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ABSTRACT

Deep Learning for Document Image Analysis

Christopher Alan Tensmeyer
Department of Computer Science, BYU

Doctor of Philosophy

Automatic machine understanding of documents from image inputs enables many
applications in modern document workflows, digital archives of historical documents, and
general machine intelligence, among others. Together, the techniques for understanding
document images comprise the field of Document Image Analysis (DIA). Within DIA, the
research community has identified several sub-problems, such as page segmentation and
Optical Character Recognition (OCR). As the field has matured, there has been a trend of
moving away from heuristic-based methods, designed for particular tasks and domains of
documents, and moving towards machine learning methods that learn to solve tasks from
examples of input/output pairs. Within machine learning, a particular class of models,
known as deep learning models, have established themselves as the state-of-the-art for many
image-based applications, including DIA. While traditional machine learning models typically
operate on features designed by researchers, deep learning models are able to learn task-specific
features directly from raw pixel inputs.

This dissertation is collection of papers that proposes several deep learning models
to solve a variety of tasks within DIA. The first task is historical document binarization,
where an input image of a degraded historical document is converted to a bi-tonal image to
separate foreground text from background regions. The next part of the dissertation considers
document segmentation problems, including identifying the boundary between the document
page and its background, as well as segmenting an image of a data table into rows, columns,
and cells. Finally, a variety of deep models are proposed to solve recognition tasks. These
tasks include whole document image classification, identifying the font of a given piece of
text, and transcribing handwritten text in low-resource languages.

Keywords: document image analysis, deep learning, binarization, document classification,
font recognition, handwriting recognition
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Chapter 1

Introduction

This body of work fits into the field of Document Image Analysis (DIA), which can

be broadly characterized as a large group of techniques for understanding documents from

visual information. DIA is among the oldest fields of computer science, pre-dating even the

first programmable computer. In 1913, Edmund Fournier invented the optophone which

could detect dark character strokes on a piece of paper and produce tones that, with much

effort, enabled the blind to interpret documents without resorting to braille [3]. While the

optophone relied on the conductivity properties of selenium, contemporary DIA algorithms

run on the silicon chips found in modern computing hardware and operate on raster images

produced with scanners, cameras, and other digitization devices.

1.1 Tasks

Some of the earliest applications of DIA involved the recognition of printed characters,

commonly known as Optical Character Recognition (OCR) [4]. Such technology is now

widely deployed for parsing zip codes on mailed envelops to automate mail routing. One

might claim that for noise-free, machine printed, scanned office documents in English, OCR

is a solved problem. Indeed, some systems show higher than 99% accuracy on such cases [1].

However, there are over 3000 written languages [2], and OCR for the vast majority of these

languages remains unsolved, though improving OCR accuracy for common languages is the

subject of on-going research. Another common use of DIA technology is in form processing.

When a person fills out a paper form (e.g. in a doctors office), it saves human effort if, after
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scanning the form to produce a digital image, the form can be automatically converted into

key and value pairs and stored in a database. Such a process is comprised of a number of

steps such as removing scanner noise, identifying sets of field labels and field values, and

finally recognizing the text. All of these steps are challenging and much research effort has

been expended to solve these problems.

As the field has matured, the variety of problems tackled has grown. The following is

a non-exhaustive list of common problems encountered in the DIA literature.

• Binarization - Classifying which pixels are foreground and which are background.

• Rectification - Correcting for perspective distortion in camera captured document

images. This occurs when the camera is not positioned orthogonally w.r.t. the physical

document.

• Page Segmentation - Dividing a page into homogenous components such as text, images,

and graphics.

• Text Line Segmentation - Dividing a paragraph of text into lines. This is difficult for

handwritten text where acenders of one line overlap the descenders of the line above.

• Document Classification - Classifying the type of a document. E.g. form, memo, email,

advertisement.

• Font Recognition - Classifying which font was used to render a given image of text.

• Language/Script Recognition - Classifying the language and/or script (writing system;

e.g. Latin or Cyrillic) of text.

• Character Segmentation - Segmenting a word image into individual characters. Often

required for OCR.

• Graphics Recognition - Interpretation of graphical components of documents, such as

engineering drawings.
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• Table Layout Decomposition - Recovering the row and column structure from an image

of a table.

• Text in the Wild Detection and Recognition - Detection and recognizing text in natural

scenes, such as recognizing the text of street signs or billboards.

• Writer Identification - Determining the individual or characteristics (e.g. gender,

handedness) of the individual who wrote a certain piece of text.

• Document Image Quality Assessment - Determining the quality (e.g. legibility, blurri-

ness) of a document image.

• Handwriting Recognition - Similar to OCR, but for handwritten text. Often, whole

words are recognized at once because it can be difficult to segment a cursive word into

characters.

There are many more topics that are the subject of active research.

The typical document image processing pipeline is composed of 3 generic steps.

1. Pre-processing - Noise removal, blur removal, rectification, deskewing, binarization

2. Layout Analysis - Understanding document structure to, e.g., identify Regions of

Interest (RoI)

3. Recognition - Extracting application-specific information from each RoI

In general, pre-processing and layout analysis steps depend on the types and structure of

documents under consideration. For example, segmenting form images is different from

segmenting text lines in a handwritten manuscript. The recognition step is dependent on the

end application. Commonly, applications aim to transcribe the textual content on the page

to, e.g., create a searchable index or populate a database.

In addition to the growing number of problems found in the literature, there has been

an expansion in the domains of documents considered. While much early research was focused

on automating paper workflows in modern business settings, there is now a high interest
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in processing historical documents. DIA for historical documents is challenging due to the

high levels of noise arising from the age and degradation of the documents. For example,

recognition rates for historical text is much lower than that of modern office documents. Many

historical archives have made digital copies of their documents available online, but without

searchable digital transcriptions of the documents, it is difficult for users to find documents

relevant to their needs. Manual transcription is costly, so automatically transcribing historical

records to create searchable indexes with DIA techniques is a preferred solution if high enough

accuracy can be obtained.

1.2 Techniques

With the growing variety of tasks and domains has come a shift in the fundamental techniques

used in DIA. Early applications relied heavily on heuristic rules that applied to narrow

document domains, but did not generalize well to all classes of documents. Supervised

machine learning techniques, where a generalizable model is learned from human-annotated

examples of input and output pairs, are now commonly used. Instead of inventing new

heuristic rules for every language/domain/task combination, the same machine learning

model can be applied to different sets of labeled data.

While traditional machine learning models operate over task-specific features chosen

by the user, a certain class of hierarchical models, called deep neural networks, learn superior

task-specific features directly from image pixels. Deep learning has recently transformed many

research fields, including computer vision, natural language processing, and bioinformatics,

and DIA is no exception. Each layer in the deep network abstracts the representation

learned by the previous layer, gradually transforming an input image into high level semantic

information, such as the type of document.

Due to the success of deep learning models in computer vision, many deep models

designed for recognition of natural images have been ported directly to DIA tasks. In

general, such attempts have been widely successful and outperform previous machine learning
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approaches that use hand-crafted features. However, given that natural images and document

images have significant differences, it is likely that this approach to DIA has its limitations.

This dissertation contains several deep learning approaches proposed for a variety of DIA

tasks. In each case, the deep learning model is adapted for the DIA task under consideration

and outperforms the naive application of a deep model transfered from the domain of natural

images.

1.3 Summary of Contributions

Each chapter in this dissertaton, besides the introduction and concluding chapter, is a paper

that has been published or submitted for peer-review. These papers have been organized

into 3 parts on the topics of binarization, segmentation and recognition.

Part I is on binarization and consists of Chapters 2-4. The literature review in

Chapter 2 is the first of its kind and provides a roadmap for future research in historical

document binarization. Chapter 3 introduces a new multi-scale FCN model appropriate

for binarization tasks. This model is able to learn features at multiple scales, including

full resolution so that it can properly localize the boundary between foreground text and

background. This FCN is trained using the proposed pseudo F-measure loss, which weights

each pixel based on its location relative to the ground truth foreground regions so that errors

are less likely to occur on more important pixels. This FCN model achieves state-of-the-art

performance on several of the Document Image Binarization Competition (DIBCO) datasets.

Chapter 4 extends this line of work to construct realistic ground truth so that deep learning

models in binarization can be trained with sufficient data. Because explicit modeling of

realistic historical documents is challenging, a deep model is introduced to transform initially

generated synthetic data into refined data that appears realistic. The results show that

pretraining on this realistic data reduces binarization error by 13% compared to no pretraining

and reduces error by 6% compared to pretraining on unrealistic synthetic data.
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Part II presents contributions for two segmentation tasks. In Chapter 5, we present

a model that formulates the task of segmenting a document page from its surroundings as

a pixel-labeling semantic segmentation task with domain-specific post-processing. On test

data from the same collections as the training data, the model approaches the performance

level of human agreement. On out-of-domain data, it still achieves good results, showing the

generalizability of the model. Chapter 6 deals with the same problem, but with a generic

keypoint regression model that has applications outside of document images. This model

is able to outperform the model presented in Chapter 5 by directly regressing the image

coordinates of the document corners from detection heatmaps. Segmentation of table images

(and PDFs) into cells, rows, and columns is the subject of Chapter 7, where 2 deep models

are introduced. These models use pooling regions appropriate for large table images and

achieve state-of-the-art results on both the public benchmark dataset as well as a much larger

and more complex private dataset.

In Part III, Chapter 8 presents an empirical analysis of CNNs used for document

image page classification. While natural image classification can be done over lower resolution

images, we find that higher resolutions lead to better document image classification. Using

this and other insights, we were able to obtain state-of-the-art performance on a public

dataset of 400K images, exceeding the performance of previous models pretrained on natural

image datasets. In Chapter 9, we show that the same model architecture can be applied

to both optical font recognition as well as medieval scribal script classification and obtain

state-of-the-art performance. We identify some of the short comings of the basic classifier on

the scribal script task and introduce a novel form of data augmentation to address some of the

issues. Finally, we introduce a transfer learning method for handwriting recognition (HWR)

in Chapter 10. While HWR models are very successful when trained on large amounts of

labeled data, not all languages have sufficient amounts of labeled data to train such models.

Chapter 10 shows that using only unlabeled text images and a language model in the target
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language is sufficent to enable transfer learning of a model pretrained on a source language

that is similar to the target language.
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Part I

Binarization of Historical Documents

This part presents 3 chapters on the topic of historical document binarization, where

images of noisy text are converted to an image with only 2 allowed intensity values: black and

white. Such pre-processing can make the later tasks of segmentation and recognition easier.

Chapter 2 presents an extensive literature review of the binarization field including binarization

methods, pre-processing, post-processing, parameter tuning, datasets, construction of ground

truth, and evaluation methods. Chapter 3 presents a multi-scale Fully Convolutional Network

(FCN) model for binarization that is trained using a proposed loss function to encourage

errors to happen less frequently on important image pixels. One of the limitations of using

deep learning for binarization is the amount of training data available. Chapter 4 shows

that realistic synthetic data can be generated using deep networks and then used to pretrain

models, such as the FCN from Chapter 3, to improve binarization performance.
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Chapter 2

A Literature Review of Binarization of Historical Documents

Abstract

This review provides a comprehensive view of the field of historical document image binariza-

tion with a focus on the contributions made in the last decade. After the introduction of a

standard benchmark dataset with the 2009 Document Image Binarization Contest (DIBCO),

research in the field accelerated. Besides the standard methods for image thresholding,

preprocessing, and post processing, we review the literature on methods such as statistical

models, pixel classification with learning algorithms, and parameter tuning. In addition to

reviewing binarization algorithms, we discuss the available public datasets and evaluation

metrics, including those that require pixel-level ground truth and those that do not. We

conclude with recommendations for future work.

Submitted to Pattern Recognition.

Chris Tensmeyer and Tony Martinez. “Historical Document Image Binarization - A Review.”
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2.1 Introduction

Binarization is the process converting a multi-tone image into a bi-tonal image. In the case of

document images, it is typical to map foreground text pixels to black and the rest of the image

(background) to white. In many applications, binarization is a critical preprocessing step

and helps facilitate other document processing tasks such as layout analysis and character

recognition. In such pipelines, the quality of the binarization can greatly affect system

performance, as errors made in the binarization step can propagate to downstream tasks.

As a standalone application, binarization can serve as a noise removal process to increase

document readability. The file size of binary images is often orders of magnitudes smaller than

the original gray or color images, which makes them cheaper to store on disk. Additionally,

with the rise of digital archives, file size can become a concern as large numbers of images

are viewed over the Internet. If a person can still recognize the text in the binary images,

then this compression can be obtained with virtually no loss in semantic image content.

In the last decade, a tremendous amount of progress has been made in the field of

historical document binarization. In 2009, the first Document Image Binarization Contest

(DIBCO) introduced the first dataset of real degraded images that have ground truth

annotations at the pixel level [36]. This enabled a standardized evaluation procedure that

allowed for direct comparison between algorithms. This spurred research in the field and the

creation of more datasets in new application domains.

The purpose of this review is to highlight the recent advances of the last decade in all

facets of historical document binarization. We discuss not only binarization methods, but

also topics such as pre-processing, post-processing, algorithm efficiency, datasets, evaluation,

and definitions of ground truth.

2.1.1 Challenges

Historical document images are, in general, more difficult to binarize than modern scanned

documents. This is in part due to their degraded state and partly because many historical
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documents are digitized with cameras, which do not have controlled illumination conditions

like scanners. Some camera produced images have uneven illumination due to bad lighting or

because the page is not flat (e.g. curved edges near book bindings).

Figure 2.1 illustrates several degradation types that commonly occur in historical

documents. Stains serve to decrease the contrast between foreground and background inside

the stained region, and strong edges around stains can be difficult to distinguish from real

foreground/background boundaries. Creases cause similar difficulties as stains. Complex

backgrounds arising from paper textures or uneven illumination cause difficulties for statistical

features because the statistics vary from one image region to another. Border noise was a

major challenge in HDIBCO 2018 [120] because dark surroundings have similar intensity

as foreground ink and book edges provide high frequency edges. Many local thresholding

approaches use a fixed window size which is not optimal for handling various font sizes and

stroke widths. Faint text is challenging due to the low contrast, and multiple text colors can

lead to low intensity for some colors when converting to grayscale images. Stamps are similar

to stains, but can be darker. Document images are high resolution and image compression

(e.g. JPEG) is often used to meet limited storage requirements, but compression artifacts

introduce high frequency content into background regions. Thin strokes (e.g. single pixel

wide) can be discarded during image smoothing or noise removal processes. Bleed-through

noise is perhaps the most challenging degradation because the noise is shaped like text, is

superimposed over the foreground text, and may co-occur with faint non-bleed-through text.

Finally, smeared ink can make it difficult to localize foreground/background boundaries.

Due to the large variety of historical documents, it is commonly accepted that no

single algorithm can perform best on every image [70]. For example, in [54] it was noted

that the state-of-the-art methods for paper documents do not produce good results for Palm

Leaf Manuscripts (PLMs). Thus many binarization methods are designed to address some

particular degradation type or domain.
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(a) Large Stain (b) Creases (c) Complex Background

(d) Border Noise (e) Varying Font Size (f) Faint Text

(g) Multiple Text Colors (h) Stamps (i) Compression Artifacts

(j) Thin Strokes (k) Bleed Through Ink (l) Smeared Ink

Figure 2.1: Challenging aspects of historical document binarization illustrated with DIBCO
images.
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2.1.2 Previous Reviews

Previous reviews on historical document binarization have taken a much narrower scope than

the current article. There are some short review articles that briefly describe about a dozen

methods [11, 90, 91]. Other articles do not presents themselves as surveys, but do describe

and then empirically evaluate a large number of existing algorithms [52, 137, 147].

A seminal review by Sezgin and Sankur [139] was published in 2004 which described

40 algorithms and provided detailed performance analysis on synthetic data. However, the

binarization field has progressed much in the last 15 years and a new review is needed. Ismail

et al. [47] recently reviewed 29 thresholding algorithms and organized them into a taxonomy

based on what features are used to determine thresholds. While this review provides insight

into thresholding methods, it does not explicitly address the many other types of methods

and facets of the binarization field. In this review we give a comprehensive view of the field

including non-thresholding methods such as Conditional Random Fields (CRF) and deep

learning models. Additionally we cover facets besides binarization methods such as algorithm

efficiency, parameter tuning, datasets, evaluation, construction of binarization Ground Truth

(GT), and alternatives to GT evaluation.

2.1.3 Paper Organization

In contrast to prior reviews that provide individual paper summaries, the this paper is orga-

nized by topic. This choice is motivated by the modular nature of many binarization pipelines

that combine many operations to achieve top performance (e.g. [103]). An individual sum-

marization of each method would be insufficient to disentagle which specific parameters and

operations (e.g. local threshold computation, noise removal, edge detection) are performance

crucial and which may be interchanged without degrading binarization quality. Therefore,

within each topic, we compare and contrast analogous operations and their relative merits.

Fortunately, the community has recognized the value of comparing individual components

and we draw on the analysis in the literature. We hope to highlight the contributions of
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individual operations that in isolation do not yield state-of-the-art performance, but may do

so when incorporated into a full pipeline.

The remainder of the paper is organized in the following sections. Section 2.2 covers

common preprocessing techniques for noise removal, background estimation, and grayscale

conversion. State-of-the-art binarization methods are discussed in Section 2.3. Post-processing

techniques, including morphology and how to combine multiple binary outputs are found in

Section 2.4. Efforts for efficient binarization methods are discussed in Section 2.5, and datasets

with ground truth (GT) are presented in Section 2.6. In Section 2.7, we review standard

pixel-GT based evaluation, including GT construction and common metrics. Concerns about

pixel-GT and alternative evaluation methods are discussed in Section 2.8. We offer concluding

remarks in Section 2.9.

2.2 Preprocessing

The primary reason binarization is difficult is the presence of noise, degradations, and low

contrast between foreground and background. Preprocessing techniques do not directly

produce a binary image, but are designed to deal with these challenges in order to make

subsequent binarization easier. Though there are many preprocessing techniques, they can

be roughly categorized into noise removal, background estimation, and color to grayscale

conversion.

2.2.1 Noise Removal

The goal of noise removal is to smooth background and foreground textures, while preserving

the contrast between the two regions. This makes subsequent binarization easier as local

image patches are more homogeneous.

Wiener filtering [160] is among the most common noise removal techniques used

in binarization [35, 57, 79, 81, 136]. For known additive Gaussian noise, it produces an

optimally filtered image according to the Mean Squared Error (MSE) criteria. Gatos et al.
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[35] implemented Wiener filtering in the spatial domain as

I ′(i, j) = µ(i, j) +
(σ2(i, j)− ν2(i, j))(I(i, j)− µ(i, j))

σ2(i, j)
(2.1)

where ν2(i, j) is a local estimate of the variance of additive Gaussian noise. In [35], ν2(i, j) =∑
i′
∑

j′ σ(i′, j′), though as noted in [145], fixing ν2 as the median σ2(i, j) computed over the

whole image leads to better binarization performance.

Simple alternatives to Wiener filtering include low-pass Gaussian filtering [26, 106] and

Bilateral filtering [3, 99]. Roe and Mello [129] proposed an interesting variation on a Bilateral

filter, where each pixel is set to the median of its neighbors that have sufficient color-similarity.

Other low pass filtering is done by truncating high frequency information through image

transforms such as the Contourlet transform [165] and a Gabor-Wavelet decomposition [93].

Total Variation (TV) regularization [69, 145] finds a smooth image that resembles the

original image. It is formulated as

If = argmin
I′

∑
i

∑
j

(I ′(i, j)− I(i, j))2+

β
∑
i

∑
j

|I ′(i, j)− I ′(i− 1, j)|+ |I ′(i, j)− I ′(i, j − 1)|
(2.2)

where β controls the strength of the edge L1 magnitude penalty. Setting β too high, however

will cause undesirable smoothing of the edges that separate foreground and background.

Other regularization terms, such as gradient L2 and L0 [48] can be used, but can be more

difficult to optimize.

Non-local Means [22, 69, 145] smooths an image by performing a weighted average

over neighborhoods, where the averaging weights are determined by patch similarity.

If (i, j) =
∑

i′j′∈N(i,j)

w(i, j, i′, j′)I(i′, j′) (2.3)
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where N(i, j) returns the (perhaps global) neighborhood of (i, j) and w(i, j, i′j′) is a weight

based on the similarity between the image patches centered at (i, j) and (i′, j′). The weights

for any given pixel must sum to 1, i.e. ∀i, j
∑

i′j′ w(i, j, i′, j′) = 1. It is known that averaging

many noisy corruptions of an image (e.g. consecutive video frames) with zero-centered i.d.d.

noise converges to the uncorrupted image. Non-local means attempts to average out the

noise over similar local patches rather than over several images.

Kligler et al. [60] proposed a unique noise removal technique where the intensity image

is converted to a point cloud {(x, y, I(x, y)} that is embedded on a sphere. The transformed

image values are based on the visibility of each point on the sphere from the center of the

sphere. This preprocessing combined with Howe’s method [46] achieved state-of-the-art

performance on DIBCO data.

2.2.2 Background Estimation

Binarization of images with non-uniform background is often addressed by first estimating a

grayscale background image and then using that estimate to preprocess the original image.

One common way to compensate for the background is simple subtraction [21, 35, 64, 77, 99,

145, 156]

I ′(i, j) = I(i, j)−B(i, j) (2.4)

where B is the estimated background image. While subtraction is effective, it tends to leave

low contrast in darker regions of the background due to small differences between foreground

and background. This motivates dividing by the background image [49, 58, 63, 74, 103]

I ′(i, j) =
C

B(i, j)
I(i, j) (2.5)

where C is a constant used to scale the contrast. When B(i, j) is dark (low intensity), C
B(i,j)

will be large and will serve to emphasize the foreground text in this region. In some cases,

histogram stretching is performed on the normalized image to increase contrast [77, 129].
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There are a variety of ways to estimate background images. A simple method is to use

a median filter with a sufficiently large window size. Nina et al. [99] use a fixed 21x21 window

size, while Mitianoudis and Papamarkos [84] progressively grow the window size at each pixel

until the local standard deviation stabilizes. Morphological grayscale closing [21, 64, 77, 78]

and heuristic estimation [145] have also been used.

Another popular technique is to perform a high-recall initial binarization and then

inpaint the foreground regions based on neighboring background intensities [35, 57, 103, 106].

Using simple binarization techniques (e.g. Niblack [97], Sauvola [135]) tuned for high-recall

is common choice for rough foreground estimation.

The winner of DIBCO 2009 proposed iterative polynomial smoothing [74], but this

produces a highly smoothed background estimate. Perret et al. [113] used hypercomponent

trees for background estimation, which combined with simple global thresholding achieved

similar performance as [74]. Vo et al. [157] proposed robust regression for background

estimation with some success.

2.2.3 Grayscale Conversion

The majority of binarization algorithms operate over grayscale images, so RGB color images

are generally converted to grayscale before binarization. While most works employ simple

conversion methods, such as the simple luminosity formula g = 0.21r + 0.72g + 0.07b, this

can lead to decreased contrast for colored foreground ink. This problem is compounded when

there are multiple foreground ink colors. For example, Hedjam et al. [44] report improvements

of about 5-15% across 11 binarization methods when using their proposed grayscale conversion

method on images with multiple and/or non-standard foreground ink colors.

One choice for conversion is to perform Principle Component Analysis (PCA) over

the set of RGB pixels and project each pixel onto the first principle component [84, 85, 108].

Because the majority of pixels in any document image are background, the first principle

18



component is close to the background color. Then after projection, background pixels will

have high intensity (lighter) and foreground pixels will have low intensity (darker).

Hedjam et al. [44] proposed learning a fixed linear transform from a dataset of color

images that have pixel GT labeling for text/background. The pixel features are its values in

the RGB, YIQ, YDbDr, YCbCr color spaces. Then an optimization procedure learns the

optimal linear mapping to grayscale such that average text and background intensities are

separated. While their results are impressive, once learned, the mapping is fixed and only

reflects the text and background colors in the training dataset.

Bouillon et al. [14] proposed a grayification method that is image-adaptive. First,

pixel values are clustered in the YPQ color space. Then the intensity of each pixel is taken

as the Mahalanobis distance between the pixel and the center of the largest (presumably

background) cluster. This approach is similar to the PCA approach as the Mahalanobis

distance depends on the principle components, but this method uses all of the principle

components instead of just the first one.

We note that there are a number of (non-trivial) grayscale conversion methods proposed

in the literature for photographic conversion that have been relatively unexplored in the

context of document image binarization.

2.3 Binarization Methods

This section surveys many of the binarization methods proposed in the last decade and

constitutes the bulk of this review. While most previous reviews proceed by summarizing

methods in isolation, we have attempted to organize topically according to common themes.

2.3.1 Classic Thresholding Algorithms

There are a number of classical thresholding algorithms for binarization that are simple to

implement and have become standard tools that many later algorithms use as sub-routines.
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Otsu

The global thresholding algorithm proposed in by Otsu [105] remains popular, likely because

it effectively handles images with uniform background and has no parameters to tune. The

Otsu threshold, TOtsu, is derived from the histogram of grayscale image intensity values,

h, which typically has H = 256 bins for 8-bit images. Any chosen threshold 0 ≤ T ≤ L

partitions the histogram into two clusters. The number of pixels, mean intensity, and variance

of both clusters are respectively given by

w0(T ) =
T−1∑
i=0

h(i) w1(T ) =
L−1∑
i=T

h(i) (2.6)

µ0(T ) =
1

w0

T−1∑
i=0

ih(i) µ1(T ) =
1

w1

L−1∑
i=T

ih(i) (2.7)

σ2
0(T ) =

1

w0

T−1∑
i=0

h(i)(i− µ0(T ))2 σ2
1(T ) =

1

w1

L−1∑
i=T

h(i)(i− µ1(T ))2 (2.8)

TOtsu is then defined as the threshold that minimizes the within-cluster variance:

TOtsu = argmin
T

w0(T )σ2
0(T ) + w1(T )σ2

1(T ) (2.9)

or equivalently maximizes the between-cluster variance, which reduces to

TOtsu = argmax
T

w0(T )w1(T )(µ1(T )− µ0(T ))2 (2.10)

Finding TOtsu is done by trying all values of T and seeing which one minimizes Eq. 2.9

or maximizes Eq. 2.10. Afterward, binarization is performed globally:

B(i, j) =

 0 I(i, j) < TOtsu

255 I(i, j) ≥ TOtsu

 (2.11)

20



Niblack

One disadvantage of Otsu or any other global thresholding method is that the background may

be non-uniform. Some background pixels being darker than some foreground pixels, meaning

that no global threshold exists to separate them. Niblack proposed a simple local adaptive

threshold, where a threshold is determined for each pixel based on statistics computed from

a local window centered on the pixel of interest [97]. Specifically, Niblack thresholding uses

the local mean and local standard deviation:

µ(i, j) =
1

w2

i+w∑
i′=i−w

j+w∑
j′=j−w

I(i′, j′) (2.12)

σ(i, j) =

√∑i+w
i′=i−w

∑j+w
j′=j−w(I(i′, j′)− µ(i, j))2

w2
(2.13)

where w is called the window size and controls how much context is used to compute these

statistics. The per-pixel Niblack threshold is then

TN(i, j) = µ(i, j) + kσ(i, j) (2.14)

where k is a user-set parameter that controls the trade-off between foreground detection

precision and recall. The recommended parameter setting is k = −0.2, though the optimal k

depends on the image and chosen window size.

Binarization is then accomplished with

B(i, j) =

 0 I(i, j) < TN(i, j)

255 I(i, j) ≥ TN(i, j)

 (2.15)

The biggest issue with Niblack thresholding is when the window covers only background

pixels, causing the darkest background pixels to be set to foreground.
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Sauvola

Sauvola and Pietikäinen [135] proposed a variant of Niblack to solve the problem with

background-only windows.

TS(i, j) = µ(i, j)
[
1 + k

(σ(i, j)

R
− 1
)]

(2.16)

where µ(i, j) and σ(i, j) are computed as in Niblack (Eqs. 2.12,2.13), k = 0.5 is the recom-

mended value for the user-set parameter, and R is a constant set to the maximum possible

standard deviation, i.e. R = 128 for 256 gray levels.

While Niblack takes µ(i, j) and adjusts downward based only on the σ(i, j), Sauvola

adjusts downward based on µ(i, j)σ(i, j). In windows of only background µ(i, j) is relatively

large, so TS < TN , which means fewer of these background pixels are set to foreground.

Wolf

Wolf binarization [161] is an extension of Sauvola, where the local statistics are normalized

based on global statistics:

TW (i, j) = µ(i, j)− k(1− σ(i, j)

S
)(µ(i, j)−M) (2.17)

where S = maxij σ(i, j), M = minij µ(i, j). This allows for better handling of images with

limited contrast and limited range of grayscale intensity.

2.3.2 Image Processing

The majority of binarization techniques employ one or more image processing techniques.

Here, we have roughly categorized these techniques into thresholding, edge detection, image

transforms and region based methods, but we recognize that much of the preprocessing

(Section 2.2) and postprocessing (Section 2.4) techniques also involve image processing.
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Thresholding

Inspired by classic algorithms, many approaches are based on local thresholding, sometimes

combined with preprocessing. One competitive example of this is by Gatos et al. [35], where

after background subtraction (Section 2.2.2), the local threshold is based on an estimate of

the average distance between foreground and background pixels. Then to compensate for low

contrast regions, the threshold is adapted using a logistic sigmoid function to produce lower

thresholds when the estimated background region is dark.

NICK thresholding [59] (named for the authors initials) perturbs TNiblack based on the

global image mean, µ, to lower the number of false positive foreground components. From

Eq. 2.14, we have TNiblack(i, j) = µ(i, j) − k
√
B, where B = σ2(i, j). The NICK threshold

has a similar form with TNICK = µ(i, j)− k
√
A, where A ≈ B + µ2 for large window sizes.

Bataineh et al. [9] proposed a local threshold computed from both the local and global

means and standard deviations that was shown to outperform NICK on DIBCO 2009, though

parameters were not necessarily tuned for NICK. Adaptively setting the k value in NICK

thresholding based on the global standard deviation was shown to improve performance over

a fixed k [133].

While most local thresholding methods use all pixels in the local window, [49] as well

as the winners of DIBCO 2009 [75] and 2013 [151] determine local thresholds based on the

intensity of detected edge pixels. Additionally, in [75], pixels classified as foreground must be

near Nmin number of edge pixels and have an intensity below the average nearby edge pixel.

Estimating the stroke width (see Section 2.3.5) is often used to determine the window size

for edge-based local thresholding.

AdOtsu [87] is a local version of Otsu (Section 2.3.1) where the threshold is computed

from a local window rather than the global histogram. In addition, there is a switching

behavior to use an alternative constant threshold when regions are similar to the estimate

background image.
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Edge Detection

Several approaches perform edge detection to find the boundary between foreground and

background. A popular method is Canny edge detection [19], which finds single pixel wide

edges by performing non-maximal suppression and hysteresis thresholding over the gradient

magnitude image computed from the input image after Gaussian smoothing. The hysteresis

thresholding process first finds strong edges using a high user-set threshold, τ1, and then

expands each strong edge to include edge pixels with gradient magnitude above τ2, where

τ1 > τ2. The winner of DIBCO 2013 [151] filtered edges detected by Canny using a novel

measure of local contrast:

C(i, j) = α
M(i, j)−m(i, j)

M(i, j) +m(i, j) + ε
+ (1− α)(M(i, j)−m(i, j)) (2.18)

where M(i, j) is the image local maximum, m(i, j) is the image local minimum, α increases

with the global image standard deviation, and ε is a small constant to prevent division by

0 [151]. Without manually tuning parameters, it is difficult to eliminate false edges with

Canny, and while C(i, j) does a good job of eliminating false positives, it only roughly localizes

the edges, even if a small window size is used to compute M and m. After this process,

spurious horizontal edges may still remain in Palm Leaf Manuscripts (PLMs) due to the

background texture of palm leaves, but many of these edges can be removed by examining

the aspect ratio of connected edge components [112].

Binarizing based on pairs of Structural Symmetrical Pixels (SSPs) leverages the idea

that edge pixels on opposite sides of the stroke should have large gradient magnitudes

and opposite orientations [49]. While spurious edges may be detected due to background

variations, the noise edges are less likely to be symmetrical and thus are not SSPs. An

adaptive water flow model is proposed in [154], where water is poured on detected edges and

allowed to flood low intensity basins at a rate and amount controlled by edge strength and
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stroke edge. After filtering spurious regions, all pixels covered by water are designated to be

foreground.

One issue with using edge detection for binarization is that the detected edges do not

completely surround the foreground regions. In contrast, active contour methods constrain

the detected edges to be closed contours that directly imply a segmentation. Hadjadj et al.

[39] uses Eq. 2.18 (with α = 1) to initialize closed contours and then optimizes those contours

according to forces that attempt to align the contours to maximize local intensity differences

and minimize the contour length and area.

Image Transforms

Some methods have experimented with extracting local features based on image transforms

such as Gabor filter banks, Fourier transform, and the Contourlet transform.

In [95], thresholding the response of log-Gabor filters is used to identify the pixels

that correspond to maximal local phase components in the Fourier frequency domain. Sehad

et al. [136] finds the dominate document slant angle using the Fourier transform and then

constructs a weighted Gabor filter bank based on this angle to smooth the image. Then for

local thresholding, they compute the local standard deviation from the Gabor-filtered image

and compute the local mean from the input image.

The Contourlet transform is composed of a Laplacian pyramid decomposition to obtain

multi-scale analysis and a directional filter bank is applied at each scale [165]. The resulting

Contourlet coefficients give a more concentrated representation of the image edges, which are

thresholded using Niblack. Then the inverse Contourlet transform is applied to produce a

smoothed image that is fed to a local thresholding method.

2.3.3 Statistical Models

While the image processing methods presented in Section 2.3.2 can perform well, they aren’t

grounded in a formal framework. In this section, we review statistical methods based on
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Mixture of Gaussians (MoG) and Conditional Random Fields (CRF), in addition to other

methods based in probability theory.

Mixture Of Gaussians

A MoG model is a parametric probability distribution whose probability distribution function

(pdf) is a weighted sum of Gaussian distributions,

p(x) =
K∑
k=1

πkN (µk, Σ2
k) (2.19)

where N is the pdf of a Gaussian distribution, K is the number of mixture components, and∑K
k=1 πk = 1. The MoG can be fit to a set of unlabeled data points (e.g. pixel features) using

Expectation Maximization (EM). Afterward, each data point can be assigned to its most

probable cluster, and the clusters can be assigned to either the foreground or background

class to induce a binarization over the entire image.

How to apply the MoG in binarization varies among the published literature. For

example, foreground and background have been modeled each with a single component using

intensity or color as the pixel features [43, 67]. Both these methods extend the basic Gaussian

mixture component to have a spatially varying µk, and [43] uses a spatially varying Σk. In

this manner, a single component can model spatially varying changes in the statistics of

foreground or background pixels. The FAIR algorithm [67] combines this MoG approach

with some pre-processing and post-processing to obtain state-of-the-art results.

In contrast, Mishra et al. [83] uses 5 components for foreground and background and

uses both stroke and color features. Though [83] primarily targeted scene text segmentation,

where foreground text may be multiple colors, it performs competitively with the state-of-art

on DIBCO datasets. Mitianoudis and Papamarkos [85] perform MoG clustering over pairs of

intensity values that co-occur in local windows combined with a local contrast feature.
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Though a MoG can converge to any arbitrary distribution (given enough components),

an empirical study over handwritten images found that foreground and background patches far

from character boundaries have intensities that are approximately Gaussian distributed [127].

However, including the (transition) pixels near boundaries creates skew in the foreground

and background distributions. Due to this asymmetry, a mixture of log-normal distributions

provides a better fit and increases binarization performance compared to a MoG [127].

Conditional Random Fields

CRFs provide an excellent framework for including spatial dependencies among pixels into

the binarization process. A CRF is governed by an energy (cost) function that scores how

well a given binarization agrees with the input image. For tractability, this energy function

is decomposed into local energy functions over sets of pixels. This decomposition could be

over sets of any size, though it is typically defined over single pairs and pairs of neighboring

pixels:

E(B, I) =
N∑
i=1

Ei(Bi, I) +
N∑
i=1

i∑
j=1

Eij(Bi, Bj, I) (2.20)

where I is the input image with N pixels, B is a discrete segmentation of I, and Ei, Eij are

respectively the decomposed unary and pairwise energy functions, which optionally can vary

based on i or i, j. Though general CRFs can have any number of segmentation classes, for

binarization it is typical to have 2 classes. Typically, E1 biases individual pixels to be either

foreground or background based on pixel intensity and E2 yields low values when adjacent,

similar pixels are assigned to the same class.

Given that Eq. 2.20 scores the goodness of a given binarization, we formulate the

binarization inference task as energy minimization

B̂ = argmin
B

E(B, I) (2.21)
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An exact solution to Eq. 2.21 can be found for binary segmentation tasks if Eij satisfies the

following sub-modularity criteria [61]

∀i, j Eij(0, 0, I) + Eij(1, 1, I) ≤ Eij(0, 1, I) + Eij(1, 0, I) (2.22)

If the above is true, then E is can be transformed to a graph with non-negative edge weights,

and a minimum cut over this graph corresponds to B̂ [61]. The minimum graph cut problem

can be reformulated as the dual max-flow problem, for which there are many algorithms and

off-the-shelf solvers [15].

The popular Howe method [46] uses a CRF, where Ei is set to be the image Laplacian.

The pairwise energy, Eij, is 0 in uniform regions and discontinuities that occur at edges.

Specifically, Eij gives a uniform penalty when Bi 6= Bj unless pixels i and j are on opposite

sides of detected Canny edges [19]. The edges used to define Eij are improved in [6] using an

initial binarization obtained by clustering pixels. Howe’s method (and variants to introduce

pre- and post-processing) placed first in DIBCO competitions for 2012, 2014, 2016, and

2018 [102, 116, 118, 120].

In [111], a CRF is used to improve an initial binarization, where Eij is determined

by the distances between foreground pixels, background pixels, and the foreground skeleton

of the initial binarization. Similarly, [150] performs an initial ternary classification into

foreground, background, and uncertain before using a CRF to reclassify the uncertain pixels

based on detected edges and similarity to nearby foreground and background pixels.

The previously described CRFs use hand-crafted energy functions and do not learn

parameters. In contrast, Ahmadi et al. [2] defines Ei and Eij as a linear combination of

feature functions based on window statistics, Histogram of Oriented Gradients (HOG) [27],

Local Binary Patterns (LBP) [104], and Canny edges [19]. The linear combination weights

(feature importance) are then learned from training data and fixed for novel test images.
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Other Statistical Approaches

The idea of a transition pixel was introduced in [122] and later expanded upon [123, 126].

These works define a statistical criteria for modeling pixels near foreground-background

transitions that is used for image thresholding.

A level-set method for binarization is presented in [128], where the contours separating

foreground and background are evolved according to forces that direct the contours to be

smooth, have minimum area, and adhere to strong edges. One of the proposed forces is

based on modeling foreground and background intensities using locally-linear models and the

contours are adjusted to increase the likelihood of the segmentation under this model.

2.3.4 Pixel Classification

In the last few years, machine learning methods, particularly deep learning models, have

become the state-of-the-art in historical document binarization. In 2017, the top 6 submissions

to DIBCO all used a deep model [119].

The majority of learning methods adopt a framework of directly classifying pixels,

while others use machine learning to predict other quantities such as optimal parameter

settings or methods. The latter approach is covered in Section 2.3.5 and the pixel classification

approaches are covered here. First we shall review shallow models and then deep models.

Shallow Models

Hamza et al. [40] used a Self-Organizing Map (SOM) to cluster pixels with similar intensity

and a Multi-Layer Perceptron (MLP) to classify them as foreground or background based

on intensity. An MLP was also used in [121] to classify individual pixels in Brazilian bank

checks that have complex background due to check security features and watermarks. This

MLP took as input the pixel intensity as well as the average intensity of 4 3x3 windows

around the pixel. In contrast, the MLP in [53] used the raw intensities in a 3x3 window and

the global mean and standard deviation to classify the central pixel. However, such small
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context windows restrict the model to learn very simple features that do not generalize across

a wide variety of documents. Pastor-Pellicer et al. [110] used 90 inputs composed of the 81

raw intensity values of a 9x9 window plus 9 intensity values of the estimated background for

a 3x3 window. In addition, the authors proposed a new loss function which is a continuous

adaptation of the F-measure evaluation metric and showed this resulted in improved MLP

training.

Ensembles of shallow models have also proven effective in classifying pixels. In [51],

an ensemble of 8 Support Vector Machines (SVMs) are trained to classify pixels in different

positions in a 3x3 window, leading to an error reduction of 25% compared to a single model.

Wu et al. [162] used a variant on a Random Forest ensemble combined with a large, rich

feature set to achieve competitive performance. Their features include thresholds determined

by classic algorithms, statistics over multiple scales, and histograms for several (non-centered)

regions. Another key element was constructing a training set of difficult pixels based on the

disagreement regions of other algorithms.

Deep Neural Networks

While early uses of deep Convolutional Neural Networks (CNN) involved small images for

character recognition [65, 142], they became popular for large image classification after a CNN

was used to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [132].

In [72], CNNs were transformed to Fully Convolutional Networks (FCNs) for semantic

segmentation, which is defined as a task where each pixel is classified as one of K classes.

Binarization is a semantic segmentation problem with K = 2 and methods based on FCNs

have proven very effective on this task. However, the basic architecture of [72] only obtains

68% F-measure on DIBCO 13 and 14 [157] and has been extensively modified by the following

approaches.

30



Pastor-Pellicer et al. [109] first explored a CNN for binarization, finding that a CNN

with an appropriate architecture outperforms a non-convolutional deep MLP even if the MLP

is augmented with additional histogram and median filter features.

Both Peng et al. [112] and Calvo-Zaragoza and Gallego [18] adopted an encoder-

decoder architecture, where the encoder progressively downsamples the input image to pool

information over increasingly larger input regions. The decoder then performs upsampling

to produce a binarization at the original input resolution. In [112], the encoder-decoder

is trained on synthetic data in steps, where additional layers at a smaller resolution are

added during training. Then each scale makes a prediction, which is combined using a CRF.

Calvo-Zaragoza and Gallego [18] explored 3 basic network blocks and found that residual

blocks perform the best. They also find a large gap in performance between models trained

on specific document domains (e.g. DIBCO, PLM, PHIBD) and a generalist model.

Tensmeyer and Martinez [153] and Vo et al. [157] proposed FCNs that learn features

at multiple scales. While the single model proposed in [153] fuses features learned in parallel

at multiple scales, in [157] there are 3 separate networks trained independently at different

input image scales. The predictions of the 3 models are combined by taking the union of the

individually predicted foreground pixels, which allows for both fine and coarse prediction.

The previously discussed FCNs do nothing to enforce spatial smoothness on the

output predictions, which has led to some post processing steps. For example, the model

of [153] was submitted to DIBCO 2017 [119] both with and without fully connected CRF post

processing [62]. In contrast, PDNet [7] integrates individual pixel probability prediction with

a smoothness term based on total variation. This improves performance by jointly learning

(end-to-end) the pixel probabilities and output smoothness, rather than smoothing outputs

in a post-hoc fashion.

Recurrent Neural Networks (RNNs) for binarization have also been proposed, though

they are not as effective as FCN based approaches. In [1], 4 small 2D BLSTMs (Bidirectional

Long-Short Term Memory) are used to model an arbitrarily large context for pixel classification.
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The 4 models process the image in different directions (top-down, left-right; top-down, right-

left; down-top, left-right; down-top, right-left) and fuse their features before making a

prediction. Westphal et al. [159] instead use Grid LSTMs and report performance near that

of [157]. In Grid LSTMs, each pixel has a set of memory cells for both vertical and horizontal

directions.

Class Imbalance

One classic problem for machine learning algorithms is when the training and/or test data is

heavy skewed to one class (e.g. background pixels). This is addressed in [110] by training

to optimize the F-measure, which causes the model to balance the false positive and false

negative errors it makes. In [153], the pseudo F-measure (see Section 2.7.2) loss is used

for training, which heavily penalizes errors made near the foreground text. Similarly, [159]

uses the per-pixel weights from pseudo F-measure to weight the per-pixel contribution for a

cross-entropy loss.

Another method to address class imbalance is to subsample the background class.

This is done in [162] by sampling a training set from disagreement regions of other algorithms.

In [33], training patches are sampled according to the standard deviation of intensity, which

oversamples foreground regions.

2.3.5 Parameter Tuning

Many binarization methods have tunable parameters such as window sizes or constants used

in computing thresholds. The output of these algorithms is generally sensitive to these

parameters. For example, the reported F-measure for Sauvola on DIBCO 2009 ranges from

69.54 [34] to 87.26 [37] in the literature, presumably due to different parameter settings used

by authors. Even the choice of which binarization algorithm to use for a particular image can

be considered a meta-parameter, as it has been repeatedly shown that no single algorithm
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performs best for all images [70]. Parameter tuning approaches come in 3 flavors: supervised,

unsupervised, and interactive.

Supervised

In supervised parameter tuning, there are two primary approaches taken. In the first, a set of

training images is used to determine a static set of parameters, which are then applied to each

new image without modification. The second approach is more adaptive in that the training

set is used to learn a model that predicts the optimal setting of parameters conditioned on

the image. These approaches are similar to pixel classification (Section 2.3.4), but indirectly

infer pixel classes by instead predicting parameters.

The static scenario can be posed as

θ̂ = argmax
θ

1

N

N∑
i=1

M(f(Ii; θ), Bi) (2.23)

where θ is the set of parameters being optimized, f is a particular binarization algorithm,

{(Ii, Bi)} is a training set (size N) of input images Ii with corresponding GT Bi, and M is a

metric to be maximized such as F-measure. While a brute force search is viable for a limited

number of parameters (as it only needs to be done once), more efficient search strategies have

been employed in the literature. These include I/F Race [78], Bayesian optimization [155],

and swarm optimization techniques [30, 41].

A general formulation of the conditional setting is

ψ̂ = argmax
ψ

1

N

N∑
i=1

M(f(Ii; g(Ii;ψ)), Bi) (2.24)

where g is a learning model with parameters ψ that predicts θi = g(Ii;ψ). For a test image, I,

the prediction is made by f(I, g(I; ψ̂)). Cheriet et al. [24] predicted parameters for Sauvola

and Lu [74] binarization methods, attaining results very close to those obtained using optimal

parameter settings. Chattopadhyay et al. [20] segments an image into blocks and then uses
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a SVM classifier (trained to optimize OCR performance) to choose the best binarization

algorithm to apply to each region based on region statistics. A similar approach was used

in [164], but instead a global threshold is predicted for each block. Westphal et al. [158]

replace the unsupervised parameter tuning of Howe [46] with a supervised approach and

report improved performance.

An alternate formulation where g is selected based on a training and validation set is

presented in [80], and [79] uses a handcrafted g to detect 4 types of image noise and provide

appropriate parameters for the detected noise type.

Unsupervised

In unsupervised parameter tuning, parameters are tuned using only the information contained

in the test image. A common parameter that is estimated in this way is the average stroke

width [13, 71, 74, 83, 86, 154]. One way to estimate the stroke width is to perform an initial

binarization (e.g. Sauvola) or edge detection with Canny. Then create a histogram for the

distances between each pair of successive edge pixels on all horizontal scan lines. Then the

stroke width can be estimated as the most frequent distance between the edge pixels [13, 86].

In [49], this is done in an iterative fashion as the binarization result is based on the stroke

width and the stroke width is estimated from the binarization.

The window size is often based on the stroke width [103], but other ways are used to

estimate it based on the idea that the window should be large enough to cover both foreground

and background pixels. In [9], pixels are initially sorted into foreground, background, and

low-confidence. The window size for thresholding low-confidence pixels is chosen to ensure

that a sufficient number of foreground pixels are included in each window. The methods

of [12, 26, 84] gradually increase the window size until reaching a stopping criteria based on

window standard deviation.

Howe [46] tunes two critical parameters to minimize a criteria that measures binariza-

tion output instability. In [68], the weighted average of a globally and a locally computed
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threshold is determined by minimizing a cost function. Several statistical cost functions were

evaluated in [124] and found to correlate well with OCR performance.

Interactive

Interactive parameter tuning requires the input of a user to improve binarization performance

for a particular image. In [75, 76], the user is able to provide feedback to the algorithm

by indicating approximate regions that were poorly binarized. This feedback can take the

form of scribbles around the region [75], which after segmentation is binarized again with

an adjusted threshold. The user feedback in [76] is class-based, where the user indicates

small regions that are foreground, bleed-through, and background. This small feedback is

propagated to other regions and a new binarization result is produced that can be further

refined by the user.

Sokratis and Kavallieratou [146] proposed an interface that allows users to manually

set parameters and provide global feedback for the resulting binarization. Based on the

feedback, the interface suggests a modification to the parameters. The suggestions, however,

are based on pre-determined rules, which limits its applicability in new algorithms.

2.4 Post-Processing

Once a binarization mask has been produced, it can often be improved by post-processing.

This is mostly a heuristic process, involving morphological operations based on apriori

knowledge of how binarization masks of text should look. Other techniques are based on

comparing the resulting binary image to the input grayscale image or based on combining

multiple binarized images.

2.4.1 Morphological Approaches

The main purpose of morphological post processing is to smooth the output binary image to

remove noise. Generally, this involves removing small foreground components and smoothing
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the edges of other foreground components. To obtain the components, connected component

analysis is performed using 4-connected or 8-connected neighborhoods.

Removing small foreground components is typically done by counting the number of

pixels in the component and comparing it to a threshold. This threshold in the literature

ranges from conservative 1-4 pixels [21, 108, 122, 151] to as large as 60 pixels [136]. Other

methods set this threshold adaptively, such as 10% of the average foreground component

size [82]. While using a larger threshold is likely to remove more spurious components, there

are legitimate small foreground components such as the dot of an i or diacritic marks that

may be removed by this process.

Smoothing the edges of foreground components can be done in several different ways.

One simple way is to perform a morphological closing operation followed by a morphological

opening operation [113, 136]. Lu et al. [74] explicitly remove single pixel concavities and

convexities. Shrink and swell filters have also been used, where pixels are flipped if the number

of opposite class pixels in a local window is above some threshold. In [35], the thresholds

and window sizes were determined based on the average character height. To recover faint

strokes, [22] constructs a bidirectional graph over extracted strokes and then applies a swell

filter to try to connect strokes that are detected as broken.

Some methods that explicitly detect edge pixels ensure that pixels on opposite sides

of the detected edge are different classes [21, 151].

2.4.2 Approaches Based on Grayscale Image

Besides morphology, other post-processing approaches have been proposed. For example,

local thresholding based on both the binary and gray image has been used to fill in the

interior of characters with thick strokes [10] and to connect broken strokes [8]. In [108], these

regions are called white islands and are identified by performing a two sample z-test of the

mean gray value of the white island and the mean gray value of the surrounding pixels. Other
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approaches for fixing misclassified background pixels involve comparing the intensity of each

background pixel to the intensities in the surrounding window [57, 92].

2.4.3 Combining Multiple Binarizations

Combining the output of 2 or more binarization methods is a good way to improve overall

binarization quality. One strategy is to compute two binary images where one has high

precision of foreground components even if it does not capture the full extent of each

component [4, 10, 38, 103, 108, 125]. The other image has high recall, but could have many

false positive foreground components (e.g. the output of Niblack). These images can be

combined by retaining only the foreground components of the high recall image that have

sufficient overlap with one of the components in the high precision image. This serves to

filter the false positives to greatly improve the precision of the high recall image.

An unsupervised Ensemble-of-Experts method was proposed in [88], which analyzes

the outputs from a large number of binarization algorithms to form a weighted consensus

graph. The idea is to find the correct cluster of experts that agree on a given test image

and produce a final binarization using a majority vote of the selected experts. Though an

ensemble of all submissions to HDIBCO 2012 was unable to outperform the best system in

terms of F-measure, an ensemble of Howe’s method [46] using different parameter settings

was able to outperform the parameters chosen by the automatic tuning [46]. Similarly, a

supervised ensemble of experts combined with a trained CRF was shown to outperform the

best of the ensemble [42].

Su et al. [149] proposed a way to combine the output of two binarization methods

using features extracted from the input gray image to classify the pixels that the two binary

outputs do not agree on. To incorporate more than 2 methods, the combined output of 2

methods can be compared to a third output, and so on. On DIBCO 2009, they were able

to combine two methods to achieve an average F-measure of 93.18, where the individual

binarization methods had average F-measures of 91.06 and 91.24. An extension of this method
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replaces the handcrafted classification rules for disagreement pixels with sparse reconstruction

classification [152]. For each uncertain pixel, a small set of similar patches centered on pixels

that the two methods agreed on are used to determine the class of the uncertain pixel.

2.5 Binarization Efficiency

Some binarization algorithms are too slow to process very large collections (e.g. 50 mil-

lion [159]) or to be used interactively [28, 75]. For example, the winning algorithm of the

2014 HDIBCO took 17 seconds to process an average sized image [102]. Such considerations

have pushed some researchers to search for ways to speed up binarization algorithms on both

CPU and GPU.

2.5.1 CPU

The primary ways that CPU based algorithms have been made more efficient is through

grid-based and integral image techniques.

Grid-based Methods

In grid-based methods, certain quantities (e.g. local thresholds) are computed for only a subset

of pixels on a regular grid (i.e. all pixels whose coordinates are divisible by N ∈ Z+). Under

the assumption that these quantities smoothly vary across the image, the value for non-grid

pixels can be computed through interpolation, which is typically much faster than computing

the exact quantity. In [86], grid-based Sauvola is proposed by computing the local threshold

for only the grid pixels and inferring the rest of the local thresholds through interpolation.

The grid approach was shown to be 640x faster and yielded improved binarization quality

compared to basic Sauvola due to the imposed smoothness of the local threshold. While this

was shown for Sauvola, this technique can be applied to other local thresholding methods

and other quantities (e.g. [43]).
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Integral Images

The integral image, L, of image I contains cumulative sums of I at each pixel:

L(i, j) =
i∑

i′=1

j∑
j′=1

I(i′, j′) (2.25)

Once L has been computed (in O(HW ) time), the sum of any rectangular region defined by

(y1, x1, y2, x2) of I can be computed in constant time.

y2∑
i′=y1

x2∑
j′=x1

I(i′, j′) = L(y2, x2)− L(y1, x2)− L(y2, x1) + L(y1, x1) (2.26)

For local thresholding methods that make heavy use of computing statistics over local

windows, this can provide significant speed up (5-20x), reducing computational complexity

from O(HWK2) to O(HW ), where K is the chosen window size [140].

Quantities other than sums can be computed by first transforming I before computing

L. For example, the integral image of I2(i, j) can by used to compute the local variance [122,

140]. Integral images can also be used for vector valued transformations of I such as grayscale

histograms [98].

2.5.2 GPU

Graphical Processing Units (GPUs) are designed for efficient Single Instruction Multiple

Data (SIMD) parallel computing. The most common use of GPUs in binarization is for

deep learning models (Section 2.3.4), which have a high computational burden (e.g. 125

GFLOPs [72]) The CuDNN library [25] provides efficient GPU routines for both training and

inference, and it has been integrated into a variety of learning frameworks. However, the

recently proposed deep models have not given much consideration to speed, so while they

may win contests [119], their use in workflows that require high throughput or low latency
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may be limited. Techniques to make networks smaller and faster without losing accuracy

have been studied in the deep learning literature (e.g. [130]).

Hybrid approaches that utilize both CPU and GPU have been investigated. In [23],

Sauvola is applied to the image several times on the GPU with multiple sets of parameters.

Then SVM based voting and reconstruction is performed on the CPU.

Westphal et al. [158] performed an extensive study of a CPU/GPU implementation of

Howe binarization [46], finding that the fastest configuration performs all steps on the GPU,

achieving a 3.5x speed up compared to the reference implementation. They implemented a

parallel algorithm to solve the graph-cut energy minimization step on the GPU because the

original solver used in [46] is a serial algorithm.

2.6 Datasets

A number of datasets for binarization of degraded documents with GT pixel labeling have

been proposed and used for evaluation in the literature.

The main dataset used in the literature comes from the DIBCO series of compe-

titions [36, 102, 114–120]. Each year since 2009 (except 2015), a new dataset of 10-20

handwritten/machine printed images has been released, totaling 116 images in 2018. The

images are chosen to have “representative degradations” and come from a variety of collections

and libraries [115]. All images contain text from a Latin-based language. In evaluation,

some authors report results on each dataset, separated by year as to be comparable to the

competition entrants, while others report averages across several years.

The Persian Heritage Image Binarization Dataset (PHIBD) [5, 94] contains 15 hand-

written images of Persian writing with various degradations and has attracted less attention

than the DIBCO data. The CMATERdb 6 dataset of 5 color images was proposed in [89],

but is no longer available for download. The Bickley Diary dataset [151] consists of 7 an-

notated page images of a degraded 1920s diary and has been used in a handful of later

works [58, 95, 157].

40



The Irish Script on Screen (ISOS) bleed through dataset [131] contains 25 registered

verso/recto image pairs that are annotated at the pixel level with 3 classes: foreground,

background, bleed through. Though intended for the related problem of bleed through

removal, such a dataset could be used to evaluate the performance of binarization algorithms

on this specific degradation.

2.6.1 Palm Leaf

Palm Leaf Manuscripts (PLMs) are characteristically different from the previous collections

of paper documents. State-of-the-art algorithms for DIBCO datasets do not perform well on

PLMs. For example, [54] reports that Howe’s method achieves 42.47% F-measure, while the

classic Niblack achieves 60.48% on a dataset of PLMs.

The AMADI LontarSet contains 100 pages of Balinese PLMs, split into 50 images for

training and 50 images for testing [56]. Each image was annotated by two different annotators

to produce 2 versions of GT. An additional 46 Khmer and 61 Sudanese PLMs were released

as part of the 2018 ICFHR competition [17]. These images appear distinct from the Balinese

PLMs.

2.7 Evaluation with Pixel Ground Truth

The primary way that binarization algorithms are currently evaluated is by comparison

to reference ground truth (GT) binarizations. In Section 2.7.1, we explain common ways

to construct reference GT images. In Section 2.7.2, we give common evaluation metrics.

Criticism of this method of evaluation and alternatives are presented in Section 2.8.

2.7.1 GT Construction

The semi-automated method used to annotate the DIBCO competition images was presented

in [100, 101] and is summarized here. First an initial binarization is produced using an

automated method (e.g. [35]). This initial binarization is skeletonized so that components are

41



a single pixel thick. The user then removes false alarm components and draws skeletons for

missed components. Then Canny edge detection [19] is applied to the input image and the

user corrects the edge map. Finally, the skeletonized image is iteratively dilated, constrained

by the edge image, using a 3x3 cross-type structuring element. Each component is iteratively

dilated until 50% of the enclosing edge pixels are covered.

To annotate the AMADI LONTAR dataset [54, 56] of Palm Leaf Manuscripts (PLMs)

for binarization, the DIBCO framework [100] was followed. Because existing binarization

algorithms performed very poorly on PLMs, a new semi-local binarization scheme was

proposed.

To create the Persian Heritage Image binarization Dataset (PHIBD), a simpler semi-

automated method was used [94]. First, the user selects the type of image (handwriting,

machine print, combined) and the types of degradations present (e.g. bleed through). Then

a phase based binarization method is applied with parameters chosen according to the user

input. Then the user uses the PixLabler [134] tool to manually correct the automated

binarization at the pixel level.

Synthetic Data

Stathis et al. [147] and Lins et al. [70] have proposed using synthetic data, created by

compositing text and background, to evaluate binarization algorithms. The advantage of

using synthetic data is that a large quantity of images can be used, and the foreground

annotations are more objective than human-annotated real data. However, the disadvantage

is that the data does not always resemble real-world data.

In [147], foreground is extracted from PDFs and is composited on authentic noisy

background by taking the element-wise maximum or by average blending. The latter technique

leads to a more natural looking result, but results in a lighter background due to the PDF

background being white. This method was also used to construct the test set for the ICFHR

2010 Quantitative Evaluation of Binarization Algorithms [107].
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Lins et al. [70] create synthetic backgrounds by first clustering background patches

from 3351 documents to find 100 distinct background textures. Then novel backgrounds can

be created through random sampling from a particular texture or through image quilting

techniques for texture generation. Then foreground text and artificial bleed through are

composited on the generated background through traditional image compositing. They use

a parameter, α, to control the strength of the bleed through and evaluate algorithms at

different levels of bleed through degradation.

Though not specific to synthetic data for binarization, the DocCreator library [50]

contains degradation models for introducing ink fading, adaptive blur, bleed through, and

uneven illumination. Seuret et al. [138] proposed inserting stains and spots using gradient

domain image editing.

2.7.2 Metrics

A wide variety of metrics have been used to evaluate binarizations using pixel GT.

Standard Binarization Metrics

F-measure (FM) is the harmonic mean of precision (P) and recall (R), which in turn are

defined by the number of True Positives (TPs), False Positives (FPs), and False Negatives

(FNs).

FM =
2PR

P +R
P =

TP

TP + FP
R =

TP

TP + FN
(2.27)

TP =
∑
ij

B(i, j) ∧G(i, j) FP =
∑
ij

B(i, j) ∧ ¬G(i, j)

FN =
∑
ij

¬B(i, j) ∧G(i, j)

(2.28)

where B is the predicted binarization, G is the GT, foreground values are 1 (logically true),

background values are 0 (logically false), and the above boolean operations evaluate to 1 for
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true and 0 for false. FM has been used as part of all DIBCO competitions [36, 102, 114–120],

as well as the PLM competition [16]. FM is used because there are often far more background

pixels than foreground pixels, and it penalizes methods that make a disproportionate number

of FP or FN errors.

Another metric used in all DIBCO competitions is the Peak Signal-to-Noise Ratio

(PSNR), which is computed as

PSNR = 10 log(
1

MSE
) MSE =

1

HW

H∑
i=1

W∑
j=1

(B(i, j)−G(i, j))2 (2.29)

Note that MSE = FP +FN is simply a count of the number of errors made, which makes the

PSNR metric monotonically increasing w.r.t. the traditional accuracy measure. This means

that for a given image, PSNR and accuracy produce the same ranking order of algorithms.

Distance Reciprocal Distortion (DRD) has been used in DIBCO 2011-2018 and has

been shown to correlate well with human perception of how bad binarization errors are [73].

It is computed by

DRD =
1

NUBN(G)

∑
ij

DRDij|B(i, j)−G(i, j)| (2.30)

DRDij =
2∑

x=−2

2∑
y=−2

Wxy|B(i+ x, j + y)−G(i+ x, j + y)| (2.31)

where NUBN(G) is the number of non-uniform 8x8 binary patches of G, and W is defined

by W00 = 0, ∀x 6= 0, y 6= 0, Wxy ∝ 1√
(x2+y2)

, and
∑

xyWxy = 1. Lower DRD scores are better.

From Eq. 2.30, we see that all wrongly predicted pixels contribute an error penalty according

to Eq. 2.31. Eq. 2.31 examines the 5x5 window around the wrong pixel and assigns a penalty

for every other wrong pixel in this window (but 0 penalty for itself). Thus if we have two

predicted binarizations with an equal number of errors, DRD will assign the higher (worse)
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score to the prediction that has it’s wrong predictions close together. Single isolated errors

are not as noticeable to the human eye as concentrated groups of wrong pixels [73].

Pseudo F-measure

Ntirogiannis et al. [101] proposed a variant of FM, called pseudo-FMeasure (pFM) which

is the harmonic mean of pseudo-Precision Pps and pseudo-Recall Rps. While Precision and

Recall ignore the spatial locations of errors, Pps and Rps assign weights to each pixel based

on the GT. These weights can be interpreted as how bad an error is at that location.

pFM =
2PpsRps

Pps +Rps

Pps =

∑
ij B(i, j)G(i, j)WP (i, j)

B(i, j)WP (i, j)

Rps =

∑
ij B(i, j)G(i, j)WR(i, j)

G(i, j)WR(i, j)

(2.32)

where setting WP and WR to be uniform and non-zero reduces to the traditional FM as in

Eq. 2.27. WP assigns a greater penalty to FPs located near foreground regions. The rationale

is that FP errors far from the foreground do not impede the readability of the text. FP

pixels very close to the foreground-background boundary have lower weight due to the inherit

ambiguity of localizing this boundary. Regions between foreground components also have

high weight in order to penalize the joining of adjacent characters. WR assigns the highest

per-pixel error for FNs located on the skeleton of the foreground and on thinner strokes.

Thus, binarizations that fragment characters yield a higher error than binarizations that

predict thinner, but unfragmented strokes. Foreground pixels on the border are assigned a

recall weight of 0, in order to account for single-pixel localization ambiguity of the boundary

in the GT.

Ntirogiannis et al. [101] further compute a weighted measure of FN errors into the

categories Fully Missed Text, Broken Text, and Partially Missed Text. Earlier similar

definitions (uniform weights) were given in [100]. Fully Missed Text concerns the foreground

components that are completely missed. Broken Text errors occur when FN errors break a
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GT foreground component into 2 or more components. Partially Missed Text incorporates

the rest of the errors, where a component is partially detected and not fragmented.

Likewise, the FP errors are categorized into False Alarms, Background Noise, Character

Enlargement, and Character Merging. False Alarms are predicted components that do

not overlap with any GT foreground component. Character Enlargement concerns FPs

immediately around components that do not cause merging, while Character Merging errors

are those pixels that cause merging of foreground components. Background Noise errors are

similar to False Alarms, but are those pixels that are i) far away from GT components and

are ii) part of a predicted component that overlaps a GT component.

While such a detailed break-down of errors is certainly useful for comparative analysis

of algorithms, these or similar numerical measures are rarely reported in the literature. This

may be because there is no public code available for evaluating this error breakdown like

there is for pFM, FM, PSNR, and DRD. Djema et al. [29] also advocate that error analysis

should be done based on the types of degradations present in the images.

In an unfortunate naming collision, a different metric also called pseudo F-measure [100]

was previously used in the 2010 and 2012 DIBCO competitions, while the newer pseudo

F-measure [101] is now prefered and has been used in DIBCO 2013-2018. The old pseudo

F-measure [100] is like the traditional FM, but when computing recall, only the skeleton

of the GT is used. In contrast, the new pseudo F-measure [101] evaluates recall with all

non-border foreground pixels, increasing the penalty for errors based on distance to the GT

skeleton.

2.8 Evaluation without Pixel Ground Truth

Though most recently proposed methods perform evaluation using GT (Section 2.7), there

has been some discussion on whether this is a useful form of evaluation. Given the problems

with defining objective GT at the pixel level (Section 2.8.1), some alternative evaluation
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methods have been proposed that use blind metrics (Section 2.8.2), including consensus based

metrics (Section 2.8.2), and end-to-end systems (Section 2.8.3).

2.8.1 Problems with Pixel GT

While the DIBCO framework for ground truth creation allows for efficient user interaction,

the heavy use of automation can introduce bias towards the algorithms used for automation.

For example, Howe [45] noted that the disproportionate number of errors observed on the

north-west side of CCs could be an artifact of the GT construction process. Though [94] uses

less automation, there still exists the possibility of bias toward the algorithm used in the

initial binarization.

For the ICHFR 2016 PLM competition [16] over the AMADI LONTAR dataset [56],

two sets of binarization GT were released, created by different annotators. The agreement

F-measure between the two annotators is 62.40%. In [55], an analysis of annotator variability

is done under the scenario where the annotators manually draw all character skeletons, i.e.

no initial automatic binarization is performed. They report an average agreement of 59.56%

FM, which is lower than the top two binarization methods in the competition [16] (68% and

63% FM).

Smith [143] conducted a study where 6 students were asked to annotate a single

DIBCO image using the PixLabler [134] tool. The average pairwise FM for these 6 ground

truths was 84.9%. Similarly, a single student produced annotations for all 14 DIBCO 2009

images [36] and achieved an average FM score of 89.3% w.r.t the published GT. This is lower

than the 91.24% FM achieved by the competition winner [36] and lower than the 94.68%

reported by Howe [46].

In a separate study, Smith and An [144] experimented with bias versions of GT

(eroded, original, dilated) for training and evaluating a learning based binarization method.

Unsurprisingly, the highest evaluation scores were achieved when the training GT bias
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matched the evaluation GT bias. However, this highlights the problem of ranking algorithms

based on a single inherently biased GT.

2.8.2 Blind Metrics

Blind metrics evaluate performance using no external GT information at test time. Though

any such metric can be turned into a binarization algorithm by performing optimization with

the blind metric as the objective function [124], they are still useful measures, particularly

for parameter tuning.

In [80], GT is constructed automatically and used to choose binarization methods and

tune parameters. Stommel and Frieder [148] trained an SVM classifier to predict the global

legibility of binary images using a labeled training set of binary images. Afterwards, they pick

a global threshold that optimizes the predicted legibility of a test image. Ramı́rez-Ortegón

et al. [124] proposed a statistical measure, based on the assumption that foreground and

background regions are log-normally distributed, that was shown to correlate well with OCR

accuracy.

Shaus et al. [141] proposed a number of blind metrics, many of which are adapted from

older global thresholding techniques (e.g. Otsu [105]), based on the separation of foreground

and background clusters of pixels. However, turning a binarization algorithm into a metric

leads to that binarization algorithm producing the optimal result for that metric, regardless

of how well it actually correlated with human perception of binarization performance. For

example, one proposed metric is the PSNR of the binary image w.r.t. the input grayscale

image. While intuitively lighter pixels should be assigned to background and vice versa, this

metric is trivially optimized by choosing a global threshold of T = 128 for 8-bit grayscale

images.
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Consensus Methods

Fedorchuk and Lamiroy [31] proposed a method for evaluating binarizations based on how the

predicted binarization agrees with the output of other algorithms in the absence of ground

truth. Essentially, the binary GT image is replaced with a probabilistic image, where the

probabilities are the percentage of algorithms that consider that pixel as foreground. They

found that the probabilistic versions of FM and PSNR had an average correlation coefficient

of 85% with the traditional non-probabilistic FM and PSNR measures on the DIBCO datasets.

However, the top performing algorithms on the DIBCO data achieve an FM greater than

90%, so these proposed consensus measures could not ascertain if a new algorithm performs

better than the current state-of-the-art.

In a similar vein, paired ranking based on agreement with a third, better than random,

model has been proposed [32]. Such a scheme works if the third model makes unbiased,

random errors, but this assumption would never be satisfied in practice. Different choices of

a third model would yield different biases and hence different rankings.

Overall, consensus based evaluation has similar disadvantages as other blind evalua-

tions, specifically bias introduced by the choice of models to compare with. The majority

vote of the algorithms used for consensus trivially optimizes the proposed consensus metrics.

2.8.3 End-to-End Metrics

Most often binarization algorithms are intended to be used as a preprocessing component in a

larger system that also performs other tasks, such as layout analysis or text recognition. Thus

it is logical to compare binarization algorithms based on how they influence the performance

of the whole system. Before annotated images were introduced in 2009 by the DIBCO

competition, this was the primary way to numerically compare binarization algorithms using

real data.

49



As such, many works also evaluate the quality of their binarization method by

measuring the character and word error rates of a third-party OCR engine (e.g. ABBYY1)

run over their binary images [20, 35, 59, 66, 86, 96, 121, 154]. While this introduces the bias

of the OCR engine (it may be more forgiving to some types of errors), one may argue that,

in the context of real-world applications, end-to-end performance is more important than

intermediate binarization quality.

However, the comparative ranking of algorithms depends on the choice of end-to-

end system. To reduce system bias, perhaps evaluation should be done with multiple

state-of-the-art end-to-end systems, where binarization method ranking is based on the

maximum performance achieved with any systems. Though such evaluation would be taxing

on academics that have little resources to implement full systems, recent work in building

DIA systems as web services [163] may facilitate such an approach.

We also note that there are no standard datasets designed for evaluating binarization

algorithms using OCR performance. The DIBCO data is not annotated with transcriptions

and is multi-lingual. All papers surveyed in this review that used OCR to evaluate binarization

quality used a distinct set of images (some synthetic), which hinders comparative evaluation.

If this method of evaluation is to be used, there needs to be a dataset designed for this

purpose.

2.9 Conclusion

In this work, we have reviewed the recent advances in the field of historical document

binarization. For many years, methods based on image processing (e.g. [151]) and CRFs

(e.g. [46]) produced state-of-the-art results, especially when combined with preprocessing,

post-processing, and parameter tuning. Very recently, pixel classification approaches using

deep learning models are the state-of-the-art. Though deep models are accurate, they are

slow and require GPU hardware to obtain reasonable speed. Some researchers have focused

1https://www.abbyy.com/en-us/finereader/
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on making existing binarization approaches efficient enough to process large archives, and

more research is needed in this area.

Recent years have also seen an expanded interest in binarizing other document domains

such as PLMs. There continues to be debate on the proper way to evaluate binarization

algorithms, given that humans do not always agree on the pixel-level boundaries between

foreground and background. However, the majority of published research continues to evaluate

at the pixel level using the DIBCO provided annotations.

Future work in the area might explore how to integrate some of the best practices

from image processing techniques with deep learning models or vice versa. For example,

incorporating preprocessing and thresholding into the learning model or using deep models

to replace many of the parameters or fixed constants in traditional methods. A large dataset

suitable for data-hungry deep models with high-quality, low-bias pixel annotations also

remains elusive. While the pseudo F-measure metric [101] partly addresses some concerns

with using pixel GT, less biased evaluation measures are needed. One possible avenue forward

is to create multiple reproducible end-to-end document processing pipelines (binarization,

layout analysis, text recognition, retrieval, writer ID, etc.) for different tasks and domains. To

prevent bias towards particular downstream implementations, multiple implementations could

be tried and performance recorded for the best combination of downstream implementations.

Then binarization algorithms could be comparatively evaluated in multiple real contexts and

domains and give a more comprehensive view of algorithm performance.
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Chapter 3

Document Image Binarization with Fully Convolutional Neural Networks

Abstract

Binarization of degraded historical manuscript images is an important pre-processing step for

many document processing tasks. We formulate binarization as a pixel classification learning

task and apply a novel Fully Convolutional Network (FCN) architecture that operates at

multiple image scales, including full resolution. The FCN is trained to optimize a continuous

version of the Pseudo F-measure metric and an ensemble of FCNs outperform the competition

winners on 4 of 7 DIBCO competitions. This same binarization technique can also be applied

to different domains such as Palm Leaf Manuscripts with good performance. We analyze

the performance of the proposed model w.r.t. the architectural hyperparameters, size and

diversity of training data, and the input features chosen.

Tensmeyer, Chris, and Tony Martinez. “Document image binarization with fully convolutional

neural networks.” International Conference on Document Analysis and Recognition (ICDAR).

Vol. 1, pp. 99-104. IEEE, 2017.
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3.1 Introduction

To minimize the impact of physical document degradation on document image analysis tasks

(e.g. page segmentation, OCR), it is often desirable to first binarize the digital images. Such

degradations include non-uniform background, stains, faded ink, ink bleeding through the

page, and un-even illumination. Binarization separates the raw content of the document from

these noise factors by labeling each pixel as either foreground ink or background. This is a

well-studied problem, even for highly degraded documents, as evidenced by the popularity of

the Document Image Binarization Content (DIBCO) competitions [6, 12, 17–21].

We present a learning model for document image binarization. Fully Convolutional

Networks (FCN) [10] alternate convolution and non-linear operations to efficiently classify

all pixels of an input image in a single forward pass. While FCNs have been previously

proposed for semantic segmentation tasks, their output predictions are poorly localized due

to high downsampling. We propose a multi-scale architectural variation that results in precise

localization and preserves the generalization benefits of downsampling.

FCNs can be applied to diverse domains of documents images without tuning hyper-

parameters. For example, we show that the same FCN architecture can be trained to achieve

state-of-the-art performance on both historical paper documents (i.e. DIBCO data) and on

palm leaf manuscripts. Current state-of-the-art methods for paper documents (e.g.[8]) tend

to perform poorly on palm leaf manuscripts due to domain differences between the tasks [3].

FCNs also automatically adapt to any particular definition of binarization ground truth (e.g.

see [23]) because they do not incorporate explicit prior information.

Many common binarization approachs compute local or global thresholds based on

image statistics [13, 22]. One disadvantage of this approach is the threshold is invariant to a

permutation of the pixels, i.e., statistics ignore shape. On the other hand, other approaches

(e.g. edge detection, Markov Random Field (MRF), connected components) include strong

biases about the shape of foreground components. In contrast, FCNs learn from training
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data to exploit the spatial arrangements of pixels without relying on a hand-crafted bias on

local shapes.

Previous learning approaches are trained to optimize per-pixel accuracy, which is

problematic due to the majority of pixels being background. These methods typically resort

to heuristic sampling of pixels to achieve a balanced training set. Instead, we propose directly

optimizing a continuous adaptation of the Pseudo F-measure (P-FM) [11] which has been

a DIBCO evaluation metric since 2013 [20]. Because P-FM does not penalize foreground

border pixels that are predicted as background, we combine P-FM with regular F-measure

(FM) so the FCN correctly classifies border pixels.

The contributions of this work are as follows. First, we propose the use of FCNs

for document image binarization and determine good architectures for this task. We show

that directly optimizing the proposed continuous Pseudo F-measure exceeds the previous

state-of-the-art on DIBCO competition data. We compute a learning curve and show that

diversity of data is more important than quantity of data. Finally, we demonstrate that FCN

performance can be improved though additional input features, including the output of other

binarization algorithms.

3.2 Related Work

Howe’s method formulates image binarization as energy minimization over a MRF [8]. The

unary energy terms are computed from the image Laplacian and the pairwise connections are

determined by Canny Edge detection [4]. An exact minimization of the energy function can

be obtained by solving the equivalent Max Flow problem [2]. Variants of this method have

placed 1st in HDIBCO 2012, 2014, 2016 and 2nd in DIBCO 2013 [12, 19–21]. The DIBCO

2013 winner combines local image contrast and local image gradients to determine edges

between text and background [24].

Several classification-based binarization approaches have been proposed. Hamza et al.

train a Multi-Layer Perceptron (MLP) classifier on pixel labels derived from clustering [7].
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Kefali et al. train an MLP using ground truth data to classify each pixel based on the intensity

values of its 3x3 neighborhood and the global image mean and standard deviation [9], though

they do not out perform Sauvola’s method [22]. Afzal et al. trained a 2D Long Short Term

Memory (LSTM) network which incorporates both local and global information [1]. Their

approach greatly reduced OCR error on the binarized text compared to Sauvola.

Pastor-Pellicer et al. explored the use of Convolutional Neural Networks (CNN) to

classify each pixel given its 19x19 neighborhood of intesity values [15]. They report an FM

of 87.74 on DIBCO 2013 compared to 92.70 achieved by the competition winner. Wu et

al. trained an Extremely Randomized Trees classifier using a wide variety of statistical and

heuristic features extracted from various neighborhoods around the pixel of interest. Because

the number of background pixels greatly exceeds the number of foreground pixels, they

heuristically sampled a training set to balance both classes. In contrast, we directly optimize

the Pseudo F-measure instead of determining the precision/recall tradeoff through sampling.

Long et al. proposed FCNs for the more general semantic segmentation problem in

natural images [10]. Both Zheng et al. and Chen et al. combined Conditional Random Fields

(CRF) with FCNS to improve localization and consistency of predictions [5, 26]. These FCNs

heavily downsample inputs, which results in poor localization. Thus prior FCNs are not good

models for document image binarization.

3.3 Methods

In this section, we describe FCNs, our multi-scale extension, and the proposed loss function

we use to train them.

3.3.1 Fully Convolutional Networks

Fully Convolutional Networks (FCN) are models composed of alternating convolution op-

erations with element-wise non-linearities. The FCNs we consider map an input image
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x ∈ RD×H×W → y ∈ RH×W , where yij ∈ [0, 1] is the probability that pixel xij is foreground,

and D is the number of input channels (e.g. 3 for RGB).

Specifically, the `th layer (1 ≤ ` ≤ L) of the FCN performs a convolution operation

with learnable kernels followed by a rectification:

x` = ReLU(W` ∗ x`−1 + b`) (3.1)

where x` ∈ RD`×H×W is the output of layer `, x0 is the input image, ReLU(z) = max(0, z) is

element-wise rectification, W` ∈ RD`×K`×K`×D`−1 are convolution kernels, and b` ∈ RD` is a

bias term for each kernel. To obtain probabilities for each pixel, a sigmoid function is applied

element-wise to xL ∈ R1×H×W without rectification.

Each W` can be interpreted as D` distinct convolution kernels (i.e. W`,i ∈ RK`×K`×D`−1)

that have two spatial dimensions, each of size K`, and a depth dimension of size D`−1, which

is the number of kernels used in the previous layer. Thus convolution is carried out in

two spatial dimensions, but each W`,i spans all channels of its layer’s input. Each of these

kernels is applied independently to x`−1 to yield a single channel x`,i ∈ RH×W . Each x`,i then

becomes a single channel of the multi-channel x`.

In our paper, we simplify the choice of hyper-parameters by using the same value for

many parameters, regardless of `. For example, we primarily use D` = 64 and K` = 9.

3.3.2 Multi-Scale

Many applications of FCNs to dense pixel prediction problems find that incorporating

information at multiple scales leads to significantly improved performance. This is an elegant

way to fuse local and global features for classification. For example, the original FCN [10]

downsamples images to 1
32

the input size and finds improved performance by incorporating

features computed at scales 1
8

and 1
16

. In contrast, binarizing text images requires precise

localization which is difficult when images are downsampled.
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Figure 3.1: Multi-Scale Fully Convolutional Neural Network architecture. All Conv operations
are followed by ReLU, and “Nx Conv” labels indicate N successive conv layers. All pool
layers downsample by a factor of 2. Upsampling is done by bilinear interpolation to the input
spatial dimensions.

We utilize a branching FCN to compute features over scales 1
1
, 1

2
, 1

4
, 1

8
. This is shown

in Figure 3.1. This network has depth L = 9, width D` = 64, 4 scales, and kernel size K` = 9.

At certain layers, 2x2 average pooling is applied to produce an additional branch of the FCN

at a smaller scale. After several convolution layers at each scale, the output of each scale

is upsampled to the original size using bilinear interpolation. This is followed by two more

convolution layers applied to the concatenated scale outputs. This allows the FCN to fuse

both local and increasingly global features to classify pixels.

3.3.3 Pseudo F-measure Loss

Pseudo F-measure (P-FM) was formulated with the intuition that binarization errors on

textual images should be penalized based on how they might obscure individual characters [11].

For example, false positives (actual background predicted as foreground) far from foreground

components have a smaller penalty than false positives between characters. P-FM is the

harmonic mean of Pseudo Recall and Pseudo Precision, which we denote Rps and Pps

respectively. These quantities are computed as

Fps =
2RpsPps
Rps + Pps

(3.2)
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Rps =
Σxy(BxyGxyR

W
xy)

Σxy(GxyRW
xy)

(3.3)

Pps =
Σxy(GxyBxyP

W
xy )

Σxy(BxyPW
xy )

(3.4)

where Bxy is predicted probability of foreground for the pixel (x, y), Gxy ∈ {0, 1} is the ground

truth class of pixel (x, y), and RW and PW are per-pixel weights for recall and precision

errors respectively.

While RW and PW can be arbitrarily specified, we compute them using [11] to yield

the P-FM used in the DIBCO evaluation protocol. Using uniform weights yields the more

common F-measure, which was explored in [16] as the training objective of neural networks.

To use Eq. 3.2 as the objective function in Stochastic Gradient Descent (SGD) training

of the FCN, we must derive an expression for dF
dB

. For simplicity, we drop the subscripts on

Fps, Rps, Pps. Taking the derivative of Eq. 3.2, we have

dF

dB
=
∂F

∂P

dP

dB
+
∂F

∂R

dR

dB
= 2

dR
dB
P 2 + dP

dB
R2

(P +R)2
(3.5)

Noting that dR
dB

is a matrix of partial derivatives, deriving ∂R
∂Bij

is simple as B only occurs in

the numerator in Eq. 3.3.

∂R

∂Bij

=
∂

∂Bij

[
Σxy(BxyGxyR

W
xy)

Σxy(GxyRW
xy)

]
=

GijR
W
ij

Σxy(GxyRW
xy)

(3.6)

Similarly, we can derive ∂P
∂Bij

by applying the quotient rule for derivatives to Eq. 3.4 and

simplifying.

∂P

∂Bij

= PW
ij

Σxy(BxyP
W
xy )Gij − Σxy(GxyBxyP

W
xy )

[Σxy(BxyPW
xy )]2

(3.7)
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3.3.4 Datasets and Metrics

We primarily use two datasets for evaluation: DIBCOs [6, 12, 17–21] and Palm Leaf

Manuscripts (PLM) [3]. For DIBCO experiments, we used all 86 competition images from

the years 2009-2016 for either training, validation, or test data. When testing on a particular

DIBCO year, that year’s competition data composes the test set, 10 random other images

compose the validation set, and the remaining images compose the training set. For PLM,

we randomly split the 50 training images into 40 training and 10 validation and use the

designated 50 images for testing [3]. While there are two sets of ground truth annotations for

PLM, for simplicity we use only the first set.

To avoid overfitting of testing data, development of our method was performed using

the HDIBCO 2016 validation set. The test data was only used in the final evaluation and

not used to select models, architectures, or features.

The metrics we report are from the DIBCO 2013 evaluation criteria: P-FM, FM, Peak

Signal to Noise Ratio (PSNR), and Distance Reciprocal Distortion (DRD). For P-FM, FM,

and PSNR, higher numbers indicate better performance. For DRD, lower is better.

3.3.5 Implementation Details

We used the deep learning library Caffe for all experiments. Our training and validation

sets are composed of 256x256 crops extracted at a stride of 64 pixels from the input images.

Image crops composed of only background pixels are discarded as Pseudo Recall is undefined

for all background predictions. Our FCNs take as input the gray scale image plus locally

computed Relative Darkness features (see Section 3.4.5).

To binarize a whole image, the FCN binarizes individual overlapping 256x256 crops

and extracts the center 128x128 patch of each output crop (except for border regions). This

ensures each pixel has sufficient context for the FCN to classify it. These patches are stitched

together to form the whole binarized image.
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Metrics
Dataset Loss P-FM FM DRD PSNR

HDIBCO 2016

P-FM 94.09 (94.67) 86.66 (87.06) 4.62 (4.38) 17.73 (17.86)
FM 92.90 (93.23) 89.93 (90.30) 3.69 (3.51) 18.73 (18.90)
P-FM + FM 93.22 (93.76) 89.01 (89.52) 4.01 (3.76) 18.48 (18.67)
Cross-Entropy 92.59 (92.94) 90.20 (90.56) 3.62 (3.45) 18.68 (18.84)

PLM

P-FM 68.23 (68.55) 66.93 (67.20) 9.24 (9.10) 14.79 (14.83)
FM 67.40 (67.74) 68.38 (68.69) 9.86 (9.68) 14.59 (14.64)
P-FM + FM 68.54 (68.96) 68.27 (68.63) 9.12 (8.94) 14.81 (14.87)
Cross-Entropy 66.41 (66.77) 65.38 (65.68) 9.95 (9.78) 14.58 (14.63)

Table 3.1: Average performance of 5 FCNs on H-DIBCO 2016 and PLM datasets for various
loss functions. Numbers in parenthesis indicate ensemble performance.

We used SGD to train FCNs with an initial learning rate (LR) of 0.001, mini-batch

size of 10 patches, and an L2 weight decay of 0.0005. Gradient clipping to an L2 norm of 10

was employed to help stablize learning [14]. The LR was multiplied by 0.1 if performance on

the validation set failed to improve for 1.5 epochs. Training ended when the LR decayed to

10−6 and the set of parameters that best performed on the validation set is the output of the

training procedure. During training, we stochastically add a small constant to each channel

of the input image as color jitter, which empirically improves performance by a small amount.

3.4 Experiments

In this section, we give results and discussion for our experiments to validate the proposed

model.

3.4.1 Loss Functions

In this set of experiments, we compare 4 loss functions on HDIBCO 2016 and PLM: P-FM,

FM, P-FM + FM, and Cross Entropy (CE). Because the P-FM loss function does not penalize

the outer border of foreground components being classified as background (due to recall

weights of 0), we experimented with adding together P-FM and FM losses during training.

CE loss is a standard classification based loss that optimizes per-pixel accuracy.
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(a) Image (b) Ground Truth (c) Howe Binarization
(d) Proposed FCN Bina-
rization

(e) Image (f) Ground Truth (g) Howe Binarization
(h) Proposed FCN Bina-
rization

Figure 3.2: Qualitative comparison of proposed ensemble of FCNs with state-of-the-art
Howe Binarizataion [8]. Images contain significant bleed through noise and come from the
H-DIBCO 2016 test data.

For each loss function, we trained 5 FCNs from different random initializations.

Table 3.1 shows both the average performance of individual FCNs as well as the combined

ensemble performance in parenthesis. The outputs of individual FCNs are combined using

per-pixel majority vote. This improves performance by a significant amount at the cost of

increased computation.

Unsurprisingly, optimizing for P-FM (or P-FM + FM) yields the best performance for

P-FM, with CE performing worst for P-FM. Training with only P-FM lowers performance in

other metrics due to predicting border pixels as background. While developing our method,

FM loss generally out-performed CE loss on all metrics on validation data, though surprisingly

CE performed better on the HDIBCO 2016 test data. Nevertheless, based on our validation

set performance, we chose to use P-FM + FM loss for the remaining experiments. For

reference, the best published FM on PLM is 68.76 [3], which was achieved by a single scale

FCN that was pretrained on DIBCO and proprietary data.

Figure 3.2 shows a qualitative comparison between Howe’s method [8] (using the

author’s code) and the ensemble of 5 FCNs trained with P-FM + FM loss. Because Howe’s

method uses pixel connectivity, it sometimes misclassifies small background regions as

foreground when they are bordered by both foreground ink and bleed-through noise. On the
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Proposed Method Best Competition System
Competition P-FM FM DRD PSNR P-FM FM DRD PSNR
DIBCO 2009 92.59 89.76 4.89 18.43 - 91.24 - 18.66
H-DIBCO 2010 97.65 94.89 1.26 21.84 - 91.50 - 19.78
DIBCO 2011 97.70 93.60 1.85 20.11 - 88.74 5.36 17.97
H-DIBCO 2012 96.67 92.53 2.48 20.60 - 92.85 2.66 21.80
DIBCO 2013 96.81 93.17 2.21 20.71 94.19 92.70 3.10 21.29
H-DIBCO 2014 94.78 91.96 2.72 20.76 97.65 96.88 0.90 22.66
H-DIBCO 2016 93.76 89.52 3.76 18.67 91.84 88.72 3.86 18.45

Table 3.2: Comparison of ensemble of 5 FCNs with DIBCO competition winners. The “-”
symbols indicate unreported metrics.

(a) Image (b) Grond Truth (c) Proposed Binarization

Figure 3.3: Failure case on H-DIBCO 2014. None of the training images are similar, so FCN
generalizes poorly to this kind of ink.

other hand, FCNs compute local features on multiple scales, so it learns to recognize whether

text is bleed-through noise or actual foreground ink.

3.4.2 DIBCO Performance

Here we compare our ensemble of 5 FCNs with the best performing competition submissions

for each of the 7 DIBCO competitions. The winning systems did not necessarily have the

best performance wrt all metrics. Therefore, we compare with the best score per metric for

any system entered in the competition. For example, in DIBCO 2013, the rank 1 system had

the highest P-FM (94.19), but the rank 2 system had the highest FM (92.70).

The results are presented in Table 3.2. For 4 competitions, including the most recent

HDIBCO 2016, the ensemble of FCNs out-performs the best submitted entries. Our FM is

low on DIBCO 2009 due to false positives located far away from the foreground ink. Under

the P-FM, these mistakes count for less because they don’t obscure the readability of the text.

For HDIBCO 2014, our method performs very poorly on image 6 (see Figure 3.3), where it
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Figure 3.4: P-FM on HDIBCO 2016 as a function of architecture hyperparameters evaluated
with an ensemble of 5 FCNs. In general, performance is not sensitive to any particular
combination of hyperparameters.

achieves a P-FM of 56.4. On the other 9 H-DIBCO 2014 images, it achieves almost perfect

performance with an average P-FM of 99.04.

3.4.3 Architecture Search

FCNs have a number of hyperparameters that together constitute the architecture of the

network. Here we independently vary four architecture components and measure P-FM on

the HDIBCO 2016 dataset. Specifically, we vary network depth, width, number of scales,

and kernel size. The base architecture (used in previous experiments) is depth L = 9, width

D` = 64, 4 scales, and kernel size K` = 9.

The results for ensembles of 5 FCN for each architecture are presented in Figure 3.4.

Performance seems relatively insensitive to architectural hyperparameters, with the exception

that kernel sizes of 3 perform worse than larger kernels. Improvement due to ensemble

prediction is typically larger than performance differences among architectures.

3.4.4 How Much Data Is Enough?

More data typically leads to better performing learning models, though eventually adding more

data yields diminishing returns. Here we analyze the amount of data need by constructing a
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Figure 3.5: Learning curve for two methods of shrinking the training data. The solid blue
line indicates that whole images were removed from the training set. The dashed green line
indicates that all training images were kept, but were cropped to be smaller.

learning curve with amount of data on the x-axis and P-FM on the y-axis for the HDIBCO

2016 dataset. Figure 3.5 shows the curve for two different ways of varying the amount of

training data (keeping the validation data the same). The first way simply reduces the

number of training images along the x-axis. This decreases the diversity of images that

compose the training set. The second way retains all 76 training/validation images, but

crops each image to be 20%, 40%, 60%, or 80% of its original width. This also decreases the

number of pixels for training, but retains diversity of inputs presented to the FCN.

Even at similar number of pixels, cropping training images instead of removing them

performs better and indicates that greater diversity in the training data is a key factor for

improving performance. This is logical because if an image is homogeneous in handwriting

style and noise content, then many of the pixels are locally similar. Thus, if the goal of

manual or semi-automatic creation of ground truth binarizations is to create more training

data, the annotator should focus on small, diverse images instead of fully annotating large

images.

Training on 10M pixels resulted in better test set performance than on 20-40M pixels

for whole images. We find this as evidence of overfitting the validation set, which is used

for model selection. The validation P-FM for 10M and 20M pixels are 92.84 and 95.26
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Extra Feature Size P-FM Extra Feature Size P-FM
None - 96.63 10th Percentile 3 96.69
Min 9 96.73 25th Percentile 3 96.63
Max 3 96.74 Canny Edges - 96.93

Median 39 96.57 Percentile Filter - 96.16
Mean 39 96.38 Bilateral Filter 100 96.01
Otsu - 95.55 Standard Deviation 3 95.65
Howe - 97.14 Relative Darkness 5 97.15

Table 3.3: P-FM on HDIBCO 2016 by including additional input features. The “-” symbols
indicate globally computed features.

respectively. Additionally, the added training images are more similar to the 10 validation

images than the 10 test images. This shows that there is significant dataset bias in evaluation

with so few number of images, even if the number of pixels is very large.

3.4.5 Input Features

While FCNs can learn good discriminative features from raw pixel intensities, there may

exist useful features that the FCN is not able to learn because they cannot be efficiently

approximated by alternating convolution and rectification operations. For example, Sauvola’s

method uses local standard deviation which is not easy for an FCN to learn.

We experimented with input features that are densely computed and treated as

additional input image channels. For this experiment, we used a batch size of 5 and

minimized P-FM loss. We report P-FM on HDIBCO 2016 validation set for an ensemble of 5

FCNs in Table 3.3 for the best performing parameterization of each feature type.

Relative Darkness (RD) [25] features performed best, though using the output of

Howe’s method [8] as an input feature performs almost as well. RD is computed by counting

the number of pixels in a local window that are darker, lighter, and similar to the central

pixel. We used RD features with a window size of 5x5 and a similarity threshold of ±10 in

all experiments in this paper.
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3.5 Conclusion

In this work, we have proposed FCNs trained with a combined P-FM and FM loss for the task

of document image binarization. Our proposed method handles diverse domains of documents.

It out performs the competition winners for 4 of 7 DIBCO competitions and is competitive

with the state-of-the-art on Palm Leaf Manuscripts. We analyzed the architecture and found

that performance is stable wrt changes in the architecture. We found that the number of

training images (i.e. diverse training data) is a more important factor than number of pixels

used in training. Finally, we analyzed using additional features as input to the FCN and

found that Relative Darkness features [25] and the output of Howe binarization [8] perform

best.
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Chapter 4

Generating Realistic Binarization Data with Generative Adversarial Networks

Abstract

One of the limitations for using Deep Learning models to solve binarization tasks is that

there is a lack of large quantities of labeled data available to train such models. Efforts to

create synthetic data for binarization mostly rely on heuristic image processing techniques and

generally lack realism. In this work, we propose a method to produce realistic synthetic data

using an adversarially trained image translation model. We extend the popular CycleGAN

model to be conditioned on the ground truth binarization mask as it translates images from

the domain of synthetic images to the domain of real images. For evaluation, we train deep

networks on synthetic datasets produced in different ways and measure their performance on

the DIBCO datasets. Compared to not pretraining, we reduce error by 13% on average, and

compared to pretraining on unrealistic data, we reduce error by 6%. Visually, we show that

DGT-CycleGAN model produces more realistic synthetic data than other models.

Submitted to International Conference on Document Analysis and Recognition (ICDAR).

Chris Tensmeyer, Mike Brodie, Daniel Saunders, and Tony Martinez. “Generating Realistic

Binarization Data with Generative Adversarial Networks.”
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(a) Composite (b) Blurred (c) Proposed (d) Real

Figure 4.1: Synthetic data created by compositing clean foreground on noisy background (a)
does not appear realistic, even after blurring the edges (b). Instead, we train a neural network
to learn a mapping from (a) to (c), under the criteria that the refined data is indistinguishable
from real data (d).

4.1 Introduction

Recently, deep learning models have achieved state-of-the-art performance on binarization

of historical documents that contain handwritten and machine printed text [3, 35, 36],

largely surpassing heuristic approaches. However, the performance of deep models is tied

to the quality, amount, and variety of the data used to train the model [35]. There are few

manually labeled images available to train (and evaluate) models for binarization tasks, so

the performance of deep models is limited by the amount of training data.

Synthetic data is a cheap way to obtain more labeled data, but previous heuristic

methods for data generation lack realism at the pixel level (see Figure 4.1). Typically, clean

foreground, in order to have the ground truth (GT), is combined with noisy background

with added blurring [14], ink fading [12], lighting artifacts [22], etc. However, it is difficult to

explictly model the large variety of degradations that occur in real data. Additionally, no

comparative study has evaluated different ways of generating synthetic data in the context of

training deep learning models for binarization.

In this paper, we propose a novel method to generate realistic synthetic data for

binarization tasks with pixel GT. Because explicit modeling of document degradations proves

challenging, our method uses a black-box adversarially trained deep neural network to refine
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heuristically generated synthetic data into images that appear more realistic. To do this, we

extended CycleGAN [37], which is an unpaired image-to-image translation model that learns

to convert images from one domain to another. While the basic CycleGAN model produces

good data, we find that modifying the discriminator to condition on the binarization GT

leads to increased realism and better agreement between the GT and the produced image.

We call our proposed model DGT-CycleGAN.

We validate our approach by pretraining deep networks on synthetic datasets generated

by DGT-CycleGAN, CycleGAN, and image compositing. We then evaluate both pretrained

only and finetuned models on each of the DIBCO datasets [8, 20, 23–29]. Pretraining on

DGT-CycleGAN produced data leads to the best performance of all the pretrained models.

Finetuning on DIBCO data after pretraining DGT-CycleGAN data leads to 13% F-measure

error reduction compared to no pretraining and to 6% error reduction compared to pretraining

on non-realistic synthetic data.

4.2 Related Works

Here we review related work on synthetic data used for binarization and deep learning models

proposed to perform binarization.

4.2.1 Synthetic Data for Binarization

The lack of labeled data for binarization has not gone unnoticed in the Document Image

Analysis (DIA) community, and several approaches utilizing synthetic data have been proposed.

An ICFHR 2010 binarization competition evaluated entrants on synthetic data produced

by simple compositing of clean PDF foreground on real noisy backgrounds [21, 34]. In [14],

compositing is used to combine scanned foreground images with synthetic backgrounds

produced by modeling the background textures of real historical documents. While these

backgrounds are uniform and free of stains, they do add artificial bleed through with
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controllable strength by compositing blurred text. Such images have been used in the context

of method evaluation, but not for model training.

The open source DocCreator library [12] contains several tools for creating noisy

synthetic data including paper deformation, uneven lighting, adaptive blur, bleed through,

and ink degradation. Synthetic images produced by DocCreator have been shown to im-

prove a performance prediction model for binarization algorithms. DIVA Document Image

Degradation (DID) [33] is a complementary technique that uses gradient domain editing to

realistically insert stains and spots to an existing image.

4.2.2 Deep Models for Binarization

Several deep learning models have been proposed in recent years and typically outperform

other methods in binarization. For example, in the 2017 Document Image Binarization

Competition (DIBCO) [28], the 4 top performing groups all used deep models.

Encoder-decoder architectures have been popular for binarization [3, 4, 17, 22]. In [22],

the model is trained entirely with synthetic data that are created from clean images by intro-

ducing blur, salt-pepper noise, and lighting artifacts. Meng et al. used novel regularization

terms to encourage label smoothness and encode apriori knowledge about foreground region

intensity [17].

The multi-scale Fully Convolutional Network (FCN) architecture used in [35] showed

that variety of training data was a more important factor than number of pixels. The PDNet

model [2] is comprised of an FCN that makes per-pixel predictions and a Primal-Dual network

that enforces label smoothness. Both networks were pretrained end-to-end on synthetic data,

and then finetuned on real data. Vo et al. proposed fusing the output of 3 Deeply Supervised

Networks (DSN) that are independently trained at multiple scales and achieved excellent

results.
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4.3 Generating Realistic Synthetic Data

The goal of our method is to generate both realistic synthetic data for binarization and

corresponding so-called “ground truth” labeling that can be used for training and evaluation

of binarization methods. We first generate synthetic images by compositing clean foreground

text on noisy backgrounds. The corresponding GT is obtained by applying a global threshold

to the clean foreground image to produce a binary mask. To make the data realistic, we

then refine the synthetic images using a model that has learned to translate images from

the synthetic domain to the domain of real images. Translating images from synthetic to

real domains can be accomplished by a model such as CycleGAN [37]; however, we find that

modifying the CycleGAN model to condition on the GT of the synthetic image leads to better

agreement between the modified synthetic images and the GT.

For clarity, we will use the term refined to refer to images that have been modified

to look realistic by a model (Section 4.3.2) and reserve the term synthetic to only refer to

images that are produced by compositing (Section 4.3.1).

4.3.1 Compositing

Before refining the synthetic data to look realistic, we generate the synthetic data by

compositing clean foreground with noisy background. To obtain the foreground ink, we use

the IAM database of handwritten images [16]. This dataset was created by having various

writers copy a prompt on a clean white piece of paper, so our foreground text has a wide

variety of character shapes, stroke widths, etc.

To create the foreground for a new image, we randomly choose a page from the IAM

dataset. We then start near the upper left corner of the page and randomly sample a sequence

of words, stitching them together with random line and word spacing until the page region is

filled. This image is easily binarized with a global threshold to obtain the GT for this sample.

We then use alpha blending to composite the foreground text onto a noisy background

region taken from a real degraded document. For 30% of images, we insert artificial bleed-
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Figure 4.2: Example synthetic images produced by compositing clean foreground on noisy
background. The rightmost sample includes artificial bleed-through noise.

through by producing a reversed text image that is heavily blurred and then alpha blended

onto the synthetic image. Some example text lines from images produced in this manner are

shown in Figure 4.2.

4.3.2 Refining Synthetic Data

After generating composited synthetic data and the corresponding GT, the data is refined

using a deep model to look more realistic. Our proposed method modifies the CycleGAN

model [37] to be conditioned on the GT so that the refined images are consistent with their

GT. Before explaining our modification, we give an overview of the CycleGAN model.

CycleGAN is composed of 4 models: 2 image-to-image generators and 2 image-to-

probability discriminators :

• GA→B converts images from domain A to domain B

• GB→A converts images from domain B to domain A

• DA predicts probability of belonging to domain A

• DB predicts probability of belonging to domain B

In this work, domain A is a set of synthetic images (Section 4.3.1). Domain B is the set of

historical documents that we are interested in binarizing, which could be, e.g. DIBCO-like

images or Palm Leaf Manuscripts.

The 4 models are jointly trained using two training sets of unpaired images (no labels

required). By unpaired, we mean that there is no correspondence between the images in the

training sets for A and B. We denote ai ∈ A to be an image from domain A with similar

notation for B.
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Name Model Updated Loss
Cycle-consistent GA→B, GB→A GB→A(GA→B(ai)) ≈ ai

Identity GA→B GA→B(bi) ≈ bi
Recognize real DB DB(bi) ≈ 1

Reject fake DB DB(GA→B(ai)) ≈ 0
Fool D GA→B DB(GA→B(ai)) ≈ 1

Table 4.1: Losses for CycleGAN model. The second column indicates which models update
their weights for that loss.

Ten losses are jointly optimized, based on the 5 criteria shown in Table 4.1. The other

5 losses are obtained by switching A for B, e.g. GA→B(GB→A(bi)) ≈ bi for the reversed cycle

consistent loss. The last two criteria in Table 3.1 are contradictory and form the basis for

adversarial learning, where two models optimize opposing criteria. In theory, with a single

pair of models, GA→B and DB can reach an equilibrium where GA→B perfectly models domain

B and DB cannot distinguish the generated images from real images [9]. In this paired

scenario, GA→B and GB→A not only learn to model their respective domains by competing

with DA and DB, but also learn to preserve the coarse structure of their input images in

order to satisfy the cycle-consistent and identity losses.

After training the 4 models, we throw away 3 and keep only GA→B, which has learned

to transform synthetic images to refined images that appear more realistic. The generators

are fully convolutional and produce an output image the same size as its input image.

4.3.3 Ground Truth Consistency

The refined images produced by the basic CycleGAN model are problematic because the

character boundaries are often subtly changed. This means that the refined image is

inconsistent with the GT produced by thresholding the original clean foreground text.

Figure 4.3 shows an example.

We solve this problem by modifying the discriminator for the real domain, DB to

take as input both an image and its corresponding GT. This is done by concatenating the
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(a) Composite (b) Ground Truth (c) CycleGAN (d) DGT-CycleGAN

Figure 4.3: Naive use of CycleGAN to refine composited synthetic data (a) can lead to
mismatch between the refined image (c) and the ground truth (b). This is solved by
conditioning the discriminator of CycleGAN on the ground truth (d).

grayscale image with the GT mask to produce a single input for DB. We call this model

DGT-CycleGAN.

While all of the refined images produced by GA→B have corresponding GT by construc-

tion, not all bi ∈ B have GT. Surprisingly, we found that for bi that do not have GT, setting

the GT mask to all background was sufficient to enable learning. We also tried inputting to

DB only the bi with GT, but the refined images suffered in quality.

We also experimented with other CycleGAN variants to improve GT consistency

including conditioning GA→B on the GT and cross domain regularization, i.e. a loss to

encourage GA→B(ai) ≈ ai. While these two varaints produced visually better GT agreement

compared to CycleGAN, the visual agreement was not as good as that of DGT-CycleGAN,

nor was their quantiative results as compelling as DGT-CycleGAN (data not shown).

4.4 Experiments

To validate our proposed method, we generated a synthetic dataset using compositing

(Section 4.3.1). We then generated different refined versions of this synthetic data using

both CycleGAN (Section 4.3.2) and our proposed DGT-CycleGAN (Section 4.3.3). To

quantitatively measure the realism of each of these datasets, we trained deep neural networks

on each dataset and measured their binarization performance on DIBCO datasets from

2009-2018. We then finetuned each network on DIBCO data, and measured their performance

again.
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While binarization performance is not a direct measure of data realism or of consistency

between images and their GT, it is one possible use case for generating synthetic data, so it

makes sense to evaluate our method in this manner. We now give the implementation details

of the experiments.

4.4.1 Data

The foreground ink used to produce the synthetic data comes from the IAM dataset of

handwritten images [16]. The background images were produced by cropping background

regions from real historical documents. We obtained these regions from a variety of sources

including commerical websites1, Google image search, gallica collections2, and public datasets

including Saintgall [6], Parzival [7], RVL-CDIP [10], Rodrigo [32], CBAD [5], Historical

Layout Analysis Competitions [1], and Bentham [31]. From 1700 background regions we

extracted 1000 images.

We also collected images to represent the domain of real documents. For this dataset,

we collected 181 labeled images from DIBCO 2009-2018 [8, 20, 23–29], PHIBD [18], and the

Irish Script on Screen (ISOS) bleed-through dataset [30]. We also collected 210 unlabeled

documents from the same sources as the background regions and produced 468 cropped

images of text regions.

The above mentioned synthetic and real data are used to produce the refined datasets.

To evaluate the realism of these datasets, we evaluate the performance of models trained on

the synthetic and refined datasets using the labeled DIBCO data, and report the standard

DIBCO metrics including F-measure, Pseudo F-measure [19], Peak Signal-to-Noise Ratio

(PSNR), and Distance Reciprocal Distortion [15].

Models finetuned on labeled DIBCO data are done in a leave-one-dataset-out fashion.

For example, when reporting results for a finetuned model on DIBCO 2009, the model was

finetuned and validated using DIBCO data from 2010-2018. Additionally, for DGT-CycleGAN

1ancestry.com and familysearch.org
2https://gallica.bnf.fr/
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results, we created a refined dataset for each DIBCO year by omitting that year’s GT data

when training the DGT-CycleGAN model.

4.4.2 Model Details

To produce the refined data, we modified the official CycleGAN code3 and used many of the

default parameters for network architecture and training. We use the default architecture

for DA and DB, which is a 5-layer PatchGAN network [11] that classifies patches of the

input image as real or fake. We experimented with two generator architectures, including

the default 24-layer residual encoder-decoder architecture that downsamples by a factor of

4. The other generator architecture was a 20-layer residual architecture that removed the

downsampling and upsampling blocks from the default model. For DGT-CycleGAN, we used

the 20-layer generator architecture.

For training, we used the ADAM optimizer [13] for 100 epochs with a batch size of 32

and a default learning rate of 0.0002. To construct a batch, we sampled a random 256x256

crop from each of the sampled images.

The model used for binarization training is taken from [35]. For each synthetic or

refined dataset, we pretrained 5 models. We then finetuned 5 models for each DIBCO dataset,

each one starting with distinct pretrained weights. As in [35], the output of the 5 models is

combined by averaging probabilities to produce a final output.

Models were pretrained for 40,000 iterations with a batch size of 10 256x256 patches.

Model selection was performed using a random validation set taken from the same synthetic

or refined dataset used for training. Finetuning on DIBCO data continued until performance

stopped improving on a random validation set of DIBCO data.
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Method 2009 2010 2011 2012 2013 2014 2016 2017 2018 Avg
Composite-pretrain 13.54 13.28 42.21 15.86 46.58 72.49 5.00 12.84 14.92 26.30

CycleGAN-G24-pretrain 81.95 88.40 81.35 85.77 82.06 91.46 81.10 81.56 76.53 83.35
CycleGAN-G20-pretrain 81.92 88.97 83.37 87.67 85.43 89.70 82.68 82.14 80.27 84.68
DGT-CycleGAN-pretrain 84.76 89.68 84.50 84.95 87.63 93.52 81.05 80.92 82.46 85.50

No-pretrain 90.62 93.69 89.97 90.85 93.43 93.63 90.20 90.43 80.02 90.32
Composite-finetune 91.45 94.44 91.81 91.22 94.57 95.88 89.86 90.88 80.88 91.22

CycleGAN-G24-finetune 91.78 94.95 92.25 93.09 94.83 96.29 90.44 91.11 79.61 91.59
CycleGAN-G20-finetune 92.00 95.01 92.63 93.06 94.99 96.44 90.08 90.88 80.53 91.74
DGT-CycleGAN-finetune 91.52 94.45 91.57 92.27 94.87 96.69 90.45 90.94 81.78 91.62

DIBCO winners [8, 20, 23–29] 91.24 91.50 88.74 92.85 92.70 96.88 88.72 91.04 88.34 91.33
FCN ensemble [35] 89.76 94.89 93.60 92.53 93.17 91.96 89.52 - - -
DSN ensemble [36] - - 93.3 - 94.4 96.61 90.10 - - -

Table 4.2: Detailed F-measure results on all DIBCO datasets

Method F-measure Recall Precision Pseudo F-measure Pseudo Recall Pseudo Precision DRD PSNR
Composite-pretrain 26.30 20.01 87.64 29.90 23.62 87.42 17.44 12.44

CycleGAN-G24-pretrain 83.35 77.05 93.19 90.24 89.40 92.47 5.97 16.93
CycleGAN-G20-pretrain 84.68 78.83 92.95 91.82 92.28 92.07 5.37 16.68
DGT-CycleGAN-pretrain 85.50 79.92 94.27 90.87 89.81 93.42 5.12 17.55

No-pretrain 90.32 87.67 94.00 94.22 95.92 93.30 3.68 19.21
Composite-finetune 91.22 89.35 93.96 94.45 96.34 93.96 3.45 19.72

CycleGAN-G24-finetune 91.59 90.27 93.67 94.67 97.10 92.97 3.37 19.94
CycleGAN-G20-finetune 91.74 90.37 93.80 94.85 97.26 93.07 3.28 19.98
DGT-CycleGAN-finetune 91.62 89.77 94.20 94.84 96.75 93.51 3.22 19.91

Table 4.3: Standard DIBCO metrics averaged over all DIBCO datasets

4.5 Results

Our quantitative results are presented in Tables 4.2 and 4.3. Table 4.2 presents the F-measure

on each DIBCO dataset for the models pretrained on different datasets both with and without

finetuning. The top rows are models that are only pretrained on synthetic or refined data,

and the middle set of rows are the corresponding models after finetuning on DIBCO data.

The baseline method that involves no pretraining and only training on DIBCO data is include

in this group. The bottom group of rows shows some reported numbers from the literature,

including the performance of the top system submitted in each DIBCO competition. However,

it is difficult to make direct comparisons because of differences in training data.

Table 4.3 shows several more metrics for the same models, but only averaged over all

the DIBCO datasets. This gives a richer characterization of the predictions as the various

metrics capture different facets of performance.

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 4.4: Refined data produced by the proposed DGT-CycleGAN (left column) compared
with CycleGAN-G20 (right column)

4.5.1 Pretraining Results

Pretraining using the refined data produced by DGT-CycleGAN yields the highest F-measure

in 6 of 9 DIBCO datasets (Table 4.2) and the best average performance in 6 out of 8 metrics

(Table 4.3). This suggests that the refined data produced by DGT-CycleGAN is more realistic

and/or has better agreement with the generated GT compared the data produced by the

basic CycleGAN models.

We also see that CycleGAN-G20 outperforms CycleGAN-G24 on pretraining, indicating

that downsampling inside the generator model leads to poorer performance. As expected,

the naively created composited dataset performs extremely poorly as pretraining data due to

the clear separation between foreground and background.

Figure 4.4 shows some example images produced by DGT-CycleGAN and CycleGAN-

G20. Visual inspection of the model prediction errors indicate that DGT-CycleGAN is

better at classifying bleed-through noise as background, while CycleGAN-G20 does better

at recovering thin strokes in handwritten text (but not machine printed). This makes sense

as CycleGAN-G20 tends to refine images by making them uniformly lighter, so much of

the data it produces has light strokes. However, this makes it more challenging to classify
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bleed-through text, which is typically light, as background. In contrast, DGT-CycleGAN

produces darker text that has appropriate texture and realistic local changes in ink intensity.

4.5.2 Finetuning Results

The finetuning results do not indicate a clear best method for data generation because the

differences among the three CycleGAN based models in F-measure, Pseudo F-measure, PSNR

and DRD are small (< 0.2). However, CycleGAN-G20 always outperforms CycleGAN-G24

and outperforms DGT-CycleGAN on 5 out of 8 metrics. The realism of the pretraining

dataset likely matters less for finetuning because issues like GT consistency can be corrected

by finetuning on data with quality GT.

Overall, we see improvement in many metrics by pretraining on synthetic and refined

data. Training on refined data produced by DGT-CycleGAN reduces F-measure error by

13% compared to not pretraining and 6% compared to pretraining on synthetic data. Even

pretraining on the unrealistic composited synthetic data causes performance after finetuning

to increase significantly (9% error reduction).

4.6 Conclusion

In this work, we have proposed a new way to generate synthetic data with pixel ground

truth for binarization tasks. Instead of explicitly modeling the large variety of degradations

that occur in real historical documents, we rely on black box modeling with our proposed

DGT-CycleGAN model to transform unrealistic synthetic data into refined images that

appear realistic. We have shown that pretraining deep neural networks on the more realistic

synthetic data leads to better predictive performance both before and after finetuning on

real data.

One direction for future work is experimenting with better generation of the initial

synthetic data (e.g. [12, 33]) and seeing how this affects the quality of the refined data

produced by DGT-CycleGAN. Another direction is examining if the realistic synthetic data
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generated in this work is useful in the evaluation of binarization algorithms and how it

compares to the ground truth produced in semi-automated ways.
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Part II

Document Image Segmentation

Chapters 5-7 treat the topic of document segmentation, where the document image is

divided in its logical parts. Chapters 5 and 6 cover the basic task of identifying the boundaries

of a document page from the rest of the image so that later document processing algorithms

are only applied to the page region. Chapter 5 takes a pixel-labeling approach to identifying

the page region, while Chapter 6 presents a general keypoint detection model that can be

used to identify the corners of a document. Chapter 7 presents a pair of deep models that

partition an image or PDF of a table into cells, rows, and columns to recover the structure of

the table.
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Chapter 5

PageNet: Page Boundary Extraction in Historical Handwritten Documents

Abstract

When digitizing a document into an image, it is common to include a surrounding border

region to visually indicate that the entire document is present in the image. However,

this border should be removed prior to automated processing. In this work, we present

a deep learning system, PageNet, which identifies the main page region in an image in

order to segment content from both textual and non-textual border noise. In PageNet,

a Fully Convolutional Network obtains a pixel-wise segmentation which is post-processed

into a quadrilateral region. We evaluate PageNet on 4 collections of historical handwritten

documents and obtain over 94% mean intersection over union on all datasets and approach

human performance on 2 collections. Additionally, we show that PageNet can segment

documents that are overlayed on top of other documents.

Tensmeyer, Chris, Brian Davis, Curtis Wigington, Iain Lee, and Bill Barrett. “PageNet:

Page Boundary Extraction in Historical Handwritten Documents.” Proceedings of the 4th

International Workshop on Historical Document Imaging and Processing (HIP). pp. 59-64.

ACM, 2017.
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(a) (b) (c) (d) (e)

Figure 5.1: Examples of common border noise. (a-d) Background around the border. (b-d)
Book edges. (c-d) Textual noise due to neighboring pages. (e) Textual noise due to one
document (red square) overlayed on top of another.

5.1 Introduction

When digitizing a document into an image, it is common to include a surrounding border

region to visually indicate that the entire document is present in the image. The border

noise resulting from this process can interfere with document analysis algorithms and cause

undesirable results. For example, text may be detected and transcribed outside of the main

page region when textual noise is present due to a partially visible neighboring page. Thus,

it is beneficial to preprocess the image to remove the border region.

Some examples of border noise in historical documents include background, book

edges, overlayed documents, and parts of neighboring pages (see Figure 5.1). While removing

background is feasible using simple segmentation techniques, other types of border noise are

more challenging.

A number of approaches have been developed to remove border noise (e.g., [3, 5,

7, 19, 21]). However, as noted in [4], many prior methods make assumptions that do not

necessarily hold for historical handwritten documents. These assumptions about the input

image include consistent text size, absolute location of border noise, straight text lines, and

distances between page text and border [4].

In this work, we propose PageNet, a deep learning based system that, given an input

image, predicts a bounding quadrilateral for the main page region (see Figure 5.2). PageNet is
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(a) PageNet Segmentation (b) GrabCut Segmentation

Figure 5.2: PageNet, our proposed system, segments the main page region from border noise
such as book edges and portions of the opposite page. Traditional segmentation algorithms
like GrabCut struggle with some types of border noise, though are effective at removing the
background.

composed of a Fully Convolutional Network (FCN) and post-processing. The FCN component

outputs a pixel-wise segmentation which is post-processed to extract a quadrilateral shaped

region. Detecting the main page region is similar to finding the page frame [19], but the

former task detects the entire page while the latter crops the detected region to the page text.

PageNet is able to robustly handle a variety of border noise because, as a learning based

system, it does not make any explicit assumptions about the border noise, layout, or content

of the input image. Though learning methods can potentially overfit the training collection,

we demonstrate that PageNet generalizes to other collections of documents.

We experimentally evaluated PageNet on 5 collections of historical documents that we

manually annotated with quadrilateral regions. To estimate human agreement on this task,

we made a second set of annotations for a subset of images. On our primary test-set, PageNet

achieves 97.4% mean Intersection over Union (mIoU) while the human agreement is 98.3%

mIoU. On all collections tested, we achieve a mIoU of >94%. Additionally, we show that

PageNet is capable of segmenting documents that are overlayed on top of other documents.
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In order to support the reproducibility of our work, we are releasing our code, models, and

dataset annotations, available at https://github.com/ctensmeyer/pagenet.

5.2 Related Work

We take a segmentation approach to removing border noise, so we review the literature on

traditional border noise removal techniques and on segmentation.

Fan et al. remove non-textual marginal scanning noise (e.g., large black regions) from

printed documents by detecting noise with a resolution reduction approach and removing

noise through region growing or local thresholding [7]. Shafait et al. handle both textual

and non-textual marginal noise by finding the page frame of an image that maximizes a

quality function w.r.t. an input layout analysis composed of sets of connected components,

text lines, and zones [20]. The method of Shafait and Breuel examines the local densities of

black and white pixels in fixed image regions to identify noise and also removes connected

components near the image border [19]. Stamatopoulos et al. proposed a system based on

projection profiles to find the two individual page frames in images of books where two pages

are shown. They report an average F-measure of 99.2% on 15 historical books [21]. Bukhari

et al. find the page frame for camera captured documents by detecting text lines, aligning

the text line end points, and estimating a straight line from the endpoints using RANdom

SAmple Consensus (RANSAC) linear regression [3]. For further reading, we refer the reader

to a recent survey on border noise removal [4].

Our approach differs from the previously mentioned border noise removal techniques

because we do not make assumptions about the location of the document in the image.

Furthermore, our task differs from the page frame based methods, which find a tight bounding

box around the page content. In contrast, we attempt to detect the entire main page region,

including background regions. Our approaches are complimentary as once the main page

region is detected, the page frame is more easily obtained.
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Another formulation of the border noise removal problem is to find the four corners of

the bounding quadrilateral of the page, which is a sub-task shared with perspective dewarping

techniques. Jagannathan et al. find page corners in camera captured documents by identifying

two sets of parallel lines and two sets of perpendicular lines in the perspective transformed

image [12]. Yang et al. use a Hough line transform to detect boundaries in binarized images

of license plates [24].

Intelligent scissors segments an object from background by finding a least cost path

through a weighted graph defined over pixels, subject to input constraints [17]. Active

Contours or Snakes formulate segmentation as a continuous optimization problem and finds

object boundaries by minimizing a boundary energy cost and the cost of deformation from

some prior shape [14]. Graph Cut methods (e.g.[1]) formulate image segmentation as finding

the minimum cut over a graph constructed from the image. Weights in the graph are

determined by pixel colors and by per-pixel apriori costs of being assigned to the foreground

and background segments. GrabCut iteratively performs graph cut segmentations, starting

from an initial rough bounding box. The result of each iteration is used to refine a color

model which is used to construct the edge weights for the next iteration [18].

Several neural network approaches have been proposed for image segmentation. The

Fully Convolution Network (FCN) learns an end-to-end classification function for each pixel

in the image [16]. However, the output is poorly localized due to downsampling in the FCN

architecture used. Zheng et al. integrated a Conditional Random Field (CRF) graphical

model into the FCN to improve segmentation localization [25]. In contrast, our approach

maintains the input resolution and therefore does not suffer from poor localization. The

Spatial Transformer Network [11] learns a latent affine transformation in conjunction with a

task specific objective, effectively learning cropping, rotation, and skew correct in an end-to-

end fashion. In our case, we are interested in directly learning a pre-processing transformation

from ground truth. Chen and Seuret used a convolutional network to classify super pixels as
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background, text, decoration, and comments [6]. Super pixel based features would not work

in our case as neighboring pages are identical to the main page region in local appearance.

5.3 Method

In this section, we describe PageNet, which takes in a document image and outputs the

coordinates of four corners of the quadrilateral that encloses the main page region. PageNet

has two parts:

1. A Fully Convolutional Neural Network (FCN) to classify pixels as page or background

2. Post processing to extract a quadrilateral region

5.3.1 Pixel Classification

FCNs are learning models that alternate convolutions with element-wise non-linear func-

tions [16]. They differ from traditional CNNs (e.g., AlexNet) that have fully connected layers

which constrain the input image size. In particular, the FCN used in PageNet maps an input

RGB image x ∈ R3×H×W → y ∈ RH×W , where yij ∈ [0, 1] is the probability that pixel xij is

part of the main page region.

Each layer of a basic FCN performs the operation

x` = g(W` ∗ x`−1 + b`) (5.1)

where ` is a layer index, ∗ indicates multi-channel 2D convolution, W` is a set of learnable

convolution filters, b` is a learnable bias term, and g is a non-linear function. In our case,

we use g(z) = ReLU(z) = max(0, z) as element-wise non-linear rectification. In some FCN

architectures, spatial resolution is decreased at certain layers through pooling or strided

convolution and increased through bilinear interpolation or backwards convolution [16]. In

the last layer of the network, ReLU is replaced with a channel-wise softmax operation (over

2 channels in our case) to obtain output probabilities for each pixel.
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(a) Image (b) FCN Prediction (c) Largest Component (d) Fill Holes

(e) Oriented Bounding Rect. (f) Quad. Maximizing IoU (g) Result

Figure 5.3: Post processing to extract quadrilateral from FCN predictions.

PageNet uses a successful multi-scale FCN architecture originally designed for binariz-

ing handwritten text [22]. This FCN operates on 4 image scales: 1, 1
2
, 1

4
, 1

8
. The full resolution

image scale uses 7 sequential layers (Eq. 5.1), and each smaller layer uses one layer less than

the previous (e.g. 1
8

scale uses 4 layers). The input feature maps of the 3 smallest scales

are obtained by 2× 2 average-pooling over the output of the first layer of the next highest

image scale. The FCN concatenates the output feature maps of each scale, upsampling them

to the input image size using bilinear interpolation. Thus the architecture both preserves

the original input resolution and benefits from a larger context window obtained through

downsampling. This is followed by 2 more convolution layers and the softmax operation.

For full details on the FCN architecture, we refer the reader to [22]. We performed initial

experiments (not shown) with a single scale FCN but it performed worse, likely due to smaller

surrounding context for each pixel.
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5.3.2 Quadrilaterals

Thresholding output of the FCN yields a binary image (Figure 5.3b), which is converted

to the coordinates of a quadrilateral around the main page region in the image. While the

pixel representation may be already useful for some applications (e.g., masking text detection

regions), it can lack global and local spatial consistency due to the FCN predicting pixels

independently based on local context. Representing the detected page region as a quadrilateral

fixes some errors in the FCN output and makes it easier for potential downstream processing

to incorporate this information.

Figure 5.3 demonstrates the following post-processing steps that converts the binary

per-pixel output of the FCN (after thresholding at 0.5 probability) to a quadrilateral region:

1. Remove all but the largest foreground components.

2. Fill in any holes in the remaining foreground component.

3. Find the minimum area oriented bounding rectangle using Rotating Calipers method [23].

4. Iteratively perturb corners in greedy fashion to maximize IoU between the quadrilateral

and the predicted pixels.

Step 1 helps remove any extraneous components (false positives) that were predicted

as page regions. Some of these errors occur because the FCN makes local classification

decisions. Similarly, Step 2 removes false negatives. In Step 3, we find a (rotated) bounding

box for the main page region (OpenCV implementation [2]), but the bounding box encloses

all predicted foreground pixels and is therefore sensitive to any false positive pixels that

are outside the true page boundary. This bounding box is used to initialize the corners

for iterative refinement in Step 4. At each refinement iteration, we measure the IoU of 16

perturbations of the corners (4 corners moved 1 pixel in 4 directions) and greedily update

with the perturbation that has the highest IoU w.r.t. the FCN output. We stop the process

when no perturbation improves IoU. Though this process is greedy and may terminate on

a locally optimal quadrilateral, this rarely happened in our experiments because the FCN
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outputs are typically close to being quadrilateral shaped. Post-processing is done on 256x256

images, so there may be quantization artifacts after the quadrilaterals are upsampled to the

original size.

5.3.3 PageNet Implementation Details

We implemented the FCN part of PageNet using the popular deep learning library Caffe [13].

The dataset used for training is detailed in Section 5.4. For preprocessing, color images

are first resized to 256x256 pixels and pixel intensities are shifted and scaled to the range

[−0.5, 0.5]. For ground truth, we label each pixel inside the image’s annotated quadrilateral

as foreground and all other pixels as background. The ground truth images are also resized

to 256x256.

While all input images yield a probability map of the same size, we used 256x256

images in training and evaluation. While a larger input sizes could lead to slightly higher

segmentation accuracy, we achieve good results with the computationally faster 256x256 size.

Initial experiments with 128x128 inputs were less accurate.

To train the FCN, we used Stochastic Gradient Descent for 15000 weight updates with

a mini-batch size of 2 images. We used an initial learning rate of 0.001, which was reduced

to 0.0001 after 10000 weight updates. We used a momentum of 0.9, L2 regularization of

0.0005, and clipped gradients to have an L2 norm of 10. We trained 10 networks and used

the validation set to select the best network for the results reported in Section 5.5.

5.4 Dataset

Our main dataset is the ICDAR 2017 Competition on Baseline Detection (CBAD) dataset [10],

which are handwritten documents with varying levels of layout complexity (see Figure 5.1a,b,c).

We combined both tracks of the competition data and separated the images into training,

validation and test sets with 1635, 200, and 200 images respectively. We train PageNet on

the training split of CBAD and evaluate on the validation and test splits of the same dataset.
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We also evaluated on a subset of the CODH PMJT dataset1, and on all images from

the Saint Gall and Parzival datasets. The PMJT (Pre-Modern Japanese Text) dataset is taken

from the Center for Open Data in the Humanities (CODH) [15] and consists of handwritten

literature (see Figure 5.1d) and some graphics. We randomly sampled 10 pages from each

the collections, excluding ID 20003967, to create an evaluation set of 140 images. The Saint

Gall dataset [8] is a collection of 9th century manuscripts put together by the FKI: Research

Group on Computer Vision and Artificial Intelligence. The Parzival dataset [9] is also put

together by FKI and consists of 13th century Medieval German texts.

We also trained and evaluated PageNet on a private collection of Ohio death records2,

having a training set of 800 images, and validation and testing sets of 100 images each. This

dataset, while relatively uniform in the types of documents, presents a unique challenge of

overlay documents (see Figure 5.1e). While much of the document underneath an overlay

is visible, much is still occluded, thus it is most desirable to localize just the overlay, which

is a task that has not received much attention in the literature. These overlays represent

approximately 12% of the images in the dataset.

5.4.1 Ground Truth Annotation

Our ground truth annotations consist of quadrilaterals encompassing the pages fully present

in an image, not including any partial pages or page edges (if possible). We chose to use

quadrilaterals rather than pixel level annotations as most pages are quadrilateral-shaped,

and it is much faster to annotate polygon regions than pixel regions. Regions were manually

annotated using an interface where the annotator clicks on each of the four corner vertices.

In the case of multiple full pages, the quadrilateral encloses all pages present regardless of

their orientation to each other. This typically occurs when two pages of a book are captured

in a single image.

1http://codh.rois.ac.jp/char-shape/
2Data provided by FamilySearch
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In order to give an upper bound on expected automated performance, we measured

human agreement on the quadrilateral regions of our datasets. A second annotator provided

region annotations for validation and test sets. To measure human agreement, this second

set of regions was treated the same as the output of an automated system and scored w.r.t.

the first set of annotations.

5.5 Results

In this section, we quantitatively and qualitatively compare PageNet with baseline systems

and with human annotators. To evaluate system performance, we use Intersection over Union

(IoU) averaged over all images in a dataset (mean IoU). We chose mIoU as our metric because

it is commonly used to evaluate segmentation tasks.

5.5.1 Baselines systems

We compare PageNet with three baseline systems: full image, mean quadrilateral, and

GrabCut [18]. For the full image baseline, the entire image is predicted as the main page

region.

The mean quadrilateral can be computed as

x̄n =
1

N

N∑
i=1

xin
wi

ȳn =
1

N

N∑
i=1

yin
hi

(5.2)

where the mean quadrilateral is (x̄1, ȳ1, . . . , x̄4, ȳ4), the ith annotated quadrilateral is (xi1,

yi1, . . . , xi4, yi4), N is the number of training images, wi and hi are respectively the width and

height of the ith image. The predicted quadrilateral for this baseline only relies on the height

and width on the test image. For the jth image, the prediction is (wjx̄1, hj ȳ1, . . . , wjx̄4, hj ȳ4).

Our mean quadrilateral was computed from the CBAD training split.

For the GrabCut baseline, we used the implementation in the OpenCV library [2]. For

an initial object bounding box, we include the whole image except for a 5 pixel wide border
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Dataset # Images PageNet PageNet Full Mean GrabCut Human
(pixels) (quads) Image Quad Agreement

CBAD-Train 1635 0.968 0.971 0.823 0.883 0.900 -
CBAD-Val 200 0.966 0.968 0.831 0.891 0.906 0.978
CBAD-Test 200 0.972 0.974 0.839 0.894 0.916 0.983

PMJT 140 0.936 0.943 0.809 0.897 0.904 0.982
Saint Gall 60 0.975 0.987 0.722 0.809 0.919 0.993
Parzival 47 0.956 0.962 0.848 0.920 0.925 0.989

Table 5.1: mIoU of PageNet and baseline systems. All rows used the same PageNet model
trained on CBAD-train. PageNet (pixels) is the pixel segmentation of our proposed method
taken after step 2 of post-processing (see Section 5.3.2 for details).

around the image edges. Unlike other baselines and the full PageNet results, GrabCut outputs

a pixel mask (i.e., not a quadrilateral). Therefore, it is directly comparable to PageNet before

we extract a quadrilateral.

We do not compare with methods designed to find the page frame as our method is

designed to detect the entire main page region, including background regions.

5.5.2 Overall Results

We trained PageNet on CBAD-train and tested it and the baseline methods on 4 datasets

of historical handwritten documents. Numerical results are shown in Table 5.1, and some

example images are shown in Figure 5.4. For all datasets, except CBAD-train, we manually

annotated each image twice in order to estimate human agreement on this task.

On all datasets, the full PageNet system performed the best of all automated systems

and strongly outperformed the baseline methods. Notably, outputting quadrilaterals improves

the pixel segmentation produced by the FCN, which shows that outputting a simpler region

description does not decrease segmentation quality. There is little difference in the results

for the different splits of CBAD, which indicates that PageNet does not overfit the training

images. Performance is highest on Saint Gall because the border noise is largely limited to a

black background. On PMJT, PageNet performed worst and most errors can be attributed
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(a) (b) (c) (d) (e)

Figure 5.4: Example segmentations produced by PageNet. While (a)-(d) show correct
segmentations on challenging documents, (e) shows a failure case due to the presence of
multiple document snippets.

to incorrectly identifying page boundaries between pages, perhaps because the Japanese text

is vertically aligned.

The full image baseline performs worst as it simply measures the average normalized

area of the main page region. With the exception of Saint Gall, GrabCut only marginally

outperforms the mean quadrilateral. As GrabCut is based on colors and edges, it often fails

to exclude partial page regions (e.g., Figure 5.2) and sometimes labels dark text regions the

same as the dark background. A few images in CBAD are well cropped and contain only the

main page region, which is problematic for GrabCut because it will always attempt to find

two distinct regions. In contrast, once trained, PageNet can classify an image as entirely the

main page region if it does not contain border noise.

5.5.3 Comparison to Human Agreement

The last column of Table 5.1 shows the performance of a second annotator scored w.r.t. the

original annotations. This performance captures the degree of error, or ambiguity, inherent

with human annotations on this task, a level of performance which would be difficult for any

automated system to surpass. For CBAD, PageNet is roughly 1% below human agreement,

which indicates the network’s proficiency at the task. On the PMJT dataset there is a larger
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Dataset # Images FCN FCN
(pixels) (quads)

Ohio-Train 800 0.973 0.979
Ohio-Val 100 0.970 0.977
Ohio-Test 100 0.967 0.976

Table 5.2: mIoU results of PageNet trained on Ohio death certificates.

gap between automated and human performance and indicates that there is still room for

improvement.

The human agreement results in Table 5.1 show the agreement between two annotators.

We also measured the agreement of the same annotator labeling the same images on a

different day. The same-annotator mIOU are 99.0% and 98.4% for CBAD-test and CBAD-val

respectively. These are slightly higher than the mIOU of 98.3% and 97.8% obtained by a

different annotator. This highlights the inherit ambiguity in labeling the corners of the main

page region.

5.5.4 Overlay Performance

We also trained PageNet on a private dataset of Ohio death records. This dataset has several

images where one document is overlayed on top of another document (e.g., Figure 5.1e),

which creates particularly challenging textual noise. Table 5.2 shows results on this dataset.

In Figure 5.5, we show predicted segmentation masks for two images, which together

show that PageNet correctly segments the overlayed image when present. Figure 5.5a contains

a document overlayed on top of the document shown in Figure 5.5b. With the overlayed

document, PageNet segments only the overlayed document, but when the overlayed document

is removed, it segments the document underneath from the background.

5.6 Conclusion

We have presented a deep learning system, PageNet, which removes border noise by segmenting

the main page region from the rest of the image. An FCN first predicts a class for each
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(a) Overlayed (b) Document Beneath

Figure 5.5: PageNet predictions for overlayed document. The document underneath the
overlay in (a) is the same document without the overlay in (b)

input pixel, and then a quadrilateral region is extracted from the output of the FCN. We

demonstrated near human performance on images similar to the training set and showed

good performance on images from other collections. On an additional collection, we showed

that PageNet can correctly segment overlayed documents.
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Chapter 6

Physics Inspired Keypoint Regression in Convolutional Neural Networks

Abstract

In keypoint regression, models are trained to consume an image and produce the x,y

coordinates of some entity (e.g. a person’s nose). Inspired by the physical concept of an

object’s center of mass, we propose two spatially-aware and differentiable regression functions

that compute continuous x,y coordinates from spatially discrete heatmap predictions. This

allows end-to-end training of convolutional neural networks with dense output to learn

keypoint locations. We demonstrate that our approach outperforms both strong baselines and

a state-of-the-art regression function in synthetic experiments and on 5 real world keypoint

regression datasets including faces, human pose, fashion, and document images.

In preparation for submission to International Conference on Document Analysis and Recog-

nition (ICDAR).

Chris Tensmeyer and Tony Martinez. “Physics Inspired Keypoint Regression in Convolutional

Neural Networks.”
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6.1 Introduction

Many challenging image tasks, such as object detection [24, 25], object segmentation [5], face

alignment [28], human pose estimation [1], and text line detection [21] have recently been

formulated as keypoint regression problems. The input to the model is an image and the

desired output is the (x, y) coordinates of some specific entity in the image. Some common

keypoint tasks include predicting facial features such as a person’s nose and eyes as well as

human joints like wrists, elbows, or shoulders. Deep convolutional neural networks (CNN) are

state-of-the-art models in many image tasks are the primary choice for keypoint regression

models.

CNN approaches to point prediction fall into three general categories: global regression,

dense prediction, and hybrid methods.

• Direct regression methods jointly learn a regression model and non-linear neural network

features to directly regress (x, y) keypoints under some distance based loss.

• Dense prediction or heatmap methods learn a confidence value for each pixel and the

detected point is simply the integer coordinates of the pixel with highest confidence.

• Hybrid methods split the image into (perhaps overlapping) blocks, and for each block,

the model outputs a confidence value and coordinates relative to the block location.

While these approaches have been shown to be effective, there are some draw backs.

Direct regression methods, such as linear regression, typically ignore the spatial aspect of

images and therefore must learn redundant sets of parameters to model the local appearance

of each keypoint in different image locations. Thus these models lack translation equivariance

(shifting the input correspondingly shifts the output), which is important if the keypoint

can appear anywhere in the image. To deal with this issue, prior works have employed

complicated cascaded models, where the first model performs a rough localization so that

subsequent models do not need as much translation equivariance [28].
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Dense prediction methods typically employ a Fully Convolutional Network (FCN) to

output a confidence score for each input pixel. While this method is translation equivariant,

there is a difference between the training objective and model inference, meaning training

is not end-to-end [27]. Inference in these models is usually done by finding the maximum

value in the dense heatmap and outputting the integer coordinates of that location. This

limits the loss functions that can be used, as the loss can only instruct the network which

pixels should have high or low confidence. In particular, the distance between predicted and

ground truth keypoints cannot be used to train such models.

Hybrid methods, to some degree, have similar issues to dense predictions due to

predicting block confidences, and they require selecting the size and degree of overlap of

blocks. Hybrid methods are most commonly used for predicting a variable number of

semantically equivalent keypoints, such as object bounding box corners in cluttered scenes.

In contrast, our work focuses on tasks with a fixed number of keypoints, though our proposed

method could be applied to the hybrid paradigm.

In this work, we propose two new neural network layers for keypoint prediction that

overcome the limitations of both direct regression and dense prediction. These layers take

as input a dense feature map of any size and output a continuous (x, y) coordinate at the

center of high activations in the feature map. Taking inspiration from simple physics, the first

layer interprets the input feature map as a grid of point masses and computes the physical

Center of Mass (CoM). Though the masses are arranged on a discrete grid, the output CoM

can be any continuous (x, y) point. Though this CoM layer yields good predictions, it has

a slight deficiency in that the gradient is highest for points far away from the predicted

(x, y) output. We fix this problem with our proposed Median of Mass (MoM) layer and

demonstrate improved performance.

The CoM and MoM layers have some desirable properties. Both layers transform a

heatmap-like input into a keypoint location. Thus, convolution layers can focus on learning a

local appearance model rather than translating local features into a global (x, y) pair. In
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contrast to dense prediction methods, CoM and MoM have no separate inference procedure

and both layers are differentiable, allowing for distance based loss functions to be used. Being

differentiable also allows for latent point prediction for models utilizing spatial attention

mechanisms used in, e.g., sequential image generation [9] and image captioning [34]. Finally,

the layers are equivariant to similarity transforms, so shifting, scaling, or rotating the layer

input produces a corresponding transformation in the output coordinates. This is useful for

when keypoint appearance varies in location, size, and orientation.

We validate our proposed layers using synthetic data and 5 real datasets taken from

the domains of faces, human pose, fashion, and document images. The MoM layer reduces

Root Mean Squared Error by 28% and 30% over linear regression and dense prediction

baselines. We also demonstrate the same or better performance compared with a recent

state-of-the-art regression function introduced for human pose estimation [27] and show that

CoM and MoM layers yield sparser and more concentrated detection heatmaps. Additionally,

we exceed the previous best result on the READ-BAD corner detection task, achieving 98.1%

intersection over union vs the previous 97.4%.

6.2 Background and Related Work

Many improvements to point regression have been made in the context of detecting facial

keypoints for facial alignment and detecting joints for human pose estimation. Prior works

can be categorized into four areas: architecture, structure prediction, loss functions, and

regression functions. The architecture improvement category can be further split into direct

regression architectures and dense prediction architectures. Our proposed work is a new

regression function that performs direct regression from a dense prediction and thus spans

both paradigms. Thus, improvements in architectures, structure prediction, and loss functions

can be viewed as complimentary to our proposed layer.
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6.2.1 Direct Regression

Direct regression architectures use a CNN to model

p = f(I; θ) (6.1)

where p ∈ R2k are the predicted 2D image coordinates for k keypoints, I is the input image,

and θ are the parameters of the model. Traditionally, the CNN is composed of several

convolution layers, followed by fully connected layers. When there is no activation function

after the final fully connected layer, the regression function is linear and can be formulated

as

p = Wf(I; θ) (6.2)

where W is a matrix of linear regression weights applied to the deep non-linear feature vector

produced by f . Note that linear regression only incorporates spatial information through the

features, rather than in the regression function itself. Designing a loss function for Eq. 6.1

or 6.2 is straightforward and the L2 loss is commonly used. Inference is also simple as the

predicted points are directly computed.

Direct regression is greatly improved by introducing a cascade of direct regressors,

where only the first network in the cascade takes as input the whole image [28]. Subsequent

CNNs in the cascade are specific to clusters of target points (e.g. head and shoulder joint

positions), and take as input smaller patches centered around previous network predictions.

Thus the first network in the cascade only needs to output a rough localization of each

keypoint and subsequent networks need not be translation equivariant because the points are

roughly centered in the input.

Sun et al. [28] used 3 levels of cascade with 3 CNNs in the first level and 10 CNNs each

for the second and third levels. Within a level, multiple CNNs predict the same keypoint at

multiple resolutions, and predictions are averaged to reduce variance. In [35], the cascade of

networks is preceded by a tight bounding box prediction. Kumar et al. [16] refined the initial
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predictions by predicting offset vectors from deep local descriptors. The DeepPose system also

employed a cascade of 3 CNNs, where the scale of image patchs input to later models depended

on the distance between predicted keypoints (e.g. inter-shoulder distance) [32]. Deep Fashion

Alignment [20] combines a 3-CNN cascade with predicting intermediate pseudo-labels that

are based on clusters of visible keypoints (e.g. upper-body fashion vs lower-body). [1] used

a cascade in conjunction with a proposed robust loss function that excludes outliers from

backpropagating errors.

6.2.2 Dense Prediction

Dense prediction models formulate point regression as

D = f(I; θ) (6.3)

where D ∈ Rk×H×W is a heatmap of dimension H×W for k keypoints. f is typically modeled

as a FCN or an FCN combined with a graphical model. Inference in such models is typically

pk = arg max
x,y

Dk (6.4)

Due to the argmax, dense prediction methods are subject to quantization error. The

magnitude of this error depends on the ratio of the dimensions of I to H×W , which depends

on the amount of pooling in the FCN. The ground truth in gk = (xk, yk) form is not directly

used, but is first converted to a dense form G ∈ Rk×H×W so that D can be trained to

approximate G.

Learning dense prediction models is a simpler task than learning direct regression

models [23, 31]. This is because direct regression (without cascade) models global context

while dense prediction methods model local context and backpropagates error based on

local feedback. Most keypoints are defined by local appearance, and difficult cases, such as
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occlusion, that benefit from global context are often handled by a subsequent structured

model that encodes information about the relationships among multiple keypoints [31].

In [23, 30], G is constructed to be the concatenations of k 2D Gaussians, each centered

around gk and having fixed variance. Alternatively, Bulat and Tzimiropoulos [3, 4] use a

binary G, setting pixels around gk to 1 and train the CNN as a per-pixel classifier using

a cross entropy loss. In [5], a similar scheme is used to sequentially predict vertices in a

recurrent network for object segmentation.

Mass Displacement Networks use a differentiable geometric voting process, where the

model outputs a confidence and a displacement vector for each pixel [22]. The evidence

is smoothed according to a kernel and accumulated under a probabilistic noisy-or model

to produce per-pixel probabilities. In [19], pixels vote for one of 50 log-polar bins for each

keypoint. Inference is done by performing deconvolution with a fixed kernel to obtain per-pixel

confidences.

6.2.3 Structure Prediction

Struture prediction methods refine initial keypoint predictions based on a spatial model of

keypoint relationships. Convolutional Pose Machines predict an initial heatmap based on

local appearance, and then iteratively update the heatmaps based on a recurrent contextual

model [33]. Tompson et al. [31] use a fully connected Markov Random Field and model

pairwise connections with learned convolutional priors. Sun et al. [26] regress differences

in keypoint locations, which have lower variance than keypoint locations due to geometric

constraints of human poses. Chen et al. [6] learn a prior over biologically plausible human

poses using adversarial learning.

Structure prediction bears some similarity to cascade methods, but structure prediction

methods learn features from the initial heatmaps. In contrast, the only information passed

between cascade levels are estimated keypoints.
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6.2.4 Regression Functions

Regression functions for image data proposed in the literature include mixture of inverse linear

regressions for head pose estimation [17] and Support Vector Regressors (SVR) for facial

beauty assessment [8]. Integral Pose Regression directly regresses (x, y) from latent dense

predictions and is similar to our proposed CoM approach [27]. We explore this connection in

Section 6.3. Hou et al. [12] demonstrate that learned Smooth Adaptive Activation Functions

(SAAF) on the penultimate CNN layer leads to lower model bias error on age estimation and

human pose estimation tasks.

6.3 Point Regression Layers

This section explains our two proposed layers for keypoint regression, which we have named

the Center of Mass (CoM) and the Median of Mass (MoM) layers. Both layers take in a

single feature map and produce a single pair of (x, y) coordinates. That is, they compute a

function f : RH×W → R2, where H,W are the feature map dimensions. This can be applied

to any number of input feature maps to produce the desired number of keypoint predictions.

6.3.1 Center of Mass Layer

This layer draws inspiration from physics by interpreting the input feature map as a 2D grid

of point masses, where the mass of each point is determined by the corresponding feature

map value. Under Newton’s laws, such a system of masses may be abstracted as a single

point, c = (cx, cy), whose mass is the total mass of the system. This point is known as the

CoM of the system and satisfies

∑
ij

mij(i− cx) =
∑
ij

mij(j − cy) = 0 (6.5)

where mij is the value of the input feature map at position (i, j). We can interpret the CoM

as a distance-weighted average of the masses, where masses farthest away from c have the

140



most influence on the position of the CoM. Under the assumption that
∑

ijmij 6= 0, c is

unique and can be computed by rearranging Eq. 6.5 to

cx =

∑
ij imij∑
ijmij

cy =

∑
ij jmij∑
ijmij

(6.6)

The derivative is also simple to derive and compute. Starting with the x-coordinate,

we have

dcx
dmuv

=
u
∑

ijmij −
∑

ij imij

(
∑

ijmij)2
=

u− cx∑
ijmij

(6.7)

Similarly, the y-coordinate is

dcy
dmuv

=
v − cy∑
ijmij

(6.8)

From Eqs. 6.7 and 6.8, we can see that the gradient magnitude at location (u, v) is

proportional to ||(u, v)− c||2, so gradient based training will encourage input locations far

from c to have high activations. This is undesirable because keypoints are often identifiable

by local appearance and large activations far away from the keypoint can lead to imprecise

localization. However, in practice, we find using a ReLU activation (ReLU(x) = max(0, x))

before the CoM layer helps alleviate this problem. The input locations far away from c tend

to be set to 0 by ReLU and thus zero out the large CoM gradient. In practice, the FCN

learns a local detector for keypoints (similar to dense prediction methods) as input to the

CoM layer and has few non-zero activations far from the keypoint.

6.3.2 Median of Mass Layer

The MoM layer is similar to the CoM layer, but solves the distance weighting of gradients

problem. While nature uses a linear distance weighting function in Eq. 6.5 to define a

system’s CoM, we are free to choose any non-decreasing function of distance to obtain a
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unique Generalized Center of Mass (GCoM). For the x-coordinate we have

∑
ij

mij sign (i− cx)g(|i− cx|) = 0 (6.9)

where g is a non-decreasing function. Without this restriction on g, Eq. 6.9 could have

multiple solutions, leading to ambiguous or inconsistent layer output. If g is linear, Eq. 6.9

reduces to Eq. 6.5 and we get the vanilla CoM. If we choose g to be a constant function, so

that masses are not distance weighted at all, Eq. 6.9 reduces to:

∑
ij

mij sign (i− cx) =
∑
ij

mij sign (j − cy) = 0 (6.10)

However, given the interpretation of the input matrix M as point masses, Eq. 6.10

likely has no exact solution. Therefore, we reinterpret the input to be piecewise constant

function m(i, j) = mbic,bjc and rewrite Eq. 6.10 as

∫∫
m(i, j) sign (i− cx) di dj =

∫∫
m(i, j) sign (j − cy) di dj = 0 (6.11)

To solve Eq. 6.11, we compute row and column sums of M and find the median values

of these 1D vectors. While the median is not likely to fall on any integer position, we find

the two positions around the median and perform linear interpolation to find the continuous

median.

Let r be a vector of column sums (ri =
∑

jmij), R be the corresponding vector of

cumulative sums (Ri =
∑i

k=1 rk), T be the total mass, and P be the normalized cumulative

sum (Pi = Ri

T
). We find the largest u, such that Pu < 0.5 and ru 6= 0. Similarly, we find the

smallest v such that Pv ≥ 0.5 and rv 6= 0. Note that we may have v 6= (u+ 1) due to 0 values

in r, though this is not commonly encountered in practice. Then we find the point where

the line through (u, Pu) and (v, Pv) intersects the line y = 0.5. Defining s = v−u
Pv−Pu

, we have

cx = u+ 0.5−Pu

s
.
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We can determine cy from the same process by using row sums instead of column

sums. The backwards step for computing ∂cx
∂mij

proceeds as

∂Pk
∂mij

=


T−Pk

T 2 for i ≤ k

−Pk

T 2 for i > k

(6.12)

∂s

∂mij

=

∂Pu

∂mij
− ∂Pv

∂mij

v − u
(6.13)

∂cx
∂mij

= −
s ∂Pu

∂mij
+ ∂s

∂mij
(0.5− Pu)

s2
(6.14)

While Eq. 6.14 is not as simple as Eq. 6.7, the magnitude of ∂cx
∂mij

no longer depends on the

distance between cx and i. The gradient only depends on if i ≤ u, u < i ≤ v, or i > v. The

gradient magnitude differences between these ranges are small because unless M is highly

skewed, T − Pu ≈ T − Pv ≈ −Pu ≈ −Pv ≈ −0.5. The derivative within these three ranges is

constant, which helps the MoM layer be robust to outlier activations and therefore learn to

activate near the keypoint of interest.

Relation to Integral Regression

After developing and implementing our layers, we found a similar method in concurrent work

called Integral Regression (IR) [27]. Our CoM layer computes c = fCoM(ReLU(Fk)), while

IR computes c = fCoM (σ(Fk)), were Fk is the kth feature map of the last convolutional layer

and σ(·) is the Softmax function. Because σ(·) backpropagates non-zero values to all its

inputs, input locations far away from c in IR can receive large backpropagated errors due

to distance weighting of errors (Eqs. 6.7 and 6.8). This problem is addressed in our novel

MoM layer and we show in Section 6.6 that using ReLU leads to sparser heatmap inputs.

Though this issue is not explicitly addressed in [27], their complete model was trained with
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(a) Task 1 input (b) Task 2 input (c) Task 1 results (d) Task 2 results

Figure 6.1: Example Synthetic task inputs (a,b) and results for each regression function
(c,d). For (a,b) the images are scaled and shifted to the range [0,255] and the target value is
indicated in red (best viewed in color).

an auxiliary L2 loss between F and 2D Gaussians centered around each gk, which encourages

heatmaps to only activate around gk.

6.4 Experiments - Synthetic Data

In this section, we explore the performance of several regression functions on two synthetic

point regression tasks. The first task simulates the output of a noisy, but accurate sliding

window detector. The background of each 64x64 input is composed of i.i.d. Gaussian noise

with µ = 0, σ = 0.2. For each input, we sample random ground truth with integer coordinates,

g = (gx, gy). We set nearby input pixels p, such that ||g − p||2 ≤ 2, to higher values using

Gaussians with parameters µ = (1− 0.2||g − p||2), σ = 0.2. An example input is found in

Figure 6.1a.

The second task mimics the scenario where the local appearance of a keypoint is

occluded or otherwise not detected, but the keypoint location can be inferred based on its

relationship to two other detected points. The inputs for this task have the same background

as in the first task, but instead have two foreground regions around two context points that

we denote g1,g2. The pixels within radius 2 of either g1 or g2 are sampled from Gaussians

with higher mean as in task 1. The ground truth for this task is the midpoint g = g1+g2

2
.

We compare CoM, MoM, IR [27], IR-MoM, Linear, and Dense regression functions

using 2-layer networks with architectures detailed in Table 6.1. For the Dense architecture,

144



Table 6.1: Network architectures used in synthetic experiments. The first layer of all networks
is a conv layer with 8 feature maps and 3x3 kernels followed by a ReLU activation. Note
that Linear Reg. is a parameterized prediction, so all networks have 2 layers with learnable
parameters. CE = per-pixel binary Cross Entropy.

Function 2nd Layer Act. Prediction Loss
CoM conv 3x3 ReLU CoM L2
MoM conv 3x3 ReLU MoM L2
IR conv 3x3 Softmax CoM L2
IR-MoM conv 3x3 Softmax MoM L2
Linear none none Linear Reg. L2
Dense conv 3x3 Sigmoid Argmax CE

the target value is a binary mask with pixels within distance 2 of g set to 1 and all other

pixels set to 0. For all other networks, the target value is g itself.

For each regression function, we selected the best initial learning rate from {0.1, 0.03,

0.01, 0.003, 0.001} and trained 100 networks from different random initializations. We trained

each network for 2000 weight updates using Stochastic Gradient Descent (SGD) and recorded

the Mean Squared Error (MSE) in pixels between the prediction and the ground truth for each

input mini-batch of 16 instances. We use momentum of 0.9, L2 weight decay of 0.0005, and

after 1000 updates, we divide the learning rate by 10. After uniform smoothing for viewing

purposes, we report the average MSE of each method as a function of training iteration.

Figures 6.1c and 6.1d show the results on task 1 and 2 respectively. On task 1, Dense

prediction quickly converges to near 0 MSE because the argmax of the input is already a

near perfect solution. MoM is the next best method, converging to a MSE of approximately

1 pixel, followed by IR-MoM with a MSE just over 10. CoM and IR converge to similar

MSE because high value background pixels produce small but non-zero inputs to the CoM

regression function and therefore skew the prediction due to the distance weighting expressed

in Eq. 6.5. MoM and IR-MoM are more robust to this because far away outliers are not

distance weighted. Linear regression converges slowly because regression weights are specific

to each image location, so it must see many instances at each image location to make correct

predictions.
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On task 2, CoM performs best because it zeros out background pixels, leaving only

high activations around the two context points. In contrast, IR and IR-MoM put the majority

of their heatmap activation on the two context points, but the many small, but non-zero

activations skew the prediction away from the midpoint of the two context points. Surprisingly,

MoM fails to filter out many of the background pixels, which introduces skewed predictions

when these background pixels are not symmetrically arranged about the target value. Dense

prediction cannot learn the task because local features do not identify the target value. Linear

regression performs better than many other methods because it combines information from

g1,g2 on a global level.

We see that some methods are better at modeling local appearance than modeling

keypoint context. In real world data, we observe from the heatmap activations that each

method attempts to do model both and that there should be a trade-off between the two

based on the specifics of the image domain.

6.5 Experiments - Real Data

In this section, we validate our two proposed regression functions, CoM and MoM, using

real world data. Rather than focus on a single domain, we aim to show that our methods

work well on datasets from a variety of image domains, including faces, human pose, fashion,

and document images. We follow a similar protocol to that used in Section 6.4, comparing

six regression functions using identical network architectures. Additionally, each regression

function was trained with two distance based loss functions: L1 and Tukey bi-weight loss [1].

The Tukey loss normalizes output errors based on a robust per-dimension variance measure

and yields no error gradient on detected outliers. Initial experiments (data not shown)

demonstrated that L2 loss did not perform as well as L1 loss. For Dense prediction, per-pixel

cross entropy loss is used.
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(a) Face (b) Human Pose

(c) Fashion (d) Document

Figure 6.2: Example images from domains used for evaluation. Each image is labeled with
ground truth keypoints in red.

6.5.1 Datasets

We use datasets from four domains: faces, human pose, fashion, and document images

(Figure 6.2). For faces, we used the Helen [18] and LFPW [2] datasets. Because we

are interested in evaluating regression functions rather than producing a complete face

alignment system that involves face detector, cascade, and structure prediction components,

we preprocessed the images to remove background and non-annotated faces and restrict

prediction to 8 facial landmarks. The preprocessing involved finding face bounding boxes

using the ground truth and padding this bounding box on each side by a random amount

between 10% and 25% of the box width and height. The 8 facial landmarks we predict can

be uniquely identified by local appearance and are the corners of both eyes, the corners of

the mouth, the tip of the nose, and the bottom of the chin. Helen is split into 1800/200/330

images for train/val/test, and LFPW is split into 711/100/224.

We used the 2D Football dataset [14] and all 14 joint positions for human post

estimation. Images already have the person in the center of the image, so no preprocessing

was necessary. The joints to be regressed include the left/right foot, knee, hip, hand,

elbow, and shoulder, as well as the bottom and top of the head. This dataset is split into

3600/300/2007 for train/val/test respectively.
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For fashion we used a subset of the large DeepFashion dataset [20]. Each image in

DeepFashion is categorized into a clothing type (upper, lower, or full body). We selected

variation 1 of the upper body clothes and filtered out images with occluded landmarks, which

left 5607 images split into 3794/917/896 for train/val/test. As with face datasets, we perform

a randomly padded crop around the annotated item of clothing because some images have

multiple items of clothing. The 6 keypoints are left and right collars, sleeves, and hems.

In the document domain, we predict the 4 corners of pages using the READ-BAD

images [10] and the corner annotations provided in [29]. Finding the corners allows marginal

noise such as book edges and partial adjacent pages (see Figure 6.2d) to be removed before

further processing This dataset is split into 1635/200/200 for train/val/test and needed no

cropping.

6.5.2 Network Architecture

Our main architecture, used for face, pose, and fashion datasets, is a 10-layer encoder-decoder

network that downsamples by a factor of 16 in the 5 encoder layers using max pooling. Layers

6-9 upsample the feature maps by a factor of 2 each using bilinear interpolation. The last

layer is a 1x1 convolution followed by the chosen regression function. This produces a dense

output the same size as the input, which is appropriate for CoM, MoM, IR, IR-MoM, and

Dense functions. However, Linear Regression does not need a dense output, so we modify the

architecture to extend the encoder portion, remove the decoder, and add 3 fully connected

layers. All layers but the last apply Batch Normalization [13] and ReLU activation.

For READ-BAD, we extend the branching multi-scale network used in [29] to have

a depth of 10. To utilize the domain knowledge that the 4 page corners occur in separate

quadrants of the image, we spatially split the feature maps at layer 7 into 4 parts. Each

quadrant is fed to 3 distinct convolution layers to regress each corner separately. Diagrams

and full specification of network architectures can be found in the supplementary material.
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6.5.3 Evaluation Protocol

For each domain, we first select a LR ∈ {0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001} for each

regression function and loss pair. This is done by training 4 networks for 5000 iterations for

each combination and selecting the LR with the lowest average MSE. Then 10 networks are

trained for each combination for 35000 iterations at the selected learning rate, measuring

validation MSE every 100 iterations. The output of each training procedure is the set of best

performing weights on the validation set. Of the 10 trained networks for each function/loss,

the best validation network is selected to obtain our test set metrics.

While each domain has its own prefered metrics, which we use in domain-specific

discussion, we compare across domains using the Root-MSE (RMSE):

RMSE =

√∑N
i ||gi − pi||22
NK

(6.15)

where gi ∈ R2K is the ground truth for instance i, pi is the predicted vector of keypoint

locations, and N is the number of instances. The RMSE can roughly be interpreted as

average deviation from the ground truth. Because we use normalized coordinates in [0, 1],

a RMSE of 0.02 corresponds to an average deviation of 2% of the image dimension or ≈ 5

pixels for a 256x256 image.

Training Details

Each network was trained from random initialization [11] for 35000 iterations using the

ADAM optimizer [15] with default parameters. We used L2 weight decay of 0.0005 and

divided the LR by a factor of 10 every 15000 iterations. Inputs are stochastically rotated and

padded. LFPW networks were only trained for 25000 iterations due to a smaller training set,

and only 5 READ-BAD networks were trained for each function/loss due to longer training

time.
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Table 6.2: RMSE results for each regression function and loss combination on 5 datasets.
CoM, MoM, IR-MoM are our methods, IR is from [27], and Linear/Dense are baseline
methods.

Function Loss Helen Football READ-BAD LFPW Fashion Avg Rank
CoM L1 0.0148 0.0348 0.0222 0.0195 0.0623 3.0
MoM L1 0.0170 0.0342 0.0132 0.0219 0.0587 1.8
IR-MoM L1 0.0172 0.0346 0.0120 0.0235 0.0598 2.4
IR L1 0.0207 0.0346 0.0132 0.0303 0.0618 3.4
Linear L1 0.0207 0.0367 0.0161 0.0209 0.0750 4.4
Dense CE 0.0178 0.0373 0.0241 0.0339 0.0638 5.4
CoM Tukey 0.0149 0.0319 0.0271 0.0203 0.0608 3.6
MoM Tukey 0.0138 0.0319 0.0132 0.0163 0.0548 2.0
IR-MoM Tukey 0.0149 0.0306 0.0106 0.0182 0.0554 2.2
IR Tukey 0.0147 0.0293 0.0124 0.0218 0.0485 2.0
Linear Tukey 0.0251 0.0347 0.0167 0.0230 0.0730 4.8

6.6 Results and Discussion

Our main results for all datasets are presented in Table 6.2. MoM has the best average rank

for both the L1 and Tukey losses, though it does tie with IR-Tukey. MoM does particularly

well on face images, while IR-Tukey does best on human pose and the closely related fashion

domain. This is likely because MoM focuses more on modeling local appearance through

sparse heatmaps and because facial landmarks have more distinct local appearance than

human joints. For example, determining which leg is left or right depends on if the image is

a frontal or dorsal view of the person. Because IR backpropagates error through the whole

heatmap, it learns a better model of keypoint context. Overall, with the exception of the

fashion domain, we see that MoM either outperforms or is complimentary to IR.

MoM-Tukey strongly outperforms the baseline measures of Linear Regression and

Dense prediction and comparatively reduces RMSE by 28% and 30% respectively. On most

datasets, MoM outperforms CoM, suggesting that eliminating the distance weighting of

gradients (Eq. 6.7) leads to improved solutions. We also observe that networks trained with

Tukey loss outperform corresponding L1 networks on all datasets except READ-BAD. We

believe this is due to smaller variance in the corner locations for this dataset.
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(a) MoM-Tukey (b) IR-Tukey (c) CoM-L1

(d) IR-Tukey (e) IR-MoM-Tukey (f) MoM-Tukey

Figure 6.3: Comparison of learned heatmaps on difficult images using 3 best networks on
Helen (a-c) and Football (d-e). The blue dot indicates the predicted location. For Helen, the
keypoint is the chin. For Football, it is the left foot (the one on the ground). CoM and MoM
have sparser and more concentrated heatmaps and therefore have less noisy predictions than
IR based methods.

On both face datasets, MoM-Tukey had the lowest RMSE overall and CoM-L1 was

best performing of all networks trained with L1 loss. MoM-Tukey was able to localize the most

difficult facial keypoint, the chin, much better than other methods. On chins, MoM-Tukey

achieved 0.034 RMSE on Helen vs 0.037 for IR-Tukey and 0.033 on LFPW vs 0.041 for

IR-MoM-Tukey.

In general, MoM and CoM networks learned to have more sparse and concentrated

heatmap inputs to the regression function (see Figure 6.3). This is because the ReLU

activation in MoM and CoM encourages distant heatmap entries to be 0, whereas the Softmax

used in IR methods sets all heatmap values to be positive.

The IR methods performed best on human pose estimation, which is not surprising

given that IR was developed for this problem. While IR-Tukey has the lowest RMSE, IR-

MoM-Tukey has the highest Percentage of Correctly estimated Parts (PCP) score [7]. PCP

counts a point as correctly localized if the predicted point is within 50% of the distance
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between adjacent ground truth points. IR-Tukey has an overall PCP score of 89.4%, while

IR-MoM-Tukey has a score of 90.0%. The PCP difference is greatest for forearms (72.0% vs

74.4%). This suggests that MoM and IR are complimentary methods for some domains.

As with faces, the IR-Tukey methods do not produce sparse heatmaps even though they

are the best performing method (see Figure 6.3d-f). This suggests that further improvement

might be made through sparsification: e.g. setting small values in the heatmap to 0 after the

Softmax.

As with the human pose task, MoM was the best performing L1 trained method and

IR was the best Tukey method. This is likely because the fashion domain is quite similar to

human pose, though there is more variation in where keypoints can be located (e.g. short

sleeve vs long sleeve) [20]. This makes it more critical to model a large context, which is one

of advantage of IR over MoM. The overall RMSE for this dataset is higher, which reflects the

greater ambiguity in the keypoint definitions.

In [29], the evaluation metric was the Intersection over Union (IoU) of the predicted

quadrilaterals and the ground truth quadrilaterals defined by the locations of the 4 corners.

Our best method, IR-MoM-Tukey achieves an IoU of 98.1%, compared to 97.4% for the best

previously published result and compared to 98.3% for human agreement [29].

6.7 Conclusion

We have presented two novel regression function neural network layers, CoM and MoM, that

predict continuous (x, y) coordinates from dense heatmap representations. Using synthetic

and real data, we have demonstrated that CoM and MoM methods significantly outperform

linear regression and dense prediction baseline methods, reducing RMSE by up to 30%.

Additionally, we have compared to the state-of-the-art Integral Regression (IR) method

proposed in concurrent work and found that MoM outperforms IR when trained with L1 loss.

As well, our proposed layers produce sparser and more concentrated heatmap predictions
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compared to IR. On the READ-BAD corner detection task, we exceeded the previous

state-of-the-art result, reducing IOU error by 27% and achieving near human performance.
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Chapter 7

Deep Splitting and Merging for Table Structure Decomposition

Abstract

Given the large variety and complexity of tables, table structure extraction is a challenging

task in automated document analysis systems. We present a pair of novel deep learning

models that given an input image, 1) predict the basic table grid pattern and 2) predict

which grid elements should be merged to recover cells that span multiple rows and columns.

These models utilize pooling regions designed for their respective subtasks. We achieve

state-of-the-art performance on the public ICDAR 2013 Table Competition dataset of PDF

documents. On a much larger private dataset which we used to train the models, we strongly

outperform both a state-of-the-art deep model and a major commerical software system.

Submitted to International Conference on Document Analysis and Recognition (ICDAR).

Chris Tensmeyer, Brian Price, Vlad Morariu, Scott Cohen, and Tony Martinez. “Deep

Splitting and Merging for Table Structure Decomposition.”
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7.1 Introduction

Tables are commonly used to present structured data in documents. Automatically determin-

ing the structure of tables, i.e. the locations of cells and how they are organized into columns

and rows, is a crucial part of document understanding and information extraction.

This work focuses on documents as images and in Portable Document Format (PDF)

that contain tables with no structural annotations. Images, such as document scans, are

composed of pixels that visually reproduce the document, but do not have any structural

information. While PDFs are composed of discrete drawing commands for text and line

art, table structure is not explicitly encoded in these commands. For example, a single text

drawing command may be used to render part of a cell, an entire cell, parts of multiple cells,

or multiple entire cells. Such ambiguities makes it non-trivial to extract table structure from

PDF drawing commands.

Several factors contribute to the difficulty of parsing table structure (see [6] for an

overview). Lined tables are generally easier than unlined tables [4] because they have explicit

visual cues that segment cells, columns, and rows. Other tables are partially lined or use

shading to denote boundaries. Tables may have a complex and heirarchical header structure

or have no headers. Many tables contain multi-line cells, which introduces the difficulty of

determining if vertically adjacent text lines are part of the same cell or not. Additionally,

cells that span multiple columns and rows add to table complexity.

Many previous works that extract table structure use hand-crafted rules and heuristics

to analyze the drawing commands in PDFs [4, 9, 10, 12]. Recently, deep learning has been

proposed to learn the table structure directly from images [11], though this model was

originally designed for semantic segmentation of natural scenes. While heuristic methods

have previously outperformed learning methods on PDFs, they cannot be directly applied to

images. Furthermore, heuristic rules have many parameters that must be tuned as tables

vary widely in structure, visual appearance, and complexity.
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In this work, we propose a pair of deep learning models that given a well-cropped

table image, 1) predict the fine grid structure of the table and 2) predict where cells span

multiple columns and rows. In the first model, information is pooled along rows and columns

of pixels to help learned features propagate across large images. The output of this model is

the grid structure of the table, ignoring any spanning cells. The second model takes as input

the grid structure and the original table image and predicts which elements of the grid need

to be merged to recover the spanning table cells.

We achieve state-of-the-art performance on the ICDAR 2013 Table Competition

dataset [4], obtaining an adjacency relationship F-measure of 95.15% compared to the best

published result of 94.6% [4]. We also evaluate on a much larger and more diverse private

dataset of table images, greatly outperforming a previous state-of-the-art deep learning model

as well as a major commericial software system.

7.2 Related Works

While much work has been done on the task of table localization, fewer works attempt to

parse table structure.

The ICDAR 2013 Table Competition [4] compared many systems for table structure

recognition, including the current state-of-the-art method by Nurminen [9]. This method

performs edge detection on the rendered PDF image (filtering out edges due to text) to find

junctions and rectangular areas. Then it follows a series of heuristic steps to assign text to

rows, identifying likely columns and headers, revising rows, merging columns, find spanning

cells, etc. Shigarov et al. later proposed a simpler set of heuristics based on bottom-up

merging of PDF components [12]. The TEXUS system [10] performs simple table structure

parsing by considering each text chunk to be a cell.

The DeepDeSRT [11] learning model formulates table structure extraction as pixel

labeling tasks to segment row objects and column objects. It finetunes the FCN-2s model [8]

that has been pretrained on the PASCAL VOC semantic segmentation challenge [2] for
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Figure 7.1: Overview of the proposed models. First the Split model predicts the grid of the
table. Then the merge model combines grid elements to recover spanning cells.

natural scenes. While it only requires an image as input, it does not perform as well as

heuristic methods on PDFs. Clinchat et al. compare two learning models on scanned images

of seventeeth century handwritten tables [1]. They focus on this narrow problem and use

template matching to recover columns and convert the images into “PDF-like” documents.

To recover table rows, they use either a Conditional Random Field (CRF) or their proposed

Edge Convolutional Networks, which extends Graph Convolutional Networks [14].

7.3 Deep Model

Our proposed table structure extraction method relies on two deep learning models that

are applied in sequence (see Fig. 7.1). We call these models the Split model and the Merge

model. The Split model takes an input image of a well cropped table and produces the grid

structure of the table in the form of row and column separators that span the entire image.

Because some tables contain spanning cells, we apply the Merge model to the grid output of

the Split model to merge together adjacent grid elements to recover the spanning cells.

7.3.1 Split Model

The Split model takes as input an image of any dimension H×W and produces two 1-D output

signals: r ∈ [0, 1]H and c ∈ [0, 1]W . The output signals r and c represent the probability that

each row (column) of pixels is part of a logical table row (column) separator region. The

Split model is composed of 3 sub-networks:

1. Shared Fully Convolutional Network (SFCN)

2. Row Projection Network (RPN)
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3. Column Projection Network (CPN)

The SFCN is composed of 3 convolution layers with 7x7 kernels, with the last layer

performing a dilated convolution [15] with a dilation factor of 2. Each layer produces 18

feature maps uses a ReLU activation function.

Dilated convolutions, like pooling, increase the receptive field of the network, but

unlike pooling, they preserve the spatial resolution of the input. Preserving the input spatial

resolution is important in table structure extraction because many column and row separators

are only a few pixels wide. In [11], better results were obtained when resizing the initial

input to make the separator regions bigger. It is also crucial to have a large receptive field

because determining the locations of row and column separators may require global context.

For example, text that is consistently left-justified to the same position is indicative of a

column separator.

The output of the SFCN is fed as input to both the RPN and CPN. The output of the

RPN is r, the probability that each row of pixels is part of a row separator region. Similarly,

the output of the CPN is c. Because the RPN and CPN have identical structure, except for

whether projection and pooling operations are over rows or columns of pixels, we arbitrary

choose to focus our explanation on the RPN.

The RPN is composed of 5 blocks chained together. Fig. 7.2 shows the operations

performed by a single block. First, the input is (in parallel) fed to 3 convolution layers that

have dilation factors of 2/3/4 to produce 6 feature maps each. The output of each dilated

convolution is concatenated to obtain 18 feature maps. Using multiple dilation factors allows

the RPN to learn multi-scale features and increase its receptive field while still examining

local evidence.

Next, the RPN performs 1x2 max pooling. This decreases the width of the feature

maps, but maintains the height, so that the output signal r is of size H. Only the first three

blocks perform max pooling to make sure that the width is not downsampled too much.
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Figure 7.2: A single block of the Row Projection Network (RPN), which is a sub-network
of the Split model. Components marked with * indicate that they are not included in all
5 blocks that compose the RPN. Blocks in the Column Projection Network (CPN) use 2x1
Max Pooling.

Afterwards, the RPN computes row features (top branch of Fig. 7.2) through a 1x1

convolution operation followed by projection pooling. Projection pooling is inspired by the

projection profile operation used to find gaps of whitespace in classical layout analysis. With

projectin pooling, we maintain the spatial size of the input (instead of collapsing to 1D

as in projection profiles), and simply replace each value in the input with its row average.

Specifically,

F̂ij =
1

W

W∑
j′=1

Fij′ (7.1)

where i indexes over rows in feature map F , and 1 ≤ j ≤ W indexes over columns of F .

We call F̂ the row projection pooling of F , and apply this operation independently on each

feature map, as is typical of pooling operations. Pooling in this fashion allows information

to propagate across the entire width of the image, which may be more than 1000 pixels.

These row features are concatenated to the output of the max pooling operation, so that each

pixel has both local and row-global features. Note that the CPN performs column projection

pooling, which similarly is

F̂ij =
1

H

H∑
i′=1

Fi′j (7.2)

The bottom branch of Fig. 7.2 shows how some blocks produce row predictions. A

1x1 convolution produces a single output map, over which we perform projection pooling.
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(a) Row (b) Col

Figure 7.3: Example 1D GT row and column signals for training the Split model. The 1D
signals are replicated to 2D and super imposed on the input image for viewing purposes.

We then apply a sigmoid function to produce probabilities. Since each row of pixels contains

a single unique probability, we can take a vertical slice to obtain a 1D signal of probabilities,

rn, where n indicates the block index. To make the intermediate prediction rn available to

block n+ 1, we also concatenate the probabilities (in 2D) to the output of the block.

In our implementation, only the last 3 blocks produce outputs, i.e. r3, r4, r5. During

training, we apply a loss to all three predictions, but after training, we only use the last

prediction, r5 for inference. This iterative prediction procedure allows the model to make a

prediction and then refine the prediction. Such techniques have been successfully applied in

previous work on structured keypoint detection tasks in natural scenes (e.g. human pose [13]).

Training

The SFCN, RPN, and CPN sub-networks are jointly trained in a typical supervised fashion

on table images at 150 DPI. We assume that the images are cropped to only include the

table’s tabular contents, excluding e.g. table titles, captions, and footnotes.

Each table has annotated ground truth (GT) 1D signals r∗ and c∗. The GT is designed

to maximize the size of the separator regions without intersecting any non-spanning cell

content, as shown in Fig. 7.3. This is contrary to the traditional notion of cell separators,

which for many tables are thin lines that are only a few pixels thick. Predicting small regions

is more difficult than large regions, and in the case of unlined tables, the exact location of a

thin separator is ambiguous. The GT separator regions may intersect cells with content that
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span multiple rows or columns. The goal of the Split model is to recover the basic grid of the

table, and spanning cells are later handled by the Merge model.

The loss function is the average element-wise binary cross entropy between the block

predictions and the GT signals:

L(r, r∗) =
1

H

H∑
i=1

r∗i log ri + (1− r∗i ) log(1− ri) (7.3)

To prevent overfitting, we modify equation 7.3 to clip the per-element loss to 0 when

|r∗i − ri| < 0.1. The total loss is a weighted sum of individual output losses:

Ltot = L(r5, r∗) + λ4L(r4, r∗) + λ3L(r3, r∗) + L(c5, c∗) + λ4L(c4, c∗) + λ3L(c3, c∗) (7.4)

where we set λ4 = 0.25 and λ3 = 0.1.

We train the model from random initialization with the ADAM optimizer [7] for

approximtately 106 weight updates with a batch size of 1. We use an initial learning rate of

0.00075 and decay it by a factor of 0.75 every 80K updates.

Inference

Once we have predicted r, we need to infer at which pixel positions the row separators occur.

For simplicity, the discussion focuses on r, but the same procedure applies to c to obtain

column separators. To do so, we partition the image into rows and row separator regions

by performing a graphcut segmentation [5] over r. Then we choose the row pixel positions

corresponding to the midpoints of each inferred separator region.

To create the graph for segmenting r, we have H nodes arranged in a linear chain,

where each node is connected to its two neighbors (except the two nodes at either end) with

edges of uniform weight λgc = 0.75. Node i is connected to the source node (for separator

region) with an edge weight of ri and to the sink node (for row regions) with an edge weight

of 1− ri.

166



7.3.2 Merge Model

The Merge model takes the basic grid structure produced by the Split model and identifies

which grid elements need to be merged to recover cells that span multiple rows or columns.

The input is the grid structure rendered as a 2D image concatenated as an extra

channel to the original table image. If the grid structure is composed of M rows and N

columns, then the model outputs two matrices:

1. D - probability of up-down merges (size (M − 1)×N)

2. R - probability of left-right merges (size M × (N − 1))

Dij is the probability of merging cell (i, j) with cell (i + 1, j) and Rij is the probability of

merging cells (i, j) and (i, j+1). In our formulation, all of these probabilities are independent,

i.e. a single grid element may be merged in multiple directions.

The Merge model’s architecture is similar to the Split model. There is a set of 4

shared convolutional layers (no dilation), where 2x2 average pooling occurs after layers 2 and

4. Afterwards, the model has 4 branches, where each branch predicts an M ×N matrix of

probabilities that cells should merge in a particular direction, i.e. up, down, left, or right.

Call these matrices u, d, l, r. We then compute D and R as

Dij =
1

2
ui+1,jdij +

1

4
(ui+1,j + dij) (7.5)

Rij =
1

2
li,j+1rij +

1

4
(li,j+1 + rij) (7.6)

We only predict that a pair of cells should be merged if there is consistency between the

individual branch outputs. While our independence assumption suggests that we multiply

the two individual probabilities together in Eqs. 7.5, 7.6, it would introduce optimization

difficulties when both probabilities are near 0.

167



(a) Image with Grid Structure

0 0 0
1 0 0
0 0 0

(b) GT D

1 1
0 0
0 0
0 0

(c) GT R

Figure 7.4: Example Merge model GT for the given structure predicted by the Split model.

Each branch is composed of 3 blocks that are similar to the Split model block shown

in Fig. 7.2. The differences are that the parallel convolution layers use 1/2/3 dilation factors,

no max pooling is performed, and projection pooling is replaced with grid pooling. In grid

pooling, every pixel location replaces its value with the average of all pixels within its grid

element:

F̂ij =
1

|Ω(i, j)|
∑

i′,j′∈Ω(i,j)

Fi′j′ (7.7)

where Ω(i, j) returns the set of coordinates for all pixels within the grid element that contains

(i, j). Thus after grid pooling, all pixels inside the same grid element share the same value,

which allows information to propagate within each cell. To produce the u, d, l, or r matrix

for a given branch, we average the predictions in each grid element and arrange them in

an M × N matrix. Like the Split model, the Merge model also performs iterative output

refinement, where blocks 2 and 3 produce output predictions.

Training

Because the Split and Merge models are intended to be used in sequence, we train the Merge

model using the grid structures produced by the Split model. To construct the GT D and R

matrices (see Fig. 7.4), we

1. Iterate over all spanning cells in the table

2. Identify which grid elements intersect the GT bounding box of the spanning cell
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Category Method F-measure Recall Precision PDF Input Image Input

Proposed
Models

Split 86.79 86.64 86.93 X
Split-PDF 91.63 91.26 92.00 X X

Split-PDF + Merge-PDF 90.89 90.44 91.36 X X
Split-PDF + Merge-PDF + Heuristics 91.95 91.46 92.45 X X

Split + Heuristics 93.00 92.24 93.78 X X
Split-PDF + Heuristics 95.26 94.64 95.89 X X

Previously
Reported
Results

Nurminen [9] 94.60 94.09 95.12 X X
TEXUS [10] 82.59 84.23 81.02 X

Shigarov [12] C1 91.50 91.21 91.80 X
Shigarov [12] C2 93.64 92.33 94.99 X
DeepDeSRT [11] 91.44† 87.36† 95.93† X

† result not directly comparable due to evaluation on a random subset of 34 tables.

Table 7.1: ICDAR 2013 Table Dataset Results.

3. Set the probability of merge for each of these cells to 1 for the appropriate directions

As in the Split model, the loss function for each output is the average (clipped)

element-wise binary cross entropy (Eq. 7.4). The total loss is then

Ltot = L(D3, D∗) + λ2L(D2, D∗) + L(R3, R∗) + λ2L(R2, R∗) (7.8)

Because spanning cells only occur in 15% of tables in the private dataset used to train

our models, we subsample this set so that 50% of the training set for the Merge model has

at least one pair of cells that require merging. The training hyperparameters are similar to

those of the Split model.

Inference is performed by thresholding D and R at 0.5 probability. We then infer

additional merges to ensure that the resulting table structure has only rectangular cells, e.g.,

no cells in an L-shape.

7.4 Experimental Results

We tested our models on two datasets. The first is the ICDAR 2013 Table Competition

standard benchmark [4], where we achieve state-of-the-art results. This dataset is composed

of 156 tables extracted from PDFs downloaded from government websites. Only tables with

169



unambiguous structure were included in this dataset. The entire set of PDFs is considered

the test data (i.e. no provided training data).

The second dataset is a private collection of 93,000 tables taken from web-scraped

PDFs that have been manually annotated with structure information. These tables exhibit a

larger variety of complexity, visual appearance, and structure than the ICDAR 2013 dataset.

For example, it has a larger proportion of unlined tables, partially lined tables, and tables

with non-header multi-line cells. It also contains tables with poorly aligned columns, raster

images inside of cells, and multiple sets of column headers.

We randomly split this dataset into 83K/5K/5K for training, validation, and testing.

Because tables from the same PDF exhibit some similarity, we ensured that all tables from a

single PDF were allocated to a single data partition.

The results on the ICDAR 2013 dataset are from models trained on the private

collection. We attempted to validate that our improved performance comes from a superior

model rather than a larger training set. We did so by reimplementing the DeepDeSRT

model [11] and training on the same data as our proposed model.

We also experimented with giving the models additional input channels. If the input

table images are from PDFs, then we can extract if pixels are text, vector art (e.g. lines), or

raster images by examining drawing command metadata. In addition to the entire grayscale

image, we can concatenate additional input channels that contain 1) only text 2) only vector

art 3) only raster images. This additional information slightly improves network performance.

7.4.1 ICDAR 2013

Table 7.1 shows the results on the ICDAR 2013 Table Competition dataset (task 2). Our

methods with the -PDF suffix indicate that the additional PDF input channels were used. The

evaluation metric for this dataset is the F-measure over detected adjacency relationships [3].

Roughly speaking, this measures the percentage of correctly detected pairs of adjacent cells,

where both cells are segmented correctly and identified as neighbors.
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Figure 7.5: Example heuristic post-processing on ICDAR2013 table segments. Removed
separators are shown in red, added separators in green, and unmodified predicted separators
in blue.

For this dataset, the Merge model failed to provide adequate post-processing for the

output of the Split model. Therefore, we also experimented with some simple heuristics to

split and join cells. These heuristics include

• Split Columns that have a consistent whitespace gap between vertically aligned text

• Join cells where the predicted separator passes through text

• Join adjacent columns when most non-header adjacent cell pairs have at most 1 cell

with text (e.g. merge a content column with a blank column).

• In the first row, merge text cells with any adjacent blank cells.

Some example tables that are fixed by the heuristics are shown in Fig. 7.5.

While the Split model performs well in identifying the underlying table grid, it

sometimes makes easily correctable mistakes and it cannot by itself handle spanning cells.
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Figure 7.6: Example predictions for unlined tables, including one failure case

When combined with simple heuristics to handle these cases, it achieves an F-measure of

95.26% compared to the previous best result of 94.60%. The merge model fails to generalize

to the ICDAR 2013 dataset, but as shown in Table 7.2, does improve performance on the

private collection. Figure 7.6 shows some example predictions by Split-PDF + Heuristics for

unlined tables, which are harder to recognize than lined tables.

There is a large performance difference from when PDF information (text, path, image

channels) is given as input to the Split model and when it is not. Because the difference is not

as large on the private collection (Table 7.2), the utility of the PDF information depends on

the dataset being considered. The ICDAR tables are primarily lined, have larger headers, and

may have distinct visual appearances compared to the training dataset. Thus, the additional

PDF information may help more in the unfamiliar domain as the text and path elements are

explicitly given rather than visually inferred by the model.

We reimplemented the DeepDeSRT model for table structure extraction [11], but

trained on the same private data as our proposed model. However, we were unable to obtain

reasonable performance (e.g. above 70% FM) even after exploring a variety of post processing

thresholds and training hyperparameters. In [11], they report an FM of 91.44%, but over a

random subset of 34 tables, so a direct comparison wouldn’t be feasible. Additionally, not all

post processing details (e.g. thresholds) were specified in [11] and the training data we used

was different. Together, these reasons could explain our observed performance difference, but
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Category Method Table Accuracy F-measure Recall Precision PDF Input Image Input

Proposed
Models

Split 80.79 95.46 95.87 95.06 X
Split + Merge 83.09 95.78 95.50 96.07 X

Split-PDF 81.07 95.37 95.64 95.10 X X
Split-PDF + Merge-PDF 85.65 95.92 95.59 96.27 X X

Our
Implementation

DeepDeSRT 51.76 76.85 75.32 78.44 X
DeepDeSRT-PDF 53.48 78.44 77.03 79.91 X X

Commerical Acrobat 61.11 82.62 82.66 82.59 X

Table 7.2: Private Collection Results.

as we cannot be sure that we have a faithful reimplementation, we omit the exact performance

numbers to avoid direct comparison.

7.4.2 Private Collection

On this dataset, we evaluate methods using precision and recall over correctly detected cells.

We also report accuracy as the percentage of tables with perfect precision and recall. A

predicted bounding box (BB) is a correct prediction if it entirely contains only a single ground

truth cell content BB. In particular, predicted BBs that intersect mulitple GT BBs or that

do not completely contain any GT BB are marked as false positives. Unmatched GT BBs

are marked as false negatives. Because blank cells were not manually annotated, we exclude

predicted BBs that do not intersect any GT BBs. This way, methods are not penalized if

they correctly predict unmarked blank cells.

Table 7.2 shows the results on the test split of 5000 tables. Following [4], reported

precision and recall are computed per-table and then averaged. We were unable to find any

official implementations of prior works, so for comparison, we use the commerical software

system Acrobat Pro DC and our reimplementation of the DeepDeSRT model [11].

All variants of our proposed models outperform the two baselines across all measures

by a significant amount. We also see that the merge model significantly improves table

accuracy and that using PDF information as input does bring an improvement, but more

marginally than with the ICDAR 2013 data. This suggests that this method may be effective

as well on scanned documents, where only the captured image is available for input.
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7.5 Conclusion

We have proposed a pair of deep learning models that together split a table image into the

basic grid of cells, and then merge cells together to recover cells that span mulitple rows

and columns. The key insight of the models is to pool information over large regions of

the table image such as entire rows/columns of pixels or previously predicted cell regions.

When evaluating the split model on the ICDAR 2013 Table Competition dataset, we achieve

state-of-the-art performance. We also show that PDF information, such as if page elements

are text/path/image, can be encoded as input to the deep network and improve performance.

However, if such information is not available (e.g. scanned documents), the model can take

just the grayscale image as input. Lastly, we have shown that the Merge model is effective

using a private collection of tables extracted from the web.
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Part III

Recognition Tasks

Chapters 8-10 concern three common recognition tasks in document image analysis.

Chapter 8 is about whole image classification, such as determining if an image is a letter,

scientific article, or email. It is a large scale empirical study that examines what factors

influence the accuracy of a CNN classifier in this domain. Recognizing the optical font to

produce an image of text is the subject of Chapter 9. It also examines the handwritten

equivalent of fonts: medieval scribal scripts. Handwriting recognition is one of the most

common tasks in document image analysis and is covered in Chapter 10. This chapter

examines leveraging training data in a high resource language, such as English, to train a

recognizer for another language with a similar alphabet (e.g. French, Italian) that lacks

annotated images. Finally, Chapter 11 provides some concluding remarks.
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Chapter 8

Analysis of Convolutional Neural Networks for Document Image Classification

Abstract

Convolutional Neural Networks (CNNs) are state-of-the-art models for document image

classification tasks. However, many of these approaches rely on parameters and architectures

designed for classifying natural images, which differ from document images. We question

whether this is appropriate and conduct a large empirical study to find what aspects of

CNNs most affect performance on document images. Among other results, we exceed the

state-of-the-art on the RVL-CDIP dataset by using shear transform data augmentation and

an architecture designed for a larger input image. Additionally, we analyze the learned

features and find evidence that CNNs trained on RVL-CDIP learn region-specific layout

features.

Tensmeyer, Chris, and Tony Martinez. “Analysis of Convolutional Neural Networks for

Document Image Classification.” International Conference on Document Analysis and

Recognition (ICDAR). Vol. 1, pp. 388-393. IEEE, 2017.
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8.1 Introduction

In recent years, Convolutional Neural Networks (CNNs) have been proposed for document

image classification and have enjoyed great success. These impressive results include:

• 100% accuracy on NIST tax forms dataset [3] using only one training sample per

class [8].

• 89.8% accuracy on the RVL-CDIP genre classification dataset. The Bag of Words

baseline was 49.3% [4].

• 96.5% accuracy in fine-grained classification of identity documents compared to 92.7%

accuracy using Histogram of Oriented Gradients (HOG) features [16].

However, many such applications of CNNs to whole document image classification [1,

4, 16] use a CNN pre-trained on the ImageNet dataset of natural images [13] as a starting

point for features. Through this transfer learning approach is effective due to the generality of

CNN features [14], there exist large domain differences between natural images and document

images. For example, in ImageNet, the object of interest can appear in any region of the image

in a variety of 3D poses. In contrast, many document images are 2D entities that occupy the

whole image. Due to such domain differences, we question whether the same architectures

and techniques that are effective for natural images are also optimal for document images.

To answer this query, we conducted a large empirical study utilizing two large document

image datasets. To our knowledge, we are the first to conduct such a study for the domain of

document images. We examine many factors that contribute to CNN classification accuracy,

which can be broadly categorized as data preprocessing and network architecture. All CNNs

in this work are randomly initialized and not pretrained on natural images.

For data preprocessing, we examine what representation(s) of the image (e.g. binary,

RGB, HSV), are most effective as input to the network. We also test 10 different types of

label-preserving image transformations (e.g. crop, rotation, shear) to artificially expand the

training data. While cropping is typically applied in CNNs trained on ImageNet, we find that
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shear transforms yield best performance for document image tasks. While not all document

images are the same aspect ratio (AR), CNNs typically only accept inputs of a fixed size (e.g.

227x227) and hence a fixed AR. We investigate this issue and find that CNNs trained with

stochastic shearing are not adversely affected by AR warping of input images.

For network architectures, we examine factors such as network depth, width, and

input size under various amounts of training data. Critically, we achieve 90.8% accuracy on

RVL-CDIP without pretraining on natural images by using a larger input size This surpasses

the previous best result of 89.8% [4] on this dataset. By incorporating multi-scale images

into training and inference, we reach 91.03%. We also examine non-linear network operations

in the domain of document images.

Lastly, we analyze what intermediate features CNNs learn from document image

tasks. Though CNNs are often considered black-box models, individual neurons can be

characterized by their maximal-exciting inputs. We find evidence that CNNs learn a wide

variety of region-specific layout features. Several intermediate neurons fire on page elements

of specifics shapes and types (e.g. typed text, handwritten text, graphics).

8.2 Related Work

CNNs have been used in document image analysis for two decades for tasks such as character

recognition [11, 15], but only more recently were applied to large image classification tasks.

In 2012, Krizhevsky et al. showed the effectiveness of CNNs in large image classification

by winning the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by a large

margin [9]. Since then, all top entries of ILSVRC have been based on CNNs, rather than on

handcrafted features, with the 2015 winner surpassing human level performance by utilizing

residual connections and batch normalization in a CNN with 152 layers [6].

In 2014, one of the first applications of CNNs to whole document image classification

used a 4-layer CNN to classify tax forms and the Small Tobacco datasets [8]. This CNN
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acheived 65.37% accuracy on Small Tobacco compared to ∼42% by the previous state-of-the-

art HVP-RF classifier [10], which uses SURF local descriptors.

The following year, two works explored transferring the parameters of a CNN learned

on ILSVRC to document classification tasks. The DeepDocClassifier system [1] retrained

the top classification layer from scratch while finetuning the other layers. They report an

accuracy of 77.3% on Small Tobacco. Harley et al. [4] also transferred parameters from

ILSVRC, but also introduced a larger dataset, called RVL-CDIP, that can be used to train

CNNs from scratch.They also found that a single holistic CNN outperformed an ensemble of

region-specific CNNs on RVL-CDIP.

8.3 Convolutional Neural Networks

The CNNs we consider in this work are models that map input images x ∈ RH×W×D into the

probability vectors y ∈ RC , where D is the input image depth (e.g. 3 for RGB) and C is the

number of classes. Each layer, of the CNN performs an affine transformation with learnable

parameters followed by non-linear operation(s):

x` = g`(W` ? x`−1 + b`) (8.1)

where 1 ≤ ` ≤ L is the layer index, x0 is the input image, W`, b` are learnable parameters,

? is either 2D convolution (with multi-channel kernels) for convolution layers or matrix

multiplication for fully connected layers, and g` is a layer specific non-linearity, composed

of ReLU(x) = max(0, x), and optionally max-pooling, local response normalization, or

dropout [9]. The output of the last layer, xL, is input to a softmax function, which outputs a

probability vector over the target classes. For more details, consult [9].

Many of our experiments are based on the standard AlexNet architecture [9] (5

conv layers, 3 fully connected layers), but without the original sparse connections in the
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convolutional layers. We also test many architectural variations, which are noted in the

relevant experiments.

8.4 Training Details

8.4.1 Datasets

For this work, we utilize 2 datasets. The first is the publicly avaialable RVL-CDIP dataset [4]

which is composed of 400,000 grayscale images split into 320,000/40,000/40,000 train/val/test

sets. They are scanned office documents with 16 conceptual categories such as Letter, Memo,

Email, Form.

The second dataset, denoted ANDOC, is composed of genealogical records sampled

from 974 collections owned by Ancestry.com. The target class of each image is its collection

of origin (e.g. 1940 US Census, Pennsylvania death certificates 1880-1940). In total, there

are 880,000 images partitioned into a randomized 800,000/40,000/40,000 train/val/test split.

481,000 of these images are color, while the rest are grayscale.

For data preprocessing, pixel intensities are scaled to [0, 1] and then the channel mean

is subtracted.

8.4.2 Training Hyperparameters

We empirically determined good training schemes for each dataset. For RVL-CDIP, CNNs

are trained with Stochastic Gradient Descent (SGD) with mini-batches of 32 for 500,000

weight updates. The initial learning rate (LR) is 0.003 and is decayed by a factor of 10

every 150,000 mini-batches. For ANDOC, we used SGD with mini-batches of 128 for 250,000

weight updates. The initial LR was 0.005 and is decayed by a factor of 10 every 100,000

mini-batches. We believe the larger mini-batch does better for ANDOC because it has more

output classes.

All networks are trained on the training split and progress is monitored on the

validation set. The set of network parameters that performed best on the validation set is
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then evaluated on the test images. In this work, we use test set accuracy as our evaluation

metric.

CNNs require days to train on high-end GPUs, so training many CNNs for statistical

significance testing is often too time-consuming. For this reason, CNN literature almost

always reports numbers from only a best single trained model. Thus we typically report

average performance of 1-2 CNNs. However, in Section 8.5.1, we trained 10 CNNs for each set

of hyperparameters in order to measure the variance in model accuracy, which we estimate

to be σ ≈ 0.1 for RVL-CDIP and σ ≈ 0.05 for ANDOC.

8.5 Preprocessing Experiments

8.5.1 Image Representation

Here we examine whether the best input representation is RGB, HSV, grayscale (G), binary

(B), dense-SURF (S) [2], or a combination. For example, when combining RGB and G, we

treat the input as a 4-channel image where channels 1-3 are RGB and channel 4 is G. For

D-SURF inputs, we compute SURF descriptors at fixed orientation on a 227x227 grid on the

originally sized images. This results in a 64-dimensional descriptor for each grid point, which

we treat as an image with 64 channels. Binary images are computed with Otsu’s method [12].

Figure 8.1 shows average accuracy of 10 CNNs. Overall, combining RGB or G with S

leads to the best accuracy. Though S by itself does not perform well, we believe it combines well

with RGB/G because the SURF descriptors are computed using the originally sized images.

As we later show, using larger input images lead to significant gains in performance. Using B

leads to worst performance and augmenting RGB/G with B leads to lower performance. In

ANDOC, the HSV colorspace performed equally as well as RGB, though combining both

leads to a marginal increase.

For simplicity, the rest of the experiments use G input for RVL-CDIP and RGB input

for ANDOC. Additional experiments (results not shown) suggest that with optimal data
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Figure 8.1: Mean accuracy of 10 CNNs as we vary the image representation. Error bars
indicate the standard deviation of 10 trials. G=Grayscale, C=RGB, H=HSV, S=dense-SURF,
B=Binary.

augmentation (Section 8.5.2), augmenting RGB/G with S does not lead to significant gains

in performance.

8.5.2 Data Augmentation

It is common practice to stochastically transform each input during SGD training to artificially

enlarge the training set to improve performance [6, 9]. We experimented with 10 types of

transformations (e.g. crop, blur, rotation) and 2-4 parameter settings for each transformation

type for a total of 38 CNNs trained with different data augmentation. We report results for

the best CNNs per transform type in Table 8.1. Following [17], we also report multiple-view

test performance where the overall CNN prediction is the average of the predictions made on

10 transforms of each test image. This increases computation for prediction by 10x, but can

increase accuracy [9], which makes it appropriate for some applications. The transforms used

at test time are the same type as those used during training and include the untransformed

image. While some of these transforms are commonly used, shear, perspective, and elastic

transforms have not been.

Shear transforms perform best for single-view testing and are comparable to the best

multiple-view transforms. When images are sheared (either horizontally or vertically), the

relative locations of layout components are perturbed, but unlike rotation or perspective
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Transform RVL-CDIP RVL-CDIP ANDOC ANDOC
1x Test 10x Test 1x Test 10x Test

None 88.30 88.30 96.54 96.54
Color Jitter 88.36 88.34 96.43 96.41
Crop 88.83 89.31 96.50 96.57
Elastic [15] 87.94 88.12 96.27 96.36
Gaussian Blur 87.50 87.46 96.31 96.32
Gaussian Noise 88.19 88.18 96.57 96.47
Mirror 88.51 88.93 96.69 96.79
Perspective 88.63 88.45 96.59 96.64
Rotation 88.74 77.46 96.37 96.36
Salt/Pepper Noise 88.03 87.97 96.39 96.45
Shear 89.33 84.88 96.75 96.59

Table 8.1: Best performance for 10 types of data augmentation

transforms, either the horizontal or vertical structure is preserved. We believe that compared

to other transform types, shearing best models the types of intra-class variations in document

datasets. The CNNs in the remaining experiments were trained using shearing with θ ∈

[−10◦, 10◦].

We then attempted to combine the two or three best performing types of transforma-

tions. However, this did not improve performance over using a single transform for either

single or multi-view testing (results omitted for brevity).

8.5.3 Aspect Ratio

One potential drawback of the standard CNN is fixed spatial input dimensions (e.g. 227x227).

This means all inputs must have the same aspect ratio (AR), though the original images

may have various ARs. For example, some document images are in portrait or landscape

orientation or are printed on different paper sizes. Figure 8.2 shows histograms of AR’s

in both datasets, which is more varied for ANDOC. These images of various AR must be

transformed to match the same expected CNN input dimensions. A common technique resizes

the image to the input size without maintaining AR. We refer to this as inconsistent AR

warping.
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Figure 8.2: Histogram of Aspect Ratios. Note y-axes are log scale.

In this experiment, we compare some alternatives to inconsistent AR warping in the

context of document images. One method pads images to the correct AR before resizing,

however this wastes some precious input content. Another method resizes (preserving AR)

the image until the smallest dimension is the correct size. Next, crops of the correct size are

taken as input images. At test time, predictions are averaged over 3 crops so the CNN sees

all parts of the image.

A third way is to modify the CNN architecture to accept variable AR inputs. While

the convolution layers can operate on any input size, the fully connected layers expect a

fixed sized vector input. One way around the input size requirement is to replace the fixed

2x2 pooling regions of the last convolution layer with a Spatial Pyramid Pooling (SPP)

operation [5]. This way the size of the pooling regions vary with the input size and always

yield the same sized vector output. Inspired by [10], we experimented with pooling regions

arranged in horizontal and vertical partitions (HVP), but it did not outperform SPP pooling,

likely due to the small input size (13x13) at this layer.

We experimented with two different input sizes, 227x227 and 384x384. The 384x384

CNN has the same overall structure as AlexNet, but is wider and has a greater amount of

downsampling. The variable AR inputs for the SPP-CNN were resized to have the same

or fewer number of pixels as the fixed sized inputs. In Table 8.2 we report the average test

accuracy of 2 CNNs on each type of input. Overall, no alternative outperformed inconsistent
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Method RVL-CDIP RVL-CDIP ANDOC ANDOC
227x227 384x384 227x227 384x384

Warped 89.25 90.84 96.73 97.14
Padded 89.02 90.89 96.59 97.03
Padded + SPP 88.85 90.94 96.59 97.12
Warped + SPP 89.31 90.92 96.77 97.21
SPP (variable AR) 88.51 88.71 96.20 97.15
Variable AR + Crop† 88.68 89.94 96.57 97.05

† Predictions averaged over 3 crops.

Table 8.2: Comparison of ways to address aspect ratio warping

AR warping even with the SPP which accepts inputs of various AR. Our hypothesis is

that stochastically shearing input images (Section 8.5.2) makes the CNN more invariant to

inconsistent AR warping.

8.6 Network Architecture Experiments

8.6.1 Depth

The computational time of a CNN for both training and inference is influenced by the number

of layers (depth) and the number of neurons in each layer (width).

To modify depth, we removed or added convolution layers to the AlexNet architecture,

always keeping the first two layers and maintaining the same downsampling. For shallower

nets, we removed layers in this order: conv3, conv4, conv5. For deeper nets, we inserted layers

identical to conv3 between conv3 and conv4, where no pooling occurs. We also ran these

experiments where the size of the training set was reduced to 50%, 10%, 1% for RVL-CDIP

and 50%, 10%, 2% for ANDOC.

Figure 8.3 gives the results for varying network depth. Here we observe an overall

decay in performance as depth increases, even for large amounts of training data. This decay

especially pronounced when less less than 10% of the data is used (<32K or <79K instances),

as increasing depth past 2 layers leads to sharp decreases in accuracy. This validates the
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Figure 8.3: Accuracy vs network depth. Each sub-graph is for a different training set size,
which is indicated to the right of the graph.

architectural choice of a 2-conv layer network of [8]. These results suggest that network depth

should adapt to the size of the training dataset.

We also observe the diminishing returns of additional data for CNN approaches, with

only a 1-2% decrease in performance with 50% of the training data. This suggests that

gathering more data (e.g. millions of training examples) will only marginally improve CNN

performance and more data efficient methods should be sought for.

8.6.2 Width

To modify width, we multiply the number of neurons in each layer by a constant factor. We

also experiment with changing just the width of the convolution layers or just the width of the

fully connected layers. Results for RVL-CDIP (ANDOC results were similar) are presented

in Table 8.3.

With the full training set, network performance saturates at 100% of the AlexNet

width. For smaller datasets, smaller widths are optimal. We also see that reducing the width

of only the convolutional layers leads to lower performance than just reducing the width of

the fully connected layers.
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Width 100% Data 50% Data 10% Data 1% Data
10% 82.80 82.70 77.95 62.12
25% 87.38 86.23 80.53 63.71
50% 88.75 87.26 80.68 63.16
75% 88.99 87.39 80.59 63.42
100% 89.18 87.15 80.52 63.48
125% 89.22 87.16 80.31 62.79
150% 89.20 87.22 80.46 62.98
200% 89.23 87.09 80.06 62.37

fc-50% 89.17 87.20 80.79 63.68
conv-50% 88.78 87.09 80.61 63.24

Table 8.3: Accuracy of various width CNNs on RVL-CDIP with different amounts of training
data

8.6.3 Input Size

Standard CNN architectures [6, 9, 17] accept inputs that are 224x224, but to our knowledge,

this design choice has not been thoroughly explored before. At this resolution, large text is

generally legible, but smaller text is not. We empirically test square input sizes {n× n|n =

32, 64, 100, 150, 227, 256, 320, 384, 512}. Of necessity, we modify the architecture of the CNN

for each input size with the following principles.

1. Same number of layers

2. Increase kernel size and network width with input size

3. Spatial output size of final convolution layer is 6x6

An exhaustive grid search over possible architectures was not possible with our computational

resources and we acknowledge that our chosen architectures may not be optimal. Figure 8.4

shows a distinct trend with larger inputs leading to increased performance. In fact, increasing

the input size to 384x384 for RVL-CDIP yields an accuracy of 90.8%, which exceeds the

previous published best result of 89.9% [4].

Given that input size significantly impacts performance, we went further to evaluate

multi-scale training and testing of CNNs on document images. We did this by using the

architecture of the largest input size and replacing the last fixed-sized pooling regions of
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Figure 8.4: Accuracy vs input size. Solid blue lines are for CNNs trained with a single
input size. Dashed green lines are for CNNs trained with variable sized input images. The
x-axis location corresponds to the largest input size used to train the CNN. For example, the
performance of the CNNs trained with images of size 256-384 is plotted at x=384.

the CNN with SPP pooling regions [5] (see Section 8.5.3). During training, all images are

randomly resized within a prespecified range (spanning 3 sizes in Figure 8.4). At test time, we

average predictions across 3 sizes and report the results in Figure 8.4. This may be considered

another type of data augmentation (Section 8.5.2), but only works for architectures that can

process multiple sizes. This further improves performance on RVL-CDIP to 91.03% for a

CNN trained on images of size 320-512 and predictions averaged across sizes 320,384,512.

Smaller datasets also have higher relative improvement using multi-scale training and testing.

8.6.4 Non-Linearities

Here we test whether LRN or Dropout non-linear components contribute to the overall CNN

performance. We also examine a relative new technique termed Batch Normalization (BN)

that has been shown to both improve performance and increase training speed [7]. BN works

by first linearly scaling and shifting each neuron’s activations to have zero mean and unit

variance. These statistics are calculated from the activations caused by just the images in

each mini-batch. This is then followed by a learnable shifting and scaling of the activation

values so that the mean and variance of the neuron’s activation values is learned. We insert

BN after each convolution or matrix multiplication and before ReLU.
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Non-linearity RVL-CDIP ANDOC
LRN + Dropout + BN 89.25 97.45
LRN + Dropout 89.21 96.72
LRN + BN 89.03 97.57
LRN 87.63 95.98
Dropout 89.17 96.72

Table 8.4: Accuracy based on Non-linearities

Results are shown in Table 8.4. For ANDOC, BN improves performance by a large

margin and can replace dropout. This is likely due to the visual variety of the documents (due

to diverse set of classes) in ANDOC. In contrast, Dropout is better than BN in RVL-CDIP,

likely due to the visual uniformity of office-style documents. We also observe that LRN also

does not increase performance for either dataset.

8.7 Analyzing What Is Learned

One critique of CNNs is that they lack interpretation, making it difficult to know what

features they use for classification decisions. We analyzed a CNN trained on RVL-CDIP by

examining the top-9 input patches that excite neurons and the deconv visualization of each of

these patches [19]. The deconv visualization runs the network backwards from the neuron to

the input in the context of some input image or patch. It highlights the salient parts of the

image that led to the neuron firing. We found this technique critical for deciphering patterns

recognized by neurons in later layers because the effective input size (i.e. receptive field) is

very large. For this analysis, we utilized the visualization tool proposed in [18].

In our analysis we manually categorized the first 100 neurons in each convolutional

layer (see Table 8.5). Although the category of some neurons is subjective, our labeling

captures the trends in the features learned by each layer. As expected, the first two layers

detect simple elements which are gradually abstracted into complex detectors for text and

arrangement of elements. While our category labels were the same for all layers, the complexity

of each category increased for deeper layers. It is noteworthy that almost all neurons were
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Category conv1 conv2 conv3 conv4 conv5
Edge 10 2 0 0 0
Parallel lines 46 9 10 9 2
Checker 5 1 2 2 0
Stroke(s) 10 10 2 0 0
Shape Pattern(s) 15 32 24 14 16
Corner 5 25 13 5 3
Small Text 3 4 8 23 42
Large Text 0 16 20 23 12
Column/Margin 0 0 11 5 9
Table Cells 1 0 2 0 2
Graphic 0 1 4 4 0
Handwritten Text 0 0 0 0 3
Scanner Noise 0 0 0 0 3
Ambiguous 0 0 2 15 8

Table 8.5: Categorization of 100 neurons for each convolution layer.

interpretable, with the majority of the Ambiguous category being neurons that fired on two

distinct types of features. This was not the case for the 4-layer network of [8], whose first

layer filters appear random.

Neurons in conv5 tended to find particular configurations of text, such as those shown

in Figure 8.5. One interpretation is that the CNN is performing a loose form of layout analysis

as an intermediary step to classification. The fully connected layers can then reason about

the spatial correlation of these elements to form a classification decision. We also observed

that by conv5, the CNN has learned to distinguish between handwritten text and type-set

text, though no explicit information about the type of text was provided to the CNN.

We also examined the spatial specificity of features by averaging the intermediate

output images for each filter across all images of RVL-CDIP. As seen in Figure 8.6, conv1

filter responses are generally not confined to any portion of the image. However, the other

layers exhibit many filters that only respond to certain regions, which is consistent with the

hypothesis that CNNs learn layout features.

192



Figure 8.5: Top 4 activating patches and deconv visualizations for 2 text detection neurons
in conv5. The neuron detects left justified headers followed by wide paragraphs of text. The
bottom neuron detects right justified text below paragraphs of text. Both features are class
discriminative (e.g. Letter class).

(a) conv1 (b) conv2 (c) conv3 (d) conv4 (e) conv5

Figure 8.6: Average of filter responses for 36 filters for convolution layers. Layers conv2-5
have filters that are specific to spatial regions.

8.8 Conclusion

We examined several factors that influence CNN performance on document images. Overall,

applying shear transforms during training and using large input images lead to the biggest

gains in performance, acheiving state-of-the-art performance on RVL-CDIP at 90.8% accuracy.

Multi-scale training and testing also improve performance, specifically for smaller training

sets. As well, BN is a useful alternative to Dropout in datasets that have large visual variety.

We also examined a CNN trained on RVL-CDIP and found evidence that the CNN

is learning intermediate layout features. Neurons fire based on type of layout component

(graphic, text, handwriting, noise, etc) and tend to fire on specific locations on the image.
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Chapter 9

Convolutional Neural Networks for Font Classification

Abstract

Classifying pages or text lines into font categories aids transcription because single font

Optical Character Recognition (OCR) is generally more accurate than omni-font OCR. We

present a simple framework based on Convolutional Neural Networks (CNNs), where a CNN

is trained to classify small patches of text into predefined font classes. To classify page or

line images, we average the CNN predictions over densely extracted patches. We show that

this method achieves state-of-the-art performance on a challenging dataset of 40 Arabic

computer fonts with 98.8% line level accuracy. This same method also achieves the highest

reported accuracy of 86.6% in predicting paleographic scribal script classes at the page level

on medieval Latin manuscripts. Finally, we analyze what features are learned by the CNN on

Latin manuscripts and find evidence that the CNN is learning both the defining morphological

differences between scribal script classes as well as overfitting to class-correlated nuisance

factors. We propose a novel form of data augmentation that improves robustness to text

darkness, further increasing classification performance.

Tensmeyer, Chris, Daniel Saunders, and Tony Martinez. “Convolutional Neural Networks

for Font Classification.” International Conference on Document Analysis and Recognition

(ICDAR). Vol. 1, pp. 985-990. IEEE, 2017.
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9.1 Introduction

Deep Convolutional Neural Networks (CNNs) have been successfully applied to many problems

in Document Image Analysis. These areas include whole image classification [1, 4, 7], image

preprocessing [12], script identification [16], and character recognition [18]. The success of

CNNs has been attributed to their ability to learn features in an end-to-end fashion from

large quantities of labeled data.

In this work, we present a simple CNN based framework for classifying page images

or text lines into font classes. Handling multiple fonts is a challenge in Optical Character

Recognition (OCR), as the OCR system must handle large variations in character appearance

due to differences in font. If text lines are labeled with a font class, then a specialist OCR

system for that font can potentially achieve higher recognition rates than an OCR system

trained on many fonts [2, 17].

In this framework, a CNN is trained to classify small image patches into font classes. At

prediction time, we densely extract patches from the test image and average font predictions

over individual patch predictions. Although this method is simple, we achieve 98.8% text

line accuracy on the King Fahd University Arabic Font Database (KAFD) for 40 type faces

in 4 styles and 10 different sizes [9]. The best previous result is 96.1% on a subset of 20

type faces [9]. We also demonstrate state-of-the-art performance with 86.6% accuracy on the

Classification of Latin Medival Manuscripts (CLaMM) dataset, where the highest previously

reported accuracy is 83.9% [3].

In addition to showing that CNNs perform well at font classification tasks, we perform

an in-depth analysis of the features learned by the CNN. Though CNNs are black box models,

we can gain an understanding of what features are used for classification by measuring output

responses as we vary characteristics of the input images. Such an analysis can demonstrate

whether the CNN is overfitting to nuisance factors of the collection of documents it was

trained on.
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For example, the CLaMM dataset contains 12 scribal script classes defined by expert

paleographers that are handwriting styles that differ in character allographs and morphological

shape [3]. However, we find that CNNs trained on CLaMM are sensitive to how dark the

text is. This is undesirable because the CNN may be applied to novel document collections

that have a different bias w.r.t. text darkness. We provide a solution to this problem using

a new form of data augmentation, which also improves performance on CLaMM. We also

find that CNNs can be sensitive to other factors such as inter-line spacing and presence of

non-textual content.

9.2 Related Works

We review the literature for two tasks: font classification and analyzing what features a CNN

has learned. Though the classes in CLaMM are referred to as script classes, we feel that

this task is more akin to font classification than what is traditionally described as script

classification. Traditional script classification deals with distinguishing different writing

systems or character sets (e.g. Chinese vs Latin vs Arabic), while script classes in CLaMM

are all Latin script. However, in keeping with the terminology introduced in [3], we use the

term script to refer to a class category in CLaMM. We also use the term font class to refer

to typefaces (e.g. Arial) rather than combinations of typeface, size, and style (e.g. bold).

9.2.1 Font Classification

Zramdini and Ingold presented a font recognition system based on the statistics of connected

components, achieving 97.35% accuracy over English text lines for 10 font classes [23]. Zhu et

al. posed font recognition as texture identification and used Gabor Filters to achieve 99.1%

accuracy on text blocks for both English and Chinese text [22]. Fractal Dimension features

were introduced in [10] for Arabic font classification and resulted in 98% accuracy for 10

font classes. Luqman et al. used log-Gabor filter features extracted at multiple scales and

orientations to obtain 96.1% accuracy on 20 fonts in the large scale KAFD dataset.
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More recently, deep learning techniques based on Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN) have been proposed for font classification. Tao

et al. used a combination of CNN and 2D RNN models to classify single Chinese characters

into 7 font classes with 97.77% accuracy [20]. Pengcheng et al. classified handwritten Chinese

characters into 5 calligraphy classes with 95% accuracy using deep features extracted from a

CNN pretrained on natural images [13]. Classifying calligraphy classes is similar to classifying

script types in CLaMM, though CLaMM uses Latin script classes with page-level ground

truth.

9.2.2 Analysis of Learned Features

There are a variety of techniques used to examine features learned by CNNs, developed

primarily in the context of natural images. In [19], canonical class images are obtained

by gradient descent over input pixels to maximally excite output class neurons. Similarly,

class sensitivity maps are visualized by computing via backpropagation the first partial

derivative of the target output class w.r.t. all input pixels. Zeiler and Fergus proposed a

deconv visualization approach where hidden representations are projected back into the input

space [21]. Additionally, they visualize intermediate neurons by finding the top-N maximally

exciting input patches for each neuron. For quantitative analysis, Zeiler and Fergus measured

how CNN outputs change in response to certain transformations of the input image (e.g.

rotation, translation) [21]. We perform a similar analysis, specific to the domain of document

images, to see how sensitive CNNs are to noise factors in CLaMM.

9.3 Methods

In this work, we classify large document images into script or font classes using CNNs.

Because inputting entire high resolution images to a CNN is computationally slow, requires

large GPU memory, and requires more training data, we resort to a patch classification

scheme. We train a CNN to classify individual 227x227 patches into font/script classes.
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To obtain a classification for a large test image, we densely extract overlapping 227x227

patches on a regular square grid with 100 pixels between patch centers. The CNN produces

a probability distribution over the classes for each patch, which distributions are uniformly

averaged to obtain the final classification.

For training data, we extract 256x256 patches at a stride of 42 pixels from the training

images and label patches with the class of the image it was taken from. During training, a

random 227x227 crops from these patches are inputted to the CNN. Some training images

are set aside as a validation set, which is used to select the best performing model.

In this work, we compare two CNN architectures. The first is the AlexNet architecture

composed of 5 convolution layers followed by 3 fully connected layers [8]. Each layer takes as

input the output of the previous layer:

x` = F`(x`−1, θ`) (9.1)

where x` is the input to the `th layer, F` is a function to be learned parameterized by θ`. The

F` performs either a convolution or a matrix multiplication followed by ReLU(z) = max(z, 0),

and sometimes pooling and local response normalization operations [8].

The other architecture is the state-of-the-art ResNet-50 [5], which was used to win

the 2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Layers in a ResNet

learn a residual function, where F` is added to the layer input:

x` = F`(x`−1, θ`) + x`−1 (9.2)

Residual learning enables deeper networks to be trained with gradient descent optimization

as the gradient no longer vanishes or explodes exponentially with layer depth due to the

x`−1 term in Equation 9.2. For ResNet-50, F` is composed of multiple convolutions, ReLU,

BatchNorm [6], and sometimes pooling operations. See [5] for the exact model specification.
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(a) Arabswell
(b) Times New Ro-
man (c) Arial

(d) Humanistic (e) Hybrida (f) Uncial

Figure 9.1: Example 256x256 patches from KAFD (top) and CLaMM (bottom). Subcaptions
refer to the class label of the patch.

Additionally, we train CNNs at 7 image scales from 30-100%, where 100% is original

image size and 50% is downsampled by a factor of 2.. This is done by downsampling training

images before extracting 256x256 patches and by downsampling tests images for classification.

For smaller image scales, more characters are available per 256x256 training patch, but with

less detail. For CLaMM experiments, we ensemble networks by averaging predictions of

two CNNs trained from different random initializations. For training details, all CNNs are

trained with Stochastic Gradient Descent (SGD) using 0.9 momentum and L2 weight decay

of 0.0005. The number of iterations was 350K-650K based on architecture and dataset, with

mini-batches of size 40-64.

9.3.1 Datasets and Evaluation

We use two datasets in this work, Classification of Latin Medieval Manuscripts (CLaMM) [3]

and the King Fahd University Arabic Font Database (KAFD). Example training patches

from each dataset are shown in Figure 9.1.
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The CLaMM dataset was introduced in the recent ICFHR2016 Competition on the

Classification of Medieval Handwritings in Latin Script [3]. It is comprised of 2000 training

images and 1000 test images (for task 1) in grayscale format. Each image is approximately

1700x1200 pixels (300 dpi) and is composed of handwritten text, background space, and

graphics. The training and test images are annotated with a single script class. There are 12

script classes representing different styles of character shapes used by scribes in producing

handwritten manuscripts in Europe in the years 500 C.E. to 1600 C.E. For CLaMM, we

report model accuracy over the 1000 test images.

KAFD is comprised of 115,068 scanned pages of printed Arabic text in grayscale

format divided among 40 font classes (e.g. Arial). Each font class contains pages that differ

in font size (8-24 point) and style (regular, bold, italic, bold and italic). Though KAFD is

available in four resolutions, we opted to use only 300dpi images for computational reasons.

We used the designated train/validation/test split and evaluated model accuracy on both the

page and line formats of the dataset. Because line images are less than 256 pixels in height,

we pad them with white background to be 256 pixels in height. When extracting patches, we

discard patches with minimum value > 100 as these patches likely consist of only background.

9.3.2 Pretraining on Synthetic Data

For tasks with limited data, pretraining networks on similar tasks tends to improve perfor-

mance [15]. Pretraining is performed by initializing network weights to those learned on the

pretraining task, except for the classification layer, which is initialized randomly due to the

tasks having different classes.

For CLaMM, we experimented with pretraining on a 27-class synthetic font recognition

task designed to mimic some character differences between CLaMM classes. We hope that by

pre-conditioning the CNN to examine individual characters, it will more easily discriminate

script classes based on their defining morphological differences. 23 font classes were based on
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Train
Model

Lines Page-Lines Pages
Data Patch Image Patch Image Patch Image

Lines
AlexNet 95.3 97.1 95.3 98.7 38.5 90.8
ResNet 97.9 98.8 97.9 99.2 58.0 92.7

Pages
AlexNet 86.2 88.4 86.0 91.1 58.2 98.2
ResNet 91.9 93.2 91.7 94.8 60.5 98.5

Table 9.1: Accuracy of CNNs on KAFD test data at both the patch and whole image level.

the Liberation Serif font and 4 more were based on other fonts. Each class deviates from the

basic font by a random combination of the following modifications:

• Only capital glyphs.

• Vertical translation of certain glyphs. Some normally descending characters are shifted

to be non-descending, and normally non-descending characters become descenders.

• Substituting glyphs with characters from CLaMM classes. For example, using the

Uncial A, a single compartment Cursiva a, or long s glyph instead of modern s.

To create training data for a synthetic font class, we rendered random Latin text

and added Gaussian noise to foreground characters. We then inserted the noised text onto

blank background pages taken from real historical documents using image interpolation. The

accuracy on the pretraining task itself ranged from 50-85% depending on CNN architecture

and image scale, indicating that the task is non-trivial and that CNNs are able to focus on

individual characters to make classification decisions.

9.4 Results

9.4.1 KAFD

On KAFD, we trained 2 ResNets and 2 AlexNet CNNs each on line images and on page

images at 100% image scale. For each CNN architecture and type of training data, we

selected one model using the provided validation data. Model accuracies for both patches and

images are shown in Table 9.1. The Page-Lines column shows page level accuracy obtained
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(a) Segore UI (b) Times New Roman

(c) Arial (d) Arabic Transparent

Figure 9.2: KAFD classes that are easily confused, accounting for approximately 70% of
misclassifications in all trained models.

by averaging predictions over the pre-segmented line images for each page. For the Pages

column, test patches are densely extracted from the page image and may contain badly

cropped text, leading to lower patch accuracy for this column.

For all types of data, the more powerful Resnet architectures outperforms AlexNet,

providing 19-58% error reduction. Training and testing on segmented line images leads to

the best page level classification at 99.2% accuracy for ResNet. When training and testing

on densely cropped patches, the best accuracy is 98.5%, showing that using segmented data

leads to a 47% reduction in error over densely cropped patches. The best accuracy achieved

over line images is 98.8%.

To our knowledge, there are no previously published results on all 40 fonts. On subsets

of 10 and 20 fonts, Luqman et al. achieved 99.5% and 96.1% accuracy respectively on line

images using log-Gabor features extracted at multiple scales and orientations [9]. On the

same 20 fonts, a single ResNet model achieves 99.8% accuracy on line images.

The vast majority of misclassifications on all 40 fonts are made by confusing Times

New Roman with either Segore UI, Arial, or Arabic Transparent. These classes account for

at least 70% of errors for patches, line images, and page images. Figure 9.2 shows example

text for these 4 easily confused classes. The fonts Times New Roman, Arial, and Arabic

Transparent are very similar, and could be grouped together under a single OCR system.

However, Segore UI is visually distinctive (e.g. larger holes inside characters) and shows that

there is room for improvement in the model.
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(a) (b) (c)

Figure 9.3: Performance on CLaMM for CNNs trained at difference scales on (a) whole image
classification and (b) per-patch classification. -Pre indicates that CNNs were first pretrained
on synthetic data (Section 9.3.2). A pretrained ResNet trained at 50% image scale performs
best and outperforms the previous best result on this task. Subfigure (c) shows the effect of
patch extraction stride at test time. Smaller strides are more important for smaller image
scales.

9.4.2 CLaMM

For CLaMM, Figure 9.3 shows the performance of ensembles composed of two models, where

each ensemble is trained at a single image scale. On this task, we see the importance of

using the more powerful ResNet architecture. In general, mid-range image scales perform

best, likely because they balance the trade-off between amount of text on each patch and

resolution of the text. Notably, using 50% image scale with the ResNet architecture yields

84.5% accuracy, which outperforms the highest reported result of 83.9% achieved by the

ICFHR 2016 CLaMM competition winner [3].

Pretraining on synthetic data significantly improves performance for AlexNet models

and shows that this is a viable approach to improving CNNs based on domain knowledge.

For ResNet, pretraining helps for smaller image scales, though it causes a slight decrease

in performance for some larger scales. This is likely because overfitting training data is a

bigger problem with smaller scales due to having fewer training patches. Pretraining on the

synthetic data at 50% image scale leads to an increase of 0.3% absolute accuracy to reach

84.8% on this task. We note that we created only one set of pretraining data and did not

tweak the pretraining classes to improve results, either on test or validation data.
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(a) Background (b) Figure (c) Annotation

Figure 9.4: Example of non-textual patches from CLaMM dataset. Though they do not
contain text of the target script class, some of these patches are discriminative of the script
class of the page.

We also analyzed the stride at which patches are extracted from test images (Fig-

ure 9.3c). Larger strides require less computation because fewer patches are evaluated, but

also result in lower accuracy. Smaller strides seems to be more important for smaller image

scales, likely because fewer patches are extracted from smaller images at any given stride.

9.5 Analyzing Learned Features

In this section, we analyze how sensitive a ResNet model is to noise factors present in the

CLaMM dataset. We take two approaches. In the first approach, we modify the training

data and evaluate the performance of the ResNet on the task images. In the second, we take

the trained ResNet and measure how changing certain characteristics of input patches affects

the classification decision for the patch.

9.5.1 Modified Training Data

Because training and testing patches are densely extracted, not all patches contain text that

can be used to discriminate the page image’s script class. Such patches may contain only

background, figures, or institutional annotations (see Figure 9.4). To measure whether these

patches postively or negatively affect model performance, we manually annotated1 each of

1These annotations are available for download at http://axon.cs.byu.edu/clamm
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Average Caroline Cursiva Half-Uncial Humanistic Humanistic Hybrida Praegothica Semihybrida Semitextualis Southern Textualis Uncial
Training Set Cursive Textualis
CLaMM 74.4 97.7 65.1 84.4 89.0 91.1 37.5 94.0 37.3 82.4 64.6 51.8 100
CLaMM-Filtered 77.4 97.7 65.1 91.1 92.7 92.4 34.1 94.0 49.4 88.2 68.3 58.8 100
CLaMM-Extended 77.7 96.5 58.1 95.6 91.5 93.7 31.8 91.7 55.4 85.3 79.3 56.5 100
CLaMM-Noise 21.5 15.1 9.3 15.6 39.0 26.6 18.2 48.8 15.7 22.1 7.3 20.0 21.8

Table 9.2: Whole image class accuracies on CLaMM test images with ResNet at 100% image
scale for modified training sets.

the 2000 training images using the PixLabler Tool [14] and foreground masks computed using

Otsu binarization [11].

We created three modified training sets with the annotations:

1. CLaMM-Filtered (12 classes) - Non-textual patches are removed from the training set.

2. CLaMM-Extended (15 classes) - Non-textual patches are reassigned to one of background,

figure, annotation. At test time, predictions for these classes are not allowed

3. CLaMM-Noise (13 classes) - All textual patches are removed from the 12 script classes

(manually verified), leaving only non-textual patches as examples of the script classes.

An additional Text class is composed of textual patches drawn from all classes. At test

time, predictions for the Text class are not allowed.

We trained an ensemble of two ResNets at 100% image scale (test patch stride of 100)

on the three modified training sets and on the unmodified training set. We chose 100% image

scale so that CLaMM-Noise could have a sufficient number of training patches. The per-class

and average accuracies are shown in Table 9.2.

Interestingly, we see that either filtering or relabling non-textual patches increases

accuracy by 3%, indicating that it is detrimental to label non-textual patches as examples

of script classes. Because non-textual patches are distinctly labeled in CLaMM-Extended,

the ResNet can minimize their impact at test time. This data preprocessing outperforms

that of CLaMM-Filtered, where the ResNet at test time must classify non-textual patches

into one of the 12 script classes. The results on CLaMM-Noise demonstrate that some script

classes can be discriminated based on non-textual content, as the average accuracy is 21.5%,

compared to 8.3% for random predictions. For example, images containing Praegothica and
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Figure 9.5: Patch Accuracy as a function of text darkness. Patches with varying text darkness
below are positioned relative to the x-axis of the graph. Some classes are more or less sensitive
to these effects.

Humanistic scripts frequently have large decorated figures, which can be sufficient to classify

the images. Some other reasons for performance above random chance include correlation of

figures, background intensity, presence of noise (e.g. bleed through) with page level script

classes. This shows that CNNs have the potential to overfit to particular characteristics of

the collection used to train (and evaluate) the model, so caution should be exercised when

applying models to novel collections.

9.5.2 Text Darkness

We also examined learned features by varying input patches and measuring per-patch output

accuracy. In preliminary analysis, we found two nuisance factors that influence classification

decisions: text darkness and inter-line spacing.

To test the effect of text darkness on patch-accuracy, we extracted 30 patches of text

from each class and computed reasonable foreground masks using Otsu binarization [11]. For

each patch, we produced a series of 100 patches, where 50 have darker text and 50 have lighter

text compared to the original patch. To make text darker, we subtracted constant values

from all foreground pixels and clipped values at 0. The value of the constant was linearly

varied such that the intensity of all foreground pixels in the darkest image are uniformly
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Figure 9.6: Comparing independently varying background and foreground intensity (-FG/BG)
vs varying whole image intensity (-Whole) on CLaMM.

0. To make the text lighter, we produced linear combinations of the original patch and an

estimated background image constructed by averaging together sampled background patches.

These linear combinations range from 100% original image to 100% background estimate.

We chose interpolation over directly lightening text to avoid making any foreground pixels

lighter than the surrounding background.

We ordered these 100 modified patches with the darkest as the 1st, the original patch

as the 50th, and the lightest patch as the 100th. We classified each modified patch and

recorded the average accuracy for each darkness/lightness level for all patches and each class

(Figure 9.5). Overall, classification is robust to small changes, but there are sharp decreases

for larger changes. For example, the training data for Uncial script has uniformly light text,

with an average foreground intensity of 130 (other classes have average intensity ∼50). We

observe that when Uncial text is darkened or lightened, more errors are made because such

examples are not present in the training data. However, lightness or darkness of foreground

text is not a defining characteristic of the script, but is an artifact of writing instrument,

ink composition, and document preservation conditions. The majority of other scripts, such

as SemiHybrida, exhibit similar sensitivities, while Caroline script appears robust to both

darkening and lightening of text.
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Figure 9.7: Patch accuracy as a function of text line spacing for selected images. Split into
two graphs for clarity.

To make CNNs robust to varying text darkness, we apply a novel form of data

augmentation. While it is common to randomly brighten or darknen input images on-the-fly

during training (e.g. [8]), we independently lighten or darken foreground and background

pixels based on masks computed using Otsu binarization [11]. Specifically, each time an

image is input to the CNN, we choose either foreground or background with equal probability.

Then, we draw a random value from a Gaussian distribution with µ = 0, σ = 30 and add

that value to the grayscale pixel values of the selected region.

In Figure 9.6 we compare this scheme to simply brightening or darkening the whole

image. In general, independently varying foreground and background leads to significant

performance gains for all image scales. In particular, we reach a new record at 86.6% accuracy

on CLaMM, which exceeds the previous state-of-the-art by an absolute 2.7%.

9.5.3 Line Spacing

We also found that CNNs are sensitive to the inter-line spacing of text for certain classes. For

each class, we manually extracted text lines and backgrounds from two images and were able

to render those text lines at various spacings on the original backgrounds. We then measured

patch-accuracy as a function of text line spacing for each image.
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Patch accuracies of selected examples of sensitive images are shown in Figure 9.7. The

majority of images examined are most easily classified at line spacing of 20 pixels. For 4

classes, accuracies stayed above 95% for line spacings greater than 20 pixels. For 3 of these

classes, sharp drops in accuracy were observed for spacings less than 20 pixels (especially at

0 pixels). Only Praegothica images were completely invariant to line spacing. Trends are not

necessarily tied to the script class, as we observed that for 5 of 12 classes, the two images

examined had drastically different sensitivities to line spacing.

We note that inter-line spacing is not part of the morphological definition of CLaMM

classes. Therefore it would be desirable to have predictive models that are not sensitive to

line spacings. Though we have not experimentally verified such, we hypothesize that data

augmentation where line spacings are stochastically altered (e.g. with seam carving) would

give CNNs more invariance to this nuisance factor and potentially make them more accurate

for application to novel collections.

Additional experiments (omitted for space) suggested CNNs are sensitive to the line

height (i.e. font size) of text lines.

9.6 Conclusion

We have presented a simple patch based classification framework for line image and page

image font classification. We have shown that the ResNet architecture in our framework

gives state-of-the-art performance by exceeding previously published results in Arabic font

classification on the KAFD dataset and in Latin scribal script classification on the CLaMM

dataset. We performed an analysis of the sensitivities of ResNet to nuisance factors in

the CLaMM dataset, such as non-textual patches, text darkness, and line spacing. In

the case of text darkness, we proposed novel data augmentation based on independently

varying foreground and background intensities, which leads to improved model robustness

and performance.
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Chapter 10

Language Model Supervision for Handwriting Recognition Model Adaptation

Abstract

Training state-of-the-art offline handwriting recognition (HWR) models requires large labeled

datasets, but unfortunately such datasets are not available in all languages and domains

due to the high cost of manual labeling. We address this problem by showing how high

resource languages can be leveraged to help train models for low resource languages. We

propose a transfer learning methodology where we adapt HWR models trained on a source

language to a target language that uses the same writing script. This methodology only

requires labeled data in the source language, unlabeled data in the target language, and

a language model of the target language. The language model is used in a bootstrapping

fashion to refine predictions in the target language for use as ground truth in training the

model. Using this approach we demonstrate improved transferability among French, English,

and Spanish languages using both historical and modern handwriting datasets. In the best

case, transferring with the proposed methodology results in character error rates nearly as

good as full supervised training.

Tensmeyer, Chris, Curtis Wigington, Brian Davis, Seth Stewart, Tony Martinez, and Bill

Barrett. “Language Model Supervision for Handwriting Recognition Model Adaptation.”

International Conference on Frontiers in Handwriting Recognition (ICFHR). Vol. 1, pp.

133-138. IEEE, 2018.
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10.1 Introduction

State-of-the-art offline handwriting recognition (HWR) models are based on deep Convo-

lutional Neural Networks (CNNs) and Bidirectional Long-Short Term Memory (BLSTM)

networks and are trained on large amounts of labeled line images [9]. Obtaining such large

annotated training sets is expensive and time consuming, because a person must segment

thousands of text lines and manually type transcriptions for the ground truth. However, such

a process is often necessary for each language and domain because trained HWR models often

fail to generalize sufficiently across domains, languages, and writers that were not observed

during training. Eliminating or lessening this requirement is the goal of unsupervised HWR

and related approaches.

Prior work has attempted to address the lack of a large labeled training set for

low resource languages/domains through several means. Training on synthetic data is an

appealing direction because an arbitrary amount of labeled data may be generated with little

human effort. In some works, synthetic data is obtained by applying annotation preserving

transformations to real data in order to simulate the natural variability in handwriting [19,

21, 23]. However, these methods depend on the availability of sufficiently diverse labeled data,

which is not always the case. Other works have modeled the writing process for generating

isolated characters using prototypes for Chinese [20] and Korean [12] characters, though it is

not clear how such models could be extended to cursive scripts. Elarian et al. proposed a

concatenative model for handwritten Arabic, though it relies on a database of pre-segmented

characters and the concatenation procedure is specific to Arabic [5].

An alternative semi-supervised formulation of the problem assumes that there is a

small labeled training set and a larger unlabeled training set. The main methodology involves

propagating annotations from the labeled set to the unlabeled set through model prediction.

Subsequent models then train as if the noisy predicted labels were ground truth annotations.

Frinken et al. explored this method for isolated word image recognition in the framework

of co-training, where a Hidden Markov Model (HMM) and a BLSTM model each made
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prediction that was used to further train the other model [6]. In a separate work, Frinken and

Bunke use an ensemble of BLSTM networks for self-training, where high confidence ensemble

predictions on the unlabeled data are subsequently used as ground truth to further train the

ensemble. Ball and Srihari used a similar idea to adapt writer specific HWR models from

a general model by iteratively updating segmented character prototypes after performing

recognition on unlabeled data [2].

In this work, we propose a transfer learning methodology that allows us to train a

HWR model for a target language for which we have no labeled images. Our method only

requires a labeled training set of line images in a sufficiently similar source language, a trained

Language Model (LM) in the target language, and a set of unlabeled images in the target

language. A source language is sufficiently similar to the target language if the character

sets of the two languages have a large overlap. For example, Latin based languages, such as

English, French and Spanish, are all sufficiently similar because they all use the written Latin

script. The LM can be obtained from digital text in the target language that is unrelated

to the unlabeled images. Digital text for training a LM is much more commonly available

than labeled handwriting images, so our methodology helps extend automated HWR to lower

resource languages.

After training a HWR model on the source language, our proposed method begins a

hybrid training procedure where training occurs on both source data and target data. There

is no ground truth for the target data, so we combine the model prediction with the LM to

produce a corrected prediction that we then use as ground truth.

We perform several experiments to analyze the behavior of our proposed transfer

learning methodology for HWR. These experiments are performed using 4 datasets and 3

languages: English, Spanish, and French. We examine factors such as how long the source

model is trained, LM decoding hyperparameters, and the proportion of source and target

training used during hybrid training. In the best cases, we find that transferring produces
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Character Error Rates (CER) nearly as low as those obtained by traditional supervised

learning on the target data.

10.2 Language Transfer Learning

We formulate our problem as follows. Suppose we wish to obtain a trained HWR model for a

target language Y that has no labeled training data available, but there are many unlabeled

text line images in this language. We also have sufficient digital text in language Y, such

that we can train a Language Model (LM). For another language X we have segmented text

line images with corresponding ground truth transcriptions. Noting that languages X and Y

have similar character sets, we want to use the data in both languages to produce the HWR

model for language Y.

Though our discussion uses the term language, our methodology is also applicable

to transfer learning HWR problems where there is a difference in domains (e.g. modern vs

historical) or writers. We demonstrate this later by transferring between a modern English

dataset and a historical English dataset.

10.2.1 Source Model Training

We begin transfer learning by training a state-of-the-art HWR model on the source language

for which we have ground truth transcriptions. Fig. 10.1 shows our CNN-BLSTM architecture,

which is similar to the model in [23], but introduces an auxiliary classifier and loss. This

model learns high level features using convolution operations that are vertically collapsed

to a 1D horizontal sequence of feature vectors that are fed to a 2-layer BLSTM. In the

BLSTM, context is propagated both forwards and backwards along the sequence. Two

separate frame-wise, linear character classifiers are each applied to the output of the CNN and

the output of the combined CNN-BLSTM. Both classifiers are trained using Connectionist

Temporal Classification (CTC) loss [8] which automatically aligns frame-wise outputs with

the ground truth transcriptions.
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Figure 10.1: CNN-BLSTM architecture with auxiliary classifier and loss after the CNN.

The classifier that operates on the output of the CNN is considered an auxiliary

classifier and it is discarded after the training procedure, meaning that the model outputs

the predictions made by the main classifier that operates on the output of the BLSTM. We

found that introducing an auxiliary classifier improves transferability of the model, likely

because it forces the CNN visual features to be discriminative of characters themselves instead

of depending on further processing from the BLSTM layers. When transferring between

languages, the visual difference of some shared characters is small, so the CNN should be

robust to the language difference. In contrast, the BLSTM considers the whole sequence, so

it is more sensitive to transferring between datasets.

The precise architecture of our HWR model is based on the model presented in [23].

The size of the the input image is W×60, where W is the image width, which can dynamically

vary. The CNN is composed of 6 convolutional layers with 3x3 learnable kernels, and there

are 64, 128, 256, 256, 512, and 512 feature maps respectively for the 6 layers. We apply

Batch Norm (BN) after layers 4 and 5 and 2x2 Max-Pooling (MP) with a stride of 2 after

layers 1 and 2. After layers 4 and 6, we vertically collapse features by using 2x2 MP with a

vertical stride of 2 and a horizontal stride of 1. To form the input for the BLSTM and for the

CNN auxiliary classifier, we concatenate features in the same column to form a 1D horizontal

sequence of 1024-dimensional feature vectors. The BLSTM has 2-layers each with 512 hidden

221



nodes that have a 0.5 probability of node dropout. A linear classifier is applied to each time

step to produce the final prediction, which is a probability distribution over characters at

each timestep.

The model is trained using CTC loss over both the main classifier and the auxiliary

classifier:

L(x, y) = λLCTC(φ(x), y) + (1− λ)LCTC(ψ(x), y) (10.1)

where x represents an input image, y, the corresponding ground truth transcription, LCTC

is the CTC loss [8], φ is the auxiliary CNN classifier, and ψ is the BLSTM classifier. We

empirically set λ = 0.25 based on cross validation using validation data.

10.2.2 Language Model Decoding

The HWR model predicts each output character independently, and this may produce linguis-

tically improbable sequences of characters. Decoding with a Language Model (LM) combines

the individual predicted character probabilities with how likely sequences of characters occur

together.

Our LM decoding implementation uses the Kaldi Speech Recognition Toolkit [16],

which has been used previously in HWR models [3]. Similar to [22], we use a 10-gram

character LM, which estimates p(ci|ci−1ci−2 . . . ci−9) from digital text. Not all 10-gram

character sequences are observed, so we smooth the empirical 10-gram distribution and

employ backoff, where n-grams shorter than 10 are used to estimate the probability of

infrequent 10-grams [4].

The decoding operation finds the most likely sequence of hidden states in a Hidden

Markov Model (HMM), where the emission probabilities are determined by the HWR model

and the transition probabilities are determined by the LM:

ĥ = arg max
h

N∏
i

p(hi|hj<i)p(xi|hi)w (10.2)
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where h is the sequence of hidden states corresponding to characters, hj<i indicates all

states prior to hi, x is the observed data, and w determines the relative importance of the

CNN-BLSTM and LM predictions. Because characters can span multiple output frames, we

model each character using 3 states (corresponding to character start, middle, and end) as is

commonly done in speech recognition [14]. The LM directly encodes the p(hi|hj<i) term, but

the CNN-BLSTM outputs p(hi|xi). Using Bayes Rule, we have

p(xi|hi) =
p(hi|xi)p(xi)

p(hi)
(10.3)

We can estimate p(hi) by examining the CNN-BLSTM outputs, but p(xi) is unknown.

Following Bluche et al., we approximate p(xi)
p(hi)

≈ p(hi)
−α, where α is a hyperparameter [3].

An exact solution to Eq. 10.2 can be intractable, so in practice, we use a beam search which

efficiently searches the state-space, but in some cases may not find the exact maximal sequence

of characters.

10.2.3 Hybrid Training

Our hybrid training procedure leverages the recognition performance achieved by the

source model on the source language to then learn recognition over the target language. The

overall process is shown in Algorithm 1.

The main difference between hybrid and source training is in the data used for learning.

During hybrid training, part of the data comes from the source dataset (typically 50%) with

the rest coming from the target dataset for which there are no ground truth transcriptions.

However, the training loss for hybrid training is the same as in source training (Eq. 10.1),

which means that to train we need to provide some transcriptions for the target data.

We obtain target transcriptions by applying the LM of the target language to the

predictions of the network. The intuition is that due to the similarity of the source and

target languages, the predictions of the network will be much better than random, though

223



Algorithm 1 Hybrid Training Procedure

Input: Source Model S, Source Data XS, Source Transcriptions YS, Target Data XT, Target
LM Q

Output: Target Model T
1: Initialize T with weights of S
2: for k = 0 to 50 do
3: // First update LM marginal probabilities to reflect T
4: for j = 0 to 100 do
5: Sample a minibatch xT from XT

6: P← T(xT)
7: Use P to update p(hi) (used in Eq. 10.3)
8: end for
9: // Train T on source and target data
10: for j = 0 to 100 do
11: Sample a minibatch xT from XT

12: P← T(xT)
13: yT ← Q(P) (Eq. 10.2)
14: Sample a minibatch (xS,yS) from (XS,YS)
15: x← xT‖xS, y← yT‖yS

16: Update T according to L(x,y) (Eq. 10.1)
17: end for
18: end for

still quite poor at first. Applying the LM will improve the poor predictions to make better

targets, which in turn helps the network to learn the target language better. We do, however,

continue to train on source data to stabilize the learning process with real ground truth.

At the beginning of hybrid training, the model has never seen any instances of

characters that are only part of the target language and will make incorrect predictions.

However, the LM can correct some of these errors based on the context of surrounding correct

predictions. For example, English words contain no accented characters, so a source model

trained on English would never predict accented characters, but French and Spanish do

use accents. The LM is able to correct the model predictions to include accents and thus

introduce these characters into the ground truth so the model can learn to predict these

characters in the future.

Because LM decoding depends on the marginal distribution of CNN-BLSTM outputs,

p(hi) in Eq. 10.3, we need to periodically update this quantity. This is done in lines 3-7 in
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Algorithm 1. In normal HWR model training, this is unnecessary because the LM is applied

only as post-processing and not as part of the training process.

10.3 Datasets

In this work we use 4 datasets: IAM [13], Rimes [1], Rodrigo [18], and Bentham (2014 HTR

competition) [17] collections. Each dataset is composed of a number of line images with

corresponding ground truth transcriptions.

Rodrigo is a single author, 853 page Spanish manuscript written in 1545 with 20000

segmented line images. We used the first 750 pages as training data, the next 50 pages as

validation data, and the remaining pages as test data. The annotations contain some meta

information that we preprocessed to exclude. Some examples of this include symbols that

indicate that whitespace should be inserted or deleted for correctness, i.e. the manuscript

author did not conform to modern usage of whitespace.

The Bentham collection are the writings of the English philosopher Jeremy Bentham

(1748-1832), though some images may be handwritten copies of his works produced by oth-

ers [17]. For preprocessing, we deskewed the line images and performed height normalization.

For IAM, we use the standard split, merging the two defined validation sets. For Rimes, there

is only a defined train/test split, so we used a subset of the training data for a validation set.

Each image collection has different low level differences (e.g. color, texture), so we

opted to binarize each dataset to eliminate those differences. This allows our analysis to

focus on adapting to salient differences in language and style rather than on adapting to low

level domain differences. For IAM, Rimes, and Rodrigo, we used Otsu binarization [15] but

for Bentham, we used adaptive Wolf binarization [24] because it produced visually better

binarizations.

To train the LMs for each dataset used in most experiments, we used the transcriptions

of the training data. Though this corresponds to having an optimal LM for hybrid training,

we also explore using LMs trained on unrelated data. For these LMs, we sampled 50000
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sentences from the United Nations proceedings subset of the Europarl machine translation

dataset [11] in Spanish, English, and French.

To obtain the character classes predicted by our models, we take the union of the

character sets of each dataset. Because of this, during source model training, the classifiers

output distributions over all characters, not just those characters contained in the source

dataset. This way if the target dataset has additional characters, we do not need to modify

the classifiers before hybrid training.

10.4 Experimental Results

In the following experiments, we use the following protocol. For source models, we trained

4 models for each dataset for 10 epochs using the ADAM optimizer to perform weight

updates [10]. We then selected the best model using the Character Error Rate (CER) on

the validation set after performing LM decoding using the dataset-specific LM. All reported

numbers for source models are on the designated test splits for each dataset. These source

models were used as the initial models in all hybrid training experiments, except where noted.

For hybrid training, we also trained 4 models where each hybrid model is initialized

with the weights learned on the source dataset. Hybrid models are trained for approximately

12000 weight updates using mini-batches of 8 images, where mini-batches contain both source

and target images. To report metrics, we select the best model based on the validation set

for the target data and then evaluate this model on the target data. While in practice this is

not feasible because target data would not have ground truth transcriptions, this allowed us

to fairly compare different methods of hybrid training. We leave a method for selecting the

best model without using ground truth as future work.

10.4.1 Source Model Evaluation

Table 10.1 shows the CER of source models when evaluated on each dataset. As expected,

source models obtain low CER when the test data matches the training data and high CER

226



Table 10.1: CER of source models evaluated on each dataset.

Test Data

Bentham IAM Rimes Rodrigo

T
ra

in
D

at
a Bentham 4.7 45.5 43.3 26.1

IAM 27.8 8.4 16.1 24.3

Rimes 35.0 24.6 4.9 34.4

Rodrigo 69.5 67.0 67.1 6.8

when there is a mismatch. Though this result may be obvious, it demonstrates the need for

our hybrid training methodology in order to transfer models from one language to another.

We also note that even though IAM and Bentham are both English datasets, models trained

on one do not perform well on the other and have need of transfer learning.

The CERs obtained are competitive when compared with previous results reported in

the literature. For example, [3] reports CER of 3.9 and 3.8 for IAM and Rimes respectively,

while we achieve 8.4 and 4.9 CERs. In [7], a CER of 3.0 is reported on the Rodrigo dataset,

though this number is not directly comparable to our reported results because they use a

different data split and transcription preprocessing. Additionally, we binarized our data

for transferability and generally CNN-BLSTM models perform better when using grayscale

inputs. The best CER on Bentham reported in the 2014 ICFHR HTR compeition is 5.0 for

the restricted track [17]. Also, our reported numbers are on source models that have not

trained to convergence (this improves hybrid training) but further training of the source

models produces 1-2% lower CERs.

10.4.2 Hybrid Training

In hybrid training, we varied 4 factors to gain a better understanding of the sensitivities of

the method:

• Length of source model training time

• Proportion of source and target data
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Table 10.2: CER of hybrid trained models for all language pairs across a variety of experimental
settings.

Experimental Conditions Source: Bentham Source: IAM Source: Rimes Source Rodrigo
Source LM LM Amount Transfer to Transfer to Transfer to Transfer to Avg.
Epochs data w / α Source IAM Rim. Rod. Ben. Rim. Rod. Ben. IAM Rod. Ben. IAM Rim. (no Rod.)

10 Train 0.4 / 0.5 50% 9.2 7.3 12.0 8.2 6.3 13.0 8.8 8.2 12.6 64.5 77.2 35.1 8.0
50 Train 0.4 / 0.5 50% 9.8 7.5 13.3 8.6 6.3 13.5 9.3 8.4 13.4 70.3 74.3 70.1 8.3
10 Train 0.4 / 0.5 75% 9.3 7.6 13.2 7.5 5.7 12.1 9.4 7.8 12.8 59.4 64.7 33.4 7.8
10 Train 0.4 / 0.5 25% 10.7 7.8 13.1 9.3 6.3 11.9 8.5 8.7 12.6 71.8 73.8 37.5 8.6
10 Train 0.8 / 0.4 50% 12.1 8.1 100.0 8.2 6.7 97.0 8.9 8.9 13.5 67.2 80.1 18.3 8.8
10 Train 1.2 / 0.3 50% 30.8 9.3 91.7 11.1 7.2 79.1 10.3 12.4 96.0 66.7 74.1 11.1 13.5
10 None - 50% 54.3 69.4 38.4 27.3 17.4 27.0 58.7 22.1 44.4 100.0 84.4 98.4 41.5
10 Europarl 0.4 / 0.5 50% 32.6 80.5 85.8 13.4 12.0 23.6 20.7 18.6 36.8 99.8 99.1 99.8 29.6
Source Model - no Hybrid Training 45.5 43.3 26.1 27.8 16.1 24.3 35.0 24.6 34.4 59.5 67.0 67.1 32.1

• Data used to train the LM

• The w and α LM parameters

Table 10.2 shows the CER after hybrid training for all language pairs for all experimen-

tal settings. Here we explain the column semantics of Table 10.2. Source Epochs indicates how

long source models were trained before hybrid training began. We also varied the data used

for LM training - either the ground truth training set transcriptions, Europarl corpus subset,

or no LM was used. The next 2 columns respectively indicate the LM hyperparameters and

percentage of source data used in hybrid training. Remaining columns indicate Source-Target

dataset pairs, where the first header row indicates the source language with target languages

listed below. For example, the first data column is Bentham as the source with IAM as the

target. The last column shows the average performance of the 6 language pairs involving

Bentham, IAM, and Rimes. For this average, we excluded Rodrigo because of the extremely

high CERs of unsuccessful transfers, which would dominate the average. For comparison, the

last row shows performance of the source models before hybrid training, i.e. the off-diagonal

entries of Table 10.1.

Considering the first 4 rows of Table 10.2, pairwise transfers between Bentham,

IAM, and Rimes are extremely successful, achieving CERs near to those obtained with full

supervised training in some cases. It is interesting that while these three datasets can transfer

to Rodrigo with CERs of about 13%, the reverse is not true. Only Rodrigo to Rimes hybrid

training managed to significantly improve the CER over the source model, achieving 11.1%
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(a) Bentham (b) Rimes (c) IAM

Figure 10.2: LM parameter search visualized as a heatmap of resulting CER. We used the
IAM source model and evaluated on Bentham, Rimes, and IAM validation sets for many
values of α,w. For Bentham and Rimes, the optimal α ≈ 0.5, w ≈ 0.4. For IAM, the optimal
α = 0.3, w = 1.2.

CER under one set of experimental conditions, though this language pair appears sensitive

to variations in experimental conditions.

When the source model is trained to convergence, i.e. trained for 50 epochs instead of

10, CER on the source data improves by about 1-2% (data not shown), but the CER after

transferring increases for all language pairs except one. The average CER increases by 0.3%.

This is because after training for so long, the models can overfit the source data and may

have difficulty unlearning factors unique to the source dataset.

Next we examined what proportion of source and target data is used during hybrid

training. Overall, using 75% source data produces an average CER of 7.8% vs 8.0% for equal

proportions and 8.6% for 25% source data. We also note that the optimal percentage of

source data varies by language pair. Because the target labels provided by the LM are not

always correct, the model can diverge if it is presented with too many poor quality target

labels. Source data helps stabilize hybrid training, so using a larger proportion of source data

may make training more stable.

Next we examined the LM parameters w and α used for LM decoding (Eqs. 10.2,10.3).

We determined our default values of w = 0.4 and α = 0.5 by cross validation to optimize

the CER of source models evaluated on the datasets that they were not trained on (i.e., the

off-diagonal entries of Table 10.1). For example, Fig. 10.2 shows heatmaps for the source IAM
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model evaluated on Bentham and Rimes. When evaluating the IAM model on Bentham or

Rimes, we see better performance when w ≈ 0.4 and α ≈ 0.5, but when we evaluate on IAM,

w = 1.2 and α = 0.3 perform best. We saw a similar trend when evaluating the Bentham

source model on the other datasets.

A similar trend also holds for hybrid training. Our default parameters of w = 0.4,

α = 0.5 achieved an average CER of 8.0%, which is lower than 8.6% with w = 0.8, α = 0.4

and 13.5 with w = 1.2, α = 0.3. Also, transferring to Rodrigo becomes unsuccessful when

using these alternate parameters. However, it is interesting that these parameter settings

greatly improve transfer from Rodrigo to Rimes (achieving 18.3 and 11.1 CER). Thus the

optimal LM hyperparameters vary based on the language pair, and unfortunately, they cannot

be estimated by cross validation in a real setting as cross validation relies on the ground

truth for the target language.

We conclude our experiments by varying the data used to train the LM. If we do not

apply LM decoding during hybrid training (or equivalently use a LM where all sequences

of characters are equally likely), we see that some language pairs improve over the source

model performance, though some do not improve or get worse. When we use the Europarl

trained LMs, we see degraded performance with respect to the LMs trained on the dataset

training sets, but this is expected to some degree. The Europarl corpus uses very formal

language, and the modern Spanish is very different from the historical Spanish used in the

1545 Rodrigo manuscript. Transferring Bentham to IAM and vice versa, using the Europarl

English LM greatly improves CER compared to using no LM at all. The same is also true

for IAM and Rimes.

10.5 Conclusion

In this work we proposed a methodology that trains HWR on a target language without using

any labeled data in that language. It does so by leveraging labeled images in a closely related

source language and a language model in the target language. After training a source model,
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we train on both the source and target data, inputting target labels using the current model

predictions decoded by the LM. We demonstrate that our approach is successful on many

pairs of languages using the IAM, Rimes, Bentham, and Rodrigo datasets. We explored the

design choices of our hybrid training approach and make conclusions about the LM training

data, LM hyperparameters, amount of source data in hybrid training, and length of source

model training.
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Chapter 11

Conclusion, Contributions, and Future Directions

This dissertation has presented several proposed deep learning models to solve a variety

of problems in the field of document image analysis. The document analysis community

has shown that in many instances, taking an off-the-shelf deep model and finetuning it on a

document related task often outperforms handcrafted approaches. However, such models are

not designed for the domain of document analysis due to the unique properties of document

images. The models proposed in this dissertation have been designed for their respective

tasks and outperform their off-the-shelf counterparts.

We briefly review the contributions of the dissertation. Chapter 2 presents an up-to-

date review of historical document image binarization. A novel FCN architecture and loss

function for binarization is proposed in Chapter 3. Generating realistic synthetic data for the

purpose of training deep networks for binarization is the subject of Chapter 4. Chapters 5

and 6 both propose models for segmenting documents from their surrounding background, and

Chapter 7 deals with table structure decomposition. Chapter 8 is a detailed empirical study

of deep networks for document image classification. Chapter 9 presents a state-of-the-art

model for font recognition. Transfering a handwriting recognition model between languages

is the subject of Chapter 10.

This dissertation concludes with a discussion of future research directions.

236



11.1 Directions for Future Research

While this dissertation explores a number of different problems in document image analysis,

there are several overall directions for future research.

One approach would be to keep refining deep learning models to be better suited

for each document related task. This is one of the focal points of this dissertation and the

body of this work has shown that such an approach leads to improved performance. For

example, including the textual content of a document for classifying page images with CNNs

(Chapter 8) is likely to improve performance, but the best way to fuse the language and

image modality is the subject of active research. In binarization, combining deep models with

some of the other proven techniques is a promising direction to pursue. For example, none of

the deep models reviewed in Chapter 2 perform image preprocessing. These deep models are

trained to directly classify pixels, but instead training them to predict local thresholds could

lead to smoother output images, explainable decisions, and improved performance.

There are also a large number of document understanding tasks that this dissertation

has not covered. Such tasks include, among others,

• Bleed-through detection and removal

• Document dewarping

• Coarse segmentation of the document into paragraphs, tables, figures, etc

• Fine segmentation into text lines and words

• Vector graphics and figure recognition

• OCR

• Language identification

• Writer identification

• Word spotting and document indexing/retrieval
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While some deep models have been proposed for many of these tasks, continuing to adapt the

learning models to such tasks and their domains of interest is a subject of on-going research.

While proposing new models to solve individual tasks has lead to large improvements,

in practice, few of these tasks are actually solved in isolation. In real word systems, these

tasks need to be performed in sequence (e.g. binarization, segmentation, then recognition)

and errors made in previous steps affect the performance of all the down stream processing

steps. What deep models enable is end-to-end learning, where the errors made by later models

can be fed back to improve earlier models. One example of this is the Start-Follow-Read

model, where one model localizes the start of text lines, another model performs text line

dewarping, and the last model performs recognition on the dewarped handwriting [1]. The

recognition errors from the last model are used to improve both the start of line localization

as well as the dewarping performed.

There are many other such sets of related tasks that can help inform each other’s

performance. Identifying the language, script, and font of text can aid in character and word

recognition, but the errors made in recognition can be informative for training language or

font identification models. Both text line segmentation and page localization (Chapters 5

and 6) can inform text binarization by removing background noise far from text. The majority

of false positive errors made on the DIBCO 2018 dataset are due to the surroundings of the

document rather than the document noise. End-to-end learning of such tasks could improve

performance on each component task, but has been relatively unexplored in the literature.

Multi-task learning is another way to pool information across tasks without chaining

their inputs and ouputs together. For example, a model that simultaneously predicts text

binarization and scribal script classification might learn to make script classification decisions

based more on character shapes learned from binarization rather than the correlated noise

factors analyzed in Chapter 9. Joint learning of writer identification and handwriting

recognition might lead to handwriting recognition that learns to correctly transcribe a wider
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variety of handwriting styles. The examples of pairs of tasks suitable for multi-task learning

are numerous.

One of the key issues of improving deep learning systems in document analysis is the

lack of large sets of richly labeled data. While end-to-end learning and multi-task learning

allow for data from other tasks to be used and are a partial solution to this problem, the

reality is that most document analysis datasets are small. This is in part because the need

for large training sets for deep models is relatively new. One broad avenue for creating larger

datasets is to create large synthetic datasets using unsupervised learning. Chapter 4 explored

this direction for binarization for historical documents, where the difference between synthetic

and real data mainly is in the local noise distributions. Such low level modeling is relatively

easy to perform using current deep convolutional models, but generating realistic synthetic

data for higher level tasks, such as realistic layouts for segmentation or character recognition,

may prove more challenging.
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