
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-07-01

An Algorithm for Symbolic Computing of Singular
Limits of Dynamical Systems
Dane Jordan Bjork
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Bjork, Dane Jordan, "An Algorithm for Symbolic Computing of Singular Limits of Dynamical Systems" (2018). All Theses and
Dissertations. 6948.
https://scholarsarchive.byu.edu/etd/6948

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F6948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6948?utm_source=scholarsarchive.byu.edu%2Fetd%2F6948&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


An Algorithm for Symbolic Computing of Singular Limits of

Dynamical Systems

Dane Jordan Bjork

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Sean C. Warnick, Chair
Mark K. Transtrum

Michael Jones

Department of Computer Science

Brigham Young University

Copyright c© 2018 Dane Jordan Bjork

All Rights Reserved



ABSTRACT

An Algorithm for Symbolic Computing of Singular Limits of
Dynamical Systems

Dane Jordan Bjork
Department of Computer Science, BYU

Master of Science

The manifold boundary approximation method, MBAM is a new technique used in
approximating systems of equations using parameter reduction. This method and other
approximation methods are introduced and described. Several current issues in performing
MBAM are discussed in further detail. These issues significantly slow down the process of
MBAM and create a barrier of entry for those wishing to use the method without a strong
background in mathematics. A solution is proposed to automatically reparameterize models
and evaluate specific types of variables approaching limits – significantly speeding up the
process of MBAM. An implementation of the solution is discussed.

Keywords: Approximation, Automation, Parameter Reduction, MBAM
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Chapter 1

Introduction

Models and computational simulations are growing in their capabilities to emulate real

world behaviors [16]. These systems can take various shapes and sizes. For example, systems

biology research to understand the dynamics of the musculoskeletal system [9] or cellular

pathways [12, 13] is being used to understand and improve treatments for various disabilities.

Other examples include behaviors as detailed as molecular dynamics [10, 22], or as broad as

economics [2], human behavior [4], and climate changes [17]. These models are often built

by combining many microscopic details. While building models with this constructionist

approach can yield effective results, complications can arise such as the cost of computational

power, difficulty fitting the model to data [20], or even numerical instabilities [1].

Typically, model classes of complex phenomena are described by parameterized sets of

equations. Often, these are differential equations and the complexity of the set is characterized

by the number of parameters used to distinguish one model in the set from another. Varying

the values of these parameters lead to different error values on the observed data. Having too

few parameters leads to higher error costs, while too many parameters leads to inaccurate

predictions. An accurate model, therefore, requires a sufficient number of parameters to best

fit the data and properly predict the behavior. Moreover, deriving smaller, simpler systems

grants a researcher the ability to understand key aspects to different behaviors of her nominal

system [7].
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Figure 1.1: The Manifold Boundary Approximation Method has been used previously to
reduce a complex systems biology network, the Wnt pathway. As seen above, the final results
reduced a complex network to a fairly simple model still capable of capturing the observed
dynamics of the complex system.

1.1 The Manifold Boundary Approximation Method

The Manifold Boundary Approximation Method, MBAM, is a new approximation method

based on information geometry. Note that a set of systems, in this work, is defined as a set of

equations with unspecified values for the parameters. A single system is defined by a choice

of parameter values within a set of systems. This method is capable of iteratively reducing a

set of systems with each iteration returning a simplified set of systems containing one less

parameter than the previous. These new set of systems reveal the emergent behavior that

can be hidden in the larger sets of systems [18]. The more parameters a system has, the more

useful MBAM can be. As the number of parameters increase, the model often becomes more

sloppy. Sloppiness is a characteristic of a model to have an insensitivity to large variations of

certain parameters and extreme sensitivity to other stiff parameter combinations. Sloppiness

of models is a strong driving force for the methodology of MBAM. The sloppy behavior of

parameters can be shown in the eigenvalues of the Hessian (second derivative) matrix of the

observation function. The eigenvectors of the Hessian with small eigenvalues are the sloppy

directions, and the parameters to remove first from the model.

2



There are three requirements which need to be met in order to preform MBAM on a

system. First, the model must be formulated as a parameterized statistical model. Second,

the system must be twice differentiable with respect to its parameters. Third, the effective

dimensionality of the modeled behavior must be much less than the number of parameters

[19]. These requirements often occur naturally when creating models, making MBAM a very

versatile tool in approximation. The fundamentals of MBAM are discussed in further detail

in Sec. 2, with an example of MBAM’s workflow found in Sec. 2.4.
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Chapter 2

An In-Depth Overview of MBAM

MBAM uses information geometry to approximate sets of systems. This section goes

into a deeper background on the information geometry terms necessary to understand MBAM.

This includes the model manifold, what the boundaries of the model manifold represent, and

how those boundaries are approached using geodesic calculations. Finally, the difficulties in

using MBAM are discussed.

2.1 The Model Manifold

The objective of a learning problem is to find a system, out of a set of systems, that best fits

data according to a norm. Each of the individual systems is chosen from the set of systems

by using different values for its parameters. The model manifold characterizes this entire

set of systems. In both sections of the problem formulation it is assumed that the model

manifold is given:

f : RN → RM ,

where f is a map from parameters, θ ∈ RN , to a point in “data space”, RM . To better

understand what is encompassed in the model manifold, two examples are given.

Example: Exponential Decay

The exponential decay model leads to a natural understanding of the model manifold. Given

an original set of systems following the form in Fig. 2.1, a model manifold can be created.

To find the manifold, the solution of the system must first be calculated.

4



Original Set of Systems[
ẋ1
ẋ2

]
=

[
−θ1 0

0 −θ2

] [
x1
x2

]

y =
[
1 1

] [x1
x2

]

Solution

y(t) = e−θ1tx1(0) + e−θ2tx2(0)

with x1(0) = x∗1, x2(0) = x∗2

System Solutions for Values of θ

Figure 2.1: This solution represents an entire set of systems. To select a single system, one
must choose values for θ1 and θ2. These individual systems can then be characterized by
their values at specific times, t1, t2, and t3. This characterization can be found for any choice
of θ1 and θ2. Finding and plotting this characterization for every choice of θ1 and θ2 creates
the model manifold.

The model manifold for y(t) = e−θ1tx∗1 + e−θ2tx∗2

or, equivalently the set of systems in at t1 = 1, t2 = 2, t3 = 3.

Figure 2.2: This manifold is a mapping f : RN → RM , where N is the number of parameters
in the system, and M the number of time points used to characterize the system. These time
points are often the time values for which the user has data. The model manifold’s shape is
independent from the data points used, although, there must be a sufficient number of data
points. Each system solution for any value of θ ∈ RN is represented by an individual point
on the model manifold – giving a geometric representation of the entire set of systems.

Example: Enzyme Reaction

Using the nonlinear dynamics of an enzyme reaction, an explicit solution can be acquired of

the form:

y(t, θ) =
θ1(t

2 + θ2t)

t2 + θ3t+ θ4
(2.1)

5



Again, it can be seen that this represents a set of systems, parameterized by the values

θ = {θ1, θ2, θ3, θ4}. In this example, all four parameter values could be varied to create a

four-dimensional manifold, however, for visualization purposes only two values will be varied.

The same principles of the four-dimensional manifold apply to this two-dimensional manifold.

An original set of models parameterized by
θ. Each curve is a system defined by various
values for θ3 and θ4. With M data points, t1,
t2, and t3, each curve can be characterized as
a mapping from the two parameter values to
its values at the three times.

There are two parameters varied at three
times which will create a two-dimensional
manifold embedded in a three-dimensional
space, f : R2 → R3. Notice how the colored
curves in the first image map to individual
points on the manifold.

Figure 2.3: These figures show the transition from a common view of a set of systems, i.e. a
set of curves in a two dimensional plane, to a model manifold mapped into data space.

2.2 Manifold Boundaries

Figure 2.4: Close-up view of a corner on an example model manifold [19]. Starting at some
initial N parameter values, as seen in red, the model can be pushed toward a boundary. This
boundary, as seen in green, characterizes a new set of systems where one of the N parameters
has reached a value of zero, and now contains N − 1 parameters. Furthermore, another set of
systems containing N − 2 parameters can be defined by pushing the new set of systems to a
corner. Thus each boundary represents a single parameter reaching zero.

6



When using MBAM, it is assumed only bounded model manifolds will be used, (i.e.

the entire model manifold fits inside a large enough, but finite, sphere). Notice that parameter

values corresponding to points on the boundaries of the model manifold are approaching

a limit at zero or infinity. This can be seen in the blue curve with θ3 and θ4 approaching

zero as seen in Fig. 2.3, and the blue point representing that curve is found on a corner – or

the intersection of two boundaries – of the model manifold. These boundaries can be found

starting at any point on the model manifold through the calculation of a geodesic. Calculating

the geodesic is a solved problem that returns the values of the parameters approaching a

boundary and the direction those parameter values are moving. These results allow the user

to identify which parameters are approaching limiting values. Once the those parameters and

the corresponding limits are understood, the system must be reorganized in such a way that

when these limits are evaluated the system dynamics are not lost, yet the system contains

one less parameter. This new set of systems with N − 1 parameters now corresponds only to

the boundary of the original model manifold.

2.3 The Geodesic

Traversing the model manifold in an efficient manner is a solved problem which uses the

calculation of a geodesic. Geodesics are a generalization of straight lines for curved surfaces

and can be specified with an initial point on the model manifold and a direction [19].

Parameter values can be calculated from the points along a geodesic. Therefore, as a geodesic

is calculated towards a boundary, the parameter values moving towards that boundary can be

returned. The geodesic may never reach the boundary of the manifold, however, the boundary

it is heading towards can be inferred by evaluating the parameter values and observing their

evolution along the geodesic.

The parameter values can be calculated as the geodesic is traversed. These parameter

values lead the user to understand which parameters are approaching which limits. In

Fig. 2.5, it can be inferred that θ2 is approaching infinity. In practice, moving along the

7



[
θ1
θ2

]
=



[
.5

2.5

]
at τ0

[
.49

4.02× 1010

]
at τi

[
.49

∞

]
at τc

Figure 2.5: The geodesic uses a different coordination system than simply varying parameter
values. However, the parameter values can be found as the geodesic is calculated. As the
initial point of the geodesic moves towards a boundary at τc, at least one parameter value
will approach a limit.

geodesic returns a larger set of parameter values in which case the inference of the parameters

approaching their limits is fairly obvious. Therefore, as τ approaches τc, some parameter

values will approach limits. Upon evaluating those limits, τc is reached and the manifold

boundary is revealed.

2.4 Using MBAM

The focus of this thesis is increasing the speed and usability of the manifold boundary

approximation method. This will be done by developing an algorithm for automating the

pieces of MBAM that remain arduous in the current workflow. MBAM’s workflow is found

in Fig. 2.6 and is shown as a loop, where each iteration through this loop outputs a new set

systems containing one less parameter than the previous system. By removing one parameter

from the set of systems with each iteration, reduction on large sets of systems can grow

tedious or impossible to perform by hand. The following example further illustrates the flow

of MBAM.

To perform one cycle of MBAM, the following steps must be followed as shown in Fig.

2.6:

1. Initialize a model.

8



2. Calculate the geodesic on the model.

3. Infer the parameter limits from the geodesic.

4. Define a new set of parameters from the original parameters and the inferred geodesic

limits.

5. Plug the new parameters into the system.

6. Symbolically evaluate the limits on the system to return a new system containing one

less parameter.

Figure 2.6: The major steps for approximating a computational model with MBAM. A new
system fi is created for each iteration, having one less parameter than the input system fi−1.
Systems are represented by fi and the parameters are represented by θ.

2.4.1 MBAM Flow Example

Step 1 - Initialize Model

To begin approximation using MBAM, the initial system f0 must be defined. This system

must meet three requirements [19]:

1. The model must be formulated as a parameterized statistical model.

2. The system must be twice differentiable with respect to its parameters.

3. The effective dimensionality of the modeled behavior must be much less than the

number of parameters.

9



In this example, the set of systems Eq. 2.2 are given from the dynamics of the

Michaelis Menten Reaction. While this system may not have a much higher dimensionality

of the modeled behavior with respect to the number of parameters, its simplicity aids in

understanding this process.

ẋ = − θ1x

θ2 + x
(2.2)

(a) This initial set of equations corresponding
to Eq. 2.2. Each curve represents an indi-
vidual system with different value choices for
the parameters θ1 and θ2.

(b) The model manifold corresponding to Eq.
2.2. For each curve in Fig. 2.7a there is a sin-
gle point on this manifold. This is highlighted
with a colored curve and its corresponding
point on the model manifold highlighted the
same color.

Figure 2.7: It is often the case that the user of MBAM does not create figures similar to Fig.
2.7a & 2.7b. However, they are helpful for understanding the underlying mechanisms that
drive MBAM.

Now that the model manifold, f : RN → RM , has been created, a geodesic can be

calculated to understand which boundary will be used to approximate the system. In practice

the time stamps, t1, t2, and t3 will be associated with the time points at which data exists for

the model. Because the number of time points will be greater than the number of parameters,

the collected data point will always be a higher dimensionality than the model manifold.

This difference in dimensionality often causes the point in data space representing the data

to lie off the model manifold. This can easily be seen if the model is incapable of fitting the

data perfectly – showing that no parameter combination in the set of systems can reach the

data. Therefore, better fits in parameter values will naturally approach boundaries.

10



Step 2 - Calculate the Geodesic

In order to approach boundaries on the model manifold the geodesic will be calculated. The

work for computing geodesics is a previously solved problem [21]. Parameter values along the

geodesic can be calculated while the geodesic is traversing the model manifold towards the

boundary. Once calculated, graphs similar to those found in Fig. 2.8 would be created. In

which case, the user infers which parameter values are approaching which limits.

(a) As τ approaches τc, the value for θ1 grows
towards infinity.

(b) Plotting the values of θ1 vs θ2 reveal both
approaching infinity at an equal rate, showing
that the ratio of these two parameter values
become a new finite parameter value.

Figure 2.8: Example results from calculating the geodesic on Eq. 2.2.

Step 3 - Infer Parameter Limits

When the data from the geodesic has returned, it becomes the user’s responsibility to

determine which parameters are approaching which values. This is a fairly trivial step in

MBAM. As seen in Figures 2.8a & 2.8b, the data clearly shows that both θ1 and θ2 are

approaching their limits at infinity. In the case of this example, the set of parameters

θlim = {θ1 → ∞, θ2 → ∞}. While inferring parameter values approaching a limit from a

geodesic is currently left to the user, this process will be a fairly trivial process to automate.

Step 4 - Redefine the Parameters

Now the user has the original set of systems, Eq. 2.2, the original parameters, θ = {θ1, θ2},

and the set of parameters approaching a limit, θlim = {θ1 →∞, θ2 →∞}. With these three

11



inputs the new set of parameters, θ̃ ∈ RN , must be defined from θ such that one parameter

value is approaching zero while all other parameter values are finite.

For this example, one must understand that both θ1 and θ2 are approaching infinity

at the same rate. This allows for the user to first infer that a new parameter can be defined

as the ratio of those two values:

θ̃1/2 =
θ1
θ2
.

Thus, θ̃ can be initialized with θ̃ = {θ̃1/2}. Because |θ̃| 6= |θ| another parameter is necessary

for θ̃ to substitute θ in the original system. Knowing that the final parameter value must be

approaching its limit at zero, the parameter can be represented by the inverse of one of the

parameters approaching infinity. In this case

ε =
1

θ1
.

This gives the new set of parameters

θ̃ = {θ̃1/2, ε} =
{θ1
θ2
,

1

θ1

}
,

which is bijective with the original set of parameters, θ,

[θ1, θ2]
T = θ ↔ θ̃ = [θ̃1/2, ε]

T .

While this example is fairly trivial, as a set of systems increases in size, this process

quickly becomes non-trivial.

12



Step 5 - Evaluate f̃ = f(f−1
θ̃

(θ̃))

Now that θ̃ has a definition, the next step is to plug those parameter values in for the original

parameter values. To begin, solve for the original θ values using the values for θ̃:

ε =
1

θ1
⇒ θ1 =

1

ε

θ1,2 =
θ1
θ2
⇒ θ2 =

θ1
θ1/2

=
1

ε θ1/2

With these equivalences, the parameterization on the original set of systems, f̃ , can be defined

through simple substitution.

f̃ = f(f−1
θ̃

(θ̃)) =
−(1

ε
)x

( 1
ε θ1/2

) + x

Step 6 - Evaluate the Limit for ε

Evaluating limε+→0 f̃ is often a non-trivial process. In the case of this example, tricky

algebraic manipulation must be used in order to prevent division by zero. The trick used

here is simply multiplying the system by
ε θ1/2
ε θ1/2

= 1. This manipulation removes the error,

without having changed any of the system’s dynamics.

(ε θ1/2
ε θ1/2

) −(1
ε
)x

( 1
ε θ1/2

) + x
=
−θ1/2x

1 + ε θ1/2x

Finally, the limit can be evaluated as ε→ 0. This results in an approximated system which

contains one fewer parameters than the original

lim
ε→0

−θ1/2x
1 + ε θ1/2x

= −θ1/2x = f1.
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It is often the case that evaluating limε→0 f̃ causes algebraic errors which will need

symbolic manipulation to overcome. Thus, automating this process is also non-trivial.
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Chapter 3

Problem Formulation

MBAM is a very powerful tool in the world of approximation. Models with higher

numbers of parameters are typically more sloppy and can therefore use MBAM more effectively.

However, the methods used to preform MBAM are highly specialized. This creates a barrier

for those without a background in information geometry to preform MBAM. Sloppy models

are frequently found in the field of systems biology and were, in fact, developed by the field

[5, 6, 8]. With this barrier in place, few may be able to perform MBAM on their systems.

Therefore, in order for MBAM to be applied to various fields and be used to its fullest

potential, this barrier must be removed.

Even when the underlying methods for MBAM are understood, reducing a complicated

model takes a significant amount of time. Attempting to take singular limits by hand is very

time intensive due to the algebraic manipulations that must be performed with a large set

of equations such that the dynamics of the system are preserved. Solving these limits often

has a puzzle-like nature. As a set of systems grows into hundreds of differential equations

and thousands of parameters, or even larger, it becomes clear that taking these limits are

troublesome and even impossible for the user to preform by hand. The problem of singular

limits in MBAM is further described in this section and consists of redefining parameters and

evaluating the potential singular limit created by the parameter redefinition. By automating

the solution to this problem, MBAM can be more widely used and used more efficiently.
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3.1 Evaluating Singular Limits Automatically

3.1.1 Redefine Parameters

Given a model manifold (Sec. 2.1), f : RN → RM , and a specified boundary on that manifold

(Sec. 2.2) as often given through the results of a geodesic calculation (Sec. 2.3), find a change

of coordinates:

fθ̃ : RN → RN

such that the N th element of the new coordinate,

θ̃N = fθ̃(θ)N = 0 and ||θ̃|| <∞

for all points in the specified boundary.

3.1.2 Evaluate the Limit

Given a model manifold (Sec. 2.1), f : RN → RM , and fθ̃ as defined in Sec. 3.1.1, find an

analytic expression characterizing the boundary:

f(f−1
θ̃

({θ̃|θ̃N+ → 0})).

*Note that simply substituting in the θ̃ values for θ into the set of equations can lead

to division by zero or other intractable algebraic problems which must be resolved.

3.2 Solution Algorithm

The solution to problems found in Sec. 3.1.1 & 3.1.2 deal with evaluating the results of

a geodesic calculation on a given model. This chapter presents an algorithm capable of

evaluating geodesic results. Following chapters analyze that algorithm and its various

sub-algorithms.
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Algorithm 1 Evaluate A Given Limit on a Model

Input: L, a mapping of K parameters to their limits (Geodesic Results).
Input: MN , a full model containing N total parameters.
Output: MN−1, a full model containing N − 1 total parameters.
θ̃list ⇐ Reparameterize(L, M)
for θ̃ in θ̃list do
Mθ̃ ⇐ Substitute θ̃ into MN .
MN−1 ⇐ EvaluateEpsilon(Mθ̃)
if IsValid(MN−1) then

return MN−1
else
MV L ⇐ VariableLimit(Mθ̃)
MN−1 ⇐ EvaluateEpsilon(MV L)
if IsValid(MN−1) then

return MN−1
end if

end if
end for
return M

Chapter 4 discusses the first sub-algorithm dealing with redefining parameters and

solving the problem defined in Sec. 3.1.1. The second sub-algorithm is found in Chapter

5 and deals with solving the problem defined in Sec. 3.1.2 in which evaluating θ̃N+ → 0

is non-trivial. An implementation of this algorithm is defined in Appendix A, with that

implementation’s documentation found in Appendix B. Results returned from this algorithm

are found in Appendix C.

Note: the parameter referred to as θ̃N in the problem statement will be called ε in the

following chapters.
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Chapter 4

Redefining Parameters

Algorithm 2 Reparameterize

Input: L, a mapping of K parameters to their limits.
Input: MN , a full model containing N total parameters.
Output: θ̃list, a list of all potential valid reparameterizations.
Lkey ⇐ DefineLimitKey(L)
T ⇐ GetAllTemplates()
TF ⇐ FilterTemplates(Lkey, T )
εT , FT ⇐ FillTemplates(TF , L)
θ̃list ⇐ CreateFTildeList(εT , FT , L)
return θ̃list

4.1 Defining a Limit Key

A limit key is generated to filter out unnecessary templates. To generate this limit key, a key

legend is defined. The key legend is stored in the database and is a mapping from limit type

to key index. Because new limit types can be found through the process of MBAM having

an extendable method for filtering templates is necessary. Thus, the key legend must not be

hard coded and should be user-defined.

Key legends are best understood with an example. Given results from a geodesic

k1 →∞, k2 →∞,

and a key legend

{“zero” : 0, “infinity” : 1},
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the limit key can be defined

[Number of Zeros, Number of Infinities] = [0, 2].

However, if the key legend were

{“zero” : 1, “infinity” : 0},

the corresponding limit key for this geodesic result would be

[Number of Infinities, Number of Zeros] = [2, 0].

4.2 Getting Templates From Database

4.2.1 Motivation

As one works with MBAM, it becomes clear that the definition of fθ̃ has a repetitive nature,

leading to the idea that limits can be evaluated using templates. For example, when using

Michaelis-Menten models there are two commonly used pieces of the model. The first piece

is where enzyme A promotes enzyme B,

Ḃ =
(Btotal −B)Ak1
(Btotal −B) + k2

. (4.1)

The second piece is when enzyme A inhibits enzyme B,

Ḃ = − ABk1
B + k2

. (4.2)

For Eq. 4.1, a valid fθ̃ for the limit k1, k2 →∞ is:

ε =
1

k1
,
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K12 =
k1
k2
.

For Eq. 4.2, a valid fθ̃ for the limit k1, k2 →∞ is:

ε =
1

k1
,

K12 =
k1
k2
.

While Eq. 4.1 and Eq. 4.2 have different behaviors, the valid reparameterizations for these

two equations are the same for the given limit. In fact, these valid reparameterizations could

work in many other models types as well. While there are valid reparameterizations that

are repeated frequently, new valid reparameterizations can be found as new model types

are approximated with MBAM. Understanding this repetition leads to the idea of using a

template to represent fθ̃. These templates are stored alongside additional information in one

object refered to as a ??.

4.2.2 Template Objects

To automate the reparameterization process, valid reparameterizations are stored as template

objects. As the user finds new ways of defining reparameterizations, new template objects

are created and stored in the database. Template objects are composed of four pieces:

• Label

• Key

• Model Class

• Template

The label in the template object defines how the resulting parameter will be referenced

in the resulting model. If the template evaluates to a finite value, this label will be user

defined. If the template evaluates to zero, the label will be automatically recorded as ‘epsilon’.
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The key of the template object is defined using the template key found in Sec. 4.1.

The number of limit types in the given template is counted, and following the template key,

a key for the specific template object is created.

Model class refers to the type of model being reduced. As the number of template

objects in the database increases, this can act as an additional filter – preventing the algorithm

from using any template objects the user knows will not result in a valid model.

Finally, the template object contains the template. The template is a representation

of fθ̃ with place-holders for the parameters. Each place-holder corresponds to a limit type.

A template must contain at least one place-holder. A few template object examples follow

(infinity place-holders are represented by ∞i and zero place-holders are represented by 0i):

{label : ‘epsilon’, key : [0, 1], model class : ‘michaelis-menten’, template : 1/∞1}

{label : ‘epsilon’, key : [1, 0], model class : ‘michaelis-menten’, template : 01}

{label : ‘inf1 over inf2’, key : [0, 2], model class : ‘michaelis-menten’, template :∞1/∞2}
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4.3 Filtering Templates

Algorithm 3 Filter Templates

Input: Lkey, they key corresponding to the geodesic results.
Input: Mclass, the class of the current model.
Input: T , a list of template objects.
Output: TF , a list of all potential valid reparameterizations.
TF ⇐ Initialize an empty list.
for Template in T do

if Template Model Class == Mclass then
Valid ⇐ true
for Index in Lkey do

if Template Key > Lkey at the given Index then
Valid ⇐ false

end if
end for
if Valid then

Append Template to TF
end if

end if
end for
return TF

To speed up the reparameterization process, the algorithm automatically filters the

templates. Each template has a key corresponding to the limit key. If LK is the key for the

current limit and TK is the key for the template to be filtered, then TK will only be used if

TKi ≤ LKi ∀ i.
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4.4 Filling Templates

Algorithm 4 Fill Templates

Input: TF , A list of filtered templates.
Output: εT , a set of filled templates that evaluate to zero.
Output: FT , a set of filled templates that evaluate to a finite value.

for Template in TF do
Fill Template with All Possible Permutations of L.
if Template Name == ‘epsilon’ then

Add Filled Templates to εT .
else

Add Filled Templates to FT .
end if

end for

The parameter values fill the filtered templates. A single template can be filled by

different permutations of the parameters approaching their limit. These permutations are

then added to their corresponding set based on the template object label. There are two

groupings for filled templates: templates that evaluate to zero as the manifold boundary

is reached, εT , and templates that evaluate to a finite value as the manifold boundary is

reached, FT .

For the case where the geodesic returns the limits k1 →∞, k2 →∞, some valid filled

template sets would be:

εT =
{ 1

k1
,

1

k2

}
,

FT =
{k1
k2

,
k2
k1

}
.

4.5 Defining a List of Potentially Valid fθ̃

To have a valid reparameterization with K parameters approaching their limit, one parameter

must be chosen from the group of εT , and K − 1 parameters must be chosen from the FT .

Because different models can have varying structures, each combination following this form is

created from the filled template sets. Following along with the sets of filled templates εT and

FT defined in the previous section, each potentially valid fθ̃ would be:
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A: ε =
1

k1
, k1/2 =

k1
k2

B: ε =
1

k1
, k2/1 =

k2
k1

C: ε =
1

k2
, k1/2 =

k1
k2

D: ε =
1

k2
, k2/1 =

k2
k1

4.6 Substituting fθ̃ Into the Model

To substitute fθ̃ into the model, the limit parameters will need to be solved for within fθ̃. This

evaluation is results in f−1
θ̃

, which only contains the new parameters. Each limit parameter

will correspond one to one with a value in f−1
θ̃

. Using A from the example in Sec. 4.5, the

f−1
θ̃

can be defined as

A: k1 =
1

ε
, k2 =

1

εk1/2
.

Once in this form, simply substituting these values for the parameters currently in the model

prepares the model to be evaluated as the limit of ε→ 0.

4.7 Algorithm Analysis

Each template will have Ti ≥ 1 parameter spaces to be filled. Those spaces are filled with

every possible permutation of limit parameters K ≥ 1. The total possible permutations of

filled templates is calculated with

Tf =
K!

(K − Ti)!

The templates are sorted into two groups, ε-templates and finite-templates. Each of those

groups are then filled creating a total number of filled templates for each group. Ef represents

the total number of filled ε-templates. Ei represents the number of parameter spaces to be
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filled for a given ε-template. EN is the number of ε-templates to be filled. Tf represents the

total number of filled finite-templates. Ti represents the number of parameter spaces to be

filled for a given finite-template. TN is the number of finite-templates to be filled.

Ef =

EN∑
i=1

K!

(K − Ei)!

Tf =

TN∑
i=1

K!

(K − Ti)!
.

A potential reparameterization is composed of one filled ε-template and K − 1 filled finite-

templates. This gives a total of potential reparameterizations of

Ef

(
Tf !

(K − 1)!(Tf − (K − 1))!

)
,

after substituting in Tf and Ef into the above equation, it is clear that the worst-case

complexity bound is O(K!).

4.7.1 Analysis of Real Use

While the worst-case complexity bound of this algorithm is very inefficient, there are several

reasons why this algorithm is still able to be computed quickly. Those reasons include:

• The geodesic often results in only a handful of parameters approaching limits, which

places a constraint on K.

• The number of known templates is currently small. Even as this number grows, the

templates are filtered by model type. Therefore, EN and TN are often constrained.

• Most templates contain a small amount of parameter spaces to be filled. Thus, Ei and

Ti are often constrained.

• The algorithm is terminated early if one potential reparameterization successfully

approximates the model.
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Figure 4.1: This algorithm terminates early if any potential reparameterization successfully
approximates the model. This figure shows how one limit and two templates can create
four possible reparameterizations (A, B, C, D). Each of these reparameterizations can
evaluate to different models. However, notice how these models are all equivalent. Noting
this equivalency, the algorithm would terminate after a single attempt, resulting in a model
that would be equivalent to using any of the other reparameterizations.
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Chapter 5

Evaluating the Limit

5.1 Evaluation

Once the model has been reparameterized, evaluating the limit as ε→ 0 is trivial. Evaluating

this limit does not mean that the resulting model fully characterizes the boundary of the

model manifold designated by the limits. Checking that the resulting model characterizes

this boundary cannot currently be proven and lies outside of the scope of this thesis.

In this algorithm several conditions must be met after evaluating the limit as ε→ 0.

Meeting these conditions give a high confidence that the resulting model fully characterizes

boundary. The conditions are:

• The model contains N − 1 parameters.

• All the K limit parameters are no longer found in the model.

• All values are finite within the model.

• There are no ε values remaining in the model.

These conditions were defined using previous experiences with MBAM and correctly charac-

terizes the manifold boundary for a majority of the limits tested. If any of these conditions

are violated it is known that the model is not valid. However, some invalid models may pass

all of these conditions. When reparameterization of the model fails any of these conditions, it

is often the case that one of the variables is also approaching a limit. These limits depend on

the context of the reparameterization and are not determined or inferred by the geodesic.

In this solution, several types of variable limits are evaluated. The first limit occurs when

27



the variable is approaching zero. These are often referred to as singular limits. The second

limit occurs when the variable is approaching infinity. In either case, the variable and ε

are combined to create some new finite and non-zero variable at the limit. In a third case,

equations are combined to isolate the singular limit behavior within a variable. Each of these

variable limits will be further examined as they appear in the evaluation algorithm.

Algorithm 5 Evaluate Variable Limits

Input: Mθ̃, a full model with N parameters substituted with θ̃.
Output: MV L, a model with the variable limit evaluated.
MDAE ⇐ ToDAE(Mθ̃)
εterms ⇐ FindEpsilon(MDAE)
M̃DAE ⇐ CheckLimitZero(εterms, MDAE)
M̂DAE ⇐ CheckLimitInfty(εterms, M̃DAE)
MV L ⇐ CombineVariables(εterms, M̂DAE)
return MV L

5.1.1 Example

To illustrate the issue of singular limits, consider a simple system of two chemical reactions

where chemical concentration for species 1, x1, is converted into the concentration of species

2, x2, at a rate kf , and x2 is converted back into x1 at a rate kr giving the equations:

ẋ1 = −kfx1 + krx2,

ẋ2 = kfx1 − krx2.

In this model, it is possible for the geodesic to return the limits kf , kr → ∞. With the

templates:

ε =
1

∞1

=
1

kf
,

finite =
∞1

∞2

=
kr
kf

= K.
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The reparameterization for the model would be:

ẋ1 = −x1
ε

+
Kx2
ε
,

ẋ2 =
x1
ε
− Kx2

ε
.

When the limit ε→ 0 is evaluated, the final model is:

ẋ1 = −∞,

ẋ2 =∞.

This evaluation is not successful because the new model violates two conditions: not all values

are finite, and the new model contains less than N − 1 parameters. To evaluate this limit

successfully, the variable limit evaluation algorithm as found in Algorithm 5 must be applied

before evaluating the limit ε→ 0. The following sections explain each step of this algorithm.

5.2 Transforming an ODE to a DAE

It is possible that these singular limits occur in either an ordinary differential equations

model, ODE, or a differential algebraic equations model, DAE. Combining equations with a

DAE model is significantly easier. Different functions are used when solving either a DAE or

an ODE model. Those functions include:

Functions Found in an ODE

• Inputs

• Observations

• Right-Hand Side Equations

• Initial Conditions

Functions Found in a DAE

• Inputs

• Observations

• Residual Equations

• Initial Conditions

• Initial Condition Derivatives
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Converting from ODE to DAE is a trivial process. The right-hand side functions in

the ODE are of the form:

ẋ = f(x, θ).

DAE residual functions are very similar. They are of the form:

0 = f(x, θ, ẋ).

The DAE’s residual functions can be found by subtracting the derivative from both sides of

the ODE right-hand side function. The initial condition derivatives for the DAE model are

created from an ODE by substituting the variables in the right-hand side functions with its

initial conditions. They follow the form:

icd = f(x0, θ).

After defining the residual functions and the initial condition derivatives, an ODE is success-

fully converted to a DAE. To proceed in evaluating the singular limit example, Eq. 5.1.1 will

be converted to a DAE of the form:

0 = −x1
ε

+
Kx2
ε
− ẋ1,

0 =
x1
ε
− Kx2

ε
− ẋ2.

5.3 Finding Epsilon

The residual equations found within the DAE only need to be manipulated if they contain

ε. In this section an algorithm is defined to find the equations ε exists in. It also returns a

list of the terms within that equation where ε is found. Terms are defined as parts of the

equation separated by linear operators. Algorithm 9 describes the process of creating the

mapping from equation index to ε terms. The mapping for Eq. 5.2 would be:
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{
0 :

[
− x1

ε
,
Kx2
ε

]
, 1 :

[
x1
ε
,−Kx2

ε

]}
. (5.0)

Algorithm 6 Find Epsilon

Input: MDAE, A model composed of differential algebraic equations.
Output: εterms, A mapping from Equation Index to a List of its Terms which Contain ε.

for Index, Equation in MDAE do
εterms ⇐ Initialize the Mapping.
if ε in Equation then

Append Index to εterms.
for all Terms in Equation do

if ε in Term then
Append Term to εterms at key: Index.

end if
end for

end if
end for

5.4 Variable Limit at Zero

The algorithm checks first for variables approaching their limit at zero. In this case, the

variable is being divided by ε. As both of these values approach zero, they become a new

finite algebraic variable. Algebraic variables do not have derivatives and can be solved for

using an algebraic equation. This is the first instance of evaluating singular limits in this

project.

Checking for these limits require the algorithm to check every instance of ε. It seems

that in most cases where the variable approaches zero, all epsilon values can be found in the

denominator of that variable. However, not all instances of the variable need to be found

with ε. When evaluating this limit, the variable instances that have a denominator containing

ε are combined into a new, finite, algebraic variable, the variables derivative is lost, and all

other instances of the variable are set to zero. This variable redefinition is very similar to the

redefinition found when the variable is approaching infinity.
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Algorithm 7 Variable Limit to Zero

Input: MDAE, A model composed of differential algebraic equations.
Input: εterms, A mapping from Equation Index to a List of its Terms which Contain ε.
Output: M̃DAE

for Index, Term List in εterms do
In Denominator ⇐ false
for Term in Term List do

if ε in Denominator of Term then
In Denominator ⇐ true

end if
end for
if not In Denominator then

Divide Model Equation by ε
end if

end for
ε̄terms ⇐ FindEpsilon(MDAE)
All Variables ⇐ A set of all variables in the model
for Index, Term List in εterms do

for Term in Term List do
All Variables ⇐ All Variables and Set of Variables in Term

end for
end for
if All Variables is Left with only one variable then

Merge that variable with ε
Set that variable’s derivative to 0
Update other parts of the model

end if
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5.5 Variable Limit at Infinity

The algorithm then checks if any variable is approaching infinity. In this situation, every

instance of a single variable and its derivative is being multiplied by ε. However, not all

instances of ε need to occur with an instance of the limit variable. Evaluating this limit is

done by simply merging the limit variable and epsilon, as well as merging the limit variable’s

derivatives and epsilon, then evaluating the limit ε→ 0.

Algorithm 8 Variable Limit to Infinity

Input: MDAE, A model composed of differential algebraic equations.
Input: εterms, A mapping from Equation Index to a List of its Terms which Contain ε.
Output: M̃DAE

for Index, Term List in εterms do
In Numerator ⇐ false
for Term in Term List do

if ε in Numerator of Term then
In Numerator ⇐ true

end if
end for
if not In Numerator then

Multiply Model Equation by ε
end if

end for
for Variable in All Variables do
Vterms ⇐ FindVariable(MDAE, Variable)
for Index, Term List in Vterms do

All ε⇐ true
for Term in Term List do

if ε not in Term then
All ε⇐ false

end if
end for
if All ε then

Merge variable with ε
Update other parts of the model

end if
end for

end for
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5.5.1 Example

To illustrate this, take an approximated version of a Michaelis-Menten negative feedback loop

as follows:

0 = −A
k1

+ Ȧ− k2,

0 = −Bk3 − Ḃ + Ck4,

0 =
ACk5 + Ak7k5 −BCk6 − CĊ − Ċk7

C + k7
.

Evaluating the limit

k2 →∞, k5 → 0

on the above model, with the reparameterization of

ε = k5, K25 = k2k5

results in the model

0 = −A
k1

+ Ȧ− 1

ε
,

0 = −Bk3 − Ḃ + Ck4,

0 =
ACε+ Ak7ε−BCk6 − CĊ − Ċk7

C + k7
.

Multiplying the first equation by ε removes the potential non-finite values, giving the model:

0 = −Aε
k1

+ Ȧε−K25,

0 = −Bk3 − Ḃ + Ck4,

0 =
ACε+ Ak7ε−BCk6 − CĊ − Ċk7

C + k7
.
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Notice how every instance of the variable A, as well as its derivative Ȧ is being multiplied by

ε. Also, note that ε only occurs with the variable A. Knowing this, a new variable and its

derivative can be created

Ã = Aε,

˙̃A = Ȧε.

Substituting in this new variable and its derivative gives the final solution:

0 = − Ã
k1

+ ˙̃A−K25,

0 = −Bk3 − Ḃ + Ck4,

0 =
ÃC + Ãk7 −BCk6 − CĊ − Ċk7

C + k7
.

Note that ε is no longer contained within the model, therefore evaluating the limit is no

longer needed. Also, note that the new model is a valid model containing N − 1 parameters.

5.6 Variable Limit Shared Between Variables

The final limit checked is similar to that of the variable approaching zero. The

difference in this situation is that the limit is shared between several variables. The method

used for identifying these limits check the terms containing ε within each equation. If any

equation’s ε-terms match another equation’s ε-terms either exactly, or the negatives exactly,

those two equations are combined to remove the like ε-terms.

Assuming that each equation contains at most one derivative, combining equations can

cause multiple derivatives to occur in a single equation. Each instance of multiple derivatives

in a single equation are merged into a single derivative. This merging defines a new derivative

which corresponds to a new variable. That derivative that occurs most frequent corresponds

to the fast variable’s derivative. The fast variable’s derivative is then set to zero making the

fast variable algebraic.
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Algorithm 9 Variable Limit Shared to Zero

Input: MDAE, A model composed of differential algebraic equations.
Input: εterms, A mapping from Equation Index to a List of its Terms which Contain ε.
Output: M̃DAE

for Index One, Term List One in εterms do
for Index Two, Term List Two in εterms do

if Term List One == Term List Two then
Subtract Equation One from Equation Two

else if Term List One == −Term List Two then
Add Equation One to Equation Two

end if
end for

end for
for Equation in MDAE do

if Number of Derivatives in Equation > 1 then
Merge the derivatives into a new derivative
Apply the merging to corresponding variables
Update the model

end if
end for

Once all the like ε-terms have been combined, each equation is checked if ε is contained

in any denominator.

If the algorithm finds ε in the denominator it is removed by multiplying the entire

equation by ε. Finally, the limit ε→ 0 is realized and the singular limit has been evaluated.

5.6.1 Example

With the model defined in Eq. 5.2 and the mapping given in Eq. 5.3, it is clear that these

two equations can be added together to give:

0 = −x1
ε

+
Kx2
ε
− ẋ1,

0 = −ẋ2 − ẋ1.
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In Eq. 5.6.1, ε can be found in the denominator of the first equation. Multiplying that

equation by ε gives:

0 = −x1 +Kx2 − ẋ1ε,

0 = −ẋ2 − ẋ1.

With ε removed from the denominator, Eq. 5.6.1 can now evaluate the limit ε→ 0 successfully:

0 = −x1 +Kx2,

0 = −ẋ2 − ẋ1.

In this limit, parts of the variable space are becoming algebraic and is shared among variables.

The objective of updating the model is to isolate this algebraic behavior. This redefinition is

a bijective function, fx̃, that transforms x to x̃, where at least one of the variables in x̃ now

contains all newly found algebraic behavior in the model.

fx̃

(x1
x2

) =

 x̃1

x̃2 + x̃1


This new mapping results in the model:

0 = −x̃1 +K(x̃2 + x̃1),

0 = − ˙̃x2.

Finally, the limit has been evaluated and all the algebraic behavior has been isolated.

5.7 Algorithm Analysis

Algorithm 8, which evaluates a variable at infinity, is the most expensive of all the sub-

algorithms for variable limits. Knowing that Algorithm 8 is the most expensive, the complexity
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bound of the variable limits algorithm will depend on the complexity bound of solving variables

approaching infinity..

For Algorithm 8, if V is the number of variables in the model, EQ is the number of

equations in the model, and EQT is the average number of terms in each equation, then the

run time is determined by

V EQEQT .

Therefore, the worst-case complexity bound for evaluating variable limits is O(V EQEQT ).

Unlike the reparameterization algorithm, this algorithm is unconstrained in the variables and

will be scaled depending on the model used.
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Chapter 6

Conclusion

The algorithms proposed in this work have been implemented and tested using different

systems. The description of this implementation can be found in Appendix A. The results

from this implementation are reported in Appendix C. The implementation was able to

significantly reduce the amount of time required for each step of MBAM. If the templates

necessary to approximate the system were found in the database, a single approximation

step took less than one second for each step reported. Each automated result corresponded

with previous results solved by hand. Implementing these algorithms laid the foundation

for even further improvements on the usability of MBAM. These improvements includes

a standardized formatting for models, automated script creation for solving the geodesic,

live reporting of geodesic results, automated inferring of geodesic limits, a standardized and

automatic storage of models and data, a simplified approach to manipulating models, and

more. While this work was successful in automating the manifold boundary approximation

method, it is only laying the foundation for further improvements and new features.

One such improvement deals with variable limits. The solution presented here only

begins to implement variable limits. These limits have not been fully explored. They may

benefit from a similar solution to that of the reparameterization limit templates. Yet, much

is still unknown about definitively saying if a variable is approaching a limit and how that

limit should be evaluated. Further automation of variable limits is outside the scope of this

project. However, to aid in this exploration of further variable limits, a user interface for
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MBAM was created. This user interface is used when the solution presented fails. Further

reading on it can be found in Appendix A.2.
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Appendix A

Implementation

A.1 Code Structure

Several classes were built to implement these algorithms effectively. All of the classes were

coded using Python 3.6. SymPy [15] was used for symbolic algebraic manipulations on the

model.

The code for this implementation can be found on GitHub at https://github.com/

danebjork/AutomatedMBAM. The documentation for this implementation can be found online

as well at https://AutomatedMBAM.readthedocs.io. The documentation at the time of

writing this paper can be found in Appendix B.

A.1.1 Models

Models are the foundation of the manifold boundary approximation method. Models consist

of parameters, variables, and various types of equations. Thus, each of these is broken up into

several classes as found in Fig. A.2. Both ModelParam and ModelVar deal with the instance

of having a single symbol representing a value. ModelParams and ModelVars are classes that

provide a simple interface for counting and manipulating these symbols. ModelEq is used

for a single equation. An equation can contain two pieces: a symbol and an equation. The

symbol is anything to the left of the equals sign, while the equation is anything to the right of

the equals sign. If no equals sign exists, everything is considered to be a part of the equation.

ModelEqs stores and manipulates a list of equations. ModelEqFull stores two ModelEqs, a

list of equations called substitutions, and a list of equations called equations. Substitutions
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Figure A.1: The class structure for the implementation. The arrows designate dependencies
within classes. The green shapes are those built in Python. The black object represents the
Geodesic and is run using Julia. The outlined objects designate the final classes. The blue
outlined object labeled Engine is to be used within the terminal. The red outlined object
labeled User Interface is used to manage the connection for the JavaScript used in the user
interface.

are those terms that appear frequently in the list of equations, but the user wishes to only

evaluate those terms once. Therefore, the substitutions are evaluated prior to evaluating the

equations and are substituted in as variables.

All of these objects come together to be a model. The model also contains data. This

is the observation data used to determine model fits. Julia parser classes are then able to

parse the model and its data into specific Julia scripts corresponding to the model type.

A.1.2 Julia

The packages used to calculate the geodesic are all in Julia. Julia is a recently developed

programming language [3] and can be hard to integrate with other programming languages

and tools. Because of this, Python generates the Julia scripts and runs them with sub-

processes. These sub-processes then connect with Python through ZeroMQ, a messaging
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library, to push the geodesic data to MongoDB. Python is then capable of querying that data

from the database to infer geodesic limits. Fig. A.2 portrays this flow.

Figure A.2: The flow of the software. Each color represents a different medium for data.
Orange is MongoDB, Blue is Python, Green is User Interaction, Yellow is Julia, and Teal is
JavaScript.

A.1.3 MBAM

Each iteration of MBAM is contained within the Iteration class. This class manages everything

necessary to take a model of N parameters to a model containing N −1 parameters. Included

in this class are the two classes used to evaluate the limits. Reparameterize deals with

taking in the limits inferred from the geodesic results and creates all possible combinations

of solutions from the limit templates found in the database. Each of these is applied until

successful. If failed, Singular Limits is then used to attempt the evaluation of any variable

approaching its limit.

The Engine and User Interface classes are built on iterations of MBAM. The Engine

class is to built for use in a terminal or in a Jupyter Notebook. This will attempt approximate
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every parameter within the model automatically creating a new iteration for each reduction.

These iterations can either attempt to calculate the limits through the geodesic or implement

given limits. The User Interface class is a wrapper for the Iteration class to be used in the

user interface defined in Sec. A.2.

A.1.4 Data Storage

All of the data used and created by these classes are stored in MongoDB. This database was

chosen for several reasons. Those reasons are

• it is open-sourced,

• there is a large community supporting it,

• everything is converted to JSON which flows well with websockets,

• it is simple to use,

• it has a very powerful Python library, and

• MapReduce can be used for further model analysis.

The structure of the data stored follows the pattern of Hasse Diagrams. In these

diagrams each model would be considered a node, and each iteration of MBAM resulting in

a new model would be represented as an edge. Storing models and iterations with links to

each other will allow the user to create Hasse Diagrams using MapReduce techniques inside

MongoDB. Other things stored in the database include the geodesic data, the limit templates,

as well as the template key.

A.2 User Interface

In this implementation the user interface was created using JavaScript, CSS and HTML.

The JavaScript then connects with Python through a websocket as seen in Fig. A.2. This

framework was designed to be updated and changed. By using these common languages with
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a simple connection to Python, making changes will be a fairly simple process. Creating a web

browser-based user interface allows for easy installation and a large set of tools specifically

built for user interfaces.

A.2.1 The Model

The model is the foundation for approximation. The user interface contains inputs for

everything necessary for a model to be created. The model can also be loaded from a JSON

file or using an ID found in the database. Within the model section are various tabs for each

different aspect of the model. Each of these aspects can be edited within their respective

tabs.

Figure A.3: On this page, parameters can be edited, added, searched for, and removed. Note
the individual tabs for other parts of the model.

A.2.2 Julia Editing

The scripts used to run the geodesic are written in Julia. These scripts may need to be

changed to help with some of the numerical issues when running the geodesic. A Julia IDE,

ACE, was implemented with JavaScript to edit these scripts directly in the software. These

scripts are generated after the model and model data have been saved in the database. After

editing, they can be saved using the Update File button found above the IDE.
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Figure A.4: A Julia integrated development environment, ACE, is used for editing any of the
parsed Julia scripts. One IDE exists for editing the Julia model script, another for editing
the Julia geodesic script.

A.2.3 Geodesic

The geodesic section contains three tabs: geodesic options, the Julia script, and graphs to

report the geodesic results. The graphs update as the geodesic is calculated. The graphs

were created using Plotly which provide a sleek and interactive look with options to save

graphs as a PNG file or upload and edit in the cloud.
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Figure A.5: A screenshot from the results of running the geodesic on a model. The top
left graph reports parameter vs parameter velocities. The top right graph reports each
parameter’s independent velocity as the manifold is traversed. The bottom graph reports the
most current velocity for each of the parameters. In this screenshot, the parameter K2 is
approaching its limit at zero.

A.2.4 Limit Evaluation

After geodesic reports the limit the Evaluation section is used to evaluate the limit. The tab

Parameter Substitution inside Evaluation is automatically filled with the inferred limits of the

geodesic. These results are free to edit as needed. Filling in θ̃ and fθ̃(θ) for each parameter

allow for θ to be substituted in the model equations with a single button.

Figure A.6: This is the input to define the reparameterization for the limit. Clicking Apply
New Params solves for and substitutes the new parameters into the model, and it attempts
to evaluate ε→ 0. If the evaluation is successful, templates are created from the solution, the
templates are saved to the database, the model is saved to the database, and the UI iterates
to the N − 1 model.

Once the reparameterization has been defined, the user can update variables, and

update the equations in the model. A workspace was created to help with equation manipu-
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lations. Equations can be imported from the model with N parameters, and exported to the

model with N − 1 parameters. The user would then import equations into the workspace,

manipulate them as necessary, and export the manipulated equations into the N − 1 model.

When the user clicks on the Sub New Params button, the reparameterization defined in the

previous tab will solve for and substitute the new parameters into the current workspace.

Other buttons were built for convenience in viewing and manipulating these equations.

Figure A.7: The workspace is used to update the model equations. The buttons on the left
side of the workspace import equations from the model into the workspace. The buttons on
the right export the current workspace into the N−1 model. Below is a LaTeX representation
of the equation to help the user more clearly see the changes to the equations.

Once all the manipulated equations have been exported into the N − 1 equations, the

user will then define a name for the N − 1 model. Finally, this new model will be saved in the

database and the entire UI will be refreshed with the N − 1 model replacing the N model.
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Appendix B

Code Documentation

This chapter outlines the documentation of the implementation at the time of writing

this paper. This documentation will change as the implementation updated and improved.

Please refer to the most recent version found at https://AutomatedMBAM.readthedocs.

io.
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CHAPTER

ONE

MBAM.MODELING PACKAGE

1.1 Submodules

1.2 mbam.modeling.data module

Manages the HDF5 files and reading of HDF5 byte strings from the UI. HDF5 file types are somewhat tricky to work
with over websockets and cannot be read using javascript, so this module contains some workarounds for that.

class mbam.modeling.data.MData
Bases: object

create_zero_data(num_vars, t_start, t_end, t_step)
Creates data full of zeros with the given lengths, and saves the data to an hdf5 file.

Parameters

• num_vars (int) – The number of variables being observed.

• t_start (float) – The starting point for the time axis.

• t_end (float) – The final point for the time axis.

• t_step (float) – The step size taken for each time point.

load_bytes(byte_str)
Saves the string of raw bytes to a file, then reads that file using the hdf5 library.

Parameters byte_str (byte_str) – The hdf5 data in byte_str format.

load_from_id(data_id)
Loads the data from the database with the matching id. Saves it to an hdf5 file, and saves the id.

Parameters data_id (str) – The id of the data object to be loaded.

load_hdf5(file_path)
Loads an hdf5 file.

Parameters file_path (str) – The full path to the hdf5 file.

save_data()
Saves the hdf5 data to the database.

save_to_hdf5(full_path=’temp.h5’)
Saves the data to an hdf5 file.

Parameters full_path (str) – The path to where the file will be saved. Defaults to
“./temp.h5”.
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1.3 mbam.modeling.elements module

All pieces of a model. This contains Param, Params, Var, Vars, Eq, Eqs, and EqFull.

Any model dictionary will be parsed into these individual pieces.

class mbam.modeling.elements.Eq(str_eq, equals=False)
Bases: object

The Base Equation Class. May contain two parts, a symbol and an equation.

Example

a = b + c => symbol: a, equation: b + c

If the input as an ‘=’, the left side will be the symbol, the right side will be the equation.

atoms
set – The set of all SymPy.Symbol objects in the equation.

change_to_DAE(var)
Subtracts the given variable from the right hand side.

Used to move derivatives to the right hand side.

Parameters var (SymPy.Symbol or str) – The variable to be subtracted from the right hand
side, often a derivative.

dict
dict – Equation dictionary containing SymPy objects.

divide_epsilon()
Divide the right hand side by ‘epsilon’.

eval_epsilon()
Take the limit as the parameter epsilon goes to zero.

latex
str – The latex string of the equation.

multiply_epsilon()
Multiply the right hand side by ‘epsilon’.

str_dict
dict – a = b + c => {“sym” – “a”, “eq”: “b+c”}.

substitute(substitutions)
Substitutes a list of SymPy substitutions into the equation, including the symbol.

Parameters substitutions (list) – A list of tuples used to subtitute into the equation.

sympy
SymPy Symbol – The equation as a SymPy object.

class mbam.modeling.elements.EqFull(eq_type, **kwargs)
Bases: object

This class contains both Substitutions and Equations for a given equation types.

e.g. OBS, IC, RHS, RES, etc.

atoms
set – A set of all SymPy Symbols found in all equations.
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check_subs()
Looks for the ‘sym’ in each substitution to be contained in the equations. If it is not contained in the
equations, it is removed.

dict
dict – {“eq_type” – {“sbs”: [sym_sb, . . . ], “eqs”: [sym_eq, . . . ]}}

eq_symbols
list – A list of symbolic left hand side symbols.

eqs_sym_list
list – A list of symbolic eqs.

eval_epsilon()
Evaluate epsilon for all sbs and eqs.

latex
dict – {“eq_type” – {“sbs”: [latex_sb, . . . ], “eqs”: [latex_eq, . . . ]}}

sbs_sym_list
list – A list of symbolic sbs.

set_eq_type(t)
Updates the equation type.

Parameters t (str) – The type of equations: ‘obs’, ‘ic’, ‘rhs’, ‘res’, etc.

str_dict
dict – {“eq_type” – {“sbs”: [str_sb, . . . ], “eqs”: [str_eq, . . . ]}}

substitute(substitutions)
Substitute a list of SymPy substitutions into all sbs and eqs.

Parameters substitutions (list) – A list of tuples used for SymPy substitutions.

class mbam.modeling.elements.Eqs(str_eq_list, equals=False, subs=False)
Bases: object

A class containing a list of equations or substitutions as Eq.

atoms
set – A set of all SymPy Symbols in all equations.

dict
dict – eqs_dict = {“sbs” – [{‘sym’: ‘a’, ‘eq’: ‘b + c’}]} as sympy equations.

divide_epsilon(index)
Divide the equation at index by ‘epsilon’.

drop_equation(symbol)
Removes the equation with the given ‘symbol’.

Example

a = b + c => [{‘sym’: a, ‘eq’: b + c}]

drop_equation(a) => []

eval_epsilon()
Evaluate the limit as epsilon goes to zero for each equation.

latex
list – A list of the equations in latex formatting.
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left_hand_symbols
list – A list of equation symbols (the left hand side of ‘=’).

list
list – A list of string representation of the equations.

multiply_epsilon(index)
Multiply the equation at index by ‘epsilon’.

replace_eq(index, eq)
Replace the eq at the given index.

Parameters

• index (int) – The index of the equation to replace.

• eq (str) – The string representation of the new equation.

str_dict
dict – eqs_dict = {“sbs” – [{‘sym’: ‘a’, ‘eq’: ‘b + c’}]} as strings.

substitute(substitutions)
Substitutes a list of SymPy substitutions into each equation.

sym_list
list – A list of dictionaries containing the SymPy symbolic equations.

class mbam.modeling.elements.Param(**kwargs)
Bases: object

Base Parameter Class.

dict
dict – param = {‘name’ – ‘p1’, ‘init_val’, 1.0, ‘transform’: ‘log’}

set_init_val(init_val)
Updates the initial value.

Parameters init_val (float) – The initial parameter value.

set_name(name)
Updates the name.

Parameters name (str) – The name of the parameter.

set_transform(transform)
Updates the transform value.

Parameters transform (str) – Transformation applied to the parmater. Valid transforms:
‘identity’,’log’, ‘sinh’, or ‘constant’.

class mbam.modeling.elements.Params(p_list)
Bases: object

A class containing all model parameters as Param.

dict
dict – ps_dict = {“ps” – [{‘name’: ‘p1’, ‘init_val’, 1.0, ‘transform’: ‘log’}]}

list
list – A list of parameter names.

non_constants
list – A list of non-constant parameter names.
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remove_epsilon()
Removes any parameter named ‘epsilon’.

symbols
list – A list of non-constant parameter SymPy symbols.

update_index_init(index, init_val)
Sets the parameter’s initial value at index to init_val.

Parameters

• index (int) – The index of the parameter to be updated.

• init_val (float) – The initial value.

update_index_name(index, name)
Sets the parameter’s name at index to name.

Parameters

• index (int) – The index of the parameter to be updated.

• init_val (float) – The initial value.

update_index_transform(index, t)
Sets the parameter’s transformation at index to t.

Parameters

• index (int) – The index of the parameter to be updated.

• t (str) – The transformation to change the given parameter to.

update_params(old_params, new_params)
Renames each parameter found in old_params to the name in new_params.

Parameters

• index (int) – The index of the parameter to be updated.

• init_val (float) – The initial value.

class mbam.modeling.elements.Var(**kwargs)
Bases: object

Base Variable Class.

dict
dict – var = {‘name’ – ‘x1’, ‘type’: ‘dynamic’}

set_name(name)

Parameters name (str) – The name of the variable.

set_type(t)

Parameters t (str) – The variable type. Either ‘algebraic’ or ‘dynamic’. Defaults to ‘dy-
namic’.

class mbam.modeling.elements.Vars(v_list)
Bases: object

A class containing all model variables as Var.

dict
dict – vs_dict = {“vs” – [{‘name’: ‘v1’, ‘type’, ‘dynamic’}]}

1.3. mbam.modeling.elements module 5



AutomatedMBAM Documentation, Release 1.0

list
list – A list of variable names.

set_index_alg(index)
Updates the variable at the given index to ‘algebraic’.

Parameters index (int) – The index of the variable to be updated.

set_index_dyn(index)
Updates the variable at the given index to ‘dynamic’.

Parameters index (int) – The index of the variable to be updated.

set_var_alg(var_name)
Update the variable with var_name as name to ‘algebraic’.

Parameters var_name (str) – The name of the variable to be updated.

update_name(old_name, new_name)
Renames a single variable from old_name to new_name.

Parameters

• old_name (str) – The name to be replaced.

• new_name (str) – The new name used in place of old_name.

var_index(var_name)
Return the index of the given variable name.

Parameters var_name (str) – The name of the variable to be found.

Returns index – The index of the variable with the given name.

Return type int

1.4 mbam.modeling.hdf5tojson module

HDF5 to JSON converter Author - Janu Verma j.verma5@gmail.com

Used to upload HDF5 files into python for graphing in plotly.

class mbam.modeling.hdf5tojson.HDF5_JSON(file_name)
Bases: object

Converts the contents of an HDF5 file into JSON. Also has methods to access the contents of a group directly
without following the hierarchy.

Groups()
Returns all the groups in the HDF5 file. Helpful in exploring the file and getting an idea of the contents.

groupContents(group)
Returns the contents of a groups. You can access the contents of the group directly without following the
hierarchy.

jsonOutput()
Returns a JSON document containing all the information stored in the HDF5 file. Creates a JSON file
of the same name as the input HDF5 file with json extension. When decoded the file contains a nested
dictionary. The primary key is the root group ‘’.

jsonString()
Returns a JSON document containing all the information stored in the HDF5 file. Creates a JSON file
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of the same name as the input HDF5 file with json extension. When decoded the file contains a nested
dictionary. The primary key is the root group ‘’.

subgroups(group)
Returns the subgroups of the group.

class mbam.modeling.hdf5tojson.NumpyAwareJSONEncoder(*, skipkeys=False,
ensure_ascii=True,
check_circular=True,
allow_nan=True,
sort_keys=False, indent=None,
separators=None, de-
fault=None)

Bases: json.encoder.JSONEncoder

This class facilitates the JSON encoding of Numpy onjects. e.g. numpy arrays are not supported by the standard
json encoder - dumps.

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
# Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

1.5 mbam.modeling.models module

A collection of model types: Base, Funciton, ODE, and DAE.

Base is the parent class for the other model types.

class mbam.modeling.models.Base(model_dict)
Bases: object

The Base Model Class.

all_params_in_eqs
bool – True if all non-constant parameters are found in the model.

atoms
set – All SymPy Symbols contained inside all of the model’s equations.

check_eqs_finite
bool – True if there are no infinity or negative infinity values in the model.

check_subs()
Checks each equation type to make sure the substitutions listed are used in the equations. Deletes unused
substitutions.

check_var_types()

1.5. mbam.modeling.models module 7
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dict
dict – The dictionary representation of the model with equations as symbolic equations.

eval_epsilon()
Evaluate the limit as ‘epsilon’ goes to zero for all equations in the model.

is_valid()
Checks if all parameters are in equation, and all values finite.

Returns valid – True if the model is a valid model.

Return type bool

latex
returns: latex_str – The latex string to be used for publications. :rtype: str

latex_eqs
returns: latex_dict – The latex version of each of the model’s equations. :rtype: dict

str_dict
dict – The dictionary representation of the model with all values cast as strings.

substitute(substitutions)
Substitute the list of substitutions into all model equations.

Parameters substitutions (list) – A list of tuples for SymPy substitution.

update_name(hasse_child_num)
Creates a new name for a child off the base name inherited from the parent.

Parameters hasse_child_num (int) – The number of children the parent model has.

update_params(old_p, new_p)
Update the model’s parameters from old_p to new_p.

Parameters

• old_p (list) – The list of old parameters.

• new_p (list) – The list of new parameters.

class mbam.modeling.models.DAE(model_dict)
Bases: mbam.modeling.models.Base

Differential Algebraic Equations Model Class.

icd_algebraic()

class mbam.modeling.models.Function(model_dict)
Bases: mbam.modeling.models.Base

A Class for models containing only algebraic functions.

Not really used. . .

class mbam.modeling.models.ODE(model_dict)
Bases: mbam.modeling.models.Base

Ordinary Differential Equations Model Class

dae_var_to_ic()
Create a list of substitutions for converting from ODE RHS functions to ICD’s. This will be used to
substitute each variable for its initial cond.

1.5. mbam.modeling.models module 8
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Example

subs = [(var[0], ic[0]), . . . , (var[n], ic[n])]

deriv_name(var_name)
Inserts ‘dot’ between characters and the first int found in the name.

Parameters var_name (str) – A variable name to altered to a derivative name.

Returns new_var – A derivative name with dot inserted.

Return type str

to_dae()
Converts the current ODE into a DAE.

Subtracts the derivatives from the RHS of the ODE to create RES. Creates ICD’s based off the RHS
equations. Then substitutes the variables in the ICD with its corresponding initial condition.

Returns dae – The equivalent DAE representation of the current ODE.

Return type DAE

1.6 Module contents

Everything needed to construct models for automatic approximation.

1.6. Module contents 9



CHAPTER

TWO

MBAM.PARSING PACKAGE

2.1 Submodules

2.2 mbam.parsing.base module

class mbam.parsing.base.BaseParser(mbam_model, data_path)
Bases: object

Parent class for all model parsers.

create_default_options()
Used until options are updated with update_options

create_julia_swap()
Generates a list of sympy substitution tuples to sub out sympy vars with julia formating.

Example

Time update: t => _t.

Vars update: x1 => _x[1].

Params update: p1 => ps.p1.

Inputs update: u1 => _inp[1].

init_models_dir()
Generates a directory: julia_scripts/models/ to save the model file within.

list_out_param_type(p_type)

save_to_file(script)
Overwrites the current script with the given script string.

Parameters script (str) – A string representation of a full julia model script.

update_options(options)
Creates and saves a new script generated with the given options.

Parameters options (dict) – Must follow format: {“bare”: bool, “weights”: bool}

write_bare_model()

write_constants()

write_data()

10
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write_end()

write_equation_list(eq_list)
Given a list of equations, write them out as a julia array.

Parameters eq_list (list) – A list containing equation dictionaries. Where each equation
is only on the right-hand side. There should be no symbol for this function. The non-julia
values will be subbed with julia values.

Example

x + b => {“sym”: “”, “eq”: “a + b”}

write_equation_return(eq_list)
Given a list of equations, write them out as a julia array following the return statement.

Parameters eq_list (list) – A list containing equation dictionaries. Where each equation
is only on the right-hand side. There should be no symbol for this function.

Example

a + b => {“sym”: “”, “eq”: “a + b”}

write_imports()

write_inputs()

write_param_transforms(bare=False)

write_params()

write_substitutions(sub_list)
Given a list of substitutions, write them out prior to the return statement or the main equations.

Parameters sub_list (list) – A list containing equation dictionaries.

Example

c = a + b => {“sym”: “c”, “eq”: “a + b”}

write_xi()

2.3 mbam.parsing.basediff module

class mbam.parsing.basediff.BaseDiffParser(mbam_model, data_path)
Bases: mbam.parsing.base.BaseParser

Parent class for all differential model parsers.

Adds observation parsing to the BaseParser class.

write_obs()

2.3. mbam.parsing.basediff module 11
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2.4 mbam.parsing.dae module

class mbam.parsing.dae.DAEParser(mbam_model, data_path)
Bases: mbam.parsing.basediff.BaseDiffParser

Used for parsing ODE models.

add_derivs_to_julia_swap()
Adding derivatives to the substitution list of julia vars for every variable in the model.

Example

x_1 => x_1dot => _dx[1]

create_icd_swap()
Substitute the variables in the ICD’s with their corresponding initial condition.

Example

if IC: [x_1_init + p1], then ICD[x_1] => ICD[ps.x_1_init + ps.p1]

write_bare_model()

write_dvars()
Returnes a list of true/false for each variable, where true = dynamic false = algebraic.

write_ic()
Specialty function for writing the IC function.

write_ic_subs()

write_icd_list(eq_list)
Specialty funciton for writing ICD’s in a list format.

write_model()

write_res()
Specialty funciton for writing RES function.

write_res_equations()
Specialty funciton for writing RES equations.

write_script()

2.5 mbam.parsing.function module

class mbam.parsing.function.FunctionParser(mbam_model, data_path)
Bases: mbam.parsing.basediff.BaseDiffParser

Used for parsing models composed of simple algebraic functions.

write_bare_model()

write_f()

write_model()

write_script()
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2.6 mbam.parsing.geo module

class mbam.parsing.geo.GeodesicParser(mbam_model, model_path, collector_path)
Bases: object

default_options()
Used until options are updated with update_options

end_script()

geo_loop()

init_geos_dir()

init_script()

load_options()

save_to_file(script)

update_options(options)
Creates and saves a new script generated with the given options.

Parameters options (dict) – Must follow format:

{

“tmax”: float,

”lambda”: float,

”abstol”: float,

”reltol”: float,

”use_svd”: bool,

”use_pinv”: bool,

}

write_geo_script()

2.7 mbam.parsing.ode module

class mbam.parsing.ode.ODEParser(mbam_model, data_path)
Bases: mbam.parsing.basediff.BaseDiffParser

Used for parsing ODE models.

write_bare_model()

write_ic()

write_model()

write_rhs()

write_rhs_equations()
RHS function follow a different formatting for parsing equations. This is their specialized parsing function.

write_script()

2.6. mbam.parsing.geo module 13
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2.8 Module contents

All the parsers necessary to convert an mbammodel and path to an hdf5 data file into the Julia model file and its
corresponding Geodesic file.

2.8. Module contents 14



CHAPTER

THREE

MBAM.LIMITS PACKAGE

3.1 Submodules

3.2 mbam.limits.reparameterize module

Given a set of limits, return all currently templated possibilities for a reparameterization. Reparameterization is the
first tool to use when attempting to evaluate a model at a limit and remove a single parameter.

This module uses combinatorics to create possible reparameterizations using the current limit, and templates pulled
from the database. While there may be lots of possibilities in the reparameterizations, only one valid model needs to
be returned.

class mbam.limits.reparameterize.Reparam(limits, key_legend, model_class=None)
Bases: object

Creates all possible fthetas given the limit, the legend for the limit template key, and filtering with the model
class.

add_to_ftheta(subbed, epsilon)
Once the templates are filled, fthetas need to be created.

Parameters

• subbed (SymPy symbolic equation) – The new parameter combination as an equation.

• epsilon (bool) – True if the parameter combination evaluates to zero.

count_limits()
Creates a mapping to see how many of each limit is being reached by the parameters. This is used as the
limit_key and will filter templates.

fill_template(templates, epsilon=False)
Iterates through templates, and creates any possible manipulation of each template with the current limits.

Parameters

• templates (list) – The templates to be manipulated.

• epsilon (bool) – True if the templates evalaute to zero.

Returns template_subs – A list of templates filled by parameters approaching their limits.

Return type list

15
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Example

limits: {“p1”: “inf”, “p2”: “inf”},

template = “inf_1/inf_2”,

returns [“p1/p2”, “p2/p1”]

filter_fthetas()
Creates all possible ftheta combinations for the given limit, then filters out he invalid fthetas.

See in-line comments for details.

find_limit_subs()
Creates possible substitutions (template_name, param_name).

If two parameters are approaching infinity then the potential names for those parameters could be either
‘inf_1’ or ‘inf_2’. This function finds a list of all possible parameter limit namings.

Returns template_fill_list – A list that contains all possible subs for the parameters to fill the
limits.

Return type list

Example

{“a”: “inf”} => the template needs one infinity:

returns [[(‘a’, ‘inf_1’)], [((‘b’, ‘inf_1)]]

{“a”: “inf”, “b”: “inf”}=> the template needs two infinities:

returns [[(‘a’, ‘inf_1’), (‘b’, ‘inf_2)], [(‘a’, ‘inf_2’), (‘b’, ‘inf_1)]]

get_fthetas(e_temp, f_temp)
Finds all the potential ftheta combinations.

Parameters

• e_temp (list) – List of templates that evaluate to zero.

• f_temp (list) – List of templates that evaluate to a non-zero finite value.

Returns valid_fthetas – A list of ftheta dictionaries.

Return type list

Example

ftheta = {“theta”: “p1”, “limit”: “inf”, “tilde”: “epsilon”, “f”: “1/p1”}

sub_label_name(subbed_eq, epsilon)
A simiple algorithm to rename new parameters.

Parameters

• subbed_eq (str) – The parameter equation to be renamed

• epsilon (bool) – Automatically renames parameter to ‘epsilon’ if True.

Returns label – The new label for the parameter combination.

Return type str

3.2. mbam.limits.reparameterize module 16
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Example

a/b -> a_over_b

sub_params_in_template(sub_list, template, epsilon)
Replaces limit types in templates with actual parameters.

Parameters

• sub_list (list) – List of SymPy substitutions of the form (limit_type, parameter).

• template (dict) – Template dictionary to be substituted with parameters.

• epsilon (bool) – True if the template evaluates to zero.

3.3 mbam.limits.singular_limit module

Singular Limits are often found when using the Manifold Boundary Approximation Method. This module is built to
evaluate these limits automatically. It works for specific cases e.g. var*epsilon, var/epsilon, and combining equations.

Further work can be done to extend this class to work on a more broad range of variable/singular limits.

class mbam.limits.singular_limit.SingularLimit(dae_model)
Bases: object

Parameters dae_model (DAEModel) – A differential algebraic equation model.

check_var_and_epsilon()
Checks every variable to see if one is found with every instance of epsilon. May also need to add check
for the derivative.

Returns True if one variable is found with every instance of epsilon.

Return type bool

combine_eqs(add_dict)
Combines the given equations within the model.

Parameters add_dict (dict) – A dictionary mapping from operator to list of tuples each
containg two values – the equations to be operated on.

Example

{“+”: [(0, 1)]}: Add equation 0 to equation 1.

create_new_var_subs(new_vars, new_var_eqs)
Creates all substitutions necessary to update different functions as well as for use in the algorithm.

create_old_to_new_vars()
Creates the substitution from the old variables to those newly defined with the singular limit.

divide_epsilon()
Checks if the majority of any equation in the model is combosed of the term being multiplied by epsilon.
If it is the majority and there are no epsilon terms found in the denominator, the equation will be divided
by epsilon.

eval_limit()
Evaluates the potential singular limit.

3.3. mbam.limits.singular_limit module 17
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extract_epsilon_terms(eq)
Extracts all epsilon terms from a given equation.

Parameters eq (Sympy Equation) – A symbolic form of an equation, potentially containin
epsilon.

Returns

• terms (list) – The list of terms that contain epsilon found in the equation.

• negative_terms (list) – The list of terms that contain epsilon found in the equation,
where each term has been multiplied by -1.

find_derivatives()
Searches the residuals for derivatives. Used to merge those derivatives where more than one derivative
occurs in a given equation.

Returns A dictionary containing the equation index as the key, and a list of the derivatives
contained in that equation as the value.

Return type dict

find_epsilon()
Searches the residuals function for all terms that epsilon is found in. Creates a dictionary mapping from
equation index to list of terms containing epsilon found in that equation.

find_fast_var(deriv_counts)
Uses the counts of derivatives to assign the variable with the most frequent derivative as the fast variable.

Parameters deriv_counts (dict) – A dictionary mapping from derivative value to count.

find_like_terms()
Checks each list of terms to find equations that have exact (positive or negative) lists of terms.

Returns to_combine – A dictionary mapping from operator to a list of tuples directing which
equations should be combined together.

Return type dict

find_new_var_names(num_vars)
Creates new variable names that don’t already occur within the model.

Parameters num_vars (int) – The number of variable names to be returned.

Returns A list of new parameter names.

Return type list

merge_operator(var)
Finds the operator used between the variable and epsilon.

Parameters var (str) – The variable that occurs with every instance of epsilon.

Returns A string representation of the operator used between the variable and epsilon. Empty if
the operators vary.

Return type str

merge_subs(sym_vs, str_operator)
Combines the variables in the list with epsilon if being operated on by the given operator.

Parameters

• sym_vs (Sympy.Symbol) – A list of symbolic variables (often just one variable).

• str_operator (str) – The operator acting on the variable and epsilon.

3.3. mbam.limits.singular_limit module 18
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Returns subs – A list of tuples for substituting var(operator)epsilon to vartilde.

Return type list

multiply_epsilon()
Looks for epsilon in the denominator of the equation. If found, multiplies that equation by epsilon to
remove instabilities.

new_var_equals(new_v_dict)
Counts the derivatives in each equation

Parameters new_v_dict (dict) – A dictionary containing the equation index as the key, and
a list of the derivatives contained in that equation as the value.

Returns A list of combined derivatives. These combinations will be represented as a single
variable after the limit is evaluated.

Return type list

set_fast_algebraic()
Sets the fast variable as algebraic. * Most likely not needed anymore.

sub_vars_in_ic()
Substitutes the new variables into the initial conditions.

sub_vars_in_icd()
Substitute the new variables into the initial condition derivatives function.

sub_vars_in_obs()
Substitute the new variables into the observation function.

sub_vars_in_res()
Substitutes the new variables into the residuals function.

transform_vars()
Creates all substitutions necessary for the model to be valid following the evaluation of a singular limit.

update_vars()
Updates the variables in the model with new names.

3.4 Module contents

The automatic limit evaluator module. Reparameterizes the model and attempts to evaluate any singular limits.

3.4. Module contents 19



CHAPTER

FOUR

MBAM PACKAGE

4.1 Subpackages

4.2 Submodules

4.3 mbam.engine module

Manages many iteration of MBAM.

class mbam.engine.Engine(model_dict, data_path)
Bases: object

Parameters

• model_dict (dict) – A dictionary containing all the model information.

• data_path (str) – The full path to the hdf5 data file for the model.

apply_limits(limit_list, printing=False)
Applies a list of given limits. No geodesic will be run.

Parameters

• limit_list (list) – A list of dictionaries representing limits. Each dictionary maps
from a parameter to a limit.

• printing (bool) – Prints out each new model in latex formating if True.

print_latex(limit)
Prints out a latex version of the current model and the limit that was evaluated.

Parameters limit (dict) – The limit dictionary that was just evaluated.

print_limit(limit)
Parses the given limit into a latex equation.

Parameters limit (dict) – A dictionary containing limits – a mapping from parameters to
limits.

run(printing=False)
Runs the geodesic, infers the limit, attempts to evaluate the limit. Continues to repeat the process until a
failure.

Parameters printing (bool) – Prints out each new model in latex formating if True.

20
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4.4 mbam.geodesic module

A manager module for running and reporting on the geodesic.

class mbam.geodesic.Geodesic(geo_parser, sender_file_path)
Bases: object

check_engine_geo(geo_data)
Checks the current data for any potential limits used for engine.

check_limits(recent_vs)
Checks parameter velocities for any potential limits.

Parameters recent_vs (list) – A list of the most recent parameter velocities.

curr_data()
Queries the geodesic from the database and checks potential limits

Returns Contains geodesic data and any inferred limits.

Return type dict

find_threshold(n)
The threshold set to determine what velocities are defined as approaching a limit.

Parameters n (int) – The nth parameter being checked.

kill()
Kills the subprocesses used to run the geodesic and the data collector.

run_geo_auto()
Runs the geodesic until manually killed, or until the limits are found.

Returns limits – A dictionary of limits. e.g. {“p1”: “inf”, “p2”, “zero”}

Return type dict

start()
Starts both subprocesses: the Julia geodesic and data collector.

update_limits(geo_data)
Checks the current data for any potential limits used for UI.

Parameters geo_data (dict) – The dictionary of geodesic data.

Returns The geodesic data and any limits inferred.

Return type dict

4.5 mbam.iteration module

This class manages everything necessary to go from a model with N parameter to a model with N-1 parameters.
This includes running the geodesic, inferring the limits, reparameterizing the model, as well as evaluating singular
perturbations.

class mbam.iteration.Iteration(model, model_id, data_path)
Bases: object

add_geo_options(options)
Update the options for the Julia geodesic parser.

Parameters options (dict) – options = {

4.4. mbam.geodesic module 21



AutomatedMBAM Documentation, Release 1.0

“tmax”: float,

”lambda”: float,

”abstol”: float,

”reltol”: float,

”use_svd”: bool,

”use_pinv”: bool,

}

add_julia_options(options)
Update the options for the Julia model parser.

Parameters options (dict) – options = {“bare”: bool, “weights” bool}

apply_ftilde(exception=False)
Attempts to evaluate epsilon approaching zero. If the model is valid, it returns True. If it is not valid, the
function is called again and attempts singular perturbation before evaluating the limit.

Parameters exception (bool) – True if reparameterization has failed without an exception
applied.

Returns True if the evaluation was successful.

Return type bool

apply_limits(limits)
Attempts to reparameterize the model. If not successful, exceptions are attempted with Singular Perturba-
tions.

Parameters limits (dict) – Dictionary of limits to be applied to the model.

Returns True if the limits were applied successfully.

Return type bool

auto_run()
Finds the limits, applies the limits, and saves the new model if successful.

Returns True if the iteration was successful and saved.

Return type bool

check_ftildes(solved)
Make sure that f_inv functions in ftilde don’t contain any of the parameters to be removed from the old
model.

Parameters solved (list) – A list of ftildes.

Returns True if the f_inv doesn’t contain any parameters to be removed.

Return type bool

create_tilde_subs(ftildes)
Using ftildes, create a list of tuples for SymPy substitutions.

Parameters ftildes (list) – A list of ftildes ready to be used for substitutions.

Returns A list of SymPy substitutions.

Return type list

dict
dict – Turn the iteration into a dictionary for saving.
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find_limits()
Starts the geodesic and runs until a limit is found, or until the geodesic crashes.

init_geodesic()
Creates the Geodesic object, and retrieves its id.

init_parsers()
Assigns the parser for the model based off the model type, then it creates the geodesic parser.

kill_geodesic()
Kills the geodesic subprocess.

limit_keys_to_ps(limits)
Converts what the geodesic returns to a more useable format.

Parameters limits (dict) – A dictionary of limits returned by the geodesic.

Returns limits – A dictionary of limits converted to new format.

Return type dict

Example

Converts (p_index: limit) to (p_name: limit).

parse_templates()
If the iteration is successsful, the ftildes are parsed into templates to be saved in the database.

Example

ftilde = {“theta”: “p1”, “limit”: “inf”, “tilde”: “epsilon”, “f”: “1/p1”, “f_inv”: “1/epsilon”}

realize_limit()
Checks if the model has been successfully applied.

Returns True if the new N-1 model is valid.

Return type bool

save_iteration()
Adds the iteration to the database, updates the parent and child models with the successful iteration id.

solve_ftildes(ftheta)
Using ftheta, solve for f_inv to substitute in place of the old parameters.

Parameters ftheta (list) – A list of fthetas to be solved.

Returns A list of solved fthetas, now known as ftildes.

Return type list

Example

ftheta = {“theta”: “p1”, “limit”: “inf”, “tilde”: “epsilon”, “f”: “1/p1”}

ftilde = {“theta”: “p1”, “limit”: “inf”, “tilde”: “epsilon”, “f”: “1/p1”, “f_inv”: “1/epsilon”}

try_singular_limit()
Converts an ODE to a DAE, then attempts combinging equations to solve the singular perturbation error.
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unresolved_thetas(ftildes)
Substitutes out the old parameters in ftilde until no old paramters remain.

Parameters ftildes (list) – A list of ftildes to be solved.

Returns A list of solved ftildes, containing no old parameters

Return type list

Example

ftilde1 = {“theta”: “p1”, “limit”: “inf”, “tilde”: “epsilon”, “f”: “1/p1”, “f_inv”: “1/epsilon”}

old_ftilde2 = {“theta”: “p2”, “limit”: “inf”, “tilde”: “p1_over_p2”, “f”: “p1/p2”, “f_inv”:
“p1/p1_over_p2”}

old_ftilde2 still contains an old paramter: p1.

new_ftilde2 = {“theta”: “p2”, “limit”: “inf”, “tilde”: “p1_over_p2”, “f”: “p1/p2”, “f_inv”: “1/(ep-
silon*p1_over_p2”}

update_geo_script(script)
Overwrite the current julia geodesic script.

Parameters script (str) – The Julia geodesic file as a string.

update_julia_script(script)
Overwrite the current julia model script.

Parameters script (str) – The Julia Model file as a string.

update_params(ftildes)
Uses ftilde to change the parameter names from those currently in the model to those found in the ftildes.

4.6 mbam.mongo module

A custom client for connecting to MongoDB and managing the data flow for MBAM. Six collections are used in the
database ‘mbam’:

geos: geodesic storage. models: model storage. model_data: the data read in the hdf5 files. Used in models. iters:
successful MBAM iteration storage. temp_key: the key for navigating limit templates. temps: limit template storage.

class mbam.mongo.MMongo
Bases: object

finish_geodesic(geo_id, exception=False)
Marks the geodesic as ‘done’ inside MongoDB.

This allows the object waiting for the geodesic to finish to know it has completed.

get_hasse_children(model_id)
Returns the length of a model’s successful iterations.

Is used to create a unique name for several models with the same parent model.

Parameters model_id (str) – The id for the parent model.

Returns len_to_iter – The total number of children the parent model already has.

Return type int

get_temp_key()
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Returns key – A dictionary of the format: {“limit_type”: “index in key”}

Return type dict

Example

key = {“zero”: 0, “inf”: 1}

init_geodesic()
Creates a new geodesic object inside MongoDB.

Returns geo_id – The string representation of the new geodesic.

Return type str

load_data_id(data_id_str)

Parameters data_id_str (str) – The id for the data object to find.

Returns data – The dictionary containing all the data found in the database.

Return type dict

load_model_id(model_id_str)
Retrieves a model from the database with the given id.

Parameters model_id_str (str) – The model id to query.

Returns model_dict – The model and data (if exists) connected to the given id.

Return type dict

load_templates(key=None, clss=None)
Loads all limit templates and filters them by key and clss.

Parameters

• key (list or tuple of int) – A list or tuple of ints defining how many of each limit
type occurs within a template.

• clss (str) – A string used to define the model class that is going to use the templates.

Returns list – A list of dictionary templates after filtering by key and class.

Return type list

Example

Model classes are user defined, just be consistent.

push_geodesic(geo_id, data)
Append new geodesic data to the end of the current geodesic data.

Parameters

• geo_id (str) – The ID for the geodesic to add the data to.

• data (dict) – The dictionary of new data to be appended to the current geodesic.

push_model_from_iter(model_id, iter_id)
Add the successful iteration id to the child model.

Parameters
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• model_id (str) – The id for the child model.

• iter_id (str) – The id for the successful iteration.

push_model_to_iter(model_id, iter_id)
Add the successful iteration id to the parent model.

Parameters

• model_id (str) – The id for the parent model.

• iter_id (str) – The id for the successful iteration.

query_geodesic(geo_id)

Parameters geo_id (str) – The ID for the geodesic to query.

Returns geo_data – The data queried from the current geodesic, excluding its ID.

Return type dict

save_iteration(iteration)
Add the successful iteration to the database.

Parameters iteration (dict) – All data corresponding to the iteration.

Returns iter_id – The id generated by MongoDB. Used to udpate parent/child models.

Return type str

save_model(mbam_model, data_id=None)

Parameters

• mbam_model (mbammodel) – The model object to be saved.

• data_id (str) – The id of the saved data in the database. Used to connect the model to
its data.

save_model_data(data_json)

Parameters data_json (dict) – The HDF5 data to be saved inside the database.

Returns data_id – The id generated by MongoDB while saving the data.

Return type str

save_temp(temp)
Saves a single template in the database.

Parameters temp (dict) – A template dictionary.

Example

template = {‘key’: [0, 1], ‘template’: ‘1/inf_1’, ‘label’: ‘epsilon’, ‘class’: ‘michaelis-menten’ }

save_temps(temp_list)
Saves a list of templates in the database.

Parameters temp (list) – A list of template dictionaries.
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Example

temp_list = [{‘key’: [0, 1], ‘template’: ‘1/inf_1’, ‘label’: ‘epsilon’, ‘class’: ‘michaelis-menten’ }]

temp_key_filter(curr_key, temp_key)
Returns true if curr_key[i] < temp_key[i] for all i.

Parameters

• curr_key (list or tuple of int) – A list or tuple of ints defining how many of each
limit type occurs within the current limit.

• temp_key (list or tuple of int) – A list or tuple of ints defining how many of each
limit type occurs within a queried template.

Returns valid – True if the queried template is functional with the current limit.

Return type bool

update_temp_key(key)
Overwrites the current template key with the given key.

Parameters key (dict) – A dictionary of the format: {“limit_type”: “index in key”}

Example

key = {“zero”: 0, “inf”: 1}

4.7 mbam.ui module

A module for communication between the user interface websocket handler and MBAM functionality. This class takes
the place of MBAM Engine when using the UI. It is not made to be used outside of use with the UI.

class mbam.ui.MbamUI
Bases: object

begin_iteration()
Checks if a model and its data have been saved, if so, an mbam iteration will be created.

eval_epsilon(eq)
Evaluates the limit as epsilon goes to zero in the given equation.

Parameters eq (str) – The equation to be evaluated.

Returns The dictionary containing the equation evaluated as epsilon goes to zero.

Return type dict

iterate()
Saves and updates the N-1 model to the N model.

Returns The dictionary containing the N-1 model to be udpated as the N model in the UI.

Return type dict

iterate_model()
Updates the model and id to the N-1 model and N-1 model id, then creates a new mbam iteration object.

kill_geodesic()
Kill the subprocesses used to run the geodesic.
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load_ftheta(fthetas)
Takes the fthetas from the UI, transforms them to ftildes, creates the substitutes for those ftildes, and
applies those substitutions to the model.

Parameters fthetas (list) – A list of ftheta dictionaries.

Returns True if the reparameterization with ftilde is successful.

Return type bool

load_model_id(id_str)
Use a model id to load the model and its data. Send necessary information forward to the user interface.

Parameters id_str (str) – A string representing a model id.

Returns A dictionary containing a model and its data, if data is associated with the given model.

Return type dict

manual_iterate(model_dict)
Used when the user updates the model manually.

Recieves a new model, checks if the model is valid, then completes the iteration from N to N-1.

Parameters model_dict (dict) – The dictionary representing the N-1 model.

Returns The new model dictionary to have the UI update with it as the N model.

Return type dict

query_geo()
Get the geodesic data and get it ready to be sent to the UI.

Returns The geodesic data to be sent to the UI.

Return type dict

read_model_data(data_str)
Takes in hdf5 byte string from the websocket, saves it to a temp.h5 file to be loaded in the Julia scripts.

Parameters data_str (byte_str) – A raw string of bytes representing all hdf5 data con-
tained in a file.

save_model(model_dict)
Saves a model dictionary to the database and creates a model object.

Parameters model_dict (dict) – A dictionary containing all necessary information for a
model.

Returns A dictionary containing model info to be sent to the UI.

Return type dict

save_model_dict(model_dict)
Turns a model dictionary into an MbamModel object.

Parameters model_dict (dict) – A dictionary containing all necessary information for a
model.

scripts_ready()
Checks if an iteration has been made. If it has been made, then the julia scripts will be ready to be sent.

Returns True if the scripts are ready to be sent.

Return type bool

send_data_done()
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Returns Response to be send to the UI containing the data read in the hdf5 file.

Return type dict

send_model_load_done()

Returns Response to be send to the UI containing a model dict.

Return type dict

send_save_done()

Returns Response to be send to the UI containing a model dict and a model in latex formatting.

Return type dict

send_scripts()

Returns Response to be send to the UI containing the julia model and geodesic scripts.

Return type dict

simplify_eq(eq)
Takes an equation from the UI, simiplifies it, and sends the simplified version back to the UI.

Parameters eq (str) – The equation to be simplified.

Returns A dictionary containing the equation as both a string and latex string.

Return type dict

start_geodesic()
Start the subprocesses necessary for the geodesic to run.

sub_ftildes(eq)
Substitutes f_inv in for the old parameters in the given equation.

Parameters eq (str) – The equation with parameters to be substituted.

Returns Contains the newly substituted equation as a string and latex string.

Return type dict

update_geo_options(options)
Update the julia geodesic options and send the new generated scripts to the UI.

Parameters options (dict) – Julia geodesic options.

Returns A dictionary containing the new script to be sent to the UI.

Return type dict

update_geo_script(script)
Update the julia geodesic script sent from the UI.

Parameters options (str) – Julia geodesic script.

update_julia_options(options)
Update the julia model options and send the new generated scripts to the UI.

Parameters options (dict) – Julia model options.

Returns A dictionary containing the new script to be sent to the UI.

Return type dict

update_julia_script(script)
Update the julia model script sent from the UI.
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Parameters options (str) – Julia model script.

4.8 Module contents

Loads in all the module necessary to run mbam automatically.
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CHAPTER

FIVE

MAIN MODULE

The websocket handler for connecting with the User Interface. Runs until killed or crashes.

main.time(websocket, path)
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CHAPTER

SIX

JULIATOMONGO MODULE

This module initializes a Collector object. This object then runs until it is manually killed, or until the geodesic that it
is connected to completes or crashes. It forwards all the data from the geodesic on to MongoDB.

This module is started at the same the Julia Geodesic script is started. Once a stable package for Julia is released
connecting to MongoDB, this class should be removed and the geodesic should report directly to MongoDB. However,
it seems that is not currently an option.

class juliatomongo.Collector(geo_id)
Bases: object

Uses ZMQ sockets to connect to the Julia Geodesic currently running, forwards the data collected to MongoDB.

collect()
Collects the data from the Julia Geodesic running.

Will run until the process is killed manually, or until the Geodesic reports that the script has either com-
pleted or crashed.

start_sockets()
Intializes the ZMQ socket on port 5556.
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Appendix C

Algorithm Results

This chapter contains four models approximated using the algorithms designed in this

project. Two of the models were reduced by running the geodesic with respect to the output

of the model all being zero. The other two models have been approximated in previous work.

These prior approximations guided the algorithm through the use of the recorded limits.

C.1 Simple Models with Zero Data

The following are two simple models which geodesics were calculated fitting the model to

all zeros. Fitting the data to zeros allows for the engine to run the geodesic with minimal

trouble and is possible to result in a model with zero parameters.

C.1.1 Michaelis-Menten

This model deals with four variables and represents four chemicals interacting with one

another as seen in Fig. C.1. The model was derived using Michaelis-Menten kinetics.
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Figure C.1: The behavior modeled by Eq. C.1.1 using Michaelis-Menten kinetics.

N = 8

0 =
k3x1inx3
K3 + x1in

+
k4x1inx4
K4 + x1in

− ẋ1

0 =
k1x1x2in
K1 + x2in

− ẋ2

0 =− k2x2x3
K2 + x3

− ẋ3

0 =− ẋ4

N = 7, Limit Evaluated: K4 →∞, k4 →∞.

New Parameter: K44.

0 =
1

K3K44 +K44x1in
(−K3K44ẋ1 +K3x1inx4

+K44k3x1inx3 −K44x1inẋ1 + x21inx4)

0 =− K1ẋ2
K1 + x2in

+
k1x1x2in
K1 + x2in

− x2inẋ2
K1 + x2in

0 =− K2ẋ3
K2 + x3

− k2x2x3
K2 + x3

− x3ẋ3
K2 + x3

0 =− ẋ4

N = 6, Limit Evaluated: K3 →∞, k3 →∞.
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New Parameter: K33.

0 =− ẋ1 +
x1inx4
K44

+
x1inx3
K33

0 =− K1ẋ2
K1 + x2in

+
k1x1x2in
K1 + x2in

− x2inẋ2
K1 + x2in

0 =− K2ẋ3
K2 + x3

− k2x2x3
K2 + x3

− x3ẋ3
K2 + x3

0 =− ẋ4

N = 5, Limit Evaluated: K2 →∞, k2 →∞.

New Parameter: K22.

0 =− ẋ1 +
x1inx4
K44

+
x1inx3
K33

0 =− K1ẋ2
K1 + x2in

+
k1x1x2in
K1 + x2in

− x2inẋ2
K1 + x2in

0 =− ẋ3 −
x2x3
K22

0 =− ẋ4

N = 4, Limit Evaluated: K1 →∞, k1 →∞.

New Parameter: K11.

0 =− ẋ1 +
x1inx4
K44

+
x1inx3
K33

0 =− ẋ2 +
x1x2in
K11

0 =− ẋ3 −
x2x3
K22

0 =− ẋ4
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N = 3, Limit Evaluated: K33 →∞.

0 =− ẋ1 +
x1inx4
K44

0 =− ẋ2 +
x1x2in
K11

0 =− ẋ3 −
x2x3
K22

0 =− ẋ4

N = 2, Limit Evaluated: K22 →∞.

0 =− ẋ1 +
x1inx4
K44

0 =− ẋ2 +
x1x2in
K11

0 =− ẋ3

0 =− ẋ4

N = 1, Limit Evaluated: K11 →∞.

0 =− ẋ1 +
x1inx4
K44

0 =− ẋ2

0 =− ẋ3

0 =− ẋ4

N = 0, Limit Evaluated: K44 →∞.

0 =− ẋ1

0 =− ẋ2

0 =− ẋ3

0 =− ẋ4
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C.1.2 Mass Action

This example uses an enzyme substrate reaction found in Eq. C.1.2. To model this reaction,

mass action dynamics were used leading to Eq. C.1.2.

x1 + x2 ⇐⇒ x2 ⇒ x1 + x4 (C.0)

N = 3

0 =kcx3 − kfx1x2 + krx3 − ẋ1

0 =− kfx1x2 + krx3 − ẋ2

0 =− kcx3 + kfx1x2 − krx3 − ẋ3

0 =kcx3 − ẋ4

N = 2, Limit Evaluated: kf →∞, kr →∞.

New Parameter: Kfr

New Variables: x5 = −x1 + x2, x6 = −x1 − x3.

0 =− x21 − x1x5 −
x1
Kfr

− x6
Kfr

0 =− kcx1 − kcx6 + ẋ5

0 =ẋ6

0 =− kcx1 − kcx6 − ẋ4

N = 1, Limit Evaluated: Kfr →∞.

0 =− x21 − x1x5

0 =− kcx1 − kcx6 + ẋ5

0 =ẋ6

0 =− kcx1 − kcx6 − ẋ4
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N = 0, Limit Evaluated: kc → 0.

0 =− x21 − x1x5 = x2

0 =ẋ5

0 =ẋ6

0 =− ẋ4

C.2 Larger Models

This section contains results from running the engine on two larger models. These models

are different versions of the Wnt cellular pathway. Each model has been reduced previously.

The limits used in the previous reduction were applied using the engine, thus no geodesics

were calculated. More details about the models are given in their respective sections.

C.2.1 Wnt (Lee)

This Wnt model is based off the findings of Lee, et al. [14]. It was originally reduced several

years ago. Using the results from the past geodesic runs, this model was approximated

automatically using the algorithms in this project. While the entire model was updated for

each iteration, only the residual functions are shown.
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N = 22

0 =−WX01k01 +X02k02 − Ẋ01

0 =WX01k01 −X02k02 − Ẋ02

0 =−X03X11k08f −X03k05 +X04k04 +X08k08b +X09k10 − Ẋ03

0 =−X02X04k03 +X03k05 −X04k04 −X04k06b +X05X06k06f − Ẋ04

0 =X02X04k03 +X04k06b −X05X06k06f − Ẋ05

0 =X02X04k03 +X04k06b −X05X06k06f −X06k07b +X07X12k06f − Ẋ06

0 =X06k07b −X07X11k17f −X07X12k06f +X15k17b − Ẋ07

0 =X03X11k08f −X08k09 −X08k08b − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =−X03X11k08f −X07X11k17f +X08k08b −X11X13k16f

−X11k13 +X14k16b +X15k17b − Ẋ11 + k12

0 =X06k07b −X07X12k06f −X12k15 − Ẋ12 + k14

0 =−X11X13k16f +X14k16b − Ẋ13

0 =X11X13k16f −X14k16b − Ẋ14

0 =X07X11k17f −X15k17b − Ẋ15
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N = 21, Limit Evaluated: k08b→ 0.

0 =−WX01k01 +X02k02 − Ẋ01

0 =WX01k01 −X02k02 − Ẋ02

0 =−X03X11k08f −X03k05 +X04k04 +X09k10 − Ẋ03

0 =−X02X04k03 +X03k05 −X04k04 −X04k06b +X05X06k06f − Ẋ04

0 =X02X04k03 +X04k06b −X05X06k06f − Ẋ05

0 =X02X04k03 +X04k06b −X05X06k06f −X06k07b +X07X12k06f − Ẋ06

0 =X06k07b −X07X11k17f −X07X12k06f +X15k17b − Ẋ07

0 =X03X11k08f −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =−X03X11k08f −X07X11k17f −X11X13k16f

−X11k13 +X14k16b +X15k17b − Ẋ11 + k12

0 =X06k07b −X07X12k06f −X12k15 − Ẋ12 + k14

0 =−X11X13k16f +X14k16b − Ẋ13

0 =X11X13k16f −X14k16b − Ẋ14

0 =X07X11k17f −X15k17b − Ẋ15
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N = 20, Limit Evaluated: k16f →∞, k16b →∞.

New Parameter: K16.

New Variables: x1 = −X11 +X13, x2 = −X11 −X14.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =−X03X11k08f −X03k05 − Ẋ03 +X04k04 +X09k10

0 =−X02X04k03 +X03k05 −X04k04 −X04k06b − Ẋ04 +X05X06k06f

0 =X02X04k03 +X04k06b −X05X06k06f − Ẋ05

0 =X02X04k03 +X04k06b −X05X06k06f −X06k07b − Ẋ06 +X07X12k06f

0 =X06k07b −X07X11k17f −X07X12k06f − Ẋ07 +X15k17b

0 =X03X11k08f −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =−X2
11 −X11x1 −

X11

K16

− x2
K16

0 =X06k07b −X07X12k06f −X12k15 − Ẋ12 + k14

0 =−X03X11k08f −X07X11k17f −X11k13 +X15k17b + k12 + ẋ1

0 =−X03X11k08f −X07X11k17f −X11k13 +X15k17b + k12 + ẋ2

0 =X07X11k17f −X15k17b − Ẋ15

92



N = 19, Limit Evaluated: k17f →∞, k17b→∞.

New Parameter: K17.

New Variables: x3 = −X07 − x1, x4 = −X07 − x2, x5 = −X07 −X15.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =−X03X11k08f −X03k05 − Ẋ03 +X04k04 +X09k10

0 =−X02X04k03 +X03k05 −X04k04 −X04k06b − Ẋ04 +X05X06k06f

0 =X02X04k03 +X04k06b −X05X06k06f − Ẋ05

0 =X02X04k03 +X04k06b −X05X06k06f −X06k07b − Ẋ06 +X07X12k06f

0 =−X07X11 −
X07

K17

− x5
K17

0 =X03X11k08f −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =X07X11 −X2
11 +X11x3 +

X07

K16

− X11

K16

+
x4
K16

0 =X06k07b −X07X12k06f −X12k15 − Ẋ12 + k14

0 =X03X11k08f +X06k07b −X07X12k06f +X11k13 − k12 + ẋ3

0 =X03X11k08f +X06k07b −X07X12k06f +X11k13 − k12 + ẋ4

0 =X06k07b −X07X12k06f + ẋ5
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N = 18, Limit Evaluated: k06f →∞, k06b →∞, k03 →∞.

New Parameters: K63, K06.

New Variables: x6 = −X04 −X05, x7 = −X04 −X06.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =−X03X11k08f −X03k05 − Ẋ03 +X04k04 +X09k10

0 =− X02X04

K63

+X2
04 +X04x6 +X04x7 −

X04

K06

+ x6x7

0 =X03k05 −X04k04 + ẋ6

0 =X03k05 −X04k04 +X04k07b +X07X12k07f + k07bx7 + ẋ7

0 =−X07X11 −
X07

K17

− x5
K17

0 =X03X11k08f −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =X07X11 +
X07

K16

−X2
11 +X11x3 −

X11

K16

+
x4
K16

0 =−X04k07b −X07X12k07f −X12k15 − Ẋ12 − k07bx7 + k14

0 =X03X11k08f −X04k07b −X07X12k07f +X11k13 − k07bx7 − k12 + ẋ3

0 =X03X11k08f −X04k07b −X07X12k07f +X11k13 − k07bx7 − k12 + ẋ4

0 =−X04k07b −X07X12k07f − k07bx7 + ẋ5
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N = 17, Limit Evaluated: k15 →∞, k14 →∞.

New Parameter: K1514.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =−X03X11k08f −X03k05 − Ẋ03 +X04k04 +X09k10

0 =− X02X04

K63

+X2
04 +X04x6 +X04x7 −

X04

K06

+ x6x7

0 =X03k05 −X04k04 + ẋ6

0 =X03k05 −X04k04 +X04k07b +X07X12k07f + k07bx7 + ẋ7

0 =−X07X11 −
X07

K17

− x5
K17

0 =X03X11k08f −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =X07X11 +
X07

K16

−X2
11 +X11x3 −

X11

K16

+
x4
K16

0 =−X12 +
1

K1514

0 =X03X11k08f −X04k07b −X07X12k07f +X11k13 − k07bx7 − k12 + ẋ3

0 =X03X11k08f −X04k07b −X07X12k07f +X11k13 − k07bx7 − k12 + ẋ4

0 =−X04k07b −X07X12k07f − k07bx7 + ẋ5
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N = 16, Limit Evaluated: k08f →∞, k05 →∞.

New Parameter: K8f5.

New Variables: x8 = x6 − x7, x9 = −X08 − x3, x10 = −X08 − x4, X̃03 = X03

ε
.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =− X̃03X11 −
X̃03

K8f5

+X04k04 +X09k10

0 =− X02X04

K63

+X2
04 + 2X04x7 +X04x8 −

X04

K06

+ x27 + x7x8

0 =
X̃03

K8f5

−X04k04 + ẋ7 + ẋ8

0 =−X04k07b −X07X12k07f − k07bx7 + ẋ8

0 =−X07X11 −
X07

K17

− x5
K17

0 =X̃03X11 −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =X07X11 +
X07

K16

−X08X11 −
X08

K16

−X2
11 −X11x9 −

X11

K16

− x10
K16

0 =−X12 +
1

K1514

0 =X04k07b +X07X12k07f −X08k09 −X11k13 + k07bx7 + k12 + ẋ9

0 =X04k07b +X07X12k07f −X08k09 −X11k13 + k07bx7 + k12 + ẋ10

0 =−X04k07b −X07X12k07f − k07bx7 + ẋ5
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N = 15, Limit Evaluated: K8f5 → 0, k04 →∞.

New Parameter: K8f54.

New Variables: x11 = x7 + x8.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =− X̃03 +X04K8f54

0 =− X02X04

K63

+X2
04 +X04x11 +X04x7 −

X04

K06

+ x11x7

0 =− X̃03X11 +X09k10 + ẋ11

0 =−X04k07b −X07X12k07f − k07bx7 + ẋ11 − ẋ7

0 =−X07X11 −
X07

K17

− x5
K17

0 =X̃03X11 −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =X07X11 +
X07

K16

−X08X11 −
X08

K16

−X2
11 −X11x9 −

X11

K16

− x10
K16

0 =−X12 +
1

K1514

0 =X04k07b +X07X12k07f −X08k09 −X11k13 + k07bx7 + k12 + ẋ9

0 =X04k07b +X07X12k07f −X08k09 −X11k13 + k07bx7 + k12 + ẋ10

0 =−X04k07b −X07X12k07f − k07bx7 + ẋ5
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N = 14, Limit Evaluated: K8f54 →∞, K06 →∞.

New Parameter: K8f546.

New Variables: x12 = x11 − x7.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =X04K8f546

0 =− X02X04

K63

+X2
04 + 2X04x11 −X04x12 + x211 − x11x12

0 =− X̃03X11 +X09k10 + ẋ11

0 =−X04k07b −X07X12k07f − k07bx11 + k07bx12 + ẋ12

0 =−X07X11 −
X07

K17

− x5
K17

0 =X̃03X11 −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =X07X11 +
X07

K16

−X08X11 −
X08

K16

−X2
11 −X11x9 −

X11

K16

− x10
K16

0 =−X12 +
1

K1514

0 =X04k07b +X07X12k07f −X08k09 −X11k13 + k07bx11 − k07bx12 + k12 + ẋ9

0 =X04k07b +X07X12k07f −X08k09 −X11k13 + k07bx11 − k07bx12 + k12 + ẋ10

0 =−X04k07b −X07X12k07f − k07bx11 + k07bx12 + ẋ5

98



N = 13, Limit Evaluated: k07f →∞, K17 →∞.

New Parameter: K7f17.

New Variables: x13 = x12 + x9 x14 = x10 + x12 x15 = x12 − x5.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =X04K8f546

0 =− X02X04

K63

+X2
04 + 2X04x11 −X04x12 + x211 − x11x12

0 =− X̃03X11 +X09k10 + ẋ11

0 =−X04k07b − X̃07X12 − k07bx11 + k07bx12 + ẋ12

0 =− X̃07X11 −K7f17x12 +K7f17x15

0 =X̃03X11 −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =−X08X11 −
X08

K16

−X2
11 +X11x12 −X11x13 −

X11

K16

+
x12
K16

− x14
K16

0 =−X12 +
1

K1514

0 =−X08k09 −X11k13 + k12 + ẋ13

0 =−X08k09 −X11k13 + k12 + ẋ14

0 =ẋ15
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N = 12, Limit Evaluated: K8f546 →∞, k07b →∞.

New Parameter: K8f5467b.

New Variable: X̃07 = X07

ε
.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =X04

0 =− X02X04

K63

+X2
04 + 2X04x11 −X04x12 + x211 − x11x12

0 =− X̃03X11 +X09k10 + ẋ11

0 =− X04

K8f5467b

− x11
K8f5467b

+
x12

K8f5467b

0 =− X̃07X11 −K7f17x12 +K7f17x15

0 =X̃03X11 −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =−X08X11 −
X08

K16

−X2
11 +X11x12 −X11x13 −

X11

K16

+
x12
K16

− x14
K16

0 =−X12 +
1

K1514

0 =−X08k09 −X11k13 + k12 + ẋ13

0 =−X08k09 −X11k13 + k12 + ẋ14

0 =ẋ15
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N = 11, Limit Evaluated: K7f17 →∞, K1514 →∞.

New Parameter: K7f171514.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =X04

0 =− X02X04

K63

+X2
04 + 2X04x11 −X04x12 + x211 − x11x12

0 =− X̃03X11 +X09k10 + ẋ11

0 =− X04

K8f5467b

− x11
K8f5467b

+
x12

K8f5467b

0 =−K7f171514x12 +K7f171514x15

0 =X̃03X11 −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =−X08X11 −
X08

K16

−X2
11 +X11x12 −X11x13 −

X11

K16

+
x12
K16

− x14
K16

0 =−X12

0 =−X08k09 −X11k13 + k12 + ẋ13

0 =−X08k09 −X11k13 + k12 + ẋ14

0 =ẋ15
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N = 10, Limit Evaluated: K16 → 0.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =X04

0 =− X02X04

K63

+X2
04 + 2X04x11 −X04x12 + x211 − x11x12

0 =− X̃03X11 +X09k10 + ẋ11

0 =− X04

K8f5467b

− x11
K8f5467b

+
x12

K8f5467b

0 =−K7f171514x12 +K7f171514x15

0 =X̃03X11 −X08k09 − Ẋ08

0 =X08k09 −X09k10 − Ẋ09

0 =X09k10 −X10k11 − Ẋ10

0 =−X08 −X11 + x12 − x14

0 =−X12

0 =−X08k09 −X11k13 + k12 + ẋ13

0 =−X08k09 −X11k13 + k12 + ẋ14

0 =ẋ15
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N = 9, Limit Evaluated: k10 → 0.

0 =−WX01k01 − Ẋ01 +X02k02

0 =WX01k01 −X02k02 − Ẋ02

0 =X04

0 =− X02X04

K63

+X2
04 + 2X04x11 −X04x12 + x211 − x11x12

0 =− X̃03X11 + ẋ11

0 =− X04

K8f5467b

− x11
K8f5467b

+
x12

K8f5467b

0 =−K7f171514x12 +K7f171514x15

0 =X̃03X11 −X08k09 − Ẋ08

0 =X08k09 − Ẋ09

0 =−X10k11 − Ẋ10

0 =−X08 −X11 + x12 − x14

0 =−X12

0 =−X08k09 −X11k13 + k12 + ẋ13

0 =−X08k09 −X11k13 + k12 + ẋ14

0 =ẋ15

To approximate this model further, parameters were added which are not included in

the original residual functions. Therefore, the engine could no longer continue automatically.
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C.2.2 Wnt (Jensen)

This Wnt model is based off the findings of Jensen, et al. [11]. Using the results from the

past geodesic runs, this model was approximated automatically using the algorithms in this

project. While the entire model was updated for each iteration, only the residual functions

are shown.

Note: in this model, the initial values for the variables were treated as adjustable

parameters. For those with limits that contain parameters with init appended to the name,

those initial conditions were adjusted. Therefore, no changes in the residual functions may

be seen.

N = 20.

0 =BGACfc − CbcC − Cα− Ċ

0 =AGCfGA −BGACfc + Cα−GACbGA − ĠA

0 =−BGACfc − Ḃ + S

0 =− AGCfGA +GACbGA − Ġ

0 =− AGCfGA − ALCfAL + ALCbAL − Ȧ+ AmCtlA +GACbGA

0 =− Am
τAm
− Ȧm +B2CtsA

0 =ALCfAL − ALCbAL − ALv − ȦL

0 =− ALCfAL + ALCbAL + ALv − L̇
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N = 19, Limit Evaluated: Cbc → 0.

0 =BGACfc − Cα− Ċ

0 =AGCfGA −BGACfc + Cα−GACbGA − ĠA

0 =−BGACfc − Ḃ + S

0 =− AGCfGA +GACbGA − Ġ

0 =− AGCfGA − ALCfAL + ALCbAL − Ȧ+ AmCtlA +GACbGA

0 =− Am
τAm
− Ȧm +B2CtsA

0 =ALCfAL − ALCbAL − ALv − ȦL

0 =− ALCfAL + ALCbAL + ALv − L̇

N = 18, Limit Evaluated: Cinit → 0.

0 =BGACfc − Cα− Ċ

0 =AGCfGA −BGACfc + Cα−GACbGA − ĠA

0 =−BGACfc − Ḃ + S

0 =− AGCfGA +GACbGA − Ġ

0 =− AGCfGA − ALCfAL + ALCbAL − Ȧ+ AmCtlA +GACbGA

0 =− Am
τAm
− Ȧm +B2CtsA

0 =ALCfAL − ALCbAL − ALv − ȦL

0 =− ALCfAL + ALCbAL + ALv − L̇
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N = 17, Limit Evaluated: α→∞.

0 =BGACfc − C̃

0 =AGCfGA −GACbGA − ĠA

0 =−BGACfc − Ḃ + S

0 =− AGCfGA +GACbGA − Ġ

0 =− AGCfGA − ALCfAL + ALCbAL − Ȧ+ AmCtlA +GACbGA

0 =− Am
τAm
− Ȧm +B2CtsA

0 =ALCfAL − ALCbAL − ALv − ȦL

0 =− ALCfAL + ALCbAL + ALv − L̇

N = 16, Limit Evaluated: Linit → 0.

0 =BGACfc − C̃

0 =AGCfGA −GACbGA − ĠA

0 =−BGACfc − Ḃ + S

0 =− AGCfGA +GACbGA − Ġ

0 =− AGCfGA − ALCfAL + ALCbAL − Ȧ+ AmCtlA +GACbGA

0 =− Am
τAm
− Ȧm +B2CtsA

0 =ALCfAL − ALCbAL − ALv − ȦL

0 =− ALCfAL + ALCbAL + ALv − L̇
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N = 15, Limit Evaluated: CbAL → 0.

0 =BGACfc − C̃

0 =AGCfGA −GACbGA − ĠA

0 =−BGACfc − Ḃ + S

0 =− AGCfGA +GACbGA − Ġ

0 =− AGCfGA − ALCfAL − Ȧ+ AmCtlA +GACbGA

0 =− Am
τAm
− Ȧm +B2CtsA

0 =ALCfAL − ALv − ȦL

0 =− ALCfAL + ALv − L̇

N = 14, Limit Evaluated: Binit → 0.

0 =BGACfc − C̃

0 =AGCfGA −GACbGA − ĠA

0 =−BGACfc − Ḃ + S

0 =− AGCfGA +GACbGA − Ġ

0 =− AGCfGA − ALCfAL − Ȧ+ AmCtlA +GACbGA

0 =− Am
τAm
− Ȧm +B2CtsA

0 =ALCfAL − ALv − ȦL

0 =− ALCfAL + ALv − L̇
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N = 13, Limit Evaluated: CfGA →∞, CbGA →∞.

New Parameter: CGA.

New Variables: x1 = −G−GA, x2 = −A−GA

0 =BGACfc − C̃

0 =G2
A +GAx1 +GAx2 −

GA

CGA
+ x1x2

0 =−BGACfc − Ḃ + S

0 =x1̇

0 =AmCtlA +GALCfAL + LCfALx2 + x2̇

0 =− Am
τAm
− Ȧm +B2CtsA

0 =− ALv − ȦL −GALCfAL − LCfALx2

0 =ALv +GALCfAL + LCfALx2 − L̇

N = 12, Limit Evaluated: Ginit → 0.

0 =BGACfc − C̃

0 =G2
A +GAx1 +GAx2 −

GA

CGA
+ x1x2

0 =−BGACfc − Ḃ + S

0 =x1̇

0 =AmCtlA +GALCfAL + LCfALx2 + x2̇

0 =− Am
τAm
− Ȧm +B2CtsA

0 =− ALv − ȦL −GALCfAL − LCfALx2

0 =ALv +GALCfAL + LCfALx2 − L̇

Further approximation has been done on this model, however, the following limit

requires more variable manipulation than is currently possible in the algorithm.
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