielectric constants 3.5, 6.0, 

and 10.0 to a coefficient of variance of 1.68, 1.41, and 1.95 with an average of 325, 491, 

and 618 conformations found, respectively. Figures 3.32-3.34 depict the lowest energy 

conformations from various backbone families for 8 at dielectric constants 3.5, 6.0, and 

10.0. The energy range of the lowest energy conformer from the least populated family 

relative to the lowest energy conformer was 1.459, 1.459, and 0.945 kcal/mol, 

respectively. The calculated percent populations are shown in Table 3.11. The number 

scheme for 8 is shown in Figure 3.31. 
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Figure 3.31  Numbering scheme for L-arabinaramide (8) 
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Figure 3.32  The six lowest energy conformations 8a (2G-), 8b (3G-), 8c (3G+), 8d (2G-

,3G-), 8e (2G-3G+), 8f (extended) and hydrogen bond length in angstroms 

at DIELEC 3.5 
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Figure 3.33  The six lowest energy conformations 8g (2G-), 8h (3G+), 8i (3G-),  8j (2G-

,3G-), 8k (2G-3G+), 8l (extended) and hydrogen bond length in angstroms 

at DIELEC 6.0 
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Figure 3.34 The six lowest energy conformations 8m (3G+), 8n (3G-), 8o (2G-3G-), 8p 

(2G-3G+), and 8q (extended) at DIELEC 10.0 

 The sickle 3G+ conformation (ca. 45%) of L-arabinaramide (8) is the dominant 

conformation at simulated dielectric constants 3.5, 6.0, and 10.0 despite having an 

eclipsed 1,3-parallel hydroxyl interaction in this conformation. However, the sickle 3G+ 

conformation became less preferred with increasing dielectric constant suggesting that 

intramolecular hydrogen bonding is stabilizing this conformation. The sickle 2G-3G- 

conformation was also well populated (ca. 28%) across the dielectric constants studied. 

The sickle 2G-3G- conformation did not have the destabilizing eclipsed 1,3-parallel 

hydroxyl interaction and at dielectric constant 3.5 had a stabilizing hydrogen bond of 

1.936 angstroms between an amide hydrogen (H18) and a carbonyl oxygen (O8). Despite 
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having computed the sickle 3G+ conformation as the lowest energy conformation when 

there is a destabilizing eclipsed 1,3-parallel hydroxyl interaction in this conformation, the 

observed trend is that with increasing dielectric constant the sickle 3G+ conformation 

becomes less favored, i.e. higher in energy. This result is in agreement with the literature 

as well as the results reported earlier in this study.    

Table 3.10  Calculated percent population for 8 at DIELEC 3.5, 6.0, 10.0 
 
        2G-  3G+    3G-    2G-,3G-    2G-,3G+  Extended PPA 

DIELEC 
3.5  6.963(8a) 47.34(8c) 47.85(8b) 25.02(8d) 6.708(8e)  6.112(8f) 90.21  
 
6.0 0.839(8g) 46.06(8k) 10.32(8i)  27.17(8j)  6.416(8l)  9.187(8l) 84.04  
 
10.0 0.000  43.07(8m) 9.701(8n) 31.50(8o) 9.200(8p)  6.538(8q) 80.76 
 
N,N’-Dimethyl-L-arabinaramide (9) 
 
 Six rotamers of N,N’-dimethyl-L-arabinaramide (9) were searched at dielectric 

constant 3.5, 6.0, and 10.0 to a coefficient of variance of 2.39, 2.68, and 2.99 with an 

average of 358, 522, and 655 conformations found, respectively. Figures 3.36-3.38 depict 

the lowest energy conformations from various backbone families for 9 at dielectric 

constants 3.5, 6.0, and 10.0. The energy range of the lowest energy conformer from the 

least populated family relative to the lowest energy conformer was 1.425, 1.442, and 

0.946 kcal/mol, respectively. The calculated percent populations are shown in Table 3.12. 

The number scheme for 9 is shown in Figure 3.35. 
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Figure 3.35  Numbering scheme for N,N’-dimethyl-L-arabinaramide (9) 

 
 

Figure 3.36  The six lowest energy conformations 9a (2G-), 9b (3G+), 9c (3G-), 9d (2G-

3G-), 9e (2G-3G+), and 9f (extended) and hydrogen bond length in 

angstroms at DIELEC 3.5 
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Figure 3.37  The six lowest energy conformations 9g (2G-), 9h (3G+), 9i (3G-), 9j (2G-

3G-), 9k (2G-3G+), and 9l (extended) and hydrogen bond length in 

angstroms at DIELEC 6.0 
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Figure 3.38  The five lowest energy conformations 9m (3G+), 9n (3G-), 9o (2G-3G-), 

9p (2G-3G+), and 9q (extended) at DIELEC 10.0 

 
Table 3.11  Calculated percent population for 9 at DIELEC 3.5, 6.0, 10.0 
 
  2G-   3G+       3G-        2G-,3G-    2G-,3G+   Extended PPA 

DIELEC 
3.5  5.471(9a) 48.64(9b)  7.560(9c)  20.42(9d)  11.50(9e)   6.405(9f) 91.28  
 
6.0 0.835(9g) 40.11(9m) 11.29(9i)  26.83(9j)   14.58(9k)   6.354(9l) 83.63   
 
10.0 0.000  38.94(9h)   5.959(9n) 29.87(9o)   17.42(9p)  7.804(9q) 75.39 

 
 The computational results of N,N’-dimethyl-L-arabinaramide (9) were almost 

identical to that of L-arabinaramide (8). The sickle 3G+ conformation is the 
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overwhelmingly preferred conformation at each dielectric constant despite having an 

eclipsed 1,3-parallel hydroxyl interaction and like 8 the percent population of the sickle 

3G+ conformation decreases with increasing dielectric constant. Additionally, the sickle 

3G+ conformer at dielectric constant 3.5 showed a stabilizing hydrogen bond of 1.959 

angstroms length which was not present at higher dielectric constants, 6.0 and 10.0, 

indicating the decreasing influence of electrostatic interactions with increasing dielectric 

constant. The sickle 2G-3G- conformation which has no obvious steric interactions 

becomes increasingly preferred from ~20% to ~30% population with increasing dielectric 

constant. These results illustrate that intramolecular hydrogen bonding is stabilizing 

conformations with destabilizing eclipsed 1,3-parallel hydroxyl interactions. By 

increasing the dielectric constant, the stabilizing effect of the intramolecular hydrogen 

bond decreases and steric interactions become the driving force behind the preferred 

conformation.  

 
L-Arabinaric Acid (10) 

 Six rotamers of L-arabinaric acid (10) were searched at dielectric constant 3.5 to a 

coefficient of variance of 3.07 with an average of 675.5 conformations found. The six 

lowest energy conformations, 10a-10f, with an energy range of 1.396 kcal/mol are shown 

in Figure 3.40. The calculated percent populations for each conformation are given in 

Table 3.10. The number scheme for 10 is shown in Figure 3.39. 
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Figure 3.39  Numbering scheme for L-arabinaric acid (10) 

 

 

 
 
Figure 3.40  The six lowest energy conformations 10a (2G-), 10b (3G+), 10c (3G-), 10d 

(2G-3G+), 10e (2G-3G-), and 10f (extended) and hydrogen bond length in 

angstroms at DIELEC 3.5 



Chapter 3 138

Table 3.12  Calculated percent population and percent population analyzed PPA for 10 at 

DIELEC 3.5 

DIELEC    2G-            3G+             3G-            2G-3G+      2G-3G-     Extended    PPA 
                   
3.5      2.414(10a) 7.105(10b) 10.18(10c)  0.773(10d)  46.11(10e) 33.41(10f)   75.69 
 
 Whereas the sickle 3G+ and sickle 2G-3G- conformations are the dominant 

conformations L-arabinaramide (8) and N,N’-dimethyl-L-arabinaramide (9), the 

conformational preference, i.e. lowest energy conformation, for L-arabinaric acid (10) is 

the extended (33%) and sickle 2G-3G+ (46%) conformations, of which neither have 

eclipsed 1,3-parallel hydroxyl interactions as was the case in the sickle 3G+ conformation 

preferred by 8 and 9. The extended conformation of 10 is stabilized by two 

intramolecular hydrogen bonds between the acid protons and the hydroxyl group on C3 

and does not have steric interactions. 

 
2,3,4-Tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (11) 
 
 Six rotamers of 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (11) were 

searched at dielectric constant 1.5 and 3.5 to a coefficient of variance of 0.88 and 2.69 

with an average of 2426 and 2352 conformations found, respectively. Figures 3.42 and 

3.43 depict the lowest energy conformations from various backbone families for 11 at 

dielectric constants 1.5 and 3.5. The energy range of the lowest energy conformer from 

the least populated family relative to the lowest energy conformer was 1.025 and 1.296 

kcal/mol, respectively. The calculated percent populations are shown in Table 3.13. The 

number scheme for 11 is shown in Figure 3.41. 
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Figure 3.41  Numbering scheme for 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-arabinaramide 

(11) 
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Figure 3.42  The five lowest energy conformations 11a (3G+), 11b (3G-), 11c (2G-3G-), 

11d (2G-3G+), 11e (2G+3G-) and hydrogen bond length in angstroms at 

DIELEC 1.5 

 

Figure 3.43  The five lowest energy conformations 11f (3G+), 11g (3G-), 11h (2G-3G-), 

11i (2G-3G+), and 11j (extended) at DIELEC 3.5 

 
Table 3.13  Calculated percent population for 11 at DIELEC 1.5 and 3.5 
 
             3G+    3G-         2G-,3G-       2G-,3G+     2G+,3G-   Extended PPA 

DIELEC 
1.5 50.65(11a) 8.133(11b)  9.582(11c)   27.59(11d)  4.042(11c)  0.000 82.22 
 
3.5 32.04(11f)  23.49(11g)  13.75(11h)   25.56(11i)   0.000        5.152(11j)80.68  
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2,3,4-Tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (11) unlike compounds 8-10 

was simulated at dielectric constant 1.5 in an effort to understand the preferred 

conformations in a nonpolar solvet where intramolecular hydrogen bonding was more 

likely to be observed. The two preferred conformations at dielectric constant 1.5, sickle 

2G-3G+ and sickle 3G+, each showed intramolecular hydrogen bonding between an 

amide hydrogen, H18, and carbonyl oxygen, O8, with hydrogen bond lengths of 2.010 

and 2.065 angstroms, respectively. The sickle 3G+ conformation (ca. 51%) has an 

eclipsed 1,3-parallel acetoxyl interaction which was stabilized by an intramolecular 

hydrogen bond of 2.065 angstroms at dielectric constant 1.5 that is no longer observed at 

dielectric constant 3.5. Instead the sickle 3G- conformation having no obvious steric 

interaction, increased in percent population value from 8.1% at dielectric constant 1.5 to 

23.5% at dielectric constant 3.5. Compound 11 is the acetylated derivative of N,N’-

dimethyl-L-arabinaramide (9) and consequentially significant differences in the preferred 

conformations between the two compounds result at dielectric constant 3.5. At dielectric 

constant 3.5, 11 populated the sickle 3G- and 3G+ conformations (23% and 32% 

respectively) where as 9 did not. This suggests that intramolecular hydrogen bonding of 9 

was a significant stabilizing force and contributed to the population of conformations that 

were less energetically favored in the acetylated derivative, 11.  

 

 3.2.4  Simulations of L-Ribaramide (12), N,N’-Dimethylribaramide (13), 

Ribaric Acid (14), and 2,3,4-Tri-O-acetyl-N,N’-dimethylribaramide 

(15) – Class 4 
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 All compounds in Class 4 are similar to Class 2 in that they are meso compounds 

and have energetically equivalent (+/-) gauche interactions. Again only one conformation 

of the energetically equivalent (+/-) gauche interactions will be depicted.  

 

 

 

Ribaramide (12) 

 Six rotamers of ribaramide (12) were searched at dielectric constant 3.5, 6.0, and 

10.0 to a coefficient of variance of 1.82, 2.66, and 1.10 with an average of 336, 486, and 

633 conformations found, respectively. Figures 3.45 and 3.47 depict the lowest energy 

conformations from various backbone families for 12 at dielectric constants 3.5, 6.0, and 

10.0. The energy range of the lowest energy conformer from the least populated family 

relative to the lowest energy conformer was 2.291, 0.914, and 0.837 kcal/mol, 

respectively. The calculated percent populations are shown in Table 3.14. The number 

scheme for 12 is shown in Figure 3.44. 
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Figure 3.44  Numbering scheme for ribaramide (12) 
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Figure 3.45  The five lowest energy conformations 12a (2G-), 12b (2G+), 12c (2G-3G-), 

12d (2G+3G-), 12e (extended) and hydrogen bond length in angstroms at 

DIELEC 3.5 
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Figure 3.46  The three lowest energy conformations 12f (2G-), 12g (2G+), and 12h (2G-

3G-) at DIELEC 6.0 

 
Figure 3.47  The four lowest energy conformations 12i (2G-), 12j (2G+), 12k (2G-3G-), 

and 12l (2G+3G-) at DIELEC 10.0 
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Table 3.14  Calculated percent population for 12 at DIELEC 3.5, 6.0, and10.0 
 

DIELEC   2G-       2G+             2G-,3G-           2G+,3G-           Extended         PPA 
 
3.5            21.10(12a)  12.56(12b)   52.10(12c)       13.88(12d)         0.361(12e)       88.87 

 
6.0            45.84(12f)   8.311(12g)   45.84(12h)       0.000                  0.000               77.17 

 
10.0          18.69(12i)   9.848(12j)    54.88(12k)       11.76(12l)          0.000               79.45 
 
 Ribaramide (12) populated the sickle 2G-3G- conformation at approximately 50 

percent at dielectric constants 3.5, 6.0, and 10.0. The sickle 2G-3G- and the sickle 2G- 

conformations do not have obvious electrostatic and steric interactions. The sickle 2G- 

conformation was populated ~20 percent at dielectric constants 3.5 and 10.0, and 45.84% 

at dielectric constant 6.0. Because the preferred conformations did not have eclipsed 1,3-

parallel hydroxyl interactions it suggest that steric interactions are the driving force for 

the preferred conformations. Observation of a populated sickle 2G+3G- conformation is 

surprising in that it has an eclipsed 1,3-hydroxyl interaction and parallel amide dipoles in 

relatively close proximity, however this conformation comprises ~10% of the population 

which is quite insignificant.  

 In the computational results prior to ribaramide (12), excluding glutaramide (1) 

and N,N’-dimethylglutaramide, there was no direct observation of a parallel amide 

dipole-dipole interaction which was not surprising when the relative strength of 

electrostatic and steric interactions is considered. However at dielectric constant 3.5, the 

extended conformation of 12e, which has a very high energy, displays a twist of the C1-

C2 bond to give opposing amide dipoles. This result suggest that parallel amide dipole-

dipole interactions do influence the preferred conformation of the moleculed studied but 
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in such small magnitude that the main driving forces are steric and electrostatic 

interactions. 

 
N,N’-Dimethylribaramide (13) 
 
 Six rotamers of N,N’-dimethylribaramide (13) were searched at dielectric 

constant 3.5, 6.0, and 10.0 to a coefficient of variance of 1.00, 1.81, and 1.81 with an 

average of 375, 517, and 517 conformations found respectively. Figures 3.49 and 3.51 

depict the lowest energy conformations from various backbone families for 13 at 

dielectric constants 3.5, 6.0, and 10.0. The energy range of the lowest energy conformer 

from the least populated family relative to the lowest energy conformer was 1.697, 1.152, 

and 1.152 kcal/mol, respectively. The calculated percent populations are shown in Table 

3.15. The numbering scheme for 13 is shown in Figure 3.48. 
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Figure 3.48  Numbering scheme for N,N’-dimethylribaramide (13) 
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Figure 3.49 The four lowest energy conformations 13a (2G-), 13b (2G+), 13c (2G-3G-), 

and 13d (2G+3G-) and hydrogen bond length in angstroms at DIELEC 3.5 

 
 

Figure 3.50  The four lowest energy conformations 13e (2G-), 13f (2G+), 13g (2G-3G-), 

and 13h (2G+3G-) at DIELEC 6.0 
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Figure 3.51  The four lowest energy conformations 13i (2G-), 13j (2G+), 13k (2G-3G-), 

and 13l (2G+3G-) and hydrogen bond length in angstroms at DIELEC 10.0 

 
Table 3.15  Calculated percent population for 13 at DIELEC 3.5, 6.0, and10.0 

 
DIELEC     2G-             2G+ 2G-,3G-         2G+,3G-           PPA 
                    
3.5                8.301(13a)  10.46(13b) 70.10(13c)      11.14(13d)         91.33 
 
6.0                23.83(13e)  9.407(13f) 58.20(13g)      6.977(13h)         81.53 
 
10.0              25.35(13i)   6.106(13j) 54.56(13k)      13.99(13l)           76.97 

 
 N,N’-Dimethylribaramide (13) had the same conformational preferences as 

ribaramide (12) which overwhelmingly preferred the sickle 2G-3G- (ca. 60%) 

conformation and the sickle 2G- conformation (ca. 20%). As expected, the sickle 2G-3G- 

and sickle 2G- conformations do not have steric eclipsed 1,3-parallel hydroxyl 

interactions. This result is in agreement with the observation that 12 and 13 differ 

structurally in the same way as xylaramide (3) and N,N’-dimethylxylaramide (4), and L-

arabinaramide (8) and N,N’-dimethyl-L-arabinaramide (9), in that 12 has primary amide 
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groups and 13 has secondary N-methyl amido groups, and all prefer the same 

conformations as their corresponding partner.  12 and 13 differ from 3 and 4 by inverted 

stereochemistry on C3 and similarly significantly populated the sickle 2G- conformation 

which alleviates steric interactions between the hydroxyl on C2 and hydroxyl on C3. 

Compounds 12 and 13 also populated the sickle 2G-3G- conformation which does not 

have obvious electrostatic or steric interactions. The C3 epimers, 3 and 4, did not 

populate the sickle 2G-3G- conformation presumably due to an electrostatic interaction 

that is not readily observable. 

Ribaric Acid (14) 
 
 Six rotamers of ribaric acid (14) were searched at dielectric constant 3.5 to a 

coefficient of variance of 1.16 with an average of 698.5 conformations found. The four 

lowest energy conformations 14a-14d with an energy range of 1.893 kcal/mol are shown 

in Figure 3.53. The calculated percent populations for each conformation are given in 

Table 3.16. The number scheme for 14 is shown in Figure 3.52. 
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Figure 3.52  Numbering scheme for ribaric acid (14) 
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Figure 3.53 The five lowest energy conformations 14a (2G-), 14b (2G-3G-), 14c 

(2G+3G+), 14d (2G-,3G+) and 14e (extended) and hydrogen bond length in 

angstroms at DIELEC 3.5 

Table 3.16  Calculated percent population and percent population analyzed (PPA) for 14 at 

DIELEC 3.5 

DIELEC     2G-            2G-3G-         2G+3G+     2G-3G+      Extended      PPA 
                   
3.5       37.19(14a)  45.41(14b)   8.536(14c)   8.212(14d)  0.643(14e)    81.00  
 
 Ribaric acid (14) prefers the sickle 2G-3G- and sickle 2G- conformations like that 

of N,N’-dimethylribaramide (13). The sickle 2G-3G- conformation has an intramolecular 

hydrogen bond of 1.928 angstroms which further stabilizes a conformation devoid of 



Chapter 3 151

obvious steric interactions. The sickle 2G- conformation also does not have obvious 

steric or electrostatic interactions and is significantly populated (ca. 37%). These results 

indicate that both electrostatic interactions (sickle 2G-3G-) and steric interactions (sickle 

2G-) are influencing the conformational preference of 14 at dielectric constant 3.5.  

 

2,3,4-Tri-O-acetyl-N,N’-dimethylribaramide (15) 
 
 Six rotamers of 2,3,4-tri-O-acetyl-N,N’-dimethylribaramide (15) were searched to 

a coefficient of variance of 3.91 and 2.09 with an average of 2817 and 2886 

conformations found, respectively. Figures 3.55 and 3.56 depict the lowest energy 

conformations from various backbone families for 15 at dielectric constants 1.5 and 3.5. 

The energy range of the lowest energy conformer from the least populated family relative 

to the lowest energy conformer was 3.030 and 1.346 kcal/mol, respectively. The 

calculated percent populations are shown in Table 3.17. The number scheme for 15 is 

shown in Figure 3.54. 
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Figure 3.54  Numbering scheme for 2,3,4-tri-O-acetyl-N,N’-dimethylribaramide (15) 
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Figure 3.55  The two lowest energy conformations 15a (2G-) and 15b (2G-3G-) and 

hydrogen bond length in angstroms at DIELEC 1.5 

 

 
 
Figure 3.56 The two lowest energy conformations 15c (2G-) and 15d (2G-3G-) at 

DIELEC 3.5 

 
Table 3.17  Calculated percent population for 15 at DIELEC 1.5 and 3.5 
 
DIELEC 2G-                2G-3G-                      PPA 

 
1.5  0.261(15a)        99.74(15b)            98.10 
 
3.5 3.143(15c)        96.86(15d)            90.86 
 
 2,3,4-Tri-O-acetyl-N,N’-dimethylribaramide 15 is a C3 epimer of 2,3,4-tri-O-

acetyl-N,N’-dimethylxylaramide (7) and the acetylated derivative N,N’-

dimethylribaramide (13). Compounds 15 and 7 each overwhelmingly prefer the sickle 

2G-3G- conformation (>90%) with 15 having a stabilizing intramolecular hydrogen bond 

between amide hydrogen H18 and carbonyl oxygen O8 of 1.984 angstroms at dielectric 
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constant 1.5. The hydrogen bond present at dielectric constant 1.5 is not obvious at 

dielectric constant 3.5. This result is in agreement with the prior observations that with 

increasing dielectric constant, the influence of electrostatic interactions decreases. O-

Acetylated compounds 7, 11, and 15 preferred to a greater extent the conformations that 

were preferred by the unprotected derivative. This demonstrates that the while the 

unprotected hydroxyl groups did stabilize some conformations through electrostatic 

interactions, steric interactions were the main driving force determining the lowest energy 

conformations.  

 
 3.2.5  Comparison of 1H NMR and MM3(96) Proton Vicinal Coupling 

Constant Values  

 In prior MM3 and MM3(96) studies, the values of 1H NMR vicinal coupling 

constants were used to support the validity of the computational model. Although rarely 

was the calculated 1H NMR vicinal coupling constant value within 1 Hz of the 

experimentally derived 1H NMR vicinal coupling constant value, calculated results could 

be used to predict the preference for a sickle or extended conformation based upon the 

magnitude of the calculated coupling constant. These studies used 5-45 conformers 

within 1 kcal/mol of the lowest energy conformer to calculate the average vicinal 

coupling constant. In this report the entire conformational ensemble consisting of 

hundreds to thousands of individual conformers were included in the calculation of the 

average 1H NMR vicinal coupling constants. Moreover, computationally calculated 1H 

NMR vicinal coupling constants were calculated over a range of dielectric constants 

enabling the observation of coupling constant trends with varying dielectric constant. 

This is important due to the fact that no single dielectric constant simulates a particular 
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solvent. So while absolute values of vicinal coupling constants are of value for predicting 

the conformational preference of a molecule, comparison of the 1H NMR vicinal 

coupling constants at different dielectric constants can give important information as to 

the validity of the computational model and selection of the dielectric constant value that 

best models a particular molecule in polar or non-polar solvents.    

 Computationally calculated and 1H NMR vicinal coupling constants are given in 

Table 3.19. Xylaramide (3) the only compound with experimental 1H NMR coupling 

constant values not modeled at various dielectric constants had J13-14 and J14-15  value of 

4.53 and 4.53 and nearly identical experimental 1H NMR J13-14 and J14-15  value of 4.40 

and 4.40. Compounds 3, 4, 7, 9, 11, 13, and 15 had 1H NMR vicinal coupling constants 

and vicinal coupling constants calculated over a range of dielectric constants, 1.5-10.0. 

The J13-14 and J14-15 coupling constant values for compounds 3, 7, 11, and 13 had trends 

towards agreement with experimental 1H NMR vicinal coupling constant values 

indicating that the computational model with varying dielectric constant was becoming 

more accurate at modeling the molecule in the particular NMR solvent. Compounds 4 

and 15 did not have J13-14 and J14-15 values trending towards the 1H NMR J13-14 and J14-15 

values. However the calculated J13-14 and J14-15 (4.27) values were within 1 Hz of the 1H 

NMR coupling constants (3.66). N,N’-Dimethyl-L-arabinaramide (9) had a J13-14 value 

trending away and a J14-15 value trending towards the 1H NMR J13-14 and J14-15 values 

indicating the ability of MM3(96) to accurately model the (R) stereochemistry of the C(1) 

end of N,N’-dimethyl-L-arabinaramide and not the (R) stereochemistry of the C(5) end. 

Overall the computationally derived vicinal coupling constants generally agreed with the 

experimental 1H NMR vicinal coupling constants.  
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 The prior work in this study demonstrated the computationally calculated vicinal 

coupling constants are dependent on dielectric constant. In an effort to understand the 

dependence of 1H NMR vicinal coupling constant values on solvent dielectric constant, 

1H NMR spectra were recorded of 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (11) 

in chloroform-d, DMSO- d6,and D2O. Somewhat surprisely, the vicinal coupling 

constants of J13-14 and J14-15 had changed from 8.79, 2.20, respectively, in D2O to 4.40, 

7.33, respectively, in chloroform-d. Subsequently the chloroform-d sample was serially 

diluted with DMSO-d6 and a gradual change in vicinal coupling constant observed. This 

indicates that the conformational preferences of acyclic carbohydrate derivatives are 

highly dependent on solvent composition and solvent chemical properties. The 1H NMR 

experimental vicinal coupling constant data is reported in Table 3.18. 

 MM3(96) computational analysis of 11 agrees with the observed change in 

conformational preference with changing dielectric constant. Calculated average vicinal 

coupling constant values at dielectric constant 3.5 for J13-14 and J14-15, 2.38 and 4.75, 

respectively, agree best with the experimental results in an NMR solvent mixture of 

17.6% DMSO-d6 and 82.4% chloroform-d; J13-14 and J14-15, 6.59 and 4.40, respectively. 

Table 3.18 Changing 1H NMR vicinal proton coupling constant of 2,3,4-tri-O-acetyl-

N,N’-dimethyl-L-arabinaramide (11) with changing solvent composition 

Solvent   (DMSO-d6 / CDCl3)     Observed J13-14 , 14-15 (Hz)
 

                                                100%                           7.83, 2.74 
            50  /  50              7.33, 3.66 
     37.5  /  62.5               7.33, 3.66 
     27.3  /  72.7               7.33, 4.40 
                                                17.6  /  82.4                   6.59, 4.40 
                                                            100%                  4.40, 7.33 
 
            100% D2O                     8.79, 2.20 
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Table 3.19    MM3(96) Calculated vicinal proton coupling constants (Hz) for the total population of molecules (3)-(15) at 

dielectric constants  1.5, 3.5, 6.0, and 10.0. NMR Solvent - (a) D2O (b) CDCl3 

    DIELEC = 1.5 DIELEC = 3.5             DIELEC = 6.0             DIELEC = 10.0         Experimental NMR 
 
Compound    J13-14,  14-15   J13-14, 14-15   J13-14, 14-15                       J13-14, 14-15 J13-14, 14-15 
 
(3)a     -  5.33, 5.33 4.46, 4.46   4.43, 4.43 3.66, 3.66 
 
(4)a     -  4.27, 4.27  4.42, 4.42    4.56, 4.56 3.66, 3.66 
 
(5)a     -  4.53, 5.29  -       -  4.40, 4.40  
 
(6)     -  4.72, 4.72            -       -  - 
 
(7)b    5.85, 5.63  4.02, 3.98  -      -  5.13, 5.13 
 
(8)    -   3.56, 4.12 3.05, 4.10      2.87, 4.60 - 
 
(9)a    -   3.34, 4.09 2.83, 4.38      2.82, 4.93 7.33, 7.33 
 
(10)    -   -  4.70, 5.08      -  - 
 
(11)b   1.76, 4.65  2.38, 4.75 -      -  4.40, 7.33 
 
(12)    -   3.76, 3.72 3.99, 4.09      3.65, 3.65 - 
 
(13)a    -   3.16, 3.04 3.67, 3.50      3.65, 3.77 5.13, 5.13 
 
(14)  -  4.52, 4.80 -       -  - 
 
(15)b    2.81, 2.81  2.63, 2.73 -       -  5.84, 5.84
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Summary 
 

A Monte Carlo MM3(96) analysis of glutaramides (1 and 2), pentaramides (3, 4, 

7, 8, 9, 11, 12, 13, and 15), diacids (5, 10, and 14), and the dimethyl ester of xylaric acid 

(6) was carried out at multiple dielectric constants. Computationally calculated proton 

vicinal coupling constants were compared to experimental 1H NMR proton vicinal 

coupling constants which generally agreed with the 1H NMR proton vicinal coupling 

constant experimental results and were more accurate than results previously reported for 

similar compounds. Additionally, it has been demonstrated that the conformational 

preference of the relatively flexible acyclic carbohydrate derivative is dependent not only 

on the dielectric constant in computational simulations but the 1H NMR solvent 

composition as well. Therefore it has been demonstrated that any investigator modeling 

relatively flexible molecules should take special care to consider solvation effects. 

 Computational results for glutaramide (1) and N,N’-dimethylglutaramide (2) 

preferred sickle conformations agreed with previously reported quantum mechanical 

calculated results by Alman and Novarro.[5-6] For both 1 and 2 at dielectric constants 3.5, 

6.0, and 10.0 the sickle 3G- conformation was lower in energy than the extended or anti 

conformation. Unlike earlier reports, this study investigated the change in preferred 

conformation with increasing dielectric constant and found that at higher dielectric 

constants the extended conformation became increasingly populated. This suggests that at 

sufficiently high dielectric constants the influence of the parallel dipole-dipole interaction 

would no longer be significant and an extended or anti conformation would be preferred. 

The preferred conformations of compounds 3-15 vary depending upon 

stereochemistry and the strength of electrostatic and steric interactions at the simulated 
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dielectric constant. The unprotected molecules preferred conformations without 

destabilizing, eclipsing 1,3-parallel hydroxyl interactions. These conformations were then 

further stabilized by intramolecular hydrogen bonding between the unprotected hydroxyl 

groups. The lowest energy conformations of O-acetylated compounds 7, 11, and 15 at 

dielectric constant 1.5 had intramolecular hydrogen bonding between an amide hydrogen 

and carbonyl oxygen. However, upon increasing the dielectric constant to 3.5 the 

preferred conformations were less influenced by electrostatic interactions and more 

influenced by steric interactions. This was evidenced by the lack of obvious 

intramolecular hydrogen bonding in simulations at dielectric constant 3.5 and the greater 

preference for conformations without obvious steric interactions. 

Steric interactions were the main driving force behind the conformational 

preference of all the molecules studied. The primary steric interaction driving the 

conformational preference of unprotected and protected diamides, diacids, and the 

dimethyl ester of xylaric acid in this study was the alleviation of eclipsed 1,3-parallel 

hydroxyl/acetoxyl interactions.  

3.3 Experimental 
 

3.3.1 General Methods 
 

One dimensional 1H NMR spectra were obtained using a 400 MHz Varian Unity 

Plus spectrometer. Selective pulse experiments, 1D seltocsy and 1D selnosey, were 

performed on a 500 MHz Varian spectrometer. NMR spectra were processed using 

ACD/SpecManager 1D NMR software Version 9.13. Chemical Shifts were expressed in 

parts per million relative to tertiary-butyl alcohol (1.203 ppm) for D2O and 

tetramethylsilane (0.00 ppm) for DMSO-d6 and chloroform-d. All NMR solvents were 
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obtained from Cambridge Isotope Laboratories, Inc. All chemicals were purchased from 

Aldrich and used without further purification. Melting points were obtained with a 

Fisher-Johns melting point apparatus and are reported uncorrected. Elemental analyses 

were performed by Atlantic MicroLab Inc. Norcross, GA. 

3.3.2 Computational Experimental  

Alchemy 2000 was used to generate the coordinate files of the six rotamers of 

each molecule for input into MM3(96). The Alchemy 2000 default values were used 

except in the simulation of xylaric acid. An energy change optimization termination value 

of 0.00008*n was used for the computational analysis of xylaric acid. MM3(96) energy 

optimizations were performed using the block diagonal full matrix optimization option. 

Computations for O-acetylated molecules were performed at dielectric constant values of 

1.5 and 3.5. Computations of unprotected aldaramides, acids, and ester were performed at 

dielectric constant values of 3.5, 6.0, and 10.0. Computations of compounds 1 and 2 were 

carried out at dielectric constant value of 1.5, 3.5, 6.0, and 10.0.  

Force constants for the atom type sequence associated with an ester group 

adjacent to an amide (9-3-1-75) were input in the constant file of MM3(96) as V1= -

2.157, V2= -0.592 and V3= 0.466. The atom type sequence of an acetylated hydroxyl 

group adjacent to a carbonyl group (3-1-75-3) was input into the constant file as 

V1=0.7246, V2=-0.6033 and V3=0.2583. In carrying out simulations of acetylated 

molecules 7, 11, and 15, 10 torsion angles were varied; four associated with the aldaryl 

backbone corresponding to atom numbers 6-1-2-3, 1-2-3-4, 2-3-4-5, and 3-4-5-7, and six 

corresponding to the ester groups; 13-2-9-20, 2-9-20-23, 14-3-10-21, 3-10-21-24, 15-4-

11-22, and 4-11-22-25. The unprotected aldaramides, acids, and ester had 7 torsion 
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angles varied; four associated with the carbohydrate backbone (6-1-2-3, 1-2-3-4, 2-3-4-5, 

and 3-4-5-7) and three associated with the hydroxyl groups (13-2-9-20, 14-3-10-21, 

and15-4-11-22. The glutaramide compounds 1 and 2 had six torsion angles varied about 

the heavy atoms corresponding to atoms 17-6-1-2, 6-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-7, 4-

5-7-19. Temperature shaking was performed after the number of search steps had reached 

20 times the number of torsion angles varied and at a temperature of 10000 K. The 

number of steps within the temperature shaking routine equaled two times the number of 

torsion angles varied.  

The Monte Carlo program is written as a UNIX script that coordinates multiple 

subroutines with MM3(96). In general a coordinate file is input into the simulation. The 

program then chooses a random torsion angle from a user defined list of torsion angles to 

be varied. The torsion angle is varied between ± 60-300º and the resulting conformation 

is input into MM3(96) for energy minimization. After energy minimization the output 

conformation is analyzed to determine if the structure is a true local minima or a 

transition state by looking for imaginary vibrational frequencies. The output 

conformation is also compared to all other previously found conformers and deemed to 

be a new conformer if any one torsion angle differs from all other previously found 

conformers by more than 2.5º. If the conformation is new and a true local minima the 

information associated with that conformer is stored. This process is defined as a step. 

This new conformer is then used as the coordinate file to be input back into the 

simulation and is treated in exactly the same manner as before. After a user defined 

number of steps has occurred the simulation undergoes a temperature shaking process 

after the energy minimization step. The temperature shaking process enables the program 
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to vary more than one torsion angle and then the new conformer is input back into the 

simulation. The number of steps in the temperature shaking process is user defined and 

corresponds to the number of times a torsion angle is randomly selected and varied. Any 

unrealistic conformations that may be produced during this process fail to optimize in 

MM3(96) and are discarded. The simulation then inputs the input coordinate file in that 

step and the process is repeated. The simulation terminates itself after a user defined 

number of steps has been reached. 

The conformational ensemble generated by the Monte Carlo MM3(96) simulation 

was sorted in ascending order and the contribution of each conformer to the global 

population calculated according to a Boltzmann distribution. The vicinal coupling 

constants were calculated according to Haasnoot’s adaptation of the Karplus equation. 

3.3.3  Synthesis of Diamides 1, 2, 3, 4, 7, 10, 9, 11, 13, and 15 

Glutaramide (1) 

To a solution of glutaric acid (1.025 g, 7.761 mmol) in cold (ice bath) methanol 

(25 mL) was added thionyl chloride (1.024 g, 8.531 mmol) and the solution stirred at 

room temperature for 3 days. The solution was concentrated, the syrup residue was 

dissolved in cold (ice bath) methanol (10mL), and 7M methanolic ammonia (35 mL, 245 

mmol) added dropwise, followed by stirring of the reaction mixture at room temperature 

for 6 days. A solid was isolated by filtration, rinsed with cold methanol (2 x 1 mL) and 

dried to yield glutaramide. (1, 0.370 g, 2.842 mmol, 36.6%): mp 179 ºC, lit mp 175.[20] 

1H NMR (DMSO-d6) δ 7.25 (s, 2H), 6.75 (s, 4H), 2.04 (t, 2H, J  7.25 Hz), 1.71-1.64 (m, 

2H). Crystals were obtained by dissolving glutaramide (1) in methanol and allowing the 
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methanol to slowly evaporate. Anal. Calcd for C5H10N2O2 (130.15): C, 46.14; H, 7.74; 

N, 21.52. Found C, 46.18; H, 7.77; N, 21.48. 

N,N’-Dimethylglutaramide (2) 

To a solution of glutaric acid (6.010 g, 45.49 mmol) in cold (ice bath) methanol 

(30 mL) was added acetyl chloride (8.508 g, 109.0 mmol) and the reaction mixture was 

stirred 3 h. It was then concentrated to a tacky syrup, which was dissolved in cold (ice 

bath) 10.5M methylamine (80 mL, 850 mmol) in ethanol, and the solution stirred at room 

temperature for 3 days. The reaction mixture was concentrated under a stream of air to a 

volume of 10 mL. A solid was removed by filtration and the solid rinsed with cold 

methanol (2 x 1 mL) to yield N,N’-dimethylglutaramide (2, 1.606 g, 10.149 mmol, 

22.31%): mp 121 ºC, lit. mp 103 ºC.[19] 1H NMR (CDCl3) δ 7.73 (s, 2H), 2.55-2.54 (d, 

6H, J 4.43 Hz), 2.03 (t, 4H, J 8.84 Hz), 1.73-1.65 (m, 2H). Crystals were obtained by 

dissolving N,N’-dimethylglutaramide (2) in methanol and allowing the methanol to 

slowly evaporate. Anal. Calcd for C7H14N2O2 (158.20): C, 53.15; H, 8.92; N, 17.71. 

Found C, 53.15; H, 8.93; N, 17.62. 

Xylaramide (3) 

To a solution of xylaric acid (1.016 g, 5.639 mmol) in cold (ice bath) methanol 

(25 mL) was added thionyl chloride (0.7380 g, 6.203 mmol) and the solution was stirred 

at room temperature for 3 h. The reaction mixture was concentrated to tacky syrup, 

which was then dissolved in cold (ice bath) methanol (10 mL), and 7M ammonia (50 

mL, 350 mmol) in methanol was added dropwise to the solution, the resulting reaction 

mixture was stirred at room temperature for 2 h, solid was removed by filtration and 

rinsed with cold methanol (2 x 2 mL) to yield xylaramide (3, 0.6725 g, 3.775 mmol, 
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67.0%), 1H NMR (DMSO-d6) δ 7.23 (s, 2H), 7.16 (s, 2H), 3.98-3.97 (d, 2H, J 3.97 Hz), 

3.88 (t, 1H, J 5.29 Hz). 13C NMR (D2O): 178.30, 73.23, 73.00 ppm. Crystals were 

obtained by dissolving xylaramide (3) in water and allowing the water to slowly 

evaporate. mp 191 – 193 ºC. lit mp 180 ºC.[21]  Anal. Calcd for C5H10N2O5 (178.14): C, 

33.71; H, 5.66; N, 15.73. Found C, 33.47; H, 5.76; N, 15.33. 

N,N’-Dimethylxylaramide (4) 

To a solution of xylaric acid (2.056 g, 11.41 mmol) in cold methanol (10 mL) 

was added acetyl-chloride (0.3394 g, 2.852 mmol) and the solution stirred for 3 h. The 

reaction mixture was concentrated to syrup which was dissolved in cold (ice bath) 

methanol (15 mL). Methylamine 10.5M (5.209 g, 0.1677 mmol) in ethanol was added 

dropwise to the reaction and stirred for 3 h. A solid was removed by filtration and rinsed 

with cold methanol (2 x 5 mL) to yield N,N’-dimethylxylaramide (4, 1.737 g, 8.425 

mmol, 73.8%): mp 191 -194 ºC, lit mp not available. 1H NMR (D2O) δ 4.266-4.256 (d, 

2H, J 3.66 Hz), 4.097-4.079 (t, 1H), 2.749 (s, 6H). 13C NMR (D2O): 175.55, 73.34, 26.58 

ppm. Crystals were obtained by dissolving N,N’-dimethylxylaramide (4) in water and 

allowing the water to slowly evaporate. Anal. Calcd for C7H14N2O5 (206.2): C, 40.77; H, 

6.84; N, 13.59. Found C, 40.69; H, 6.84; N, 13.40. 

2,3,4-Tri-O-acetyl-N,N’-dimethylxylaramide (7) 

To a solution of N,N’-dimethylxylaramide (0.2442 g, 1.1849 mmol) in pyridine 

(4 mL) was added acetic anhydride (5.0 mL, 52.93 mmol) and the solution warmed to 50 

°C for 3 h. To the reaction mixture was added cold (ice bath) water (7 mL) with stirring. 

The mixture was extracted with chloroform (3 x 4 mL) and the organic fractions 

combined. The organic fractions were concentrated under a stream of nitrogen and dried 
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overnight to yield crystalline 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide (7, 0.2731 g, 

0.5779 mmol, 85.3%): mp 171 ºC, lit. MP not available 1H NMR (CDCl3) δ 6.26 (s, 2H), 

5.70 (t, 1H, J 5.11 Hz), 5.40-5.38 (d, 2H, J 5.53 Hz), 2.81 (s, 3H), 2.80 (s, 3H), 2.16 (s, 

6H), 2.05 (s, 3H). 13C NMR (CDCl3): 169.44, 166.85, 71.86, 70.43, 26.15, 20.65, 20.43 

ppm. Crystals were obtained by dissolving 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide 

(7) in water and allowing acetone to diffuse into the water.Anal. Calcd for C10H14N2O11 

(332.31): C, 46.99; H, 6.07; N, 8.43. Found C, 46.93; H, 6.12; N, 8.33. 

L-Arabinaramide (8) 

To a mixture of disodium L-arabinarate (2.9858 g, 13.325 mmol) in cold (ice 

bath) methanol (10 mL) was added acetyl chloride (4.8129 g, 67.96 mmol) dropwise and 

the reaction mixture stirred for 3 h. A white solid precipitated and was removed by 

centrifugation. The filtrate was concentrated, the syrupy product dissolved in cold (ice 

bath) methanol (10 mL), and 7M ammonia (10 ml, 69.29 mmol) in methanol was added 

dropwise. The reaction mixture was stirred 4 h and a white solid was removed by 

filtration, the solid was rinsed with cold methanol (2 x 1 mL), and dried overnight to 

yield L-arabinaramide (8, 0.9134 g, 5.1273 mmol, 64.10%): mp 196.5–200.5 ºC, lit. mp 

188 ºC.[22] 1H NMR (D2O) δ 4.47 (d, 1H, J 1.06 Hz), 4.31 (d, 1H, J 7.60 Hz), 4.17-4.14 

(dd, 1H).  

N,N’-Dimethyl L-Arabinaramide (9) 

To a mixture of disodium L-arabinarate (4.198 g, 18.73 mmol) in methanol (10 

mL) was added acetyl chloride (5.425 ml, 5.995 g, 76.81 mmol) dropwise and the 

reaction mixture was stirred for 3 h. A white solid was removed by centrifugation, the 

filtrate was concentrated, the syrupy residue dissolved in cold (ice bath) methanol (10 
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mL), and methylamine (10.5 M,15 mL, 127.5 mmol) in ethanol was dropwise. The 

reaction mixture was stirred 16 h, the solution was concentrated, the resulting solid dried, 

and stirred with methanol (5 mL) for 1 h. The solid was removed by filtration and rinsed 

with cold methanol (2 x 1 mL) to yield N,N’ dimethyl L-arabinaramide (9, 1.4456 g, 

6.953 mmol, 37.1%): mp 194 – 196 ºC, Lit. MP not available. 1H NMR (D2O) δ 4.316 (s, 

1H), 4.172-4.154 (d, 1H, J 7.33 Hz), 4.044-4.026 (d, 1H, J 7.33 Hz), 2.749 (s, 6H). 

Crystals were obtained by dissolving N,N’-dimethyl- L-arabinaramide (9) in warm water 

and allowing the water allowed to slowly evaporate. 

2,3,4-Tri-O-acetyl-N,N’-dimethyl L-arabinaramide (11) 

To a mixture of N,N’-dimethyl L-arabinaramide (0.3510 g, 1.6875 mmol) in 

pyridine (4 mL) was added acetic anhydride (5.0 mL, 52.93 mmol) dropwise and the 

solution warmed to 50 °C for 3 h. Cold (ice bath) water (7 mL) was added dropwise and 

the solution was concentrated under a stream of nitrogen and then dried under vacuum 

overnight. The resulting solid was stirred with water (1.5 mL) for 30 min, isolated by 

filtration, and dried to yield 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (11, 

0.3516 g, 1.058 mmol, 62.74%): mp 209 – 210 ºC, Lit. MP not available 1H NMR 

(CDCl3) δ 6.74 (s, 1H), 6.46 (s, 1H), 5.67-5.64 (d, 1H), 5.48-5.46 (d, J 7.99 Hz, 1H), 

5.35-5.34 (d, 1H, J 4.79 Hz), 2.85-2.83 (q, 6H), 2.21 (s, 3H), 2.12 (s, 3H), 2.06 (s, 3H). 

13C NMR (CDCl3): 169.48, 169.27, 168.65, 166.91, 166.81, 71.71, 70.57, 70.50, 26.18, 

26.09, 20.62, 20.56 ppm. Crystals were obtained by dissolving 2,3,4- tri-O-acetyl-N,N’-

dimethyl- L-arabinaramide (11) in warm methanol and allowing the diffusion of acetone 

into the methanol. Anal. Calcd for C13H20N2O8 (332.31): C, 46.99; H, 6.07; N, 8.43. 

Found C, 47.03; H, 6.07; N, 8.41. 
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N,N’-Dimethylribaramide (13) 

To a solution of disodium ribarate (4.839 g, 21.60 mmol) in cold (ice bath) 

methanol (30 mL) acetyl chloride (4.61 mL, 5.086 g, 64.79 mmol) was added dropwise 

and the reaction mixture was stirred for 3 h. A white solid was removed by filtration, the 

filtrate was concentrated, the syrupy residue dissolved in cold (ice bath) methanol (10 

mL), and methylamine (10.5 M, 11.01 mL, 86.39 mmol) in ethanol was added dropwise. 

The reaction mixture stirred at room temperature overnight, a white solid was removed 

by filtration, dried overnight, stirred with methanol (5 mL), separated by filtration, rinsed 

with methanol (2 x 1 mL), and dried to yield N,N’-dimethylribaramide (13, 1.580 g, 

7.665 mmol, 35.5%): mp 165-168 ºC, lit. mp not available 1H NMR (D2O) δ 4.233 (d, 

1H, J 5.13 Hz), 4.112 (t, 2H, J 5.13 Hz), 2.73 (s, 6H). 13C NMR (D2O): 175.48, 74.37, 

73.04, 26.55 ppm. Crystals were obtained by dissolving N,N’-dimethylribaramide (13) in 

water and allowing the water to evaporate. Anal. Calcd for C7H14N2O5 (206.2): C, 40.77; 

H, 6.84; N, 13.59. Found C, 40.86; H, 6.83; N, 13.58. 

2,3,4-Tri-O-acetyl-N,N’-dimethylribaramide (15) 

To a mixture of N,N’-dimethylribaramide (1.249 g, 6.2319 mmol) in pyridine (5 

mL) was added acetic anhydride (11.78 mL, 124.64 mmol) dropwise and the solution 

was stirred overnight. Cold (ice bath) water (15 mL) was added dropwise and the 

mixture stirred for 30 min. The solvent was removed under a stream of nitrogen, the 

residue dissolved in water (3 mL), and the aqueous solution extracted with chloroform (3 

x 10 mL). The organic fractions were combined, concentrated under a stream of nitrogen 

and dried overnight to yield 2,3,4-tri-O-acetyl-N,N’-dimethylribaramide (15, 2.048 g, 

6.163 mmol, 79.89%): mp 166.25-169.25 ºC, lit. mp not available. 1H NMR (CDCl3) δ 
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6.33 (s, 2H), 5.66 (t, 1H, J 5.86 Hz), 5.45 (d, 2H, J 5.86 Hz), 2.81 (s, 3H), 2.80 (s, 3H), 

2.13 (s, 6H), 2.03 (s, 3H). 13C NMR (CDCl3): 169.23, 166.73, 71.18, 70.65, 26.11, 20.68 

ppm. Anal. Calcd for C10H14N2O11 (332.31): C, 46.99; H, 6.07; N, 8.43. Found C, 47.17; 

H, 5.97; N, 8.54. 
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4. X-Ray Crystal Analysis of  N,N’-dihexylglutaramide, N,N’-

dimethylglutaramide, N,N’-dimethylxylaramide, 2,3,4-tri-O-acetyl-

N,N’-dimethylxylaramide, N,N’-dimethyl-L-arabinaramide, 2,3,4-tri-O-

acetyl-N,N’-dimethyl-L-arabinaramide, and N,N’-dimethylribaramide 

monohydrate 

4.1 Introduction 

 X-ray crystal analysis is an analytical technique that allows for the direct 

observation of atoms within a molecule. Bond lengths and angles, crystal packing, 

chemical structure, and absolute configuration are all provided through x-ray 

crystallography analysis. There are two types of x-ray crystallography, single crystal and 

powder. Single crystal x-ray crystallography requires a crystal of good size and quality. 

Obtaining quality single crystals can be quite easy for some compounds and nearly 

impossible for others. All x-ray data presented here were obtained from single crystals. In 

an effort to further support the validity of the computational results presented in Chapter 

3 and to gain a better understanding of the forces driving the conformational preferences 

of the aldaryl monomer unit in polyhydroxypolyamides (PHPAs), x-ray crystals of 

acyclic molecules 1-7 were obtained, analyzed, and compared for structural detail. Those 

compounds are: N,N’-dihexylglutaramide (1), N,N’-dimethylglutaramide (2), N,N’-

dimethylxylaramide (3) 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide (4), N,N’-dimethyl-

L-arabinaramide (5), 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (6), and N,N’-

dimethylribaramide monohydrate (7), Figure 4.1. Glutaramides 1 and 2 were chosen 

because parallel amide dipoles have been shown to influence the conformational 

preference of small molecule diamides. Additionally, it was of interest to determine how 
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different terminal N- groups, hexyl and methyl, respectively, influenced the 

conformational preference of these molecules. Diamides 3, 5, and 7 are unprotected 

acyclic aldaramides that represent all possible stereochemical arrangements in 

hydroxylated pentaramides. Pentaramides 4 and 6 are the acetylated derivatives of 3 and 

5, respectively, and are of interest because the acetate groups prevent intramolecular 

hydrogen bonding between hydroxyl groups thereby allowing steric interactions to 

dominate the conformation preference. 

N(CH2)5CH3H3C(H2C)5N

O O

HNCH3H3CNH

O O
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O O

OH
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OH

N,N'-dimethylribaramide (7)  

Figure 4.1    Diamides 1-7 
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 Single crystals suitable for x-ray crystallographic analysis are in a regular 

repeating three dimensional arrangement of atoms, entitled a unit cell. The unit cell has 

six parameters; a, b, and c which are the lengths of the unit cell, and α, β, and γ which are 

the angles of the unit cell, Figure. 4.2. Crystalline 1, 2, 4, 5, 7 were determined to have 

monoclinic crystal systems corresponding to axes of unequal length and angles of α = γ = 

90º; β ≠ 90º. Compounds 3 and 6 had orthorhombic crystal systems with axes of unequal 

length but of equal α, β, γ, angles = 90º. The space group of a crystal is a mathematical 

description of the crystal structure’s symmetry and is not the same as the internal 

molecular symmetry such as is present in meso compounds. The crystal of the meso 

compound 4 is a good example in which the molecule has symmetry through a C(3) axis 

but the crystal does not. Space groups, the orientation of the molecule within the unit cell, 

result as a combination of translational symmetry such as lattice centering and the point 

group symmetry operations of reflection, rotation, and rotoinversion. Interest lies in the 

overall conformation and hydrogen bonding network of each crystal and as such there 

will be no discussion of a crystal’s space group. Space group data is listed along with the 

unit cell details in Table 4.1. 

 

 Figure 4.2 An example of a unit cell showing its six defining parameters 
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4.2 Results and Discussion 

 For all compounds examined (1-7), all individual bond lengths and angles fell 

within expected values. The results and discussion of each crystal’s conformation and 

hydrogen bonding network are presented.  

 4.2.1 X-ray Crystal Analysis of Diamides 1-7 

N,N’-Dihexylglutaramide (1) 

 Figure 4.3 shows the geometry of N,N’-dihexylglutaramide (1), which forms 

monoclinic crystals and has a 2-fold axis of symmetry through the middle of the glutaryl 

segment at C(3), Figure. 4.3. The unit cell details are given in Table 4.1. 

 

Figure 4.3 The geometry of the glutaramide portion of 1 showing an axis of symmetry 

through C(3) 

 The geometry of one half of 1 showing atom labeling and thermal ellipsoids at 30 

percent probability is presented in Figure 4.4. 
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Figure 4.4     The geometry of one half of 1 showing atom labeling scheme and thermal  

ellipsoids at the 30 percent probability level 

 The glutaryl portion of 1 is in a sickle conformation with C(1)-C(2)-C(3)-C(2’) in 

a gauche arrangement with a torsion angle of 68.18º. The methylene carbons of the hexyl 

portion, shown in Figure 4.4, are all in the expected trans (anti) conformational 

arrangement. The amide functionality is in a planar conformation about the atoms C(1)-

C(2)-O(1)-N(1) where the average deviation from the least squares plane is 0.005Å. 

 Figure 4.5 shows the hydrogen bonding arrangement found in the crystal of 1 

which is simple in that the crystal symmetry results in one hydrogen bond between N(1)-

(N)H···O(1) 2.07Å with an angle of 171.1º. This generates doubly hydrogen bonded 

molecules stacked parallel to the c-axis.  
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Figure 4.5 Hydrogen bonding schematic of N,N’-dihexylglutaramide (1) 

N,N’-Dimethylglutaramide (2) 

 Figure 4.6 shows the geometry of monoclinic crystal N,N’-dimethylglutaramide 

(2). The asymmetric unit of 2 contains half a molecule, with the other half generated by 

the same crystallographic 2-fold axis through C(3) as 1, shown in Figure 4.4. The unit 

cell details are given in Table 4.1. 

 The overall conformation of the glutaryl unit of 2 is also in a sickle (gauche) 

conformation with torsion angle of 67.83º about C(1)-C(2)-C(3)-C(2’). The amide 

functionality of C(1)-C(2)-N(1)-O(1) atoms are planar with the average deviation from 

the least squares plane of 0.0077Å. The amide functionality, C(1’)-C(2’)-N(1’)-O(1’), 

corresponding to the other half of the molecule generated about the crystallographic 2-

fold axis through C(3) is identical. As with 1, the hydrogen bonding of 2 is also simple in 

that there is only one hydrogen bond between N(1)-(N)H···O(1) 2.03Å with an angle of 

172º (Figure 4.6).  
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Figure 4.6  Hydrogen bonding schematic of N,N’-dimethylglutaramide (2) 

 

 

N,N’-Dimethylxylaramide (3) 

 The geometry of N,N’-dimethylxylaramide (3) showing atom labeling and thermal 

ellipsoids at the 40 percent probability level is shown in Figure 4.7. Compound 3 forms 

orthorhombic crystals with a mirror plane through H(3)-C(3)-O(3)-H(4).  
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Figure 4.7  The geometry of N,N’-dimethylxylaramide (3) showing atom labeling 

scheme and thermal ellipsoids at the 40 percent probability level 

 The xylaryl unit of 3, C(1)-C(2)-C(3)-C(2)’-C(1)’, is in an extended 

conformation, with O(2) and O(3) atoms in a gauche relationship with a torsional angle 

of 58.97º. The planarity of the amide functionality of O(1)-C(1)-C(2)-N(1) is illustrated 

by an average deviation from the least squares plane of +/-0.001Å and is identical to the 

corresponding O(1’)-C(1’)-C(2’)-N(1’) amide functionality. 

 The hydrogen bonding scheme for 3 is shown in Figure 4.8 and is more complex 

than observed for both 1 and 2 due to the presence of pendant hydroxyl groups. There is 

one 2.124Å bifurcated hydrogen bond with O(2) and O(2)’ of one molecule bonded to 

H(4) of a second molecule of 3 across the mirror plane. O(1) is involved in two separate 

hydrogen bonding interactions of an adjacent molecule, a very strong interaction to O(2)-

H(2)···O(1), 1.87Å and a weaker interaction with N(1)-H(N) ···O(1), 2.24Å. 
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Figure 4.8  Hydrogen bonding schematic of N,N’-dimethylxylaramide (3) 

 

2,3,4-Tri-O-acetyl-N,N’-dimethylxylaramide (4) 

 The structure of monoclinic crystalline 2,3,4-tri-O-acetyl-N,N’-

dimethylxylaramide (4) is shown in Figure 4.9. Despite being a meso compound, 4 has no 

internal crystallographic symmetry as observed in the crystal structures of 1-3. The unit 

cell details for 4 are given in Table 4.1.  
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Figure 4.9  The geometry of 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide (4) showing 

atom labeling scheme and thermal ellipsoids at the 40 percent probability 

level 

 Unlike its free hydroxyl group precursor 3, which is in an extended (anti) 

conformation, O-acetylated compound 4 adopts a sickle (3G+) conformation 

corresponding to an approximately +120º rotation around the C(3)-C(4) bond. The 

xylaryl unit is bent around three torsion angles, N(1)-C(1)-C(2)-C(3) at 94.32º, C(2)-

C(3)-C(4)-C(5) at 61.62º, and C(3)-C(4)-C(5)-N(2) at -83.29º. The O(2) and O(4) acetate 

oxygens are in a gauche relationship as are the O(4) and O(6) acetate oxygens, with 

torsion angles of -61.92º and -58.31º, respectively. The planarity of the amide 
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functionalities of C(1)-O(1)-N(1)-C(2) and C(5)-O(8)-C(4)-N(2) are illustrated by an 

average deviation from the least squares plane of +/-0.03Å and +/-0.01Å, respectively. 

 The hydrogen bonding of crystalline meso 4 (Figure 4.10) is unlike that of meso 3 

due to the asymmetry present within the molecule’s bond geometries. There are two 

distinct amide hydrogen bonds, the stronger [N(2)-H(2)···O(8), 2.18Å] and more linear 

bond at 151º, and the weaker [N(1)-H(1)···O(1), 2.25Å] and the less linear bond at 138º.   

 

Figure 4.10   Hydrogen bonding schematic of 2,3,4-tri-O-acetyl-N,N’-

dimethylxylaramide (4) 
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N,N’-Dimethyl-L-arabinaramide (5) 

 The geometries of N,N’-dimethyl-L-arabinaramide (5) showing atom labeling and 

thermal ellipsoids at the 40 percent probability level is shown in Figure 4.11. 

 

 

 

 

 

 

 

Figure 4.11  The geometry of N,N’-dimethyl-L-arabinaramide (5) showing atom 

labeling and thermal ellipsoids at the 40 percent probability level 

 Compound 5 forms monoclinic crystals and is in an extended conformation 

having torsion angles of 178.43º and -175.03º corresponding to C(1)-C(2)-C(3)-C(4) and 

C(2)-C(3)-C(4)-C(5), respectively. The extended (anti) conformation is also manifested 

in the relative orientations of the substituents. The O(2) and O(3) hydroxyl group 

oxygens are gauche with a torsion angle of -66.13º whereas the O(3) and O(4) hydroxyl 

group oxygens are in an anti relationship with a torsion angle of -175.08º. The planarity 

of the amide functionalities of C(1)-O(1)-N(1)-C(2) and C(5)-O(5)-C(4)-N(2) are 

illustrated by an average deviation from the least squares plane of +/-0.008Å and +/-

0.0004Å. 
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 Figure 4.12 shows the hydrogen bonding scheme of 5. The N(1)-H(1)···O(2) 

intramolecular interaction has an uncharacteristically low bond angle of 110.49º relative 

to a hydrogen bond length of 2.090Å, signifying a weak hydrogen bond interaction.  

 

Figure 4.12  Hydrogen bonding schematic of N,N’-dimethyl-L-arabinaramide (5) 

 

There are three amide hydrogen bonding interactions, two intermolecular amide 

hydrogen bonds [N(2)-H(8)···O(5) and N(1)-H(1)···O(3)] and one intramolecular [N(1)-

H(1)···O(2)]. The bond length and angles of these hydrogen bonds are [2.044Å, 148.62º], 
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[2.045Å, 149.86º], and [2.090Å, 110.49º], respectively. The three hydroxyl groups 

hydrogens are also intermolecularly hydrogen bonded, O(3)-H(5)···O(4), O(4)-

H(7)···O(1), O(2)-H(3)···O1, with hydroxyl hydrogen bond lengths and angles of 

[1.878Å, 176.24º], [1.783Å, 166.02º], and [1.894Å, 176.862º], respectively. 

2,3,4-Tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (6) 

 The geometry of crystalline 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (6) 

is shown in Figure 4.13.  

 

Figure 4.13  The geometry of 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (6)  

showing atom labeling and thermal ellipsoids at the 40 percent probability 

level 

 The arabinaryl carbon backbone of 6 is similar to that of 5 and is extended with 

torsion angles of 177.39º for C(1)-C(2)-C(3)-C(4) and 178.42º for C(2)-C(3)-C(4)-C(5). 



Chapter 4 185

The O(2) and O(4) acetate oxygens are gauche with a torsion angle of 63.96º and the 

O(4) and O(6) acetate oxygens atoms are anti, with a torsion angle of -176.77º. The 

planarity of the amide functionalities of C(1)-O(1)-N(1)-C(2) and C(5)-O(8)-C(4)-N(2) is 

illustrated by an average deviation from the least squares plane of +/-0.0002Å and +/-

0.025Å, respectively. 

 As observed with diastereoisomer 4, compound 6 has two distinct hydrogen 

bonds, a stronger [N1-H1···O8, 2.115Å] bond and a weaker [N2-H5···O1, 1.963Å] bond, 

Figure 4.14. The stronger, shorter hydrogen bond is the more linear of these bonds with a 

hydrogen bond angle of 176º, compared to 158º for the weaker and longer hydrogen 

bond. 

 

Figure 4.14  Hydrogen bonding schematic of 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-

arabinaramide (6) 
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N,N’-dimethylribaramide monohydrate (7) 

 The geometry of monoclinic crystalline N,N’-dimethylribaramide monohydrate 

(7) showing atom labeling and thermal ellipsoids at the 40 percent probability level is 

shown in Figure 4.15. Unlike the conformationally extended diastereoisomer meso 3, 

meso compound 7 has no internal crystallographic symmetry and is in a sickle (3G-) 

(gauche) conformation.   

 

Figure 4.15  The geometry of 7 showing atom labeling and thermal ellipsoids at the 40 

percent probability level 

 The ribaryl carbon backbone of 7 is in a sickle (3G-) (gauche) conformation with 

torsion angles of 177.39º for C(1)-C(2)-C(3)-C(4) and -74.3º for C(2)-C(3)-C(4)-C(5). 

The O(2) and O(3) hydroxyl group oxygens are anti with a torsion angle of -176.53º and 

the O(3) and O(4) hydroxyl group oxygens atoms are gauche, with a torsion angle of -
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69.95º.  Figure 4.16 shows the hydrogen bonding schematic of 7. Compound 7 has one 

distinct amide hydrogen bond [N1-H1···O6, 2.049Å, 168.59º] bonded to the oxygen of an 

adjacent water molecule. The intermolecular hydrogen bonding of compounds 3 and 7 is 

similar in that all hydroxyl group hydrogens are intermolecularly hydrogen bonded. 

Compounds 3 and 7 are also similar in that O(3) acts as a hydrogen bond donor of a 

bifurcated H(4), although the acceptors are two hydroxyl group oxygens in 3 and a 

hydroxyl group oxygen [O3-H5···O2, 2.647Å, 109.88 º] and carbonyl carbon [O3-

H5···O5, 2.248Å, 150.05 º] in 7. The hydroxyl groups substituents on C(2) and C(4) are 

intermolecularly hydrogen bonded to a hydroxyl group oxygen acceptor [O2-H3···O3, 

1.873Å, 170.80º] and a carboxyl oxygen acceptor [O4-H7···O1, 2.049Å, 151.61º]. The 

carboxyl oxygens on C(1) and C(5) hydrogen bond to an adjacent water molecule, [O6-

H11···O1, 1.897Å, 173.27º] and [O6-H12···O5, 1.992Å, 171.41º], respectively. Thus a 

water molecule acts as a hydrogen bond bridge between the carboxyl oxygen on C(1) of 

one molecule and the carbonyl oxygen on C(5) of an adjacent molecule.  

 

Figure 4.16 Hydrogen bonding schematic of N,N’-dimethylribaramide monohydrate 

(7) 
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 4.2.2 Crystal Packing 

Due to the presence of hydroxyl groups on 3 and 5 there is more potential for hydrogen 

bonding between adjacent molecules than between those of their acetates derivatives, 

compounds 4 and 6, respectively. This additional hydrogen bonding leads to more 

efficient packing in the crystals as displayed in the densities of each; 3 (1.531g cm-3), 5 

(1.452g cm-3), 7 (1.420g cm-3), 4 (1.369g cm-3), 6 (1.286g cm-3). Because of the absence 

of hydroxyl and acetate groups there is decreased potential for hydrogen bonding within 

1 (1.125g cm-3) and 2 (1.242g cm-3) relative to 3, 5, 4, and 6.  

  4.2.3 Analysis and Comparison of Crystalline N,N’-Dimethylglutaramide 

and N,N’-Dihexylglutaramide  

 Applying quantum mechanical calculations, Durig and coworkers established that 

the experimental energies for the trans (anti)-gauche (T-G) rotamers of butane differed 

from 0.5-0.9 kcal/mol[1] and that the T conformation is favored by 0.75 kcal/mol.[2] The 

same conformational result was found for n-pentane where the TT-to-GG energy change 

experimentally ranges from 0.46[3] to 0.56[4] kcal/mol, compared to 0.76 kcal/mol derived 

from quantum mechanical calculations.[5] An investigation of a series of X-ray 

crystallographic studies of oligomeric models of polyamides indicated that the central 

methylene carbons of the diacyl unit usually adopted a trans (anti) conformation.[6] This 

was reinforced in early studies of crystalline phase Nylon 6,6 that detailed the 

conformational preference for the methylene carbons of the adipoyl unit was an all trans 

(anti) conformation based upon a comparison of results from molecular dynamics 

computer simulations and experimental NMR spectroscopy.[7] However, Navarro et. al. 

established that the preference for an all trans (anti) conformation may decrease for some 
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acyclic diamides.[6-8] When fewer than six methylene carbons are present in the diacyl 

unit, the repulsive interactions of the amide groups can induce folding of the molecule 

into a gauche conformation resulting in a more favorable orientation of the dipoles 

despite the gauche orientation of the methylene carbon atoms. Navarro and co-workers 

performed ab Initio HF/6-31G* quantum mechanical calculations on the glutaramido 

portion of 1 and found the TTTTTT or fully extended conformation (anti) to be less 

stable than the TTGGTT or folded conformation by 2.7 kcal/mol.[6] Our findings are 

consistent with these observations. Crystalline 1 and 2 were observed to be in the 

TTGGTT or a folded (sickle) conformation, Figure 4.17.  

 

Figure 4.17 Dimethylglutaramide in a TTGGTT or sickle conformation 

The hydrogen bonding network was able to accommodate the preferred folded 

conformation and is essentially the same for both 1 and 2, with marginally shorter N-H 

and H···O distances for the 2. This gives rise to closely similar b and c axes, with the 

extra chain length for 2 being accommodated by the doubling of the a axis length. 

Crystals of 1 and 2 are in a conformational arrangement in agreement with computed 

quantum mechanical and molecular mechanic calculations, the latter being reported in 
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Chapter 3 of this dissertation. The force driving the conformational preference in these 

calculations was the energetically favorable separation of parallel dipoles rather than the 

interactions of backbone methylene units.  

 4.2.4  Analysis of Crystalline N,N’-Dimethylxylaramide (3), N,N’-Dimethyl 

L-arabinaramide (5), N,N’-Dimethylribaramide Monohydrate (7), 2,3,4-Tri-O-

acetyl-N,N’-dimethylxylaramide (4), and 2,3,4-Tri-O-acetyl-N,N’- dimethyl L-

arabinaramide (6) 

 It has been suggested that unfavorable steric interactions resulting from hydroxyl 

group oxygens that are in eclipsed 1,3-parallel arrangements cause acyclic carbohydrates 

in an extended (anti) conformation to undergo a 120º rotation about a C-C bond to 

alleviate this interaction resulting in a sickle (gauche) conformation.[9] For such 

molecules these interactions are similar to a 1,3-syn-diaxial interaction (1.9 kcal/mol) of 

hydroxyl groups in chair conformations of diaxial cis-cyclohexane-1,3-diol.[10] In 

reference to simple monosaccharide derivatives, vicinal coupling constant data were used 

by Sweeting et al. as a means of computational comparison of six per-acetylated 

hexonitriles.[11] The hexononitriles conformationally preferred an extended (anti) 

conformation except when an eclipsed 1,3- parallel interaction was present, as with 

penta-O-acetyl-D-glucononitrile, wherein a sickle (gauche) conformation was preferred. 

Hexa-O-acetyl-D-glucitol also preferred a sickle conformation as determined from 1H 

NMR conformational studies carried out by Angyal and co-workers.[12] Molecular 

modeling of N,N’-dimethylxylaramide and N,N’-dihexyl xylaramide using MacroModel 

V2.0[13] found, for both molecules, that two sickle conformations were lower in energy 

than the extended conformation. The sickle conformations allowed for the alleviation of 
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the eclipsed 1,3-parallel interaction between hydroxyls at C(2) and C(4). Compounds 3 

and 4 have eclipsed 1,3-hydroxyl and acetate groups, respectively, attached at C(2) and 

C(4). An extended conformation was observed in crystalline 3, whereas a sickle (3G+) 

conformation was observed for 4. Despite having an eclipsed 1,3-hydroxyl interaction it 

is not surprising that crystalline 3 is observed to be in an extended conformation because 

of the relative number and strength of hydrogen bonds as evidenced by the high crystal 

density. Compound 7, a diastereoisomer of 3, also has an eclipsed 1,3-hydroxyl 

interaction and is in a sickle (3G-) conformation unlike the extended 3. Compound 7 has a 

hydrogen bonding network with individual hydrogen bonds having relatively long 

hydrogen bonds and/or donor-hydrogen-acceptor geometries that are less than optimal for 

strong hydrogen bonding as evidenced by the lower crystal density. Additionally, 7 has a 

water molecule acting as a hydrogen bond bridge between adjacent molecules. The 

inability to stabilize the 1,3-hydroxyl interaction through a strong hydrogen bonding 

network resulted in the observed sickle (gauche) conformation. Compounds 5 and 6 have 

no eclipsed 1,3-parallel interactions in the extended conformation and exhibit extended 

conformations as expected, Figures 4.10 and 4.12.  

4.3 Experimental 

General Methods 

 Colorless crystals of 1-7 were obtained from appropriate solvents [1 (MeOH), 2 

(MeOH), 3 (H2O), 4 (H2O/Acetone), 5 (H2O), 6 (MeOH/acetone), 7 (H2O)]. X-ray 

intensity data were collected on a Siemens SMART CCD diffractometer using Mo-Kα X-

radiation. Data were corrected for absorption and other effects semi-empirically.[1] 

Structures were solved using direct methods and routinely developed and refined on Fo
2. 
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Hydrogen atoms were located from difference maps and were refined, except for the 

methyl hydrogen atoms for 2,3,4-tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (6) which 

were included in calculated positions. All calculations were carried out using the SHELX 

programs[2] operating under WinGx.[3] All crystal structure graphics were generated using 

ORTEP-3[4] and/or Mercury. Crystal and refinement data are summarized in Table 4.1. 

Melting points were obtained with a Fisher-Johns melting point apparatus and are 

reported uncorrected. 

N,N’-Dihexylglutaramide (1) 

Crystals were obtained by dissolving N,N’-dihexylglutaramide in methanol and allowing 

the methanol to slowly evaporate. The resulting crystals were colorless blocks, mp 143 

ºC. 

N,N’-Dimethylglutaramide (2) 

Crystals were obtained by dissolving N,N’-dimethylglutaramide in methanol and 

allowing the methanol to slowly evaporate. The resulting crystals were colorless prisms, 

mp 121 ºC. 

N,N’-Dimethylxylaramide (3) 

Crystals were obtained by dissolving the N,N’-dimethylxylaramide in water and allowing 

the water to evaporate. The resulting crystals were colorless blocks, mp 191-194 ºC. 

2,3,4-Tri-O-acetyl-N,N’-dimethylxylaramide (4) 

Crystals were obtained by dissolving 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide in 

water and allowing acetone to diffuse into the water. The resulting crystals were colorless 

prisms, mp 171 ºC. 

N,N’-Dimethyl-L-arabinaramide (5) 
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Crystals were obtained by dissolving N,N’-dimethyl- L-arabinaramide in warm water and 

allowing the water allowed to slowly evaporate. The resulting crystals were colorless 

prisms, mp 194-196 ºC. 

2,3,4-Tri-O-acetyl-N,N’-dimethyl-L-arabinaramide (6) 

Crystals were obtained by dissolving 2,3,4- tri-O-acetyl-N,N’-dimethyl- L-arabinaramide 

in warm methanol and allowing the diffusion of acetone into the methanol. The resulting 

crystals were needles, mp 209-210 ºC. 

N,N’-Dimethylribaramide Monohydrate (7) 

Crystals were obtained by dissolving N,N’-dimethylribaramide in water and allowing the 

water to evaporate. The resulting crystals were colorless blocks, mp 166-168 ºC. 
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Table 4.1 Crystal and refinement data 

compound MHGH (1) MHGZ (2) MHDM (3) MHXA (4) MHDA (5) MHAA (6) 

formula C17H34N2O2 C7H14N2O2 C7H14N2O5 C13H20N2O8 C7H14N2O5 C13H20N2O8 

Mr 298.46 158.20 206.20 332.31 206.20 332.31 

crystal system monoclinic monoclinic orthorhombic monoclinic monoclinic orthorhombic 

space group C2/c C2/c Pnma C c  P21 P212121 

a (Å) 37.458(13) 18.069(14) 8.2938(1) 8.9373(2) 5.0242(2) 6.2852(1) 

b (Å) 5.3446(19) 5.4967(4) 21.0671(2) 21.9589(1) 8.5927(2) 16.032(2) 

c (Å) 8.850(3) 8.5233(7) 5.1215(1) 9.0433(2) 10.9416(4) 17.036(3) 

α 90 90 90 90  90 90 

β 96.014(4) 91.400(2) 90 114.681(1) 93.129(1) 90 

γ 90 90 90 90  90 90 

V (Å3) 1762.1(11) 846.29(11) 894.86(2) 1612.64(5)  471.66(3) 1716.65(5) 

Z 4 4 4 4  2 4 

F(000) 664 344 440 704   220 704 

calc density (g cm-3) 1.125 1.242 1.531 1.369  1.452 1.286 

vol per non-H atom 21.0 19.2 16.0 17.5  16.8 18.6 
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Table 4.1 Crystal and refinement data conti. 

compound MHGH (1) MHGZ (2) MHDM (3) MHXA (4) MHDA (5) MHAA (6) 

crystal size (mm3) 0.58x0.44x0.18 0.42x0.24x0.18 0.38x0.26x0.22 0.36x0.24x0.12 0.34x0.26x0.10    0.42x0.36x0.28 

temp (K) 93(2) 93(0) 93(2) 93(2)  93(2) 93(2) 

µ(Mo-Kα) (mm-1) 0.073 0.091 0.130 0.114  0.123 0.107 

total refl 4097 2397 4562 4797  2702 10335 

θ range (deg) 1.09-25.16 2.25-26.35 1.93-25.72 1.85-26.35 1.86-25.69 1.74-26.55 

unique refl 1588 871 872 2107  1704 3521 

Rint  0.0201 0.0374 0.0555 0.0334  0.0249 0.0634 

R1 (I>2s(I)) 0.0312 0.0396 0.0444 0.0299   0.0529  0.0543 

wR2 (all data) 0.1169 0.1082 0.1226 0.0787  0.1407 0.1435 

GoF 1.185  1.049 1.058 1.058  1.037 1.355 
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Table 4.1 Crystal and refinement data conti. 
 

compound MHRI (7)  

formula C7H16N2O6  

Mr 224.21  

crystal system Monoclinic  

space group P2 (1) / c  

a (Å) 11. 4378(11)  

b (Å) 10.2707(10)  

c (Å) 9.5798(10)  

α 90  

β 111.25(5)  

γ 90  

V (Å3) 1048.86(18)  

Z 4  

F(000) 480  
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Table 4.1 Crystal and refinement data conti. 

compound MHRI (7) 

calc density (g cm-3) 1.420  

vol per non-H atom 17.48 

crystal size (mm3) 0.27x0.24x0.09  

temp (K) 173(2)   

µ(Mo-Kα) (mm-1) 0.1072  

total refl 2068  

2θ range (deg) 8.63-65.22  

unique refl 1281  

Rint  0.0188  

R1 (I>2s(I)) 0.0391  

wR2 (all data) 0.1098  

GoF 1.027  
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Appendix 5.1 NMR Spectra of Xylaric Acid, Disodium L-Arabinarate 
(Disodium L-Lyxarate), Disodium D-Arabinarate (Disodium D-Lyxarate), 
Disodium Ribarate, and Ribaric Acid 5,2 (1,4) Lactone  
 

Proton NMR Spectrum of Xylaric Acid in D2O 
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Proton NMR Spectrum of Disodium L-Arabinarate in D2O 
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Proton NMR Spectrum of Disodium D-Arabinarate in D2O 
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Proton NMR Spectrum of Disodium Ribarate in D2O 
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Proton NMR Spectrum of Ribaric Acid-5,2(1,4)-Lactone in D2O 
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Appendix 5.2 NMR Spectra of Ethylenediammonium, 
Tetramethylene diammonium, Hexamethylene diammonium salts from 
Xylaric Acid, Disodium L-Arabinarate (Disodium L-Lyxarate), and 
Disodium Ribarate 
   
Proton NMR Spectrum of Ethylenediammonium Xylarate in D2O 
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Proton NMR Spectrum of Tetramethylenediammonium Xylarate in D2O 
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roton NMR Spectrum of Hexamethylenediammonium Xylarate in D2O 

 

P
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Proton NMR Spectrum of Tetramethylenediammonium L-Arabinarate in D2O 
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roton NMR Spectrum of Hexamethylenediammonium L-Arabinarate in D2O P
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roton NMR Spectrum of Ethylenediammonium Ribarate in D2O 

 

P
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Proton NMR Spectrum of Tetramethylenediammonium Ribarate in D2O 
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roton NMR Spectrum of Hexamethylenediammonium Ribarate in D2O P
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Appendix 5.3 NMR Spectra of Poly (Ethylene Aldaramides), Poly 
ramides) 

L-

 

(Tetramethylene Aldaramides), and Poly (Hexamethylene Alda
Prepolymers from Xylaric Acid, Disodium L-Arabinarate (Disodium 
Lyxarate), and Disodium Ribarate 
 
Proton NMR Spectrum of poly (ethylene xylaramide) prepolymer in D2O 
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Proton NMR Spectrum of poly (Tetramethylene xylaramide) prepolymer in TFA-d 
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Proton NMR Spectrum of Poly (hexamethylene xylaramide) Prepolymer in DMSO-

d6 and TFA-d 
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Proton NMR Spectrum of Poly (ethylene L-arabinaramide) Prepolymer in DMSO-

d6 and TFA-d 
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Proton NMR Spectrum of Poly (tetramethylene L-arabinaramide) Prepolymer in 

DMSO-d6 and TFA-d 
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Proton NMR Spectrum of Poly (hexamethylene L-arabinaramide) Prepolymer in 

DMSO-d6 and TFA-d 
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Proton NMR Spectrum of Poly (ethylene ribaramide) Prepolymer in DMSO-d6 and

TFA-d 
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Proton NMR Spectrum of Poly (tetramethylene ribaramide) Prepolymer in DMSO

d6 and TFA-d 

-
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Proton NMR Spectrum of Poly (hexamethylene ribaramide) Prepolymer in DMSO-

d6 and TFA-d 
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Appendix 5.4 NMR Spectra of glutaramide, N,N’-
dimethylglutaramide, N,N’-dihexyl xylaramide, N,N’-

aramide, N,N’-
L-

-acetyl- N,N’-

 

dimethylxylaramide, 2,3,4-tri-O-acetyl-N,N’-dimethylxyl
dimethyl L-arabinaramide, 2,3,4-tri-O-acetyl-N,N’-dimethyl 
arabinaramide, N,N’-dimethylribaramide, and 2,3,4-tri-O
dimethylribaramide 
 
Proton NMR Spectrum of glutaramide in DMSO-d6 
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Proton NMR Spectrum of N,N’-dimethylglutaramide in chloroform-d 
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Proton NMR Spectrum of N,N’-dihexylglutaramide in DMSO-d6 
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Proton NMR Spectrum of N,N’-dimethylxylaramide D2O 
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Proton NMR Spectrum of 2,3,4-Tri-O-acetyl-N,N’-dimethylxylaramide chloroform-
d 
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Proton NMR Spectrum of N,N’-dimethyl L-arabinaramide DMSO-d6 
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Proton NMR Spectrum of 2,3,4-Tri-O-acetyl-N,N’-dimethyl L-arabinaramide 
chloroform-d 
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Proton NMR Spectrum of N,N’-dimethylribaramide D2O 
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roton NMR Spectrum of 2,3,4-Tri-O-acetyl-N,N’-dimethylribaramide chloroform-

 

P
d 

 
 



Appendix 231

 
Appendix 5.5 Complete Bond Lengths, Bond Angles, Principle 
Torsion Angles and Thermal and Positional Parameters for N,N’-
Dihexylglutaramide  
 
Table 5.1 Atomic coordinates ( x 10^4) and equivalent isotropic displacement 
parameters (Å^2 x 10^3) for N,N’-dihexylglutaramide. U(eq) is defined as one third of 
the trace of the orthogonalized Uij tensor 
___________________________________________________________________ 
                      x                  y                z             U(eq) 
___________________________________________________________________         
O(1)         4439(1)       2180(2)       5631(1)       24(1) 
N(1)         4286(1)       -313(2)       7525(1)       22(1) 
C(1)         4471(1)       1585(2)       7002(1)       19(1) 
C(2)         4715(1)       3019(2)       8180(1)       21(1) 
C(3)          5000          4586(3)       7500          21(1) 
C(4)         4041(1)      -1843(2)       6517(1)       22(1) 
C(5)         3796(1)      -3424(2)       7397(1)       21(1) 
C(6)         3543(1)      -5016(2)       6325(1)       24(1) 
C(7)         3296(1)      -6751(2)       7102(1)       23(1) 
C(8)         3046(1)      -8240(2)       5960(2)       27(1) 
C(9)         2804(1)     -10071(2)       6691(2)       29(1) 
_______________________________________________________ 
 
Table 5.2  Bond lengths [Å] and angles [deg] for N,N’-dihexylglutaramide 
             
            O(1)-C(1)                     1.2478(15) 
            N(1)-C(1)                     1.3383(16) 
            N(1)-C(4)                     1.4620(16) 
            N(1)-HN                       0.861(16) 
            C(1)-C(2)                     1.5193(17) 
            C(2)-C(3)                     1.5289(15) 
            C(2)-H(1)                     0.980(14) 
            C(2)-H(2)                     0.986(14) 
            C(3)-C(2)#1                 1.5289(15) 
            C(3)-H(3)                     1.008(14) 
            C(4)-C(5)                     1.5210(17) 
            C(4)-H(41)                    0.984(14) 
            C(4)-H(42)                    0.969(15) 
            C(5)-C(6)                     1.5263(17) 
          C(5)-H(51)                    0.970(15) 
          C(5)-H(52)                    0.985(14) 
          C(6)-C(7)                     1.5248(17) 
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Table 5.2 Cont.  Bond lengths [Å] and angles [deg] for N,N’-dihexylglutaramide 
            
 

 C(6)-H(61)                    0.971(15) 
            C(6)-H(62)                    0.993(16) 
            C(7)-C(8)                     1.5285(17) 
            C(7)-H(71)                    0.963(14) 
            C(7)-H(72)                    0.996(14) 
            C(8)-C(9)                     1.5217(18) 
            C(8)-H(81)                    0.997(16) 
            C(8)-H(82)                    0.973(16) 
            C(9)-H(91)                    0.984(17) 
            C(9)-H(92)                    0.995(16) 
            C(9)-H(93)                    0.997(18) 
  
            C(1)-N(1)-C(4)              121.90(10) 
            C(1)-N(1)-HN                119.9(10) 
            C(4)-N(1)-HN                118.1(10) 
            O(1)-C(1)-N(1)              121.86(11) 
            O(1)-C(1)-C(2)              121.95(10) 
            N(1)-C(1)-C(2)              116.17(10) 
            C(1)-C(2)-C(3)              113.61(9) 
            C(1)-C(2)-H(1)              109.8(8) 
            C(3)-C(2)-H(1)              111.1(8) 
            C(1)-C(2)-H(2)              107.2(8) 
            C(3)-C(2)-H(2)              110.6(8) 
            H(1)-C(2)-H(2)              104.0(11) 
            C(2)#1-C(3)-C(2)            113.54(14) 
            C(2)#1-C(3)-H(3)            109.7(8) 
            C(2)-C(3)-H(3)               108.2(8) 
            N(1)-C(4)-C(5)               111.88(10) 
            N(1)-C(4)-H(41)             110.0(8) 
            C(5)-C(4)-H(41)             108.7(8) 
            N(1)-C(4)-H(42)             108.7(8) 
            C(5)-C(4)-H(42)             109.1(8) 
            H(41)-C(4)-H(42)          108.5(11) 
            C(4)-C(5)-C(6)              111.02(10) 
            C(4)-C(5)-H(51)             109.8(8) 
            C(6)-C(5)-H(51)             110.6(8) 
          C(4)-C(5)-H(52)             109.3(8) 
          C(6)-C(5)-H(52)             110.5(8) 
          H(51)-C(5)-H(52)           105.5(11) 
          C(7)-C(6)-C(5)              115.12(11) 
          C(7)-C(6)-H(61)             109.1(9) 
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Table 5.2 Cont.  Bond lengths [Å] and angles [deg] for N,N’-dihexylglutaramide 
         

C(5)-C(6)-H(61)             108.9(9) 
            C(7)-C(6)-H(62)             108.5(9) 
            C(5)-C(6)-H(62)             109.5(9) 
            H(61)-C(6)-H(62)            105.3(12) 
            C(6)-C(7)-C(8)               112.23(10) 
            C(6)-C(7)-H(71)             108.8(8) 
            C(8)-C(7)-H(71)             109.2(8) 
            C(6)-C(7)-H(72)             110.9(8) 
            C(8)-C(7)-H(72)             108.6(8) 
            H(71)-C(7)-H(72)            106.9(11) 
            C(9)-C(8)-C(7)               113.88(11) 
            C(9)-C(8)-H(81)             109.6(8) 
            C(7)-C(8)-H(81)             108.5(8) 
            C(9)-C(8)-H(82)             109.6(9) 
            C(7)-C(8)-H(82)             108.5(9) 
            H(81)-C(8)-H(82)            106.6(13) 
            C(8)-C(9)-H(91)              110.8(9) 
            C(8)-C(9)-H(92)              112.4(9) 
            H(91)-C(9)-H(92)            105.3(12) 
            C(8)-C(9)-H(93)              111.1(9) 
            H(91)-C(9)-H(93)            110.3(13) 
            H(92)-C(9)-H(93)            106.6(12) 
_____________________________________________________________ 
  
Symmetry transformations used to generate equivalent atoms: 
#1 -x+1,y,-z+3/2 
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Table 5.3 Anisotropi  displacement parameters (Å ^2 x 10^3) for N,N’-
dihexylglutaramide. The anisotropic displacement factor exponent takes the form: 
-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

_____________________

c

   
_______________________________________________ 

  -2(1) 
   1(1) 
  -2(1) 
   0(1) 
 -4(1) 
 -4(1) 
___________________________ 

amide. 
________________ 

62.23(10) 
68.18(8) 
65.77(10) 
79.70(10) 
77.71(10) 
78.70(10) 
77.71(11)  
______________________________ 

s:  #1 -x+1,y,-z+3/2 

_
                 U11        U22        U33        U23       U13      U12 
    
    O(1)     26(1)      24(1)      20(1)       1(1)       2(1)      -3(1) 
    N(1)     24(1)      23(1)      18(1)       1(1)       1(1)      -3(1) 

   3(1)     C(1)     18(1)      19(1)      22(1)      -1(1)       4(1)    
    C(2)     20(1)      23(1)      21(1)      -2(1)       2(1)       1(1) 

 0     C(3)     22(1)      18(1)      23(1)       0          0(1)      
    C(4)     24(1)      23(1)      21(1)      -1(1)       2(1)    
    C(5)     22(1)      20(1)      22(1)       0(1)       3(1)    
    C(6)     26(1)      23(1)      22(1)       0(1)       3(1)    

      C(7)     24(1)      21(1)      23(1)       1(1)       2(1)  
    C(8)     29(1)      26(1)      27(1)       1(1)       0(1)     
    C(9)     26(1)      26(1)      36(1)       0(1)       1(1)     
___________________________________________
  
Table 5.4 Torsion angles [deg] for N,N’-dihexylglutar
____________________________________________
  

(4)-N(1)-C(1)-O(1)                                   1.48(17) C
C(4)-N(1)-C(1)-C(2)                                 179.79(10) 

)-C(2)-C(3)                                 -19.46(16) O(1)-C(1
N(1)-C(1)-C(2)-C(3)                                 1
C(1)-C(2)-C(3)-C(2)#1                               -
C(1)-N(1)-C(4)-C(5)                                -1
N(1)-C(4)-C(5)-C(6)                                -1
C(4)-C(5)-C(6)-C(7)                                 1
C(5)-C(6)-C(7)-C(8)                                 1
C(6)-C(7)-C(8)-C(9)                                 1
__________________________________
  

te equivalent atomSymmetry transformations used to genera
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Appendix 5.6 Complete Bond Lengths, Bond Angles, Principle 
Torsion Angles and Thermal and Positional Parameters for N,N’-

ime

ent isotropic displacement parameters (Å ^2 x 
 is defined as one third of the trace of the 

________________________ 

  U(eq) 
_________________________ 

       16(1) 
       18(1) 
     18(1) 
     22(1) 

       22(1) 
      18(1) 

_______________________ 

] for N,N’-dimethylglutaramide 
_________________________ 

 
 

) 
) 

D thylglutaramide 
 
Table 5.5 Atomic coordinates and equival
10^3) for N,N’-dimethylglutaramide. U(eq)
orthogonalized Uij tensor. 
 __________________________________
     
                x                  y                  z          
__________________________________
  
C(1)         3923(1)       3402(2)       7066(1)
C(2)         4398(1)       1999(2)       8250(1)
C(3)         5000           474(3)           7500     
C(4)         3069(1)       6830(2)       6682(2)  
O(1)         3825(1)       2666(2)       5699(1)
N(1)         3598(1)       5408(2)       7610(1) 
____________________________________
 
Table 5.6 Bond lengths [Å] and angles [deg
 __________________________________
  
            C(1)-O(1)                     1.2421(14)
            C(1)-N(1)                     1.3376(16)
            C(1)-C(2)                     1.5191(15) 
            C(2)-C(3)                     1.5263(14) 
            C(2)-H(1)                     0.980(15) 
            C(2)-H(2)                     0.983(17) 
            C(3)-C(2)#1                   1.5263(14) 
            C(3)-H(3)                     0.984(15) 
            C(4)-N(1)                     1.4534(15) 
            C(4)-H(4)                     0.976(18) 
            C(4)-H(5)                     0.953(17) 
            C(4)-H(6)                     0.978(18) 
            N(1)-HN                       0.834(18) 
  
            O(1)-C(1)-N(1)              122.67(10
            O(1)-C(1)-C(2)              121.55(10
            N(1)-C(1)-C(2)              115.73(9) 
            C(1)-C(2)-C(3)              113.43(8) 
            C(1)-C(2)-H(1)              109.8(9) 
            C(3)-C(2)-H(1)              110.5(9) 
            C(1)-C(2)-H(2)              106.8(10) 
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  Table 5.6 Cont. Bond lengths [Å] and angles [deg] for N,N’-dimethylglutaramide 

) 

) 

__________________________________ 

 equivalent atoms: #1 -x+1,y,-z+3/2 

ters (Å ^2 x 10^3) for N,N’-
ponent takes the form: 

12 ]    
_________________________________ 

__________________ 

 C(1)     19(1)      16(1)      13(1)       1(1)       2(1)      -4(1) 
  C(2)     24(1)      18(1)      12(1)       2(1)       0(1)       1(1) 
  C(3)     22(1)      15(1)      17(1)       0         -2(1)       0 
  C(4)     26(1)      20(1)      20(1)       2(1)       1(1)       3(1) 
  O(1)     33(1)      19(1)      13(1)      -1(1)      -2(1)       2(1) 
  N(1)     24(1)      18(1)      13(1)      -1(1)      -1(1)       1(1) 
____________________________________________________________________ 

 
C(3)-C(2)-H(2)              108.8(9) 

            H(1)-C(2)-H(2)              107.3(13) 
            C(2)-C(3)-C(2)#1           113.40(13
            C(2)-C(3)-H(3)              108.7(9) 
            C(2)#1-C(3)-H(3)           108.4(9) 
            N(1)-C(4)-H(4)              110.7(10) 
            N(1)-C(4)-H(5)              109.6(10) 
            H(4)-C(4)-H(5)              106.3(14) 
            N(1)-C(4)-H(6)              112.3(11) 
            H(4)-C(4)-H(6)              111.3(15) 
            H(5)-C(4)-H(6)              106.4(14) 
            C(1)-N(1)-C(4)              122.89(10
            C(1)-N(1)-HN                119.5(11) 
            C(4)-N(1)-HN                117.6(11) 
__________________________________
  
Symmetry transformations used to generate
  
Table 5.7  Anisotropic displacement parame
dimethylglutaramide. The anisotropic displacement factor ex
-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U
____________________________________
  
              U11        U22        U33        U23        U13        U12 
___________________________________________________
  
   
  
  
  
  
  
 _
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Table 5.8 Torsion angles [deg] for N,N’-dimethylglutaramide 
___________ 

 

)-C(1)-N(1)-C(4)                                   3.61(18) 

_____________________ 

Angles, Principle 
meters for N,N’-

ent parameters (Å ^2 x 
hird of the trace of the 

_____________________________________________________________ 

______________________________________________________________ 

4(1) 
13(1) 
3(1) 

18(1) 
6(1) 
5(1) 
5(1) 

16(1) 
____________________ 

 
 
 

__________________________________________________________
  
O(1)-C(1)-C(2)-C(3)                                  27.60(15)
N(1)-C(1)-C(2)-C(3)                                -154.93(10) 
C(1)-C(2)-C(3)-C(2)#1                                67.83(8) 
O(1
C(2)-C(1)-N(1)-C(4)                                -173.82(10) 
_________________________________________________
  
Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2 
 

Appendix 5.7 Complete Bond Lengths, Bond 
Torsion Angles and Thermal and Positional Para
Dimethylxylaramide  
 
Table 5.9  Atomic coordinates and equivalent isotropic displacem
10^3) for N,N’-dimethylxylaramide. U(eq) is defined as one t
orthogonalized Uij tensor.  
___
  
                               x                 y                 z             U(eq) 
__
  
          C(1)         6410(2)       6324(1)       4683(3)       1
          C(2)         7372(2)       6890(1)       5734(3)       
          C(3)         6639(3)       7500          4584(4)        1
          C(4)         6348(2)       5457(1)       1521(3)       
          O(1)         5045(1)       6196(1)       5563(2)       1
          O(2)         9031(1)       6830(1)       5117(2)       1
          O(3)         6820(2)       7500          1808(2)        1
          N(1)         7123(2)       5992(1)       2802(3)       
____________________________________________
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Table 5.10 Bond lengths [Å] and angles [deg] for N,N’-dimethylxylaramide. 
________________________________________________________________ 
            C(1)-O(1)                     1.2484(18) 

         C(1)-N(1)                        1.330(2) 

     C(3)-C(2)#1                   1.5395(17) 

         C(4)-H(5)                     0.98(2) 

          O(2)-C(2)-C(1)              111.03(11) 

         O(2)-C(2)-H(1)              111.6(10) 

__________________________ 
te equivalent atoms: #1 x,-y+3/2,z 

            C(1)-C(2)                     1.532(2) 
            C(2)-O(2)                     1.4169(18) 
            C(2)-C(3)                     1.5395(17) 
            C(2)-H(1)                     0.95(2) 
            C(3)-O(3)                     1.430(2) 
       
            C(3)-H(3)                     0.99(2) 
            C(4)-N(1)                     1.4541(19) 
   
            C(4)-H(6)                     0.99(2) 
            C(4)-H(7)                     0.95(2) 
            O(2)-H(2)                     0.87(3) 
            O(3)-H(4)                     0.93(3) 
            N(1)-HN                       0.80(2) 
            O(1)-C(1)-N(1)              123.42(14) 
            O(1)-C(1)-C(2)              120.98(13) 
            N(1)-C(1)-C(2)              115.59(13) 
  
            O(2)-C(2)-C(3)              111.86(12) 
            C(1)-C(2)-C(3)              107.99(12) 
   
            C(1)-C(2)-H(1)              106.1(10) 
            C(3)-C(2)-H(1)              108.0(10) 
            O(3)-C(3)-C(2)#1            109.82(10) 
            O(3)-C(3)-C(2)              109.82(10) 
            C(2)#1-C(3)-C(2)            113.23(17) 
            O(3)-C(3)-H(3)              108.6(13) 
            C(2)#1-C(3)-H(3)            107.6(6) 
            C(2)-C(3)-H(3)              107.6(6) 
            N(1)-C(4)-H(5)              109.9(13) 
            N(1)-C(4)-H(6)              109.3(12) 
            H(5)-C(4)-H(6)              105.3(15) 
            N(1)-C(4)-H(7)              105.7(13) 
            H(5)-C(4)-H(7)              114.8(19) 
            H(6)-C(4)-H(7)              111.9(17) 

         C(2)-O(2)-H(2)              108.1(16)    
            C(3)-O(3)-H(4)              103.0(16) 
            C(1)-N(1)-C(4)              122.56(15) 
            C(1)-N(1)-HN                120.6(13) 
            C(4)-N(1)-HN                116.7(13) 
__________________________________
 Symmetry transformations used to genera
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Table 5.11 Anisotropic displacement parameters (Å^2 x 10^3) for N,N’-
dimethylxylaramide. The anisotropic displacement factor exponent takes the form: 
-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]   

___________________________ 

       U13        U12    
______________________________________________________________ 

    -1(1)       1(1) 
     0(1)       0(1) 
    0(1)       0 
      -1(1)       0(1) 
      1(1)      -2(1) 
    -1(1)       2(1) 
  -2(1)       0 
       2(1)      -1(1) 

able 5.12 Torsion angles [deg] for N,N’-dimethylxylaramide 
_____ 

(1)-C(1)-C(2)-C(3)  -75.95 ( 0.17) 

(1)-C(2)-C(3)-O(3)     -63.49 ( 0.17) 

_______________ 

___________________________________
  
              U11        U22        U33        U23 

  
    C(1)     19(1)      16(1)       5(1)       3(1)  
    C(2)     18(1)      16(1)       5(1)       1(1)  
    C(3)     17(1)      16(1)       5(1)       0      
    C(4)     25(1)      17(1)      12(1)      -4(1)
    O(1)     19(1)      19(1)       9(1)       0(1) 
    O(2)     18(1)      17(1)      11(1)       2(1)  
    O(3)     22(1)      19(1)       3(1)       0       
    N(1)     19(1)      17(1)      10(1)      -2(1)
 _______________________________________________________________ 
  
 
T
___________________________________________________________
  
O(1)-C(1)-C(2)-O(2)  161.08 ( 0.12) 
N(1)-C(1)-C(2)-O(2)  -19.18 ( 0.17) 
O
N(1)-C(1)-C(2)-C(3)  103.78 ( 0.15) 
O(2)-C(2)-C(3)-O(3)  58.97 ( 0.17) 
C
O(2)-C(2)-C(3)-C(2’)   -64.19 ( 0.19) 
C(1)-C(2)-C(3)-C(2’)   173.35 ( 0.11) 
O(1)-C(1)-N(1)-C(4)       2.22 ( 0.22) 
C(2)-C(1)-N(1)-C(4)   -177.51 ( 0.12) 
_________________________________________________
  
Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2 
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Appendix 5.8 Complete Bond Lengths, Bond Angles, Principle 
-

ic displacement parameters (Å ^2 
 defined as one third of 

  1546(1)       8359(2)       19(1) 

 

        N(1)         6435(2)         62(1)       8442(2)       23(1) 
        N(2)         5523(2)       2856(1)       8744(2)       23(1) 
_______________________________________________________________ 

Torsion Angles and Thermal and Positional Parameters for 2,3,4-Tri-O
acetyl-N,N’-Dimethylxylaramide  
 
Table 5.13  Atomic coordinates and equivalent isotrop
x 10^3) for 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide. U(eq) is
the trace of the orthogonalizedUij tensor. 
________________________________________________________________ 
  
                               x                 y                 z           U(eq) 
________________________________________________________________ 
  
          C(1)         5975(3)        540(1)       9074(3)       23(1) 
          C(2)         5393(3)       1103(1)       7982(2)       20(1) 
          C(3)         6830(2)     
          C(4)         6340(2)       2110(1)       7261(2)       19(1) 
          C(5)         4997(2)       2473(1)       7495(3)       20(1) 
          C(6)         7218(3)       -473(1)       9400(3)       30(1) 
          C(7)         4397(3)       3255(1)       9070(3)       28(1) 

        C(10)        9484(3)       1084(1)       9371(3)       38(1)   
          C(11)       10732(3)        811(2)       8867(4)       53(1)
          C(8)         3237(3)        723(1)       5569(3)       26(1) 
        C(9)         2719(3)        619(1)       3788(3)       38(1)   

          C(12)        7988(2)       2782(1)       6501(3)       23(1) 
          C(13)        9634(3)       3088(1)       7067(3)       28(1) 
          O(1)         6038(2)        556(1)      10457(2)       35(1) 
          O(2)         4786(2)        960(1)       6271(2)       22(1) 
          O(3)         2439(2)        620(1)       6332(2)       35(1) 
          O(4)         8110(2)       1248(1)       8046(2)       22(1) 

           O(5)         9611(3)       1142(1)      10735(2)       68(1)
          O(6)         7834(2)       2463(1)       7716(2)       22(1) 
          O(7)         6932(2)       2798(1)       5139(2)       49(1) 
         O(8)         3529(2)       2390(1)       6581(2)       25(1)  
  
  
_
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 Table 5.14 Bond lengths [Å] and angles [deg] for 2,3,4-tri-O-acetyl-N,N’-
dimethylxylaramide  
_____________________________________________________________ 

(13)-H(10B)                0.9600 

  
C(1)-O(1)                     1.229(3) 
C(1)-N(1)                     1.339(3) 
C(1)-C(2)                     1.531(3) 
C(2)-O(2)                     1.444(2) 
C(2)-C(3)                     1.532(3) 
C(2)-H(3)                     0.93(2) 
C(3)-O(4)                     1.444(2) 
C(3)-C(4)                     1.532(3) 
C(3)-H(4)                     0.93(3) 
C(4)-O(6)                     1.447(2) 
C(4)-C(5)                     1.529(3) 
C(4)-H(5)                     0.92(3) 
C(5)-O(8)                     1.238(2) 
C(5)-N(2)                     1.326(3) 
C(6)-N(1)                     1.454(3) 
C(6)-H(6A)                    0.9600 
C(6)-H(6B)                    0.9600 
C(6)-H(6C)                    0.9600 
C(7)-N(2)                     1.454(3) 
C(7)-H(7A)                    0.9600 
C(7)-H(7B)                    0.9600 
C(7)-H(7C)                    0.9600 
C(10)-O(5)                    1.197(3) 
C(10)-O(4)                    1.359(3) 
C(10)-C(11)                   1.496(4) 
C(11)-H(9A)                   0.9600 
C(11)-H(9B)                   0.9600 
C(11)-H(9C)                   0.9600 
C(8)-O(3)                     1.203(3) 
C(8)-O(2)                     1.363(3) 
C(8)-C(9)                     1.496(3) 
C(9)-H(8A)                    0.9600 
C(9)-H(8B)                    0.9600 
C(9)-H(8C)                    0.9600 
C(12)-O(7)                    1.199(3) 
C(12)-O(6)                    1.357(3) 
C(12)-C(13)                   1.499(3) 

(13)-H(10A)                0.9600 C
C
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Table 5.14 Cont. Bond lengths [Å] and angles [deg] for 2,3,4-tri-O-acety
dimethylxylaramide 

l-N,N’-

(1)-H(1)                        0.82(3) 

(1)-C(1)-N(1)              124.5(2) 

(4)-C(3)-C(2)              109.12(15) 
(4)-C(3)-C(2)              112.51(16) 

(2)-C(3)-H(4)              107.8(15) 

(6A)-C(6)-H(6B)        109.5 

(6A)-C(6)-H(6C)        109.5 
H(6B)-C(6)-H(6C)        109.5 
N(2)-C(7)-H(7A)           109.5 
N(2)-C(7)-H(7B)           109.5 
H(7A)-C(7)-H(7B)        109.5 
N(2)-C(7)-H(7C)           109.5 
H(7A)-C(7)-H(7C)        109.5 
H(7B)-C(7)-H(7C)        109.5 
O(5)-C(10)-O(4)           122.8(2) 

 
C(13)-H(10C)                  0.9600 
N
N(2)-H(2)                        0.79(3) 
 
O
O(1)-C(1)-C(2)              119.44(18) 
N(1)-C(1)-C(2)              116.06(18) 
O(2)-C(2)-C(1)              112.90(16) 
O(2)-C(2)-C(3)              106.34(15) 
C(1)-C(2)-C(3)              110.01(17) 
O(2)-C(2)-H(3)              111.1(15) 
C(1)-C(2)-H(3)              106.4(14) 
C(3)-C(2)-H(3)              110.1(14) 
O(4)-C(3)-C(4)              105.93(16) 
O
C
O(4)-C(3)-H(4)              108.8(15) 
C(4)-C(3)-H(4)              112.5(16) 
C
O(6)-C(4)-C(5)              111.39(15) 
O(6)-C(4)-C(3)              105.62(15) 
C(5)-C(4)-C(3)              111.12(16) 
O(6)-C(4)-H(5)              107.5(15) 
C(5)-C(4)-H(5)              110.3(15) 
C(3)-C(4)-H(5)              110.7(16) 
O(8)-C(5)-N(2)              124.18(19) 
O(8)-C(5)-C(4)              120.35(18) 
N(2)-C(5)-C(4)              115.44(17) 
N(1)-C(6)-H(6A)           109.5 
N(1)-C(6)-H(6B)           109.5 
H
N(1)-C(6)-H(6C)           109.5 
H
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Table 5.14 Cont. Bond lengths [Å] and angles [deg] for 2,3,4-tri-O-acetyl-N,N’-
dimethylxylaramide 
 

(5)-C(10)-C(11)         126.5(2) O
O(4)-C(10)-C(11)         110.6(2) 
C(10)-C(11)-H(9A)       109.5 
C(10)-C(11)-H(9B)           109.5 
H(9A)-C(11)-H(9B)          109.5 

(10)-C(11)-H(9C)           109.5 C
H(9A)-C(11)-H(9C)          109.5 
H(9B)-C(11)-H(9C)          109.5 

(3)-C(8)-O(2)                122.3(2) O
O(3)-C(8)-C(9)                 126.7(2) 
O(2)-C(8)-C(9)                 110.9(2) 
C(8)-C(9)-H(8A)              109.5 
C(8)-C(9)-H(8B)              109.5 
H(8A)-C(9)-H(8B)           109.5 
C(8)-C(9)-H(8C)              109.5 
H(8A)-C(9)-H(8C)           109.5 
H(8B)-C(9)-H(8C)           109.5 
O(7)-C(12)-O(6)              122.93(19) 
O(7)-C(12)-C(13)            125.2(2) 
O(6)-C(12)-C(13)            111.83(18) 
C(12)-C(13)-H(10A)       109.5 
C(12)-C(13)-H(10B)       109.5 
H(10A)-C(13)-H(10B)    109.5 
C(12)-C(13)-H(10C)       109.5 
H(10A)-C(13)-H(10C)    109.5 
H(10B)-C(13)-H(10C)    109.5 
C(8)-O(2)-C(2)               115.87(16) 
C(10)-O(4)-C(3)             116.45(17) 
C(12)-O(6)-C(4)             116.10(16) 
C(1)-N(1)-C(6)               122.35(19) 
C(1)-N(1)-H(1)               121.5(17) 
C(6)-N(1)-H(1)               115.3(17) 
C(5)-N(2)-C(7)               121.69(18) 

(5)-N(2)-H(2)               118.9(18) C
C(7)-N(2)-H(2)              119.4(18) 
_____________________________________________________________ 
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Table 5.15 Anisotropic displacement parameters (Å ^2 x 10^3) for 2,3,4-tri
N,N’-dimethylxylaram

-O-acetyl-
ide.The anisotropic displacement factor exponent takes the form: -

_____________________________________________________________________ 

      U23        U13        U12   
____________________________________________ 

)       0(1)      14(1)       0(1) 
1)      -1(1)      10(1)       1(1) 

)      -1(1)       6(1)       3(1) 
)      -1(1)       4(1)      -4(1) 

1)       4(1)       3(1)       1(1) 
)       7(1)      16(1)      10(1) 
)      -2(1)       8(1)       7(1) 

(1)      -1(1)       4(1)      23(1) 

)       6(1)       4(1)       3(1) 
)       3(1)      -1(1)     -10(1) 
1)       0(1)       9(1)       1(1) 
1)       2(1)      11(1)      -3(1) 
1)       2(1)      27(1)       7(1) 

)       0(1)       6(1)      -2(1) 

1)      -1(1)       7(1)       5(1) 
1)       2(1)       4(1)      59(1) 

       1(1)       5(1)      -5(1) 
      16(1)       1(1)     -20(1) 
       2(1)      -1(1)      -1(1) 

)       4(1)      14(1)       7(1) 
)      -3(1)       1(1)       3(1)   
____________________________________________ 

2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]  
__
  
              U11        U22        U33  
___________________________
  
    C(1)     35(1)      16(1)      20(1
    C(2)     29(1)      16(1)      15(
    C(3)     21(1)      20(1)      15(1
    C(4)     20(1)      18(1)      16(1
    C(5)     21(1)      14(1)      19(
    C(6)     43(1)      21(1)      27(1
    C(7)     24(1)      25(1)      31(1
    C(10)    38(1)      44(1)      24
    C(11)    38(2)      72(2)      36(2)     -12(1)       4(1)      32(1) 
    C(8)     28(1)      16(1)      28(1
    C(9)     43(1)      31(1)      25(1
    C(12)    22(1)      23(1)      23(
    C(13)    25(1)      29(1)      29(
    O(1)     66(1)      20(1)      25(
    O(2)     27(1)      18(1)      17(1
    O(3)     26(1)      38(1)      37(1)       5(1)      10(1)       1(1) 
    O(4)     22(1)      23(1)      20(
    O(5)     63(1)     107(2)      19(
    O(6)     20(1)      26(1)      18(1)
    O(7)     37(1)      72(1)      27(1)
    O(8)     19(1)      24(1)      23(1)
    N(1)     37(1)      16(1)      17(1
    N(2)     16(1)      20(1)      25(1
___________________________
  
 
 
 
 
 
 
 
 
 
 



Appendix 245

Table 5.16  Torsion angles [deg] for 2,3,4-tri-O-acetyl-N,N’-dimethylxylaramide
_________________

 
______________________________________________________ 

.75 ( 0.20) 
9 ( 0.26) 
3 ( 0.25) 

(1)-C(1)-C(2)-C(3)  -94.32 ( 0.22) 
2 ( 0.19) 

 0.21) 
 0.21) 
 ( 0.16) 
 ( 0.19) 
6 ( 0.16) 
3 ( 0.16) 

 ( 0.21) 
7 ( 0.18) 
 ( 0.22) 
 ( 0.24) 
 0.21) 

( 0.28) 
2 ( 0.18) 
 ( 0.21) 
2 ( 0.16) 
0.40) 
0 ( 0.23) 

3 ( 0.20) 
1 ( 0.21) 

 0.30) 
 ( 0.17) 

( 0.20) 
 ( 0.16) 

.20 ( 0.36) 
71.64 ( 0.20) 
.17 ( 0.32) 

76.76 ( 0.18) 
_______________________________________ 

  
O(1)-C(1)-C(2)-O(2)  -157
N(1)-C(1)-C(2)–O(2)  24.2
O(1)-C(1)-C(2)-C(3)  83.6
N
O(2)-C(2)-C(3)-O(4)   -61.9
C(1)-C(2)–C(3)-O(4)   60.65 (
O(2)-C(2)-C(3)-C(4)   55.35 (
C(1)-C(2)-C(3)-C(4)   177.93
O(4)-C(3)-C(4)-O(6)   -58.31
C(2)-C(3)-C(4)-O(6)   -177.4
O(4)-C(3)-C(4)-C(5)   -179.2
C(2)-C(3)-C(4)-C(5)   61.62
O(6)-C(4)-C(5)-O(8)   147.6
C(3)-C(4)-C(5)-O(8)   -94.86
O(6)-C(4)-C(5)-N(2)   -34.17
C(3)-C(4)-C(5)-N(2)   83.29 (
O(3)-C(8)-O(2)-C(2)   -2.47 
C(9)-C(8)-O(2)-C(2)   177.5
C(1)-C(2)–O(2)-C(8)   78.06
C(3)-C(2)-O(2)-C(8)   -161.2
O(5)-C(10)-O(4)-C(3)  4.88 ( 
C(11)-C(10)-O(4)-C(3) -177.1
C(4)-C(3)-O(4)-C(10)    131.6
C(2)-C(3)-O(4)-C(10)    -107.0
O(7)-C(12)-O(6)-C(4)      3.36 (
C(13)-C(12)-O(6)-C(4)   -175.08
C(5)-C(4)-O(6)-C(12)    -92.36 
C(3)-C(4)-O(6)-C(12)    146.89
O(1)-C(1)-N(1)-C(6)     -6
C(2)-C(1)-N(1)-C(6)     1
O(8)-C(5)-N(2)-C(7)     -5
C(4)-C(5)-N(2)-C(7)     1
_________________________
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Appendix 5.9 Complete Bond Lengths, Bond Angles, Principle
Torsion Angles an

 
d Thermal and Positional Parameters for N,N’-

  

nd equivalent isotropic displacement parameters (Å ^2 
inaramide. U(eq) is defined as one third of the trace of 

_____________________________________ 

                z           U(eq) 
___________________________________ 

)        -34(3)       21(1) 
)       1033(2)       16(1) 

(3)       1461(3)       14(1) 
5(3)       1022(2)       19(1) 
(3)       2564(3)       13(1) 

1(3)       2710(2)       16(1) 
(3)       3749(3)       14(1) 

     3629(2)       17(1) 
     4802(3)       13(1) 
     4502(2)       16(1) 
     5984(3)       16(1) 

2(2)       6373(2)       18(1) 
3(3)       6558(2)       17(1) 
(4)       7726(3)       22(1) 
______________________________________ 

les [deg] for N,N’-dimethyl L-arabinaramide. 
__________________________________ 

4) 
(4) 
(5) 
(4) 
4) 

4) 

(4)-O(4)                     1.427(4) 
(4)-C(3)                     1.537(4) 

         C(4)-H(6)                     0.97(4) 
          O(4)-H(7)                     0.99(5) 

Dimethyl L-arabinaramide
 

s aTable 5.17  Atomic coordinate
x 10^3) for N,N’-dimethyl L-arab
the orthogonalized Uij tensor. 
___________________________
  

                                x                  y
_____________________________
  
          C(7)         6264(7)       2155(4

2(3          N(2)         6375(5)       317
          C(5)         4148(6)       3728
          O(5)         1923(4)       340
          C(4)         4462(6)       4832
          O(4)         7148(4)       537

7          C(3)         3672(6)       403
          O(3)         1095(4)       3361(3)  

)            C(2)         3784(6)       5230(4
          O(2)         2078(5)       6505(3)  

2(4)            C(1)         2932(6)       448
          O(1)         4039(4)       326
          N(1)         1050(5)       521
          C(6)          137(8)       4675
__________________________
  
Table 5.18 Bond lengths [Å] and ang
______________________________
  

(            C(7)-N(2)                     1.457
0            C(7)-H(10A)                   1.0

            C(7)-H(10B)                   0.94
            C(7)-H(10C)                   0.85

(            N(2)-C(5)                     1.326
(            N(2)-H(8)                     0.84

            C(5)-O(5)                     1.224(4) 
          C(5)-C(4)                     1.536(4)   

            C
          C  
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Table 5.18 Cont. Bond lengths [Å] and angles [deg] for N,N’-dimethyl L-

         C(3)-H(4)                     0.96(4) 

         C(2)-C(1)                     1.526(4) 

         C(5)-C(4)-C(3)              111.6(2) 
          O(4)-C(4)-H(6)              113(2) 
          C(5)-C(4)-H(6)              106(2) 
          C(3)-C(4)-H(6)              107(2) 
          C(4)-O(4)-H(7)              105(2) 
          O(3)-C(3)-C(4)              112.4(2) 
          O(3)-C(3)-C(2)              109.7(2) 
          C(4)-C(3)-C(2)              109.6(2) 
          O(3)-C(3)-H(4)              108(2) 
          C(4)-C(3)-H(4)              110(2) 
          C(2)-C(3)-H(4)              106(2) 

arabinaramide  
 

C(3)-O(3)                     1.419(4) 
            C(3)-C(2)                     1.541(4) 
   
            O(3)-H(5)                     0.90(5) 
            C(2)-O(2)                     1.418(4) 
   
            C(2)-H(2)                     0.98(4) 
            O(2)-H(3)                     0.79(5) 
            C(1)-O(1)                     1.250(4) 
            C(1)-N(1)                     1.323(4) 
            N(1)-C(6)                     1.456(4) 
            N(1)-H(1)                     0.96(4) 
            C(6)-H(9A)                    0.98(4) 
            C(6)-H(9B)                    0.94(5) 
            C(6)-H(9C)                    1.01(5) 
  
            N(2)-C(7)-H(10A)            104(2) 
            N(2)-C(7)-H(10B)            104(3) 
            H(10A)-C(7)-H(10B)          117(4) 
            N(2)-C(7)-H(10C)            110(3) 
            H(10A)-C(7)-H(10C)          105(4) 
            H(10B)-C(7)-H(10C)          115(4) 
            C(5)-N(2)-C(7)              120.2(3) 
            C(5)-N(2)-H(8)              126(3) 
            C(7)-N(2)-H(8)              114(3) 
            O(5)-C(5)-N(2)              123.4(3) 
            O(5)-C(5)-C(4)              120.0(3) 
            N(2)-C(5)-C(4)              116.6(3) 
            O(4)-C(4)-C(5)              110.1(2) 
            O(4)-C(4)-C(3)              109.6(2) 
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Table 5.18 Cont. Bond lengths [Å] and angles [deg] for N,N’-dimethyl L-arabinaramide  

C(3)-O(3)-H(5)              117(3) 

_____ ________________________ 

ters (Å ^2 x 10^3) for N,N’-dimethyl L-
 factor exponent takes the form: 

 ... +  ]  
__ _____________________________________ 

     U    U13      U12 
___ ___________________________________ 

   0(1)       0(1) 
      0(1)       0(1) 

  0(1)       0(1) 

 C(4)     13(1)      10(2)      16(2)      -1(1)       1(1)       2(1) 
  O(4)     16(1)       9(1)      24(1)      -3(1)       2(1)      -1(1) 
  C(3)     18(2)       7(1)      16(2)      -1(1)      -1(1)       0(1) 
  O(3)     20(1)      10(1)      20(1)       1(1)       0(1)      -4(1) 
  C(2)     17(2)       6(1)      17(2)       1(1)      -1(1)       2(1) 
  O(2)     24(1)       4(1)      21(1)       1(1)       2(1)       1(1) 
  C(1)     20(2)       7(1)      19(2)      -4(1)      -1(1)       0(1) 

    O(1)     26(1)       7(1)      21(1)      -1(1)       2(1)       3(1) 

 

            O(2)-C(2)-C(1)              109.1(2) 
            O(2)-C(2)-C(3)              110.1(2) 
            C(1)-C(2)-C(3)              110.7(2) 
            O(2)-C(2)-H(2)              113(3) 
            C(1)-C(2)-H(2)              106(3) 
            C(3)-C(2)-H(2)              108(3) 
            C(2)-O(2)-H(3)               96(3) 
            O(1)-C(1)-N(1)              123.5(3) 
            O(1)-C(1)-C(2)              120.1(3) 
            N(1)-C(1)-C(2)              116.3(3) 
            C(1)-N(1)-C(6)              122.3(3) 
            C(1)-N(1)-H(1)              116(3) 
            C(6)-N(1)-H(1)              122(3) 
            N(1)-C(6)-H(9A)             108(2) 
            N(1)-C(6)-H(9B)             113(2) 
            H(9A)-C(6)-H(9B)            113(4) 
            N(1)-C(6)-H(9C)             105(2) 
            H(9A)-C(6)-H(9C)            115(3) 
            H(9B)-C(6)-H(9C)            104(3) 
___________________ _____________
   
Table 5.19  Anisotropic displacement parame
arabinaramide. The anisotropic displacement
-2 pi^2 [ h^2 a*^2 U11 +  2 h k a* b* U12
______________________ __________
  
                U11        U22   33        U23    
 ____________________ _____________
  
    C(7)     23(2)      19(2)      21(2)      -7(2)    
    N(2)     17(1)      12(1)      18(1)      -5(1) 
    C(5)     20(2)       6(1)      15(1)       3(1)     
    O(5)     17(1)      21(1)      20(1)      -4(1)       0(1)      -1(1) 
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Table 5.19 Cont.  Anisotropic displacement parameters (Å ^2 x 10^3) for N,N’-dim
L-arabinaramide. The anisotropic displacement factor exponent takes the form: 
-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]   

ethyl 

 

________________________ 

naramide 
_______________________ 

 ( 0.48) 
.87 ( 0.28) 
 ( 0.48) 
.11 ( 0.27) 
_____________________________ 

 
      U11        U22        U33        U23       U13      U12 

    N(1)     24(1)       9(1)      19(1)       1(1)       3(1)       1(1) 
    C(6)     28(2)      16(2)      21(2)      -1(1)       5(1)       3(2) 
    

_______________________________________________
  
 
Table 5.20 Torsion angles [deg] for N,N’-dimethyl L-arabi
________________________________________________
  
O(1) - C(1) - C(2) - O(2)    174.72 ( 0.26) 
N(1) - C(1) - C(2) - O(2)       -6.75 ( 0.37) 
O(1) - C(1) - C(2) - C(3)       53.41 ( 0.37) 
N(1) - C(1)- C(2) - C(3)           -128.06 ( 0.28) 
O(2) - C(2) - C(3)- O(3)      -66.13 ( 0.31) 
C(1) - C(2) - C(3) - O(3)     54.62 ( 0.32) 
O(2) - C(2) - C(3) - C(4)     57.68 ( 0.31) 
C(1) - C(2) - C(3) - C(4)          178.43 ( 0.23) 
O(3) - C(3) - C(4) - O(4)     175.08 ( 0.24) 
C(2) - C(3) - C(4) - O(4)          62.67 ( 0.30) 
O(3) - C(3) - C(4) - C(5)    -52.78 ( 0.31) 
C(2) - C(3) - C(4) - C(5)    -175.03 ( 0.24) 

(4) - C(4) - C(5) - O(5)    -164.33 ( 0.25) O
C(3) - C(4) - C(5) - O(5)        73.66 ( 0.34) 
O(4) - C(4) - C(5) - N(2)  15.59 ( 0.36) 

(3) - C(4) - C(5) - N(2)     -106.42 ( 0.29) C
O(1) - C(1) - N(1) - C(6)            1.61
C(2)- C(1) - N(1) - C(6)   -176
O(5) - C(5) - N(2) - C(7)       1.81
C(4) - C(5) - N(2) - C(7)     -178

_________________________________
  
 
 
 
 
 
 



Appendix 250

Appe  
tional Parameters for 2,3,4-Tri-O-

cety amide  

ivalent isotropic displacement parameters (Å ^2 x 
hyl L-arabinaramide. U(eq) is defined as one third 
sor.  
_______________________________ 

     U(eq) 
_______________________________ 

 2401(1)       21(1) 
 2902(1)       19(1) 
 2396(1)       17(1) 
2853(1)       19(1) 
 2344(1)       18(1) 

   1836(2)       31(1) 
042(1)       23(1) 

4045(1)       26(1) 
294(1)       21(1) 
926(1)       21(1) 
13(1)       30(1) 

35(1)       22(1) 
235(1)       37(1) 

772(1)       19(1) 
   880(1)       31(1) 

488(1)       22(1) 
4021(1)       34(1) 
316(1)       22(1) 
934(1)       28(1) 
308(1)       28(1) 

4238(2)       40(1) 
 4661(1)       38(1) 

   500(1)       30(1) 
________________________________ 

ndix 5.10 Complete Bond Lengths, Bond Angles, Principle
Torsion Angles and Thermal and Posi
a l-N,N’-Dimethyl L-arabinar
 
Table 5.21 Atomic coordinates and equ
10^3) for 2,3,4-tri-O-acetyl-N,N’-dimet
of the trace of the orthogonalized Uij ten
_________________________________
  
                         x             y             z      
_________________________________
  
          C(1)         4154(3)       9369(1)      

            C(2)         2584(3)       8884(1)    
          C(3)         1488(3)       8233(1)      
          C(4)         -198(3)       7744(1)       
          C(5)        -1244(3)       7076(1)      

       C(6)         5338(4)      10665(1)       
          C(10)         435(3)       8328(1)       1
          C(12)        -286(4)       6996(1)       
          N(1)         3842(3)      10171(1)       2

1          N(2)        -2895(3)       7350(1)       
          O(1)         5675(2)       8987(1)       21
          O(2)          933(2)       9395(1)       32
          O(3)         3111(3)       9732(1)       4

 1          O(4)          440(2)       8671(1)      
          O(5)         1369(2)       7697(1)     
          O(6)          945(2)       7366(1)       3
          O(7)        -2191(3)       7024(1)       
          O(8)         -544(2)       6363(1)       2
          C(8)         1382(4)       9764(1)       3
          C(7)        -3875(4)       6857(1)       1
          C(9)         -514(4)      10216(2)       

            C(13)        1037(4)       6592(2)    
          C(11)        -895(4)       8835(2)     
________________________________
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Table 5.22 Bond lengths [Å] and angles [deg] for 2,3,4-tri-O-acetyl-N,N’-dimethyl L-
arabinaramide. 
________________________________________________________________ 

        C(10)-O(4)                    1.359(2) 

         N(1)-H(1)                     0.82(3) 

         O(2)-C(8)                     1.360(3) 

  
            C(1)-O(1)                     1.237(2) 
            C(1)-N(1)                     1.313(3) 
            C(1)-C(2)                     1.519(3) 
            C(2)-O(2)                     1.439(2) 
            C(2)-C(3)                     1.519(3) 
            C(2)-H(2)                     0.99(2) 
            C(3)-O(4)                     1.434(2) 
            C(3)-C(4)                     1.531(3) 
            C(3)-H(3)                     0.93(2) 
            C(4)-O(6)                     1.432(2) 
            C(4)-C(5)                     1.527(3) 
            C(4)-H(4)                     0.95(2) 
            C(5)-O(8)                     1.225(2) 
            C(5)-N(2)                     1.332(3) 
            C(6)-N(1)                     1.457(3) 
            C(6)-H(6A)                    0.9600 
            C(6)-H(6B)                    0.9600 
            C(6)-H(6C)                    0.9600 
            C(10)-O(5)                    1.201(2) 
    
            C(10)-C(11)                   1.487(3) 
            C(12)-O(7)                    1.199(3) 
            C(12)-O(6)                    1.361(3) 
            C(12)-C(13)                   1.487(3) 
   
            N(2)-C(7)                     1.453(3) 
            N(2)-H(5)                     0.83(2) 
   
            O(3)-C(8)                     1.203(3) 
            C(8)-C(9)                     1.487(3) 
            C(7)-H(7A)                    0.9600 
            C(7)-H(7B)                    0.9600 
            C(7)-H(7C)                    0.9600 
            C(9)-H(8A)                    0.9600 
            C(9)-H(8B)                    0.9600 
            C(9)-H(8C)                    0.9600 
            C(13)-H(10A)                  0.9600 
            C(13)-H(10B)                  0.9600 
            C(13)-H(10C)                  0.9600 
            C(11)-H(9A)                   0.9600 
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Table 5.22 Cont. Bond lengths [Å] and angles [deg] for 2,3,4-tri-O-acetyl-N,N’-
dimethyl L-arabinaramide. 
  

C(11)-H(9B)                   0.9600 

  

       N(1)-C(1)-C(2)              118.85(17) 

         O(2)-C(2)-C(3)              106.75(15) 
          C(1)-C(2)-C(3)              109.10(17) 

         C(3)-C(2)-H(2)              112.1(11) 

         O(5)-C(10)-O(4)             123.31(19) 
          O(5)-C(10)-C(11)            126.3(2) 
          O(4)-C(10)-C(11)            110.43(17) 
          O(7)-C(12)-O(6)             121.9(2) 
          O(7)-C(12)-C(13)            126.7(2) 
          O(6)-C(12)-C(13)            111.3(2) 
          C(1)-N(1)-C(6)              120.73(18) 
          C(1)-N(1)-H(1)              121.0(16) 

            C(11)-H(9C)                   0.9600 

            O(1)-C(1)-N(1)              122.97(19) 
            O(1)-C(1)-C(2)              118.18(18) 
     
            O(2)-C(2)-C(1)              113.47(15) 
   
  
            O(2)-C(2)-H(2)              107.1(12) 
            C(1)-C(2)-H(2)              108.4(12) 
   
            O(4)-C(3)-C(2)              107.06(15) 
            O(4)-C(3)-C(4)              108.09(15) 
            C(2)-C(3)-C(4)              112.10(17) 
            O(4)-C(3)-H(3)              113.2(14) 
            C(2)-C(3)-H(3)              106.7(13) 
            C(4)-C(3)-H(3)              109.8(13) 
            O(6)-C(4)-C(5)              110.41(15) 
            O(6)-C(4)-C(3)              104.70(15) 
            C(5)-C(4)-C(3)              111.53(16) 
            O(6)-C(4)-H(4)              112.0(14) 
            C(5)-C(4)-H(4)              111.6(14) 
            C(3)-C(4)-H(4)              106.3(14) 
            O(8)-C(5)-N(2)              124.50(18) 
            O(8)-C(5)-C(4)              121.39(18) 
            N(2)-C(5)-C(4)              114.08(16) 
            N(1)-C(6)-H(6A)             109.5 
            N(1)-C(6)-H(6B)             109.5 
            H(6A)-C(6)-H(6B)            109.5 
            N(1)-C(6)-H(6C)             109.5 
            H(6A)-C(6)-H(6C)            109.5 
            H(6B)-C(6)-H(6C)            109.5 
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Table 5.22 Cont. Bond lengths [Å] and angles [deg] for 2,3,4-tri-O-acetyl-N,N’-
dimethyl L-arabinaramide. 
 

C(6)-N(1)-H(1)              118.0(16) 
            C(5)-N(2)-C(7)              122.56(17) 
            C(5)-N(2)-H(5)              117.3(16) 
            C(7)-N(2)-H(5)              119.7(16) 
            C(8)-O(2)-C(2)              116.38(17) 
            C(10)-O(4)-C(3)             118.78(15) 
            C(12)-O(6)-C(4)             115.18(17) 
            O(3)-C(8)-O(2)              122.8(2) 
            O(3)-C(8)-C(9)              126.6(2) 
            O(2)-C(8)-C(9)              110.5(2) 
            N(2)-C(7)-H(7A)             109.5 
            N(2)-C(7)-H(7B)             109.5 
            H(7A)-C(7)-H(7B)            109.5 
            N(2)-C(7)-H(7C)             109.5 
            H(7A)-C(7)-H(7C)            109.5 
            H(7B)-C(7)-H(7C)            109.5 
            C(8)-C(9)-H(8A)             109.5 
            C(8)-C(9)-H(8B)             109.5 
            H(8A)-C(9)-H(8B)            109.5 
            C(8)-C(9)-H(8C)             109.5 
            H(8A)-C(9)-H(8C)            109.5 
            H(8B)-C(9)-H(8C)            109.5 
            C(12)-C(13)-H(10A)          109.5 
            C(12)-C(13)-H(10B)          109.5 
            H(10A)-C(13)-H(10B)         109.5 
            C(12)-C(13)-H(10C)          109.5 
            H(10A)-C(13)-H(10C)         109.5 
            H(10B)-C(13)-H(10C)         109.5 
            C(10)-C(11)-H(9A)           109.5 
            C(10)-C(11)-H(9B)           109.5 
            H(9A)-C(11)-H(9B)           109.5 
            C(10)-C(11)-H(9C)           109.5 
            H(9A)-C(11)-H(9C)           109.5 
            H(9B)-C(11)-H(9C)           109.5 
_____________________________________________________________ 
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Table 5.23 Anisotropic displacement parameters (Å ^2 x 10^3) for 2,3,4-tri-O-acetyl-
N,N’-dimethyl L-arabinaramide. The anisotropic displacement factor exponent takes the 

_____________________________________________________________________ 

        U13        U12 
______________________________________ 

1)      -2(1)       0(1) 
(1)       1(1)       0(1) 
1)      -1(1)       1(1) 
1)       1(1)       0(1) 

(1)       4(1)      -3(1) 
1)      12(1)       1(1) 
(1)       4(1)       0(1) 

3(1)       2(1)      -6(1) 
1)       6(1)       1(1) 
1)      -4(1)       2(1) 
1)      10(1)       2(1) 

(1)       4(1)       0(1) 
(1)     -10(1)       1(1) 
(1)      -1(1)       2(1) 

)      -1(1)      11(1) 
)      -1(1)      -4(1) 
)       8(1)      -7(1) 
)      -1(1)       0(1) 
)       6(1)      -4(1) 
)     -12(1)       1(1) 

(1)      21(1)      -3(1) 
1)      -4(1)      -7(1) 

(1)       1(1)       8(1) 
______________________________________ 

form:  -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ] 
__
  
              U11        U22        U33        U23
_________________________________
  
    C(1)     13(1)      16(1)      35(1)      -1(
    C(2)     14(1)      12(1)      30(1)      -1
    C(3)     13(1)      11(1)      26(1)       0(
    C(4)     17(1)      12(1)      28(1)      -1(
    C(5)     14(1)      14(1)      26(1)       0
    C(6)     26(1)      17(1)      50(2)       3(
    C(10)    17(1)      26(1)      25(1)       1
    C(12)    35(1)      17(1)      26(1)      -
    N(1)     14(1)      13(1)      37(1)       1(
    N(2)     16(1)      10(1)      38(1)      -3(
    O(1)     19(1)      15(1)      58(1)      -1(
    O(2)     19(1)      16(1)      32(1)      -5
    O(3)     52(1)      26(1)      35(1)      -7
    O(4)     16(1)      16(1)      25(1)       1
    O(5)     29(1)      32(1)      31(1)      -5(1
    O(6)     23(1)      16(1)      25(1)       1(1
    O(7)     32(1)      32(1)      38(1)       1(1
    O(8)     19(1)      11(1)      35(1)      -1(1
    C(8)     41(1)      16(1)      28(1)       3(1
    C(7)     23(1)      19(1)      41(1)      -3(1
    C(9)     53(2)      24(1)      42(1)      -6
    C(13)    50(2)      32(1)      30(1)       8(
    C(11)    28(1)      36(1)      26(1)       1
_________________________________
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Table 5.24  Torsion angles [deg] for 2,3,4-tri-O-acetyl-N,N’-dimethyl L-arabinara
______________________

mide 
_________________________________________________ 

O(1) – .18) 
7) 

(1) – C(1) – C(2) – C(3)     -63.69 ( 0.24) 
 

 
 
) 
) 

) 

) 

 
) 

) 

 

) 

) 
 

.17) 
20) 

5) 
8) 
.17) 
_____________________________ 

  
 C(1) – C(2) – O(2)     177.44 ( 0

N(1) – C(1) – C(2) – O(2)      -2.49 ( 0.2
O
N(1) – C(1) – C(2) – C(3)     116.39 ( 0.20)
O(2) – C(2) – C(3) – O(4)     63.96 ( 0.19) 
C(1) – C(2) – C(3) – O(4)     -59.02 ( 0.20)
O(2) – C(2) – C(3) – C(4)     -54.40 ( 0.21)
C(1) – C(2) – C(3) – C(4)     -177.39 ( 0.16
O(4) – C(3) – C(4) – O(6)     -176.77 ( 0.14
C(2) – C(3) – C(4) – O(6)     -59.01 ( 0.19
O(4) – C(3) – C(4) – C(5)      63.83 ( 0.20) 
C(2) – C(3) – C(4) – C(5)     -178.42 ( 0.16
O(6) – C(4) – C(5) – O(8)     -24.64 ( 0.26) 
C(3) – C(4) – C(5) – O(8)      91.32 ( 0.22) 
O(6) – C(4) – C(5) – N(2)     157.47 ( 0.16)
C(3) – C(4) – C(5) – N(2)     -86.57 ( 0.21
O(1) – C(1) – N(1) – C(6)      -1.59 ( 0.33) 
C(2) – C(1) – N(1) – C(6)     178.33 ( 0.20
O(8) – C(5) – N(2) – C(7)      -8.68 ( 0.32) 
C(4) – C(5) – N(2) – C(7)     169.14 ( 0.19)
C(1) – C(2) – O(2) – C(8)     -87.04 ( 0.21) 
C(3) – C(2) – O(2) – C(8)     152.74 ( 0.16
O(5) – C(10) – O(4) – C(3)    -4.41 ( 0.28) 
C(11) – C(10) – O(4) – C(3)  174.70 ( 0.17
C(2) – C(3) – O(4)- C(10)    141.64 ( 0.16)
C(4) – C(3) – O(4) – C(10)    -97.42 ( 0.19) 
O(7) – C(12) – O(6) – C(4)     -3.58 ( 0.28) 
C(13) – C(12) – O(6) – C(4)  177.64 ( 0
C(5) – C(4) – O(6) – C(12)    -69.11 ( 0.
C(3) – C(4) – O(6) – C(12      170.73 ( 0.1
C(2) – O(2) – C(8) – O(3         6.17 ( 0.2
C(2) – O(2) – C(8) – C(9)     -175.56 ( 0
_________________________________
  
 
 
 
 
 
 



Appendix 256

Appendix 5.11 Complete Bond Lengths, Bond Angles, Principle
Torsion Angles and Th

 
ermal and Positional Parameters for N,N’-

ime

lent  isotropic displacement parameters (Å2x 
 defined as one third of  the trace of the 

___________________________________  
z U(eq) 

_____________________________________

 3659(2) 26(1) 
2369(2) 23(1) 
3029(2) 22(1) 
1850(2) 24(1) 

 1137(2) 23(1) 
 5158(4) 58(1) 

-1170(3) 32(1) 
3887(2) 36(1) 
-338(2) 26(1) 
4449(2) 33(1) 
1533(2) 26(1) 
3953(2) 27(1) 
789(2) 28(1) 

1969(2) 30(1) 
7517(2) 35(1) 

_____________________________________ 

D thylribaramide  
 
Table 5.25  Atomic coordinates and equiva
103) for N,N’-dimethylribaramide. U(eq) is
orthogonalized Uij tensor. 
____________________________________
 x y 
__________________________________
_  
C(1) 2522(2) 8365(2)
C(2) 1361(2) 7906(2) 
C(3) 489(2) 7228(2) 

 C(4) -720(2) 6742(2)
C(5) -1634(2) 7841(2)
C(6) 4730(2) 7978(3)
C(7) -3049(2) 8840(2) 
N(1) 3573(2) 7720(2) 
N(2) -2125(2) 7877(2) 
O(1) 2441(1) 9301(1) 
O(2) 710(1) 8990(1) 
O(3) 1161(1) 6176(1) 
O(4) -430(1) 5978(1) 
O(5) -1919(1) 8611(1) 
O(1S) 3673(2) 9750(2) 
__________________________________
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Table 5.26   Bond lengths [Å] and angles [°] for N,N’-dimethylribaramide 
 
C(1)-O(1)            1.247(2) 
C(1)-N(1)  1.320(3) 
C(1)-C(2)  1.524(3) 
C(2)-O(2)  1.416(2) 
C(2)-C(3)  1.529(3) 

(2)-H(8)  0.87(3) 
(2)-H(3)  0.8400 
(3)-H(5)  0.8400 
(4)-H(7)  0.8400 
(1S)-H(1S)  0.81(3) 
(1S)-H(2S)  0.91(4) 

(1)-C(1)-N(1) 123.4(2) 
(1)-C(1)-C(2) 119.76(18) 

C(2)-H(2)  1.0000 
C(3)-O(3)  1.432(2) 
C(3)-C(4)  1.518(3) 
C(3)-H(4)  1.0000 
C(4)-O(4)  1.416(2) 
C(4)-C(5)  1.522(3) 
C(4)-H(6)  1.0000 
C(5)-O(5)  1.247(2) 
C(5)-N(2)  1.319(3) 
C(6)-N(1)  1.461(3) 
C(6)-H(9A)  0.9800 
C(6)-H(9B)  0.9800 
C(6)-H(9C)  0.9800 
C(7)-N(2)  1.457(3) 
C(7)-H(10A)  0.9800 
C(7)-H(10B)  0.9800 
C(7)-H(10C)  0.9800 
N(1)-H(1)  0.84(3) 
N
O
O
O
O
O
 
O
O
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Table 5.26 Cont.   Bond lengths [Å] and angles [°] for N,N’-dimethylribaramide 
 
N(1)-C(1)-C(2) 116.85(18) 
O(2)-C(2)-C(1) 109.91(15) 
O(2)-C(2)-C(3) 107.63(15) 
C(1)-C(2)-C(3) 108.22(16) 
O(2)-C(2)-H(2) 110.3 
C(1)-C(2)-H(2) 110.3 
C(3)-C(2)-H(2) 110.3 
O(3)-C(3)-C(4) 110.58(15) 
O(3)-C(3)-C(2) 108.35(15) 
C(4)-C(3)-C(2) 113.40(17) 
O(3)-C(3)-H(4) 108.1 
C(4)-C(3)-H(4) 108.1 
C(2)-C(3)-H(4) 108.1 
O(4)-C(4)-C(3) 109.23(16) 
O(4)-C(4)-C(5) 113.00(16) 
C(3)-C(4)-C(5) 112.46(16) 
O(4)-C(4)-H(6) 107.3 
C(3)-C(4)-H(6) 107.3 
C(5)-C(4)-H(6) 107.3 
O(5)-C(5)-N(2) 123.97(19) 
O(5)-C(5)-C(4) 118.68(18) 
N(2)-C(5)-C(4) 117.26(17) 
N(1)-C(6)-H(9A) 109.5 
N(1)-C(6)-H(9B) 109.5 
H(9A)-C(6)-H(9B)109.5 
N(1)-C(6)-H(9C) 109.5 
H(9A)-C(6)-H(9C)109.5 

(9B)-C(6)-H(9C)109.5 
(2)-C(7)-H(10A)109.5 
(2)-C(7)-H(10B)109.5 
(10A)-C(7)-H(10B)109.5 
(2)-C(7)-H(10C)109.5 

H
N
N
H
N
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Table 5.26 Cont.   Bond lengths [Å] and angles [°] for N,N’-dimethylribaramide 
 
H(10A)-C(7)-H(10C)109.5 

(10B)-C(7)-H(10C)109.5 

2[ 

_____  

2

____ _ ________  

1

(5)27(1)  21(1) 24(1)  -1(1) 11(1)  -5(1) 
(6)34(2)  65(2) 60(2)  -28(2) -2(1)  13(1) 
(7)30(1)  35(1) 28(1)  4(1) 7(1)  2(1) 
(1) 30(1)  36(1) 37(1)  -14(1) 7(1)  4(1) 
(2) 29(1)  26(1) 22(1)  -1(1) 8(1)  0(1) 
(1) 35(1)  30(1) 30(1)  -10(1) 5(1)  4(1) 
(2) 35(1)  21(1) 22(1)  3(1) 10(1)  1(1) 

H
C(1)-N(1)-C(6) 122.8(2) 
C(1)-N(1)-H(1) 116.7(18) 
C(6)-N(1)-H(1) 119.1(18) 
C(5)-N(2)-C(7) 123.23(18) 
C(5)-N(2)-H(8) 116.0(17) 
C(7)-N(2)-H(8) 120.8(17) 
C(2)-O(2)-H(3) 109.5 
C(3)-O(3)-H(5) 109.5 
C(4)-O(4)-H(7) 109.5 
H(1S)-O(1S)-H(2S)104(3) 
______________________________________________________________________ 
 
Table 5.27   Anisotropic displacement parameters (Å2x 103) for N,N’-
dimethylribaramide. The anisotropic displacement factor exponent takes the form: -2
h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
__________________________________________________________________
 
 U11 U 2  U33 U23 U13 U12 
__________ _____________________________________ ___________
C(1)31(1)  23(1) 23(1)  -1(1) 10(1)  0(1) 
C(2)29(1)  8(1) 20(1)  -1(1) 8(1)  2(1) 
C(3)30(1)  18(1) 18(1)  1(1) 8(1)  3(1) 

(4)31(1)  19(1) 22(1)  -1(1) 13(1)  -1(1) C
C
C
C
N
N
O
O
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Table 5.27 Cont.   Anisotropic displacement parameters (Å2x 103) for N,N’-
tropic displacement factor exponent takes the form: -2�2[ 

12 ] 

     U22  3 U23 U13 U12 

) 19(1)  1(1) 8(1)  2(1) 
36(1)  ) 28(1)  -8(1) 12(1)  -3(1) 
38(1) 1) 26(1)  -2(1) 14(1)  7(1) 

) 32(1)  1(1) 15(1)  8(1) 
_______ ______________________________________________ 

 Torsion angles [°] for N,N’-dimethylribaramide. 
______ ________________________________________ 
(2)-O(2) 45.5(2) 
(2)-O(2 -135.27(19) 
(2)-C(3) -71.7(2)  
(2)-C(3) 107.5(2) 
3)-O(3) -176.53(14) 
)-O(3 -57.79(19) 

3)-C(4 60.3(2) 
3)-C(4) 179.04(15) 

)-O(4) -69.95(19) 
-O(4 52.0(2) 

)-C(5 163.76(15) 
-C(5) -74.3(2) 

(5)-O(5) -177.16(16) 
(5)-O(5) -52.9(2) 
(5)-N(2 6.2(2) 
(5)-N(2 130.39(19) 

)-C(6 4.6(4) 
)-C(6) -174.6(2) 
)-C(7) 0.9(3) 

177.44(17) 
______________________________________  

dimethylribaramide. The aniso
h2 a*2U11 + ...  + 2 h k a* b* U
 

U11            U3
 
O(3) 39(1)  20(1
O(4) 20(1
O(5)  28(
O(1S) 39(1)  36(1
__________ ________
 
Table 5.28 
________ _______
O(1)-C(1)-C  
N(1)-C(1)-C ) 
O(1)-C(1)-C  
N(1)-C(1)-C  
O(2)-C(2)-C  (
C(1)-C(2)-C(3 ) 
O(2)-C(2)-C( ) 
C(1)-C(2)-C(  
O(3)-C(3)-C  (4
C(2)-C(3)-C(4) ) 
O(3)-C(3)-C(4 ) 
C(2)-C(3)-C(4)  
O(4)-C(4)-C  
C(3)-C(4)-C  
O(4)-C(4)-C ) 
C(3)-C(4)-C ) 
O(1)-C(1)-N ) (1
C(2)-C(1)-N(1  
O(5)-C(5)-N(2  
C(4)-C(5)-N(2)-C(7) 
__________________________
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