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ABSTRACT

Semantically Aligned Sentence-Level Embeddings for Agent
Autonomy and Natural Language Understanding

Nancy Ellen Fulda
Department of Computer Science, BYU

Doctor of Philosophy

Many applications of neural linguistic models rely on their use as pre-trained features
for downstream tasks such as dialog modeling, machine translation, and question answering.
This work presents an alternate paradigm: Rather than treating linguistic embeddings as
input features, we treat them as common-sense knowledge repositories that can be queried
using simple mathematical operations within the embedding space, without the need for
additional training. Because current state-of-the-art embedding models were not optimized
for this purpose, this work presents a novel embedding model designed and trained specifically
for the purpose of “reasoning in the linguistic domain”.

Our model jointly represents single words, multi-word phrases, and complex sentences
in a unified embedding space. To facilitate common-sense reasoning beyond straightforward
semantic associations, the embeddings produced by our model exhibit carefully curated
properties including analogical coherence and polarity displacement. In other words, rather
than training the model on a smorgaspord of tasks and hoping that the resulting embeddings
will serve our purposes, we have instead crafted training tasks and placed constraints on
the system that are explicitly designed to induce the properties we seek. The resulting
embeddings perform competitively on the SemEval 2013 benchmark and outperform state-of-
the-art models on two key semantic discernment tasks introduced in Chapter 8.

The ultimate goal of this research is to empower agents to reason about low-level
behaviors in order to fulfill abstract natural language instructions in an autonomous fashion.
An agent equipped with an embedding space of su�cient caliber could potentially reason
about new situations based on their similarity to past experience, facilitating knowledge
transfer and one-shot learning. As our embedding model continues to improve, we hope to
see these and other abilities become a reality.

Keywords: Nancy Fulda, dissertation, knowledge representation, linguistic embeddings,
word2vec, FastText, universal sentence encoder, BERT embeddings, sentence embedding,
common-sense reasoning
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Part I

Overview

This dissertation is all about natural language understanding. As humans, we com-

municate with one another through simple verbal expressions. Other humans are able to

interpret and act upon these expressions almost flawlessly, even when the original statement

was ambiguous or incomplete, and yet imbuing computational systems with the same abilities

has proved a challenging task. As a society, we yearn for Jarvis, KIT, the Star Trek Computer...

Instead we get Alexa, Cortana and Siri.

How do we bridge that gap? We want to create systems that are able to understand

language and reason with it, but how do you comprehend the meaning of words like “touch”,

“sky”, and “ground” when you have neither hands, eyes, nor feet?

A solution is expressed in the Distributional Hypothesis of linguistics, which states

that words which appear in the same contexts tend to have similar meanings [58]. Thus, the

meaning of a word can be defined in terms of its relationships with other words, independent

of its grounding (or lack thereof) in real-world experience. This concept is the basis of recent

popular embedding models such as word2vec, GLoVE, and fastText [11, 97, 117], which use

the context of a word, or ”the company it keeps” [39] to create numerical representations of

language. In the scientific literature, these representations are described interchangeably as

‘distributed representations’, ‘linguistic embeddings’, or ‘word vectors’.
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Figure 1: 100-dimensional word vectors projected into a 2-dimensional space demonstrate
impressive semantic structure. Common household items are clustered in specific relationships
to the rooms in which they tend to be located. The angle of correspondence is at least as
significant as proximity. Of particular interest is the word ‘mirror’, which is aligned both
with the items found in a bedroom and with the items found in a bathroom.

Experiments with these embeddings reveal that they have surprising and powerful

properties. For example, words that describe common household objects are positioned in

close proximity to objects that tend to appear within the same room. For example, common

appliances like ‘stove’, ‘refrigerator’, and ‘blender’ lie close to one another and share a common

angle of incidence toward the representation for ‘kitchen’ (see Figure 1).

Perhaps even more startling, the embedding spaces are structured such that words

which are related to one another in specific ways map to locations with matching geometric

properties. For example, the di↵erence between the vectors for ‘king’ and ‘queen’ is almost
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identical to the vector di↵erence between ‘man’ and ‘woman’, suggesting that a form of

everyday common-sense knowledge is implicitly encoded within the structure of the embedding

space. It ‘knows’, in some sense, that a queen is a female ruler, just as it ‘knows’ that an

oven can be found in a kitchen.

A major contribution of this dissertation is the idea that common-sense knowledge

can be found directly within linguistic embeddings, and that this knowledge can be extracted

and utilized for real-world applications like robot navigation and dialog systems. We further

demonstrate a method for training embedding spaces with even stronger structural properties.

Linguistic Embedding Models

Lingusitic embeddings, also known as vector space models or distributed representations of

words, rose to unprecedented prominence within the research community with the introduction

of the GLoVE [116] and word2vec [97] algorithms, both of which use unsupervised methods

to produce vector representations of words. Additional word-level embedding models followed,

including the FastText algorithm [11], which utilizes subword information to enrich the

resulting word vectors, and contextualized word embeddings such as those produced by BERT

[30].

Many of these embedding models encode the semantic meaning of words so precisely

that simple algebra followed by a nearest-neighbor search is su�cient to solve analogical

queries such as man:woman::king:queen (‘man is to woman as king is to queen’). This

prompted researchers to explore the natural extension of word-level linguistic models to

the level of sentences and paragraphs. In 2016, Kiros et al. presented skip-thoughts [75], an

extension to multi-word text of the context-prediction task used to train word2vec. Two years

later Google released its Universal Sentence Encoder [16], which features two variants: A

lightweight implementation that disregards syntax in favor of a quickly trainable bag-of-words

representation [65] and a large model based on a Transformer architecture structured around

attention mechanisms [157]. Trained on a combination of tasks including context prediction;
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an input-response task; and classification tasks using supervised data, Google’s encoder

became the de facto standard for use as pre-trained language model input features until its

displacement by BERT later that year.

Unfortunately, the structural properties of word-level embedding spaces fail to manifest

e↵ectively in their sentence-level extensions. For example, skip-thought embeddings place

otherwise identical sentences in wildly disparate locations based on ending punctuation and

both of Google’s universal encoder models map negation pairs such as “I am a cat” and “I

am not a cat” to nearly identical vectors (see Chapter 8). The models were not optimized for

lingusitic reasoning tasks, and their structural irregularities prevent them from being used in

the same way that word embeddings are applied.

Perhaps for this reason, many applications of pre-trained linguistic embedding models

use them as inputs for end-to-end tasks such as dialog modeling, machine translation, and

question answering. In such contexts, it is not troubling that skip-thought embeddings are

more sensitive to syntax than to semantics, or that Google’s universal encoder distinguishes

only subtly between a sentence and its negation. After all, subsequent layers of the neural

network can smooth over these irregularities and produce the desired result [75].

This research addresses the gap between the state of current embedding spaces and

the need for general-purpose linguistic knowledge by presenting a novel, carefully-curated

network architecture designed for the explicit purpose of reasoning in the linguistic domain.

Rather than using our model to produce pre-trained input features for downstream tasks, we

instead focus on common-sense reasoning via algebraic operations performed directly within

the embedding space, without the need for additional training.

This somewhat unorthodox application mirrors the way linguistic models are often used

“in the wild”, by developers and hobbyists. By and large, when one reads blog posts about

word embeddings or browses through discussion forums, one notices an inherent fascination

with the embeddings themselves, independent of any transfer learning they facilitate. A

plethora of web sites have popped up allowing users to experiment with embedding spaces by
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projecting words into interesting subspaces and observing the patterns they generate. The

vector properties in the python spacy module are frequently used as an analogue for semantic

meaning, with dot products between vectors used as a measure of similarity. The average

user seems to want to use the linguistic embeddings directly - and there is a certain intuitive

appeal to this approach. After all, if words and sentences can be represented as numbers,

should one not be able to manipulate them mathematically?

Doing Math with Language

The answer, of course, is that one can, at least at the level of single words. In 2013, Mikolov et

al. observed what has since become a hallmark feature of word-level embedding models: their

ability to represent linguistic regularities in the form of analogical relations [100]. Although

trained for di↵erent purposes entirely, most word-level embedding models can be used to

solve analogical queries of the form a:b::c:d (a is to b as c is to d). Leveraging this principle,

it is possible to use simple linear relations to discover the unknown value d, e.g.

Madrid - Spain + France = Paris

The possibilities are tantalizing. For example, researchers have demonstrated that

mathematical operations on word embeddings can be used to detect a↵ordances [45], infer

the locations of everyday objects [48], and condition agent behaviors on natural language

instructions [44].

A natural extension would be to apply these same principles at the sentence level - and

yet there is a notable dearth of papers demonstrating such applications, primarily because

coherent results are more di�cult to achieve. For example, using a pre-trained skip-thought

encoder [72] and corresponding decoder trained on reddit data, the following equivalences

hold:

‘I am angry’ - ‘angry’ + ‘happy’ = ‘I happy’

‘thank you’ + ‘you’re welcome’ = ‘enjoy you’
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At first glance, it appears that this sentence-level embedding space is functioning with

the same precision as its word-level predecessors. Alas, the illusion breaks down as soon as

more equations are attempted:

‘a dragon flying’ + ‘high in the sky’ = ‘a high’

‘the sky is blue’-‘blue’+‘orange’=‘the orange is the orange’

Clearly the potential for direct mathematical manipulation of the space is present,

but the space is insu�ciently structured (or the decoder insu�ciently trained) to allow this

information to be reliably extracted.

Reasoning in the Linguistic Domain

When we speak of algorithm-based reasoning, we generally imagine a system that transforms

language or other observations into symbols and then manipulates the symbols according to

a set of predefined rules in order to achieve the desired result.

This work lays the foundation for future applications that “reason in the linguistic

domain”. We mean by this a system that reasons via mathematical traversals of a linguistic

embedding space. While this process could be formalized within the framework of traditional

reasoning (with vector representations corresponding to symbols and mathematical operations

corresponding to symbol manipulation rules) we find it distinct in that it is simultaneously

less precise and more flexible than traditional reasoning frameworks.

Work done for this dissertation shows, for example, that this method can be used to

determine the best mode of transportation to specific locations (see Chapter 2) and to detect

potential threats based on a verbal description of a scene (see Chapter 5). It is our hope that

as the precision and representational capacities of linguistic embedding spaces improve, the

pathway will open for new applications related to question answering, dialog modeling, and

conversational AI.
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Research Objectives/Paper Overview

The purpose of this research is twofold: First, to demonstrate the powerful potential of

linguistic embedding models as common-sense knowledge repositories. Second, to develop an

embedding model that excels at such applications.

The remainder of this work is structured as follows: Chapters 1-4 present research

into common-sense applications of linguistic embeddings comprising only single words or

short phrases. We show that word and phrase embeddings can be used to detect a↵ordances,

solve high-level robot navigation tasks, expand regex statements in semantically meaningful

ways, and allow agents to act in compliance with natural language instructions. Chapters 5-7

present research that applies the same methodologies to sentence-level reasoning tasks. The

results are intriguing yet suboptimal. Chapter 8 presents a deep constrained neural embedding

model that is able to capture critical semantic structure, such as sentence negations, in the

geometry of the resulting embedding space. We show that this model is able to outperform

state-of-the-art embeddings on two semantic discernment tasks.
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Part II

The Quest for Common-Sense Knowledge

Common-sense knowledge is intrinsic to our perception of the world. We see a closed

door and instantly understand that a new environment lies beyond it. We see gyrating

reflections and immediately know we are looking at a body of water. Common-sense knowledge

also helps us to make predictions: A dropped ball will bounce. A tipped glass will spill its

contents. Perhaps most importantly, we rely on common-sense knowledge to resolve ambiguities

in spoken language. Given the phrase ‘Let’s meet at three’, we determine from context that

the word ‘three’ refers to a time instead of a location or a numeral. We can also infer that

the speaker intends to meet at 3:00 in the afternoon rather than at 3:00 in the morning.

These and similar experiences are so ubiquitous that we seldom notice the assumptions

we make or the way our expectations shape our experience. And yet common-sense reasoning

is seldom incorporated into (or extracted from) machine learning algorithms. Neural networks

operate on the assumption that there exist direct, unequivocal mappings between observed

inputs and the optimal output. Even probabilistic models such as variational autoencoders

[70] do not represent common-sense knowledge explicitly; instead these models attempt to

learn probability distributions for the unknown latent variables that drive the output, without

any understanding of how those variables relate to its experience or to the world in general.

The chapters in this section validate an alternate view, showing that linguistic em-

beddings can be treated as a common-sense knowledge repository that implicitly models our
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everyday word by placing words with similar meanings in proximity to one another. Further,

it is shown that the embeddings for related words are encoded in ways that preserve those

relationships.

Chapter 1: What Can You Do With a Rock? A↵ordance Extraction via Word Embed-

dings leverages lingusitic relationships to improve agent performance on text-based adventure

games, a challenging learning environment with a dauntingly large action space. Chapter

2: Harvesting Common-sense Navigational Knowledge for Robotics from Uncurated Text

Corpora extends these ideas further, showing that the word2vec embedding space models

information about the world as a learned geometry of the contexts in which human beings

tend to use each idea. Chapter 3: Embedding Grammars presents some preliminary explo-

rations on a combination of word embeddings with context-free grammars, thus allowing

classical regex expressions to match a broader spectrum of terms than those entered by the

programmer. Finally, Chapter 4: Informing Action Primitives Through Free-Form Text uses

embedded sentence representations to prioritize the action primitives of an agent interacting

with a simulated environment, thus allowing the agent to select actions that conform with

natural-language instructions provided by a human. A key advantage of this approach is its

flexibility: once a properly-structured embedding space has been obtained, new mappings

between instructions and behaviors can be formed at will, without the need for additional

training.

Although this work focuses on text-based representations of knowledge, we note that

there are many other ways to model world data. Maps, images, behavioral skills, statistical

models and physics engines all represent forms of common-sense knowledge that can be

leveraged within autonomous systems. While we value these approaches, we have restricted

our current attention to text-based embedding spaces.
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Chapter 1

What Can You Do with a Rock?

A↵ordance Extraction via Word Embeddings

by Nancy Fulda, Daniel Ricks, Ben Murdoch and David Wingate,

International Joint Conference on Artificial Intelligence (IJCAI 2017).

Abstract

Autonomous agents must often detect a↵ordances : the set of behaviors enabled by a situation.

A↵ordance detection is particularly helpful in domains with large action spaces, allowing

the agent to prune its search space by avoiding futile behaviors. This paper presents a

method for a↵ordance extraction via word embeddings trained on a tagged Wikipedia corpus.

The resulting word vectors are treated as a common knowledge database which can be

queried using linear algebra. We apply this method to a reinforcement learning agent in a

text-only environment and show that a↵ordance-based action selection improves performance

in most cases. Our method increases the computational complexity of each learning step

but significantly reduces the total number of steps needed. In addition, the agent’s action

selections begin to resemble those a human would choose.

1.1 Introduction

The physical world is filled with constraints. You can open a door, but only if it isn’t locked.

You can douse a fire, but only if a fire is present. You can throw a rock or drop a rock or even,

under certain circumstances, converse with a rock, but you cannot traverse it, enumerate
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it, or impeach it. The term a↵ordances [53] refers to the subset of possible actions which

are feasible in a given situation. Human beings detect these a↵ordances automatically, often

subconsciously, but it is not uncommon for autonomous learning agents to attempt impossible

or even ridiculous actions, thus wasting e↵ort on futile behaviors.

This paper presents a method for a↵ordance extraction based on the copiously available

linguistic information in online corpora. Word embeddings trained using Wikipedia articles are

treated as a common sense knowledge base that encodes (among other things) object-specific

a↵ordances. Because knowledge is represented as vectors, the knowledge base can be queried

using linear algebra. This somewhat counterintuitive notion - the idea that words can be

manipulated mathematically - creates a theoretical bridge between the frustrating realities of

real-world systems and the immense wealth of common sense knowledge implicitly encoded

in online corpora.

We apply our technique to a text-based environment and show that a priori knowledge

provided by a↵ordance extraction greatly speeds learning. Specifically, we reduce the agent’s

search space by (a) identifying actions a↵orded by a given object; and (b) discriminating

objects that can be grasped, lifted and manipulated from objects which can merely be

observed. Because the agent explores only those actions which ‘make sense’, it is able to

discover valuable behaviors more quickly than a comparable agent using a brute force approach.

Critically, the a↵ordance agent is demonstrably able to eliminate extraneous actions without

(in most cases) discarding beneficial ones.

All the experiments in this paper were performed using a Wikipedia corpus that had

been preprocessed to append part-of-speech tagging to each word.

1.2 Related Work

Our research relies heavily on word2vec [96], an algorithm that encodes individual words based

on the contexts in which they tend to appear. Earlier work has shown that word vectors trained

using this method contain intriguing semantic properties, including structured representations
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of gender and geography [99, 101]. The (by now) archetypal example of such properties is

represented by the algebraic expression vector[‘king’]� vector[‘man’] + vector[‘woman’] =

vector[‘queen’].

Researchers have leveraged these properties for diverse applications including sentence-

and paragraph-level encoding [74, 82], image categorization [42], bidirectional retrieval [68],

semantic segmentation [137], biomedical document retrieval [15], and the alignment of movie

scripts to their corresponding source texts [175]. Our work is most similar to [173]; however,

rather than using a Markov Logic Network to build an explicit knowledge base, we instead

rely on the semantic structure implicitly encoded in skip-grams.

A↵ordance detection, a topic of rising importance in our increasingly technological

society, has been attempted and/or accomplished using visual characteristics [138, 139], haptic

data [107], visuomotor simulation [132, 133], repeated real-world experimentation [105, 141],

and knowledge base representations [173].

In 2001 [80] identified text-based adventure games as a step toward general problem

solving. The same year at AAAI, Mark DePristo and Robert Zubek unveiled a hybrid system

for text-based game play [4], which operated on hand-crafted logic trees combined with a

secondary sensory system used for goal selection. The handcrafted logic worked well, but

goal selection broke down and became cluttered due to the scale of the environment. Perhaps

most notably, in 2015 [106] designed an agent which passed the text output of the game

through an LSTM [61] to find a state representation, then used a DQN [104] to select a

Q-valued action. This approach appeared to work well within a small discrete environment

with reliable state action pairs, but as the complexity and alphabet of the environment grew,

the clarity of Q-values broke down and left them with a negative overall reward. Our work,

in contrast, is able to find meaningful state action pairs even in complex environments with

many possible actions.
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1.3 Wikipedia as a Common Sense Knowledge Base

Google ‘knowledge base’, and you’ll get a list of hand-crafted systems, both commercial

and academic, with strict constraints on encoding methods. These highly-structured, often

node-based solutions are successful at a wide variety of tasks including topic gisting [87],

a↵ordance detection [173] and general reasoning [127]. Traditional knowledge bases are

human-interpretable, closely tied to high-level human cognitive functions, and able to encode

complex relationships compactly and e↵ectively.

It may seem strange, then, to treat Wikipedia as a knowledge base. When compared

with curated solutions like ConceptNet [87], Cyc [95], and WordNet [102], its contents are

largely unstructured, polluted by irrelevant data, and prone to user error. When used as

a training corpus for the word2vec algorithm, however, Wikipedia becomes more tractable.

The word vectors create a compact representation of the knowledge base and, as observed

by [12] and [13], can even encode relationships about which a human author is not consciously

cognizant. Perhaps most notably, Wikipedia and other online corpora are constantly updated

in response to new developments and new human insight; hence, they do not require explicit

maintenance.

However: in order to leverage the semantic structure implicitly encoded within

Wikipedia, we must be able to interpret the resulting word vectors. Significant semantic

relationships are not readily apparent from the raw word vectors or from their PCA reduction.

In order to extract useful information, the database must be queried through a mathematical

process. For example, in Figure 1.1 a dot product is used to project gendered terms onto the

space defined by vector[‘king’]�vector[‘queen’] and vector[‘woman’]�vector[‘man’]. In such

a projection, the mathematical relationship between the words is readily apparent. Masculine

and feminine terms become linearly separable, making it easy to distinguish instances of each

group.

These relationships can be leveraged to detect a↵ordances, and thus reduce the agent’s

search space. In its most general interpretation, the adjective a↵ordant describes the set of
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Figure 1.1: Word vectors projected into the space defined by vector[‘king’]� vector[‘queen’]
and vector[‘woman’]� vector[‘man’]. In this projection, masculine and feminine terms are
linearly separable.
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actions which are physically possible under given conditions. In the following subsections,

however, we use it in the more restricted sense of actions which seem reasonable. For

example, it is physically possible to eat a pencil, but it does not ‘make sense’ to do so.

1.3.1 Verb/Noun A↵ordances

So how do you teach an algorithm what ‘makes sense’? We address this challenge through an

example-based query. First we provide a canonical set of verb/noun pairs which illustrate the

relationship we desire to extract from the knowledge base. Then we query the database using

the analogy format presented by [96]. Using their terminology, the analogy sing:song::[?]:[x]

encodes the following question: If the a↵ordant verb for ‘song’ is ‘sing’, then what is the

a↵ordant verb for [x]?

In theory, a single canonical example is su�cient to perform a query. However,

experience has shown that results are better when multiple canonical values are averaged.

More formally, let W be the set of all English-language word vectors in our agent’s

vocabulary. Further, let N = {~n1, ...,~nj}, N ⇢ W be the set of all nouns in W and let

V = {~v1, ...,~vk}, V ⇢ W be the set of all verbs in W .

Let C = {(~v1,~n1), ..., (~vm,~nm)} represent a set of canonical verb/noun pairs used by

our algorithm. We use C to define an a↵ordance vector ~a = 1/m
P

i(~vi � ~ni), which can be

thought of as the distance and direction within the embedding space which encodes a↵ordant

behavior.

In our experiments we used the following verb/noun pairs as our canonical set:

[‘sing song’, ‘drink water’, ‘read book’, ‘eat food’, ‘wear coat’,

‘drive car’, ‘ride horse’, ‘give gift’, ‘attack enemy’, ‘say word’,

‘open door’, ‘climb tree’, ‘heal wound’, ‘cure disease’,

‘paint picture’]
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Our algorithm Co-occurrence Concept Net

vanquish impale have die kill harm
duel battle make cut parry fence

unsheath behead kill fight strike thrust
summon wield move use slash injure
overpower cloak destroy be look cool cut

Figure 1.2: Verb associations for the noun ‘sword’ using three di↵erent methods: (1) A↵ordance
detection using word vectors extracted from Wikipedia, as described in this section, (2) Strict
co-occurrence counts using a Wikipedia corpus and a co-occurrence window of 9 words, (3)
Results generated using ConceptNet’s CapableOf relationship.

We describe a verb/noun pair (~v,~n) as a↵ordant to the extent that ~n+~a = ~v. Therefore,

a typical knowledge base query would return the n closest verbs {~vc1, ...,~vcn} to the point

~n+ ~a

For example, using the canonical set listed above and a set of pre-trained word vectors,

a query using ~n = vector[‘sword’] returns the following:

[‘vanquish’, ‘duel’, ‘unsheathe’, ‘wield’, ‘summon’, ‘behead’,

‘battle’, ‘impale’, ‘overpower’, ‘cloak’]

Intuitively, this query process produces verbs which answer the question, ‘What should

you do with an [x]?’. For example, when word vectors are trained on a Wikipedia corpus with

part-of-speech tagging, the five most a↵ordant verbs to the noun ‘horse’ are {‘gallop’, ‘ride’,

‘race’, ‘horse’, ‘outrun’}, and the top five results for ‘king’ are {‘dethrone’, ‘disobey’, ‘depose’,

‘reign’, ‘abdicate’}.

The resulting lists are surprisingly logical, especially given the unstructured nature

of the Wikipedia corpus from which the vector embeddings were extracted. Subjective

examination suggests that a↵ordances extracted using Wikipedia are at least as relevant as

those produced by more traditional methods (see Figure 1.2).

It is worth noting that our algorithm is not resilient to polysemy, and behaves

unpredictably when multiple interpretations exist for a given word. For example, the verb

‘eat’ is highly a↵ordant with respect to most food items, but the twelve most salient results
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for ‘apple’ are {‘apple’, ‘package’, ‘program’, ‘release’, ‘sync’, ‘buy’, ‘outsell’, ‘download’,

‘install’, ‘reinstall’, ‘uninstall’, ‘reboot’}. In this case, ‘Apple, the software company’ is more

strongly represented in the corpus than ‘apple, the fruit’.

Algorithm 1 Verb Selection With Analogy Reduction
1: navigation verbs = [‘north’, ‘south’, ‘east’, ‘west’, ‘northeast’, ‘southeast’, ‘southwest’, ‘northwest’, ‘up’, ‘down’, ‘enter’]
2: manipulation verbs = a list of 1000 most common verbs
3: essential manipulation verbs = [‘get’, ‘drop’, ‘push’, ‘pull’, ‘open’, ‘close’]
4: a↵ordant verbs = verbs returned by Word2vec that match noun
5: a↵ordant verbs = a↵ordant verbs \

manipulation verbs
6: final verbs = navigation verbs [ a↵ordant verbs [

essential manipulation verbs
7: verb = a randomly selected verb from final verbs

1.3.2 Identifying Graspable Objects

Finding a verb that matches a given noun is useful. But an autonomous agent is often

confronted with more than one object at a time. How should it determine which object to

manipulate, or whether any of the objects are manipulable? Pencils, pillows, and co↵ee mugs

are easy to grasp and lift, but the same cannot be said of shadows, boulders, or holograms.

To identify a↵ordant nouns - i.e. nouns that can be manipulated in a meaningful way -

we again utilize analogies based on canonical examples. In this section, we describe a noun as

a↵ordant to the extent that it can be pushed, pulled, grasped, transported, or transformed.

After all, it would not make much sense to lift a sunset or unlock a cli↵.

We begin by defining canonical a↵ordance vectors ~ax = ~nx1 � ~nx2 and ~ay = ~ny1 � ~ny2

for each axis of the a↵ordant vector space. Then, for each object ~oi under consideration, we

generate a pair of projections ~poix = ~oi dot ~ax and ~poiy = ~oi dot ~ay.

The results of such a projection can be seen in Figure 1.3. This query is distinct from

those described in section 2.3.1 because, instead of using analogies to test the relationships

between nouns and verbs, we are instead locating a noun on the spectrum defined by two

other words.

In our experiments, we used a single canonical vector, vector[‘forest ’] � vector[‘tree’],

to distinguish between nouns of di↵erent classes. Potentially a↵ordant nouns were projected
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Algorithm 2 Noun Selection With A↵ordance Detection
1: state = game response to last command
2: manipulable nouns {}
3: for each word w 2 state do

4: if w is a noun then

5: if w is manipulable then

6: add w to manipulable nouns
7: end if

8: end if

9: end for

10: noun = a randomly selected noun from manipulable nouns

Figure 1.3: Word vectors projected into the space defined by vector[‘forest ’]� vector[‘tree’]
and vector[‘mountain’]� vector[‘pebble’]. Small, manipulable objects appear in the lower-left
corner of the graph. Large, abstract, or background objects appear in the upper right. An
object’s manipulability can be roughly estimated by measuring its location along either of
the defining axes.
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onto this line of manipulability, with the words whose projection lay closest to ‘tree’ being

selected for further experimentation.

Critical to this approach is the insight that canonical word vectors are most e↵ective

when they are thought of as exemplars rather than as descriptors. For example, vector[‘forest ’]

� vector[‘tree’] and vector[‘building’] � vector[‘brick’] function reasonably well as projections

for identifying manipulable items, whereas vector[‘big’] � vector[‘small’] is utterly ine↵ective.

1.4 Test Environment: A World Made of Words

In this paper, we test our ideas in the challenging world of text-based adventure gaming.

Text-based adventure games o↵er an unrestricted, free-form interface: the player is presented

with a block of text describing a situation, and must respond with a written phrase. Typical

actions include commands such as: ‘examine wallet’, ‘eat apple’, or ‘light campfire with

matches’. The game engine parses this response and produces a new block of text. The

resulting interactions, although syntactically simple, provide a fertile research environment

for natural language processing and human/computer interaction. Game players must identify

objects that are manipulable and apply appropriate actions to those objects in order to make

progress.

In these games, the learning agent faces a frustrating dichotomy: its action set must

be large enough to accommodate any situation it encounters, and yet each additional action

increases the size of its search space. A brute force approach to such scenarios is frequently

futile, and yet factorization, function approximation, and other search space reduction

techniques bring the risk of data loss. We desire an agent that is able to clearly perceive all

its options, and yet applies only that subset which is likely to produce results.

In other words, we want an agent that explores the game world the same way a human

does: by trying only those actions that ‘make sense’. In the following sections, we show that

a↵ordance-based action selection provides a meaningful first step towards this goal.
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Figure 1.4: Sample text from the adventure game Zork. Player responses follow a single angle
bracket.

1.4.1 Learning Algorithm

Our agent utilizes Q-learning [162], a reinforcement learning algorithm which attempts to

maximize expected discounted reward. Q-values are updated according to the equation

�Q⇡(s, a) = ↵(R(s, a) + �maxaQ⇡(s
0
, a)�Q⇡(s, a)) (1.1)

where Q⇡(s, a) is the expected cumulative reward for performing action a in observed state s

and following the policy ⇡ thereafter, ↵ is the learning rate, � is the discount factor, and s
0

is the new state observation after performing action a. All experiments in this paper used

↵=0.1 and �=0.95

The agent’s state representation is encoded as a hash of the text provided by the game

engine. Actions are comprised of verb/object pairs:

a = v + ‘ ’ + o, v✏V, o✏O (1.2)

where V is the set of all English-language verbs and O is the set of all English-language

nouns. To enable the agent to distinguish between state transitions and merely informational

feedback, the agent executes a ‘look’ command every second iteration and assumes that the

resulting game text represents its new state. Some games append a summary of actions taken

and points earned in response to each ‘look’ command. To prevent this from obfuscating the

state space, we stripped all numerals from the game text prior to hashing.
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Given that the English language contains at least 20,000 verbs and 100,000 nouns

in active use, a naive application of Q-learning is intractable. Some form of action-space

reduction must be used. For our baseline comparison, we use an agent with a vocabulary

consisting of the 1000 most common verbs in Wikipedia plus an 11-word navigation list and

a 6-word essential manipulation list as depicted in Algorithm 2. The navigation list contains

words which, by convention, are used to navigate through text-based games. The essential

manipulation list contains words which, again by convention, are generally applicable to all

in-game objects.

The baseline agent does not use a fixed noun vocabulary. Instead, it extracts nouns

from the game text using part-of-speech tags. To facilitate game interactions, the baseline

agent augments its noun list using adjectives that precede them. For example, if the game

text consisted of ‘You see a red pill and a blue pill’, then the agent’s noun list for that state

would be [‘pill’, ‘red pill’, ‘blue pill’]. (And its next action is hopefully ‘swallow red pill’).

In Sections 2.5.1 and 2.5.2 the baseline agent is contrasted with an agent using

a↵ordance extraction to reduce its manipulation list from 1000 verbs to a mere 30 verbs for

each state, and to reduce its object list to a maximum of 15 nouns per state. We compare our

approach to other search space reduction techniques and show that the a priori knowledge

provided by a↵ordance extraction enables the agent to achieve results which cannot be

paralleled through brute force methods. All agents used epsilon-greedy exploration with a

decaying epsilon.

The purpose of our research was to test the value of a↵ordance-based search space

reduction. Therefore, we did not add augmentations to address some of the more challenging

aspects of text-based adventure games. Specifically, the agent maintained no representation

of items carried in inventory or of the game score achieved thus far. The agent was also not

given the ability to construct prepositional commands such as ‘put book on shelf’ or ‘slay

dragon with sword’. Our algorithm does not account for physical or temporal dependencies
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in which the possession of an item or the execution of a specific action in the past a↵ect the

outcome of the current behaviors.

1.5 Results

We tested our agent on a suite of 50 text-based adventure games compatible with Infocom’s

Z-machine. These games represent a wide variety of situations, ranging from business scenarios

like ‘Detective’ to complex fictional worlds like ‘Zork: The Underground Empire’. The core

objective of the games vary widely. In some games, the player’s goal is simply to survive,

while in others specific items must be acquired. Significantly, the games provide little or no

information about the agent’s goals or which actions might provide reward.

During training, the agent interacted with the game engine for 1000 epochs with 1000

training steps per epoch. On each training step, the agent received a reward corresponding

to the change in game score. After each epoch the game was restarted and the game score

reset, but the agent retained its learned Q-values. Some games, notably zork3, allowed the

player to ‘die’ as play advanced, triggering a negative reward and prematurely terminating

the training epoch.

One game experienced a scoring malfunction and was excluded from subsequent

analysis; however, our verb-space reduction method obtained a score identical to the baseline

agent’s in the discarded partial results.

Our a↵ordance-based search space reduction algorithms enabled the agent to score

points on 18/49 games, with a peak performance (expressed as a percentage of possible game

score) of 57.44% for verb space reduction, 23.90% for object space reduction, and 56.84%

when both methods were combined. The baseline agent (see Sec. 4.1) scored points on 12/49

games, with a peak performance of 20.84%. Peak performance is defined as the maximum

score achieved over all epochs, a metric that expresses the agent’s ability to comb through

the search space and discover areas of high reward.
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Figure 1.5: Learning trajectories for eighteen Z-machine games. No agent scored any points
on the remaining 31 games. Average of 10 data runs. *In zork3, standard smoothing obscured
small, sporadic positive rewards obtained by our reduction algorithms.

Figures 1.5 and 1.6 show the performance of our reduction techniques (blue, green,

and red lines) when compared to the baseline (cyan). A↵ordance-based search space reduction

improved overall performance on 13/18 games, and decreased performance on only 2 games.

Examination of the 31 games in which no agent scored points (and which are cor-

respondingly not depicted in Figures 1.5 and 1.6) revealed three prevalent failure modes:

(1) The game required prepositional commands such as ‘look at machine’ or ‘give dagger to

wizard’, (2) The game provided points only after an unusually complex sequence of events, (3)

The game required the user to infer the proper term for manipulable objects. (For example,

the game might describe ‘something shiny’ at the bottom of a lake, but required the agent

to ‘get shiny object’.) Our test framework was not designed to address these issues, and

hence did not score points on those games. A fourth failure mode (4) might be the absence of

a game-critical verb within the 1000-word manipulation list. However, this did not occur in

our coarse examination of games that failed.
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1.5.1 Alternate Reduction Methods

We compared our a↵ordance-based reduction technique with four other approaches that

seemed intuitively applicable to the test domain. Results are shown in Figure 1.6.

Intrinsic rewards: This approach guides the agent’s exploration of the search space

by allotting a small reward each time a new state is attained. The agent is thus encouraged

to traverse multiple game locations, enabling possibilities for higher reward. We call these

awards intrinsic because they are tied to the agent’s assessment of its progress rather than to

external events.

Random reduction: When applying search space reductions one must always ask:

‘Did improvements result from my specific choice of reduced space, or would any reduction

be equally e↵ective?’ We address this question by randomly selecting 30 manipulation verbs

to use during each epoch.

ConceptNet reduction: In this approach we used ConceptNet’s CapableOf relation

to obtain a list of verbs relevant to the current object. We then reduced the agent’s manipu-

lation list to include only words that were also in ConceptNet’s word list (e↵ectively taking

the intersection of the two lists).

Co-occurrence reduction: In this method, we populated a co-occurrence dictionary

prior to training using the 1000 most common verbs and 30,000 most common nouns in

Wikipedia. The dictionary tracked the number of times each verb/noun pair occurred within

a 9-word radius of each other. During game play, the agent’s manipulation list was reduced

to include only words which exceeded a low threshold (co-occurrences > 3).

Figure 1.6 shows the performance of these four algorithms, along with a baseline

learner using a 1000-word manipulation list, on the sixteen games presented in Figure 1.5.

A↵ordance-based verb selection improved performance in most games, but the other reduction

techniques fell prey to a classic danger: they pruned precisely those actions which were

essential to obtain reward.
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Figure 1.6: Five verb space reduction techniques compared over 100 exploration epochs.
Average of 5 data runs. Results were normalized for each game based on the maximum reward
achieved by any agent.
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A↵ordant selection Random selection

decorate glass continue quantity
open window break sack
add table result window
generate quantity stay table
ring window build table
weld glass end house
travel passage remain quantity
climb staircase discuss glass
jump table passage

Figure 1.7: Sample exploration actions produced by a Q-learner with and without a↵ordance
detection. The random agent used nouns extracted from game text and a verb list comprising
the 200 most common verbs in Wikipedia.

1.5.2 Fixed-length Vocabularies vs. Free-form Learning

An interesting question arises from our research. What if, rather than beginning with a

1000-word vocabulary, the agent was free to search the entire English-language verb space?

A traditional learning agent could not do this: the space of possible verbs is too large.

However, the Wikipedia knowledge base opens new opportunities. Using the action selection

mechanism described in Section 2.4.1, we allowed the agent to construct its own manipulation

list for each state (see Section 2.3.1). The top 15 responses were unioned with the agent’s

navigation and essential manipulation lists, with actions selected randomly from that set.

A sampling of the agent’s behavior is displayed in Figure 1.7, along with comparable

action selections from the baseline agent described in Section 2.4.1. The free-form learner

is able to produce actions that seem, not only reasonable, but also rather inventive when

considered in the context of the game environment. We believe that further research in this

direction may enable the development of one-shot learning for text-based adventure games.

1.6 Conclusion

The common sense knowledge implicitly encoded within Wikipedia and other online corpora

opens new opportunities for autonomous agents. In this paper we have shown that previously
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intractable search spaces can be e�ciently navigated when word embeddings are used to

identify context-dependent a↵ordances. We have also shown that, in the domain of text-based

adventure games, this approach is superior to several other intuitive methods.

We emphasize that, although our initial experiments have been restricted to text-based

environments, the underlying principles apply to any domain in which mappings can be

formed between words and objects. Steady advances in the fields of object recognition and

semantic segmentation, combined with improved precision in robotic systems, suggests that

our methods are readily applicable to systems including self-driving cars, domestic robots,

and UAVs.
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Chapter 2

Harvesting Common-Sense Navigational Knowledge

for Robotics from Uncurated Text Corpora

by Nancy Fulda, Nathan Tibbetts, Zachary Brown and David Wingate,

1st Annual Conference on Robot Learning (JMLR/CoRL 2017).

Abstract

As robotic systems are deployed into everyday situations, the need for abstract reasoning

becomes more pronounced. The ideal robotic assistant should be able to understand verbal

commands and work independently to fulfill human-prescribed goals, even if instructions

are ambiguous or circumstances change. This paper presents a new algorithm for high-level

reasoning based on Euclidean representations of words and their meanings. Rather than

using ontologies or knowledge graphs, we model information about the world as a learned

geometry of the contexts in which human beings tend to use each idea. Building on the

analogy algorithms utilized by Mikolov et al. [100], we perform mathematical operations on

the vector space to infer responses to previously unseen problems, and apply our method to

a sequence of semantic reasoning tasks in order to answer questions such as ‘Where can I

find a dustpan?’, ‘Where do the crayons belong?’, and ‘What transportation method will

bring me to the airport?’. Our Directional Scoring Method (DSM) returns a ranked list of

possible responses, many of which are plausible answers to the query. Additionally, DSM’s

top-ranked response is significantly more likely to be correct than the top-ranked responses

of naive analogy estimations.
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2.1 Introduction

The field of robotics is transitioning from automation to autonomy. Rather than performing

specialized tasks repeatedly, modern systems are expected to behave intelligently in situations

where human input is not immediately available and where environmental circumstances

cannot be predicted in advance. To excel under these conditions, a robotic system must

be equipped with general-purpose knowledge about its environment, the components and

prerequisites of potential objectives, and the behavior of other entities. Such knowledge is

often represented in the form of ontologies and knowledge graphs [131, 145, 160], but although

these structures are easily integrated with robotic reasoning systems, they fail to represent

the full complexity of human thought. They also frequently require hand-coding, an expensive

and time-consuming process that is susceptible to errors of omission.

In this paper, we take an alternate approach to common-sense reasoning. Following the

example of machine learning researchers, we model knowledge about the world as geometric

points extracted from uncurated text corpora [9, 97, 116]. Word embeddings are trained based

on local context, producing a model in which words that tend to appear in similar contexts

are proximate to one another. Although these embeddings are trained exclusively based on

word co-occurance, prior work [100] [45] has demonstrated that general purpose knowledge

about the world is implicitly encoded in the resulting vector space. For example, it is possible

to perform an analogy query by providing input of the form A:B :: C:D, where A, B, and C

are given words and D must be inferred. For example, given ‘Madrid:Spain :: Paris:D’, an

algorithm should return D=France, but to do that, the algorithm must ‘know’ in some sense

that Paris is associated with France, which is a common-sense fact.

There is a problem, however. When presented with queries that have more than one

correct answer, such as ‘microwave:kitchen :: pillow:?’, the traditional analogy method breaks

down (usually by returning a synonym for one of the source words). Perhaps for this reason,

word embeddings have seldom been seriously considered as potential knowledge bases for real

robots.
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This paper presents a novel algorithm for performing analogy queries under conditions

which present multiple possible correct answers. The results constitute a valuable proof of

concept that word embeddings implicitly encode common-sense facts that are useful to a

robot, such as where objects are commonly located and how one might best travel to a given

destination. In particular, we show how canonical vectors can be used to capture high-level

semantic queries, we illustrate that naive extrapolation is inappropriate for the hypersphere

topology in which words are typically embedded, and we present an improved methodology

for performing semantic queries about everyday objects and environments.

2.2 Related Work

In 2013, Mikolov et al. [97] presented word2vec, a learning algorithm that produced vector

representations of words based on the ability of a neural network to predict their contexts.

They are not the first to perform such a feat, but their machine learning approach was more

flexible than the statistical methods [88, 149] that preceded them and more e�cient than

similar approaches which used more complex network architectures [7, 9, 60]. Perhaps most

importantly, Mikolov et al. were able to observe a surprising array of linguistic regularities in

the word vectors produced by their training algorithm, including the ability to find gender-

paired terms, map countries to the names of their capitols, and identify the present and past

tenses of verbs [100].

The result quickly caught the attention of the research community, raising the profile

of related algorithms like GLoVE [116] and skip-thought vectors [74]. Multiple approaches

have been proposed to improve the quality of the embedding space [82, 98] and to improve

algorithm performance on analogical reasoning tasks [55, 83]. In situations where a specific

type of word relationship is to be applied repeatedly, the use of a centroid or averaged analogy

vector has proven quite e↵ective [15, 45]. Other researchers have focused on algorithms that

blend euclidean distance or cosine similarity with directional filters to select desired elements

from a vector space. Lukac et al. [94] created a directional filter that minimizes the sum of
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Figure 2.1: Vector operations in a 2-dimensional slice of an n-dimensional unit hypersphere.
The three illustrations on the right represent a possible failure mode. In the middle two
illustrations, when analogy vector *AB is applied to point C, the resulting endpoint tends to
lie close to one of A, B, or C. The specific failure depends on the angle ✓ and the length of
*
AB.

weighted angular distances to remove impulses and outliers from an image, while Chen [19]

examines a variety of weight functions for spatial autocorrelation.

Recent work in our laboratory applies these concepts at a more abstract level by using

word embeddings to automatically detect a↵ordances [45], meaning the set of actions that

can be performed on a given object. The quality of extracted a↵ordances was evaluated using

simulated text-based environments, in which the agent’s maximum score increased by over

75%. In this paper, we build on prior work by improving analogy quality and expanding the

types of useful information that can be harvested from unstructured text.

2.3 Embeddings and Analogies on Hyperspheres

When discussing Mikolov et al.’s results, enthusiasts often describe analogy relations as

a matter of simple vector addition: take the vector for the word ‘king’, subtract from it

the vector for ‘man’ and add the vector for ‘woman’, and, presto! The result is the vector

for ‘queen’. This description is incomplete. In the tagged embedding space used for our

experiments, the closest word to the point*king �*man+*woman is not*queen, but instead

*
king. (*queen comes in a close second.) This tendency of analogy operations to produce results
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close to their origins is well documented and easily verifiable [55, 86]. Take any analogy pair

A:B::C:D, and the vector corresponding to *
C+*

B-*A is likely to lie closer to A, B, or C than

to any other word in the embedding space.

Mikolov et al. addressed this problem by explicitly excluding all three analogy source

words from the analogy results - a straightforward tactic that was introduced in [97] and

works remarkably well. However, while this approach yields impressive results on syntactic

analogies, it is far less e↵ective on more challenging derivative and lexicographic analogies [55].

We hypothesize that this is due to synonyms and morphological forms of the source words,

which would naturally be located nearby, and which would not be eliminated by source word

exclusion.

In this paper, we take a di↵erent approach by considering the shape of the embedding

space: Word2vec analogies are trained using softmax, a normalization function that centers

vectors at the origin, thus constraining the final word representations to the surface of a

unit hypersphere. Under these conditions, many translations of relational vector *r formed

using the method *r = *
A � *

B will cause the endpoint of *r to point away from the surface

of the hypersphere. When an algorithm queries for the closest words to the endpoint of *r

after performing a translation on *r, the operation is roughly equivalent to projecting *r onto

the surface of the hypersphere and then performing the query. Therefore, a su�ciently large

angle between *
A and *

C will result in a vector whose projection onto the hypersphere lies

close to one or more of *
A, *

B, or *
C (see Figure 2.1).

Accordingly, we present DSM, a directional scoring method that compensates for this

tendency to return to the source words of the analogy. Rather than excluding source words

explicitly, DSM gives precedence to words that lie along an extension of the canonical analogy

vector, thus decreasing the likelihood that source words or their semantic neighbors will be

selected as an analogy response.
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Figure 2.2: DSM calculation. If we take *z = *
AB as a (degenerate) canonical analogy vector,

then candidate analogy responses are scored based on the criteria Sdsm = ↵DC(*p� D̂, *z) +
DC(*p, D̂) = ↵(1� cos(�)) + (1� cos(✓)). Inset: DSM search pattern. Rather than selecting
candidate points based solely on proximity, DSM searches in expanding rings that are
elongated in the direction of the analogy vector.

2.4 Improving Analogies with Canonical Vectors and Directional Scoring

The primary contribution of this work lies in the combination of an averaged relation vector

with a directional scoring method (DSM) in order to navigate the embedding space more

e↵ectively. Rather than accepting Euclidean proximity as the sole determinant of relevance,

we instead evaluate candidate solutions based on a combination of proximity to the the vector

o↵set endpoint and orientation with respect to the analogy vector’s trajectory. We show that

DSM matches the performance of traditional o↵set methods on the Google Analogy Test

Set, and that it outperforms them by a factor of 10% to 50% on a more challenging set of

analogical reasoning tasks with multiple correct answers.
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2.4.1 Canonical analogy vectors

As noted by [15, 34, 45], analogy performance can be improved by averaging multiple examples

of the type of relationship that is sought. DSM applies this principle as an initial step prior

to directional scoring. A set of canonical examples Ai,Bi ✏ V is compiled, where Ai and Bi

are natural language source words and V is the model’s vocabulary. Let *
Ai and

*
Bi be the

vector representations of Ai and Bi and
*
ABi =

*
Bi -

*
Ai. The canonical analogy vector *z is

defined as *z = 1/n
Pn

i
*
ABi where n is the number of canonical examples used.

Ideally, the canonical examples should be high-quality exemplars of the relationship

sought, and should use words whose meaning is unambiguous and not clouded by multiple

possible interpretations. However, as demonstrated in Section 3.5, a group of less stringently

selected canonical examples can also function e↵ectively.

2.4.2 Scoring Algorithm

DSM uses a weighted sum of (a) cosine similarity and (b) alignment with the analogy vector

in order to select candidate analogy solutions. The DSM score Sdsm of a word vector *p is

calculated as:

Sdsm = ↵DC(*p� D̂, *z) +DC(*p, D̂) (2.1)

where DC is the cosine distance between two vectors, *z is the canonical analogy vector,

D̂ = *
C + *z is the endpoint of the o↵set operation, *

C is the vector representation of the

natural language source word to which the o↵set operation was applied, and ↵ is a scale factor.

Intuitively, this equation can be viewed as attempting to simultaneously minimize both *p’s

distance from endpoint D̂ and the divergence of *p� D̂ from the canonical analogy vector.

The algorithm’s preferred response word minimizes DSM score, as shown in in Algorithm 1.

If a ranked list of response words is desired, the algorithm orders words by increasing DSM

score and returns the top k candidates.
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Algorithm 3 - Directional Scoring Method (DSM) Analogy
Inputs:

W = Tensor containing all word vectors in the embedding space. Note that all elements of W are already unit length.
c = Word-vector on which to apply analogy, following the convention a:b :: c:d.
� = Canonical analogy vector

Parameters:

↵ = Scaling factor. In general practice, alpha=0.3 yields good results.
Output:

d’ = Directionally scored analogy response, an element of W .

1: d̂ c+ � // Analogy response for a standard o↵set analogy; center of search

2: DC  1�W · d̂T kd̂k
3: W 0  W � d̂

4: for w0
i 2W 0

do

5: hi  kw0
ik // Building h, a list of vector norms

6: end for

7: D0
C  1�W 0 · �T

hk�k // Element-wise division
8: Ddsm  ↵D0

C +DC

9: m min(Ddsm)
10: i index of m in Ddsm

11: return Wi // This is our response word, d’

2.5 Quantitative Analysis

To evaluate the DSM algorithm, we compared four analogy variants on two test sets: The

Google Analogy Test Set and a new dataset introduced in this paper, the BYU Analogical

Reasoning Dataset1. Both of these evaluation tasks require the algorithm to infer the correct

answer to analogies having the format A:B::C:D. Each task is broken into subtasks based on

the type of analogy being evaluated.

2.5.1 Algorithms tested

We tested four algorithm variants:

O↵set: The averaged canonical vector *z is added to source word *
C to obtain point D̂.

Candidate solution words pi are returned in order of increasing cosine distance from D̂.

O↵set with exclusion: The averaged canonical vector *z is added to source word *
C as

above, but the source word C is excluded from consideration when evaluating candidate

solution words.
1https://github.com/NancyFulda/BYU-Analogical-Reasoning-Dataset
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Figure 2.3: Algorithm performance on a sequence of analogical reasoning tasks, showing the
% of queries for which the algorithm’s first response word was the correct answer. Algorithms
utilizing a canonical analogy vector are dramatically superior to the naive application of
vector *AB to *

C. Directional scoring improves performance even further.

DSM: The averaged canonical vector *z is added to source word *
C and candidate solution

words are selected using the scoring method described in Section 3.4.2. No explicit exclusion

of source words is applied.

Naive o↵set with exclusion: Rather than using a canonical analogy vector, this method

naively applies the vector *AB to the source word *
C to obtain an o↵set endpoint D̂.

Candidate source words are selected in order of increasing cosine distance from D̂, with

source words A,B, and C excluded from consideration.

The embedding space used for this experiment is identical to that used in [45]. It was

trained on a part-of-speech tagged Wikipedia text corpus using Mikolov et al.’s skip-gram

method [97]. The final embedding space has 100 vector dimensions and a vocabulary size of

approximately 1.5 million words and symbols. Canonical examples for the construction of *z

were taken from the AB and CD pairs of the first 10 entries of each analogy test set, with

duplicates removed. After a coarse parameter search, we set DSM’s ↵ parameter to 0.3, a

value that maximized performance for most (but not all) analogical subsets. We are currently

investigating ways to initialize ↵ programmatically as a function of the canonical examples.
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Figure 2.4: Algorithm performance on the Google Analogy Test Set, showing the % of queries
for which the algorithm’s first response word was the correct answer. On these primarily
syntactic datasets, it is more di�cult to identify a superior algorithm.

2.5.2 Datasets used

The BYU Analogical Reasoning Dataset is a newly created challenge task containing 11,846

analogies of the form A:B::C:D. Subtasks include analogies relevant to robotic navigation

and object-based interaction. For example, the ‘Containers’ subtask requires an algorithm

to correctly predict that ‘brooms are in closets’, ‘silverware is in a drawer’, ‘milk is in a

refrigerator’, and so forth. The ‘Rooms for Objects’ subtask requires predictions about such

things as ‘refrigerator is in the kitchen’, ‘potatoes are in the cellar’, and ‘beds are in the

bedroom’, while the ‘Tools’ subtask requires knowledge about which objects can be used

to enable certain actions, such as ‘cutting requires a knife’, ‘digging requires a shovel’, or

‘baking requires an oven’. These hand-coded analogies are highly abstract and frequently

include many-to-one relationships, making them particularly challenging.

The Google analogy corpus was introduced in [97], and is a standard benchmark.
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2.5.3 Results

Our quantitative results highlight the di↵erence in di�culty between the Google corpus and

the BYU Analogical Reasoning Dataset. Whereas the Google dataset consists primarily of

clearly-defined relationships with strict one-to-one correspondences2, the BYU corpus contains

abstract relationships for which multiple answers may seem equally correct. For example,

milk can be contained in a jug, but it can also be contained in a bottle. The resulting analogy

queries are much more di�cult to answer correctly, although as we will see in Section 6, our

DSM algorithm is able to return a high percentage of plausible responses.

On the Google dataset, naive o↵set methods perform almost as well as canonical

methods (Fig. 2.4), whereas the more challenging analogical reasoning tasks require a canonical

vector *z in order to obtain passable results (Fig. 2.3). We are particularly intrigued to note

that the performance of our directional scoring method is highly dependent on the specific

reasoning task. Although DSM matches or exceeds the performance of traditional o↵set

methods on all subcorpora of the BYU dataset, it sometimes produces improvements of

10% or more. Ongoing research in our laboratory suggests that this may result from distinct

di↵erences in the geometry of the source words A,B,C and D, as well as from the clustering

behaviors of words within the hypersphere. Further research is required to determine the

specific conditions under which DSM produces superior results.

2.6 Qualitative Analysis

Consider the thought experiment of a robotic household assistant, designated without loss of

generality as ‘RoButler’. To interact e↵ectively with his human controller, RoButler requires

common-sense reasoning abilities. A command to ‘tidy up the living room’ presupposes that

he understands where common items like sofa pillows or magazines should be placed. When

asked to ‘bring me a glass of milk’ he would need to determine that (a) milk is typically in

2The countries/currency subcorpus is a notable exception, as many countries often share a monetary unit.
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the refrigerator, and (b) the refrigerator is typically in the kitchen. This information can then

be connected to a planner.

We apply DSM as a tool to facilitate common-sense reasoning and display several

sample queries below. Between 10 and 20 canonical examples were hand-selected for each

common-sense reasoning task using entries from our Analogical Reasoning Dataset. None

of the words in our canonical example set were used as source words for any of the sample

queries below.

Figure 2.5: Our first query uses canonical vectors extracted from the travel dataset,

such as:

airport:car :: park:bike hotel:taxi :: work:train school:bus :: store:car

In this example, the o↵set method returns close synonyms of the source word, while

DSM proposes candidate words that fit within the category ‘methods of transportation’. Of

those, five words (airplane, speedboat, helicopter, jet, boat) represent plausible answers to

the original query. Overall, the candidates proposed by DSM are qualitatively superior, a

pattern which holds across other queries we’ve tried using this analogy set. Even in cases

when o↵set methods provide a correct first response, most of the other responses fail to fall

into the correct word category.

Figure 2.6: The next query uses canonical vectors extracted from the locations for

objects dataset, which encodes knowledge about the locations of common household objects.

milk:refrigerator :: broom:closet toaster:counter :: book:bookshelf

Traditional methods perform acceptably on this analogy, delivering a valid answer

(‘refrigerator’) as the fourth response. Meanwhile, DSM scores a home run by delivering

‘refrigerator’ as its first response, followed by a list of plausible locations for alcoholic beverages.

Figure 2.7: We now apply a query that uses analogical reasoning to perform a simple

classification task: ‘Is this item garbage that should be disposed of, or is it a precious item

which must be retained?’
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Query #1: How do I get to Hawaii?
source word: ‘Hawaii NN’

OFFSET WITH
EXCLUSION:

‘hawaii NNS’, ‘hawaii NNP’, ‘oahu NN’, ‘hawaii FW’,
‘hawaii DT’, ‘hawaii RB’, ‘honolulu NN’, ‘hilo NN’,
‘oahu NNP’, ‘hawaii ADD’, ‘maui NN’, ‘kahului NN’,
‘hilo NNP’, ‘alaska NN’

DSM: ‘airplane NN’, ‘truck NN’, ‘speedboat NN’, ‘hawaii NN’,
‘helicopter NN’, ‘oahu NN’, ‘jet NN’, ‘hawaii NNS’,
‘oahu NNP’, ‘hawaii NNP’, ‘hawaii RB’, ‘kahului NN’,
‘boat NN’, ‘shuttle NN’

Figure 2.5: Query responses calculated using the travel dataset.

Query #2: Where can I get a beer?
source word: ‘beer NN’

OFFSET WITH
EXCLUSION:

‘co↵ee NN’, ‘keg NN’, ‘schnapps NNS’, ‘thermos NN’,
‘refrigerator NN’, ‘bottle NN’, ‘bagel NN’, ‘fridge NN’,
‘drink NN’, ‘co↵eeshop NN’, ‘chocolate NN’, ‘brewed VBD’,
‘delicatessen NN’, ‘cask NN’

DSM: ‘refrigerator NN’, ‘fridge NN’, ‘cellar NN’, ‘kitchen NN’,
‘jacuzzi NN’, ‘pantry NN’, ‘shop NN’, ‘sauna NN’, ‘restau-
rant NN’, ‘parlor NN’, ‘brewhouse NN’, ‘luncheonette NN’,
‘thermos NN’, ‘co↵eeshop NN’,

Figure 2.6: Query responses calculated using the locations for objects dataset.

wrapper:trash :: cup:treasure peel:trash :: dirt:trash toy:treasure :: sand:trash

We note that similar results hold for other types of queries, such as ‘How do I get to

the hospital?’ and ‘Are wood shavings trash?’ In addition, Table 2.1 shows proposed responses

for three analogy sets given by DSM vs o↵set methods using a canonical analogy vector.

Overall, our directional scoring method provides valid responses approximately twice

as often as o↵set methods. Since Table 1 shows that our directional scoring method will quite

literally throw the baby out with the bathwater, DSM clearly is not a production-ready system.

However, it does provide a valuable proof of concept: Critical common-sense knowledge about
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Query #3: Is jewelry trash?
source word: ‘jewelry NN’

OFFSET WITH
EXCLUSION:

‘jewellery NN’, ‘jewelery NN’, ‘jewels NNS’, ‘trinkets NNS’,
‘jewellery NNP’, ‘priceless JJ’, ‘paraphernalia NNS’,
‘valuables NNS’, ‘mementos NNS’, ‘antiques NNS’,
‘furniture NN’, ‘souvenirs NNS’, ‘keepsakes NNS’, ‘memora-
bilia NNS’

DSM: ‘treasure NN’, ‘treasures NNS’, ‘priceless JJ’, ‘valu-
ables NNS’, ‘jewelry NN’, ‘jewels NNS’, ‘jewellery NN’,
‘trinkets NNS’, ‘mementos NNS’, ‘jewelery NN’, ‘para-
phernalia NNS’, ‘souvenirs NNS’, ‘memorabilia NNS’,
‘antiques NNS’

Figure 2.7: Query responses calculated using the trash vs. treasure dataset.

a wide variety of topics is implicitly encoded in the vector space. If methodologies can be

improved far enough to extract this information reliably, it is potentially superior to hand-

coded ontologies or knowledge graphs. Such a system would require virtually no maintenance,

would not be prone to errors of omission, could be updated automatically in response to recent

news and scientific breakthroughs, and o↵ers possibilities for domain-specific knowledge via

the selection of training corpus.

2.7 Conclusion

Robotic systems typically rely on ontologies and knowledge graphs for common-sense reasoning.

This paper presents an alternative option - word embeddings trained using uncurated text

corpora - and demonstrates that a broad spectrum of common-sense knowledge is implicitly

encoded within the vector space. This information could potentially be used by a robot that

relies on natural language to reason about planning tasks. We have introduced a directional

scoring method that nearly doubles rates of correct first responses while simultaneously

increasing overall response accuracy. This suggests that with further development of these

semantic query algorithms, including adjustments made to compensate for the spherical

structure of word embeddings trained using softmax, it may be possible to improve the
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Analogy Set Source Word O↵set + Exclusion DSM

hawaii hawaii* (0) airplane (5)
hospital ambulance (5) train (8)
theater scooter (2) scooter (4)
germany germany* (0) truck (8)

Travel mall car (8) car (10)
footbridge gondola (3) gondola (3)
australia australia* (0) car (5)
o�ce ticket (5) cab (6)
moon moon* (2) moon (3)

yosemite yosemite* (2) yosemite (4)
beer co↵ee (8) refrigerator (13)
bagel doughnut (5) cubicle (8)
knife noose (1) noose (3)
shoe handbag (0) drawer (1)

Locations spoon tray (2) bookcase (3)
for objects remote nunchuk (1) remote (0)

necklace locket (2) locket (3)
marbles bookcase (5) bookcase (7)
backpack suitcase (0) suitcase (2)
bracelet locket (3) wallet (3)
jewelry jewellery (0) treasure (1)
pit pits (1) pit (1)
dust trash (1) trash (1)
iphone iphone* (0) wii (1)

Trash or shavings scraps (1) trash (1)
Treasure apple sundog (0) treasure (1)

baby mommy (0) trash (1)
bathwater trash (1) bathwater (1)
money loot (0) money (1)

dictionary cyclopaedia (0) dictionary (1)

Number Correct - 6 (58) 12 (109)

Table 2.1: Analogy solutions provided by traditional o↵set methods and DSM when using a
canonical averaged analogy vector. The first response provided by each algorithm is shown
alongside the number of plausible responses returned (out of a total of 15). Entries are bolded
if either the first response was valid or the number of valid responses was greatest. POS
tags have been omitted for clarity. *In these cases, the method returned a di↵erently-tagged
version of the source word.
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query performance even further. Finally, we have introduced a new Analogical Reasoning

Dataset that can be used to benchmark progress in this area, with the hope that other

researchers will join us in seeking to create robotic systems that are able to accept high-level

commands, adapt these instructions to changing environments, and behave appropriately

without micromanagement.

43



Chapter 3

Embedding Grammars

by David Wingate, William Myers, Tyler Etchart, and Nancy Fulda,

arXiv preprint, 2018

Abstract

Classic grammars and regular expressions can be used for a variety of purposes, including

parsing, intent detection, and matching. However, the comparisons are performed at a

structural level, with constituent elements (words or characters) matched exactly. Recent

advances in word embeddings show that semantically related words share common features

in a vector-space representation, suggesting the possibility of a hybrid grammar and word

embedding. In this paper, we blend the structure of standard context-free grammars with the

semantic generalization capabilities of word embeddings to create hybrid semantic grammars.

These semantic grammars generalize the specific terminals used by the programmer to other

words and phrases with related meanings, allowing the construction of compact grammars

that match an entire region of the vector space rather than matching specific elements.

3.1 Introduction

Consider the problem of intent detection for natural language processing: to estimate intent, a

natural language sentence must be analyzed to determine the underlying goal of the speaker.

Ideally, such analysis would be insensitive to the specific words and phrases used, implying

the need for a general semantic metric for equivalence.
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One way to approach this problem would be to craft a simple rule—say, a regular

expression—that describes a set of semantic equivalences. A regex for detecting an intent to

deliver a compliment might resemble the following:

(i think)? (you’re|you are) (beautiful|gorgeous|cute)

This would match sentences such as I think you are beautiful, you are cute, and you’re

gorgeous. However, the ability of this regex to match input sentences is limited by the mental

lexicon of the regex designer. What the designer intended was to match any phrase that

could be construed as a compliment regarding the auditor’s general physical appearance, but

the produced regex provides only a compact set of examples. The regex does not include

all possible synonyms for beautiful, and so it would not, for example, match the sentence I

think you are lovely. The power of grammars and regular expressions lie in the compact and

e�cient representation of combinatorially large sets of sentences, but it is always assumed

that terminal matches must be exact. Here, we relax that assumption.

This paper sketches out how to combine the strengths of context-free grammars with

the generalization capability of word embeddings to create semantic regular expressions.

The grammar provides the coarse overall structure, but individual tokens serve primarily as

exemplars that define a region in a word embedding feature space. Any token whose feature

representation lies within this region is considered a match. The result is semantic, rather

than structural expression evaluation.

3.2 Background

Word embeddings [9, 10, 97, 117] represent the meaning of a word as a vector of learned

features with interesting linear properties. They have not only been used to evaluate analogies

[100][109], but also for document retrieval[15], a↵ordance detection [45], and the generation
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Figure 3.1: Sample regexv expansions obtained using the 500,000 most common tokens in
the English-language fastText corpus. Matches were selected using the neighbor expansion
method with ✏=0.35.

of sentence-level embeddings [75]. Multimodal embedding algorithms inspired by language

models have also been used for text and image alignment [42, 51, 164],

Algorithms for learning word embeddings typically assume that words in similar

contexts should have feature representations that are close to one another, implying that

semantically related words will be proximately located. Our work utilizes 300-dimensional

fastText embeddings trained on a Wikipedia corpus [10] which, like word2vec [97], GLoVE

[117], and related vector sets, were trained using a neural network tasked with predicting

local context. Unlike previous methods, fastText utilizes subword information to speed the

training process and generate compositional embeddings for previously unseen words.

Known weaknesses of word embeddings include susceptibility to triangle inequalities

and breakdowns in symmetry [109] as well as an inability to represent di↵erent semantic

meanings of the same word. Researchers are currently exploring disambiguation methods to

distinguish between multiple senses of a given word [64, 124] or to combine the strengths of

several models [52].

3.3 Embedding Grammars

A context-free grammar (CFG) is defined as a tuple (N,W,R, S) where N is a finite set of

nonterminal symbols, W is a finite set of terminal symbols, R is a finite set of productions
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of the form A ! B with A 2 N , B 2 (W [N) ⇤ (where ⇤ is the Kleene star), and where

S 2 N is a distinguished start symbol. The language generated by the grammar is the yield

of the terminal strings generated with all possible (recursive) substitutions of right-hand side

nonterminals with left-hand side nonterminals.

An embedding grammar generalizes classic CFGs: instead of considering terminals

W to be “grounded” in discrete tokens, we instead consider terminals to be grounded in a

well-defined region of a feature space. We therefore replace the set of symbols W with a set

of subregions We, where each r 2 We is defined as some r ⇢ R
d, where d is the dimension of

the feature space.

To connect tokens and the grammar, we require a word embedding using one of the

methods described in Sec. 3.2 that defines a function f that maps tokens w 2 W to points in

R
d. We then say that a production A ! B is valid if B 2 We, w 2 W , and f(w) 2 B.

This naturally raises the question: how should the subregions be specified? We adopt

an exemplar based approach: the grammar designer specifies the subregions indirectly by

giving several exemplars, which are then used in conjunction with the word embedding

database to automatically generate the subregion.

Figure 3.1 illustrates the idea for a simple BNF grammar given by:

S ::= Your REL was a PET and your father smelt of BERRIES

REL ::= mother

PET ::= hamster

BERRIES ::= elderberries

where nonterminals are given in all capital letters. Naively, this simple grammar would yield

only the single sentence “Your mother was a hamster and your father smelt of elderberries” [54].

However, using embedding grammars, we can interpret the production REL ::= elderberries

as an exemplar, and define the subregion r as (for example) an epsilon ball centered at

f(elderberries). This naturally generalizes the yield of the grammar to a wide variety of

familial relationships, pets, and berries.
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3.3.1 Subspace region definition

Subspace definition is independent of the overall grammar structure, and di↵erent methods

can be used as needed. Here, we outline four possible approaches to subspace definition. (In

practical application, we found the neighbor expansion method to be most e↵ective, and use

it in our examples throughout the paper.)

Bounding Box: A naive subspace can be defined by taking a bounding box of the

exemplars. As one might expect, this method does not work particularly well, and it also

cannot be applied to productions consisting of only a single exemplar. Epsilon ball: In this

approach, the centroid of the exemplar set is taken, and all vectors whose cosine distance is

less than a predefined value ✏ from the centroid are considered to fulfill the production rule.

Covariance subspace: We define a Mahalanobis distance metric based on the empirical

(possibly regularized) covariance of the exemplars. We expected this method to outperform

the epsilon ball, since it takes into account the idea that certain components of the vector

space have a greater influence on word semantics. In reality, the opposite was true. Neighbor

expansion: We found this method to be the most successful. In this case, each exemplar

in a given production defines a subspace consisting of all vectors whose cosine distance to

said exemplar is less than ✏. Thus, a vector which is within the epsilon ball of any exemplar

is considered to match the production rule. This many-bubbles approach results in close

matches for the entire set of exemplars.

3.4 A Python Implementation

To test our ideas, we experimented with a simple integration of embeddings and Python’s

regular expression package (re). The Python regex package [155] provides a concise notation

for describing sets of character strings, allowing complex string matching based on search

patterns entered by a human designer. In Python, regex uses a backtracking algorithm

rather than translating the regex into an equivalent deterministic finite automaton (DFA)

or non-deterministic finite automaton (NFA). We took advantage of re’s dynamic nature by
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defining and calling a wrapper function which applies regexv before calling each of re’s public

API methods.

3.5 Experiments

Our experiments used 300-dimensional FastText vectors trained on Wikipedia. A coarse

parameter search suggests that ✏ < 0.5 represents a strong semantic similarity. However,

because polar opposites (e.g. beautiful/ugly) appear in highly similar contexts and tend to

fall within this range of each other, we adopted a stricter match threshold of ✏=0.35. The

neighbor expansion method discussed in Section 3.1 was used for all experiments.

3.5.1 Word extensions

Sample word expansions are shown in Figure 3.1. The common and socially-integral term

‘mother’ (777th most common token) produces a wide range of matches, whereas the less

common word ‘hamster’ (33651st most common token) defines a relatively sparse subspace.

Note that grammatically incorrect matches such as ‘widowed’ or ‘motherly’ are

unlikely to cause poor system performance, as human-generated text will almost never

contain syntactically implausible phrases like “Your widowed was a hamster”. The same holds

true for unusual and entertaining words such as ‘roborovskihamsters’. The most problematic

error modes involve words that are polar opposites: hot/cold, happy/sad, high/low, because

they tend to appear in similar contexts.

Multi-word phrase matching was accomplished by treating each input phrase as the

vector average of its individual words, an approach that to our surprise functioned quite well.

For example, the vectors for ‘clever’ and ‘man’, when averaged together, produce a vector

that is highly similar to the vector for ‘genius’. Further examples are shown in Table 1.
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match phrase exemplar cos distance

clever man genius .3934
clever car genius .5776
smart boy genius .4822
smart car genius .6859
fast car genius .7700
smart car tesla .5758
smart car porsche .4609
a guy who

knows everything genius .5060
a guy who

knows everything porsche .7767

Table 3.1: Cosine distance between single-word vectors and compositional vectors created by
averaging the elements of a multi-word phrase. The resulting distances correlate with many
human estimations of semantic similarity.

Regex String: “I would like to call a [taxi]”
regex: “I would like to call a (taxi|car)”
matches : “I would like to call a taxi”, “I would like to call a car”
regexv: “I would like to call a htaxi,cari”
post expansion: “I would like to call a (taxi|taxis|minibus|taxicab|taxicabs|car|cars|vehicle|
driver|driving|truck|automobile|suv|roadster|motorbike|racecar|minivan|motorcar|racecars)”
matches : “I would like to call a minibus”, “I would like to call a taxicab”, etc.

Figure 3.2: Comparison between regex and regexv. Here, [taxi] is shorthand for the intent
that would include all words that are synonymous with taxi.
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3.5.2 Intent matching

Figure 3.2 illustrates another example of intent matching. If the string one expects is something

like “I would like to call a taxi”, then people could also say “I would like to call a car” and

intend the same directive. Typical grammars might define a pattern, “I would like to call a

(taxi|car)”, in order to match these semantically equivalent sentences. The problem is that

the developer must enumerate all the possible words that could mean the same thing as

“taxi” in this pattern. Regexv solves this issue by allowing a user to define intent words, then

automatically expands these to a large list of words that have the same semantic meaning.

Figure 3.2 shows how regexv to expands two terms to an entire list, including taxi, minibus,

taxicab, car, vehicle, driver, racecar, etc.

3.6 Learning and Extensions to PCFGs

The fact that terminals in embedding grammars are defined as regions in a continuous feature

space suggest a natural extension to probabilistic context-free grammars (PCFGs). A PCFG

is a tuple (N,W,R, S, ✓), where (N,W,R, S) are defined as for a normal CFG, but where each

production A ! B is annotated with a probability ✓A!B, st
P

A!B2RA
✓A!B = 1, where RA

is the subset of productions in R with left-hand side A. Informally, ✓A!B is the probability

of expanding the nonterminal A using the rule A ! B. This naturally defines a probabilistic

generative model, and can be used to (for example) rank parses of ambiguous sentences

according to some prior.

Embedding grammars o↵er an additional generalization: instead of defining matches

as hard regions in R
d, soft matches could be defined using (eg) Gaussians; this suggests

fully probabilistic learning algorithms that could take advantage of soft matches and the

continuous nature of word embeddings. When combined with, for example, recent probabilistic

grammars such as adaptor grammars [66] and fragment grammars [111] that combine Bayesian

nonparametrics and PCFGs, this could potentially result in e�cient grammar learning
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algorithms: learnt grammars could be more compact because of the natural generalization

inherent in the word embeddings.

3.7 Conclusion

Word embeddings can be combined with classic grammars to enable semantic matching of

regular expressions.

This is advantageous because it reduces human cognitive e↵ort, allowing grammar

designers to say what they want more compactly.

Importantly, the matching power of the expression is not limited by the designer’s

lexicon, but can include words that the designer is not familiar with. Recent advances in

word embeddings, including fastText, provide for generalization to previously unseen words

based on subword structure.

We have only scratched the surface of the possibilities of embedding grammars.

Extensions to PCFGs and the advantages of embeddings vis-a-vis grammar learning are

exciting directions for future work.
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Chapter 4

Informing Action Primitives Through Free-Form Text

by Nancy Fulda, Ben Murdoch, Daniel Ricks and David Wingate,

NeurIPS Workshop on Visually Grounded Interaction and Language, 2017.

Abstract

Autonomous agents require a grounded understanding of language, and multi-modal embed-

dings seem like a logical way to accomplish this. But once you have a joint embedding space,

what is it good for? How do you use it? And most especially, how do you map human input

(such as verbal instructions) into a set of behaviors that conform with the human’s desires?

This paper presents a method for using distributional sentence representations to prioritize

action primitives. Inspired by the human ability to transfer domain knowledge via spoken

language, we provide our agent with natural language instructions that describe high-reward

behaviors. The agent then uses these instructions to align its actions with human intents.

A key advantage of this approach is its flexibility: once a properly-structured embedding

space has been obtained, new mappings between instructions and behaviors do not have to

be trained using thousands or tens of thousands of labeled examples. Less than twenty data

points is su�cient.

4.1 Introduction

This paper presents a method for imbuing agents with high-level domain knowledge via short

command phrases given by a human designer. This human guidance is provided at design
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time and describes the behaviors a human deems necessary in order to succeed at the current

task. However, in order to fulfill these goals the agent must be able to link natural language

instructions with action primitives that facilitate them. Previous researchers have proposed

using multimodal embedding spaces to map from images to text and back again [25, 31, 123];

however, we argue that simple conversion from one modality to another is usually insu�cient

to accomplish complex tasks. A multimodal embedding space that maps the word ‘ball’ and

an image of a ball to similar locations may enable an agent to convert from natural language

text to visual imagery and back again, but how shall the agent choose behaviors that comply

with specific instructions such as ‘place the ball on the table’?

We address this question by representing the agent’s sensory input, human guidance,

and action primitives in a shared embedding space - in this case, as 4800-dimensional skip-

thought vectors. Our current implementation relies entirely on text-based inputs and outputs,

but this method is also applicable to embedding spaces that use a joint representation to

encode a wide variety of sensor inputs, motor activations, kinematic positions, and object

categories. The foundational premise is as follows: sensory input, human guidance, and action

primitives are all represented as points in a shared embedding space. Because this embedding

space was pre-trained using large numbers of examples, it contains valuable semantic structure.

We utilize this structure to leverage a small (<20) set of example pairings that map human

guidance to action primitives. This mapping, which is essentially a vector, is then used to

rank candidate actions based on how well they conform to the provided instructions.

We apply our method in a setting intended to mimic real-world constraints. Rather

than allowing the agent to try as many actions as necessary until it accomplishes its task, we

require the agent to explore only a small subset of its available action space. This forces the

agent to behave in a more focused manner. Interestingly, as the number of allowed actions

decreases, the performance of our goal-directed agent tends to improve.
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GOAL VERB NOUN
unlock door turn key
carry water fill bottle
wash floor use sponge

catch butterfly swing net
reach roof climb staircase

study geometry read textbook
enter castle cross drawbridge

enter spaceship use airlock
take bath fill bathtub

activate machine flip switch

Figure 4.1: Sample canonical analogy set used find goal-driven actions. The full set in our
experiments included 17 goal-verb pairs and 18 goal-object pairs.

4.2 Related Work

Vector space models, in which words or groups of words are represented as n-dimensional

vectors, have been an active area of research since the 1960s [76]. In recent years, statistical

or count-based models have been replaced by embeddings trained from large amounts of

uncurated text. In our work, we utilize the skip-thought embedding model presented by Kiros

et al. in 2015 [74], which in turn relies on the word2vec Google News word embeddings trained

by Mikolov et al. [96]. Skip-thought vectors [74] are an application of the word2vec skip-gram

training method at the sentence level, resulting in an encoder that represents each input

sentence as a fixed-length vector. (Similar work is also found in the paragraph vectors of Le

and Mikolov [82].) Other related work includes [73], who use an encoder-decoder pipeline to

learn multimodal embeddings of both images and text. Key weaknesses of these semantic

embedding models include susceptibility to triangle inequalities and breakdowns in symmetry

[108] as well as their inability to represent di↵erent semantic meanings of the same word.

Researchers have proposed training methods to achieve word-sense disambiguation [64, 124]

as well as methods for combining the strength of multiple embedding algorithms [52].

Of course, an abstract representation of words in terms of other words has only limited

use. In order to forge a connection between sentence representations and grounded behaviors
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in the agent’s environment, we build on the a↵ordance-based reasoning methods of Fulda

et al. [46]. In some respects, this research resembles the work of Kaplan, Sauer and Sosa in

natural language guided gaming [67], in that both architectures enable the agent to improve

its performance as a result of text input from a human user. The research di↵ers, however, in

the way language understanding is acquired and applied. Rather than learning a task-specific

relationship between input and output, our agent leverages the implicit structure of the joint

embedding space to prioritize its actions with respect to a human-defined goal.

4.3 Our Algorithm

Following the precedent established in [46], we model our agent as a purely text-based entity.

The agent’s state s is a natural language string describing the immediate environment. Actions

are represented as verb/noun pairs a = v + ‘ ’ + n where v is an English-language verb

and n is an English-language noun. The agent’s objective is to earn points by select action

primitives (in this case, a verb and a noun) that (a) function well in combination and (b)

progress the agent toward a reward state. Critically, the agent does not incorporate a learning

model, nor does it modify its behavior over time. Instead, sensory input, human guidance,

and action primitives are jointly represented using a pre-trained skip-thought embedding

space [74]. When presented with sensory input, the agent compiles a list of candidate actions

which are then filtered based on how well they conform with the human’s guidance.

Our evaluation tasks are drawn from the Autoplay learning environment [125]. These

text-based virtual worlds are a challenging and largely unsolved domain: The agent is presented

with a text description of its environment such as ‘You are standing in an open field next to

a white house.’ The agent extracts nouns from this text (e.g. ‘field’, ‘house’), and must then

determine which of the approximately 30,000 verbs in the human language can be paired

with the selected nouns in a way that might produce reward. In general, rewards are obtained

when the agent either escapes a restricted area, obtains items, or manipulates items.
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Agent

State
Description

Human
Guidance

Verb

Noun

Figure 4.2: Agent architecture. State descriptions and human guidance, encoded as skip-
thought vectors, are used to influence final action selections.

Our key research question is as follows: can an agent designed to pair nouns and verbs

in meaningful ways improve its performance by taking human input into account? In other

words, is it possible for the agent to ground its language understanding su�ciently to convert

free-form text into a prioritization over possible action primitives?

To address this question, we use a small set of example mappings as shown in Fig

4.4. Let {(g1,v1) ... (gi,vi)} be a set of data points mapping human utterances to verbs that

facilitate the human’s objective (see Fig 4.1, first and second columns) and let (g1,n1) ...

(gi,ni) be a set of data points mapping human utterances to objects in a similar fashion

(Fig 4.1, first and third columns). Given a state s, human guidance g, and a set of game

objects [o1, o2, ... ok], our agent prioritizes game objects as follows: we define a canonical

guidance-to-noun vector Gnoun = 1
k

Pk
0 (ni - gi). We now use a dot product to project each

candidate object oi onto the canonical guidance-to-noun vector Gnoun as shown in Figure 4.3.

Nouns with the highest dot product are given the most priority.

A canonical goal-to-verb vector is defined similarly: Gverb =
1
k

Pk
0 (vi - gi), and verbs

relating to each noun are prioritized in the same manner. If more types of action primitives

were needed, additional canonical vectors could be similarly created.
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Figure 4.3: Object prioritization based on human guidance. Candidate objects are projected
onto the goal vector Gnoun and ranked based on magnitude. The system then identifies a
set of candidate verbs that are compatible with the chosen object and prioritizes them with
respect to Gverb.
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GAME HUMAN-DEFINED GOALS
zork1 ‘enter house’, ‘get stu↵’, ‘create light’, ‘move furniture’, ‘climb tree’, ‘unlock locks’
zork2 ‘enter buildings’, ‘get stu↵’, ‘create light’, ‘move things’
zork3 ‘enter buildings’, ‘get stu↵’, ‘create light’, ‘move things’
candy ‘get candy’, ‘search for candy’

omniquest ‘get stu↵’, ‘climb tree’, ‘wear clothing’, ‘move things’, ‘dig’
bunny ‘enter holes’, ‘get stu↵’, ‘move things’, ‘open things’, ‘burn monsters’, ‘unlock locks’

detective ‘get stu↵’, ‘enter buildings’
mansion ‘unlock locks’, ‘take stu↵’, ‘turn on’, ‘turn o↵’
spirit ‘open things’, ‘get scrolls’
zenon ‘get stu↵’, ‘look under bed’, ‘unlock locks’, ‘turn o↵ light’
cavetrip ‘open furniture’, ‘search furniture’, ‘get clothes’, ‘get food’, ‘get batteries’
parc ‘enter buildings’, ‘get stu↵’, ‘close curtains’

Figure 4.4: The human-defined goals for each game, reflecting high-level knowledge of the
reward structure. Critically, none of the goal texts produce rewards in their own right; instead,
they provide guidance that the agent uses to select promising noun-verb combinations.

4.4 Results

To evaluate our methods, we selected 12 games from the autoplay repository [125]. On each

time step, our agent was given one of the human-defined goals depicted in Figure 4.4. These

goals were acquired by allowing a human to examine the early stages of each game and

provide a set of behaviors he or she felt were most conducive to point acquisition.

For the most part, these goals were not point-producing actions or even valid action

selections within the game. For example, the command ‘enter house’ in zork1 produces no

change of state. In order to achieve this goal, the agent must navigate to the south side

of the house and then execute the commands ‘open window’ and ‘enter window’ (which it

successfully does). Similarly, when instructed to ‘burn monsters’ in bunny, the agent did not

extract the verb ‘burn’ or the noun ‘monsters’ from the goal text. Instead, it encoded the

goal as a 4800-dimensional vector and from that was able to correctly identify verb/noun

pairs that would lead to points. (In this case, the required command was ‘burn ooze’, and it

only works if the player has already executed the command ‘get torch’.)

Results are shown in Figure 4.5. Three types of agent were compared: a naive agent

that randomly selected action primitives, an intelligent agent that paired nouns and verbs
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Figure 4.5: cyan: random actions. green: no human guidance. red: human guidance. Clustered
bars show changes in game score as the agent is permitted to try [30,15,3,1] verbs for each object.
Agents were allowed to interact with each game for 2000 time steps, and the results from 45 data
runs were averaged.

using the a↵ordance-based method described by [46], and our agent, which combines the

a↵ordance-based pairing method with human guidance delivered via natural language text.

Clustered bars indicate the game score achieved by each agent as environmental constraints

were increased: on the leftmost bar, the agent was allowed to attempt 30 di↵erent verbs

for each noun. Moving right, the number of allowed verbs was restricted to 15, 5, and 1

respectively. The number of allowed nouns was similarly restricted, so that the rightmost red

bar indicates the agent’s performance when it was allowed to select at most one noun in each

state, and was allowed to attempt only its top-priority verb with that noun. Notice that there

is a frequent upward trend in the human-guided agent as constraints on the system increase:

the agent’s ability to convert human guidance into relevant action primitives enabled it to

avoid useless and counterproductive behaviors and generate increased reward in a very small

number of steps.
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4.5 Conclusion and Future Work

Multimodal embeddings o↵er exciting new potential for grounding agent observations in

physical experience, but simply creating a multimodal embedding space is not enough. We

must learn how to navigate that space, and how to leverage the multimodal structure to

accomplish new tasks without repeating the training process. This paper presents a method

for linking high-level domain knowledge in the form of human-generated text with low-level

action primitives. Specifically, we use a 4800-dimensional skip-thought embedding space to

encode the agent’s inputs, outputs, and guidance o↵ered by a human. In text-based worlds,

this approach generates overall improvements in agent performance, and the algorithm is

easily generalizable to multimodal embedding spaces. Once a well-structured embedding

space has been trained, new prioritizations over behaviors can be created without retraining.

A set of twenty or fewer example pairings is su�cient to define the relationship.

In this work we used an embedding space with a single modality (text) to prioritize

action primitives. Moving forward we hope to apply our algorithm to multimodal embedding

spaces that link text, images, and other sensory input into unified structures that retain

semantic meaning. Additionally, these embedding spaces should address the issue of dis-

ambiguation between inputs or action patterns that appear in multiple distinct contexts.

Stronger multimodal embedding spaces will allow for better inference and average vectors

across action modalities. As these embedding spaces become more accurate and reliable, we

believe the semantic knowledge found therein will propel autonomous reasoning and natural

language understanding to new levels.
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Part III

Beyond Words and Phrases: Linguistic

Reasoning at the Sentence Level

As seen in the previous chapters, experiments with word-level embeddings demonstrate

surprising flexibility in the types of information that can be extracted. Using an averaging

technique over a small (n <= 15) set of hand-crafted examples, it is possible to extract

detailed information: For example, that a horse can be ridden [45], that the best way to travel

to Hawaii is by airplane [48], and that a door can be used to enter a house [44].

Sentence-level embeddings are not as simplistic. In order to deal with variable-length

input streams, sentence-level embedding algorithms have generally utilized sequence-to-

sequence models such as [20, 144], in which a recurrent network is used to encode time series

data. These recurrent structures are notoriously di�cult to train, often resulting in hidden

states that fixate too much on the latter elements of the text. To alleviate this problem, some

researchers have moved to an attention-based model such as that used in BERT embeddings

[30], or have chosen to formulate sentence embeddings as a simple average of the composite

words [5], a method which performs surprisingly well on many tasks, but which omits all

subtleties of word order and syntactic structure.

To further complicate matters, the set of grammatically correct English sentences is

intractably large, and it is therefore not feasible to perform a nearest-neighbor search to find

the sentence that lies closest to the result of an algebraic operation. Instead, a solution must
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either be sought from within a set of pre-embedded sample sentences, or a su�ciently robust

decoder must be used to map the algebraic result into a grammatically and semantically

coherent sentence. In the latter case, a result that is merely in the vicinity of the correct

answer is insu�cient. We must end up very close to the true solution.

Chapter 5: Threat Explore, Barter Puzzle: A Semantically-Informed Algorithm for

Extracting Interaction Modes presents an initial foray into the realm of common-sense

reasoning at the sentence level. We show that simple mathematical operations within the

embedding space are su�cient to solve complex categorization problems far better than a

naive baseline, if perhaps not quite as well as we might wish. Chapter 6: Conversational

Sca↵olding: An Analogy-Based Approach to Response Prioritization in Open-Domain Dialogs

asks a fundamental and as-yet unanswered question: Is it possible to build a coherent,

engaging, and socially appropriate conversational agent without the burden of training a

neural dialog model? Using only a set of example conversations and a pre-trained embedding

space, we show that it is possible to leverage the analogical structure of the embedding space

to select appropriate responses to previously unseen utterances. Chapter 7: BYU-EVE: Mixed

Initiative Dialog via Structured Knowledge Graph Traversal and Conversational Sca↵olding

combines the insights from Chapter 6 with the power and flexibility of Amazon’s cloud

infrastructure in order to create a dynamic, real-time socialbot capable of interacting with

hundreds of users at a time.

Taken together, these chapters paint a compelling picture of the power of common-

sense reasoning and the impressive flexibility of sentence-level embedding spaces. However,

the question remains: Is it possible to train such embedding spaces to exhibit even more

coherence and analogical structure?
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Chapter 5

Threat, Explore, Barter, Puzzle: A Semantically-Informed

Algorithm for Extracting Interaction Modes

by Nancy Fulda, Daniel Ricks, Ben Murdoch and David Wingate,

AAAI Workshop on Knowledge Extraction from Games, 2018.

Abstract

In the world of online gaming, not all actions are created equal. For example, when a player’s

character is confronted with a closed door, it would not make much sense to brandish a

weapon, apply a healing potion, or attempt to barter. A more reasonable response would be

to either open or unlock the door. The term interaction mode embodies the idea that many

potential actions are neither useful nor applicable in a given situation. This paper presents an

algorithm for the Automated Extraction of Game Interaction modes (AEGIM) via a semantic

embedding space. AEGIM uses an image captioning system in conjunction with a semantic

vector space model to create a gestalt representation of in-game screenshots, thus enabling it

to detect the interaction mode evoked by the game.

5.1 Introduction and Related Work

Video and computer games are a valuable resource for AI researchers. They serve as test

domains for novel algorithms [103] [67], provide sensory-rich virtual learning environments

[158] and encourage innovation as researchers strive to improve in-game characters [80]. In

addition, the emerging field of automated game design learning [113] uses the structure of
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the games themselves to extract properties that can be used to (a) improve human play, (b)

facilitate virtual character development, (c) create novel tools for developers, and (d) verify

that human-specified design properties hold on the model.

In the spirit of this emerging field, we present AEGIM, an algorithm that uses language-

based common sense reasoning to distinguish between interaction modes. Game output in the

form of pixels or text (or both) is encoded within a 4800-dimensional semantic embedding

space trained based on local context1. A set of linear classifiers is then used to determine

which of several possible interaction modes is evoked by the current situation.

‘Interaction modes’, in the context of this paper, refer to the set of player actions that

would be reasonable to execute in the current situation. For example, when confronted with

a locked door, it would be reasonable for the player to attempt to unlock it with a key or

lockpick. It would be less reasonable to brandish a sword, apply a healing potion, or attempt

to barter with the closed door. Similarly, when confronted with an aggressive enemy, one

would expect the player to either attack or flee. Under those circumstances, it would not

make sense to engage in casual conversation or examine an ornate rug on the floor.

In other words, not all actions are equally preferable in every situation.

Given that the relative value of an action is context-dependent, we wish to identify

a set of contexts (i.e. ‘interaction modes’) in which certain actions best apply. In theory, a

system capable of identifying such modes could map a game based on behavioral contexts

rather than on world geography, a potentially useful diagnostic tool.

Our research utilizes recent work in computer vision [147] [21] to convert pixels into

text descriptions of a scene, but goes beyond simple object recognition [78] or semantic

segmentation [91] in order to acquire a common-sense representation of the observed items.

To do this, we use the skip-thought embedding space [75]. Related semantic embedding spaces

include word vectors [97] [116], sentence embeddings using a simple or weighted average of

1In other words, the vector representation of each sentence is influenced by the sentences that tend to
appear before or after it in the input corpus. Word-level semantic spaces trained in this way have been shown
to encode common-sense knowledge about the physical and sociological properties of our world [100] [109].
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word vectors [38] [29], fixed-length and LSTM-based sentence embeddings [128] [32], and

document-level embeddings [81].

This work touches tangentially on the field of a↵ordance detection2 [173] [139] [107],

particularly as explored by [45] in their work with text-based adventure games. Fulda et

al. used analogical operations performed in vector space to detect the behaviors a↵orded

by a specific game item. Our work takes this idea one step farther by detecting the current

interaction mode of the game (and by extension the subset of actions a↵orded by the situation)

rather than the a↵ordances of a single object.

5.2 Methodology

Our algorithm for the Automated Extraction of Game Interaction Modes (AEGIM) begins

with screenshots extracted during game play, which are then converted to a plain text

representation using an online caption generation tool. We do not require the caption

generator to provide a coherent sentence; a simple string of objects or adjectives is su�cient

for our purposes.

Once we have a plain text description of an image, we encode the description as a

geometric point in a semantic embedding space. For this step, we rely on the skip-thought

embedding model [75], which is trained by requiring a neural network to predict both the

sentence that directly precedes and the sentence that directly follows each sentence in the

training corpus. This is, of course, a mostly futile task: The number of possible antecedents

and successors for any given sentence is enormous. However, during the training process

the network creates an internal representation that roughly corresponds to each sentence’s

semantic meaning. It is this internal representation - the semantic meaning of a sentence -

that interests us. We use it to encode each input string as a 4800-dimensional vector that

represents the location of the text in skip-thought space.

2
A↵ordances [53] refer to the set of actions that are made possible by an object or situation. For example,

a ladder a↵ords the possibility of climbing, while level terrain a↵ords the possibility of running. Gibson asserts
that an a↵ordance is neither a property of the environment nor of the actor, but of the complementarity of
the two.
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Interaction Mode: Threat

‘You see a soldier holding a sword’
‘You are badly wounded’
‘A massive troll bars the path’
‘The bull paws the ground, then charges toward you’
‘The poisonous spider advances, ready with its deadly bite’
‘You are in danger’
‘If you fall from this height, you will die’
‘The battle rages around you’
‘The angry man begins to attack you’
‘You are plummeting to your death, with only a few seconds
before you hit the ground’

Figure 5.1: Example texts used to define the ‘Threat’ mode, meaning that an immediate
physical danger is present.

Conversion into a semantic embedding space is essential in order to create a gestalt

representation of the items in a scene: A hammer alone does not indicate an imminent physical

threat, nor does an angry man. But an angry man holding a hammer is cause for immediate

concern.

Next, the AEGIM algorithm determines which of several possible interaction modes are

indicated by the original screenshot. This is done by comparing the skip-thought vector that

represents the image description with the vector embeddings of a set of hand-coded example

texts that exemplify each mode. To determine whether an image evokes the interaction mode

of ‘Threat’, for example, we would enter sentences like those shown in Fig. 5.1.

We note with interest that these example sentences do not necessarily have to be hand-

coded. It is not di�cult to imagine scenarios where example text is extracted algorithmically by

observing which subset of actions produces reasonable results under specific game conditions.

Once the example texts have been provided, each text is encoded as a skip-thought

embedding and an average representative vector is calculated for each example set. New

sentences are then classified based on their proximity to these cluster centers. More formally,

let M = m1, ...,mk be the set of interaction modes to be detected and let Si = {s1i , ...sni }

be the example strings associated with the ith interaction mode (see Fig. 5.1). Then Vi =
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{v1i , ...vni } is the set of 4800-dimensional vector encodings of S in the skip-thought embedding

space, where k is the number of interaction modes to be classified and n is the number of

examples used to define each interaction mode. For each incoming text t to be classified,

AEGIM determines which interaction modes apply according to the following algorithm:

1: vt = the vector encoding of text t

2: for i in 1...k do

3: di = vt � 1/n
Pn

0 v
n
i

4: dq = vt � 1/(k � 1)
P

q 1/n
Pn

0 v
n
q , q 6= i

5: if |di| < |dq| then

6: return True

7: else

8: return False

9: end if

10: end for

In other words, AEGIM returns True for the ith interaction mode if and only if vt

is closer to the ith cluster center than it is to the average of the cluster centers of all other

interaction modes. Note that it is possible for AEGIM to output more than one interaction

mode for a given image, or no interaction modes at all.

Because skip-thought representations encode the meaning of a sentence rather than

the text or syntax of the sentence, this simple linear classifier is su�cient to detect the correct

interaction mode in many instances. Accordingly, one could imagine that a more sophisticated

classifier might improve performance beyond that reported in this paper.

5.3 Results

As a proof of concept for this idea, we collected images from the popular Bethesda game

Skyrim (Bethesda Softworks LLC 2013). The dataset consists of 65 images collected during
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game play, including peaceful encounters with shopkeepers, wandering animals, and local

architecture as well as high-risk encounters with monsters and magic-wielders3. Images were

then passed through one of three text-generators:

1. Clarifai [21], an online object recognition system that returns a list of identified

elements within a scene

2. CaptionBot [147], an online caption generator that creates a complete sentence

describing the contents of an image

3. Human-generated captions

The human-generated captions were provided by an 11-year-old girl who has never

played Skyrim, is not familiar with our algorithm, and was unaware of how the captions would

be used. She was instructed only to ‘give a one-sentence description of what’s in the picture’.

Her description was used exactly as given, without prompting, hints, or post-processing. The

automatically-generated captions were post-processed as follows: Clarifai returns a list of 20

identified elements for each scene, along with their estimated likelihood. In our experiments,

we concatenated the 10 elements with the highest likelihoods into a single text string which

was then encoded as a skip-thought vector. CaptionBot prefaces each sentence with a qualifier

indicating its certainty about the given description, and sometimes appends a description

of whether people in the image appear happy or sad. This supplementary information was

omitted; only the core image description was passed through the skip-thought encoder.

The purpose of including human-generated captions was to test the soundness of our

algorithm when provided with high-quality text descriptions. This was motivated by the

observation that online caption generation systems, which are optimized for photorealistic

images of real world objects, perform poorly when presented with game images.

We focused on four interaction modes for this experiment: Threat (as depicted in

Fig. 5.1); Explore, indicating an opportunity to traverse the landscape and discover items

3No player-controlled characters were harmed during the collection of this dataset.
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AEGIM keyword baseline constant

Clarifai 72.3% 8.6% 74.2%
CaptionBot 73.3% 13.3% 74.2%

AEGIM keyword baseline constant

Clarifai 21.9% 14% 43.8%
CaptionBot 31.3% 18.8% 43.8%

Figure 5.2: Top: Classification accuracy, counting each image/category pair individually.
Bottom: Exact matches, meaning the percentage of images where all four categories were
classified correctly. Human captions were not available for the full dataset, and so are not
shown here.

of interest; Barter, indicating an opportunity for exchange of goods; and Puzzle, indicating

that a manual manipulation task is required or available. The values of k and n were set to 4

and 10 respectively.

To create reasonable baseline comparisons, we selected two naive classifiers. The

keyword method compiles a list of keywords extracted from the AEGIM example texts

provided for each interaction mode. During naive classification, an interaction mode was

marked as True if any of the keywords appeared within the text to be classified. The constant

baseline simply returned the most common classification (‘explore’) in all cases. Results are

shown in Figure 5.2. Interestingly, the AEGIM algorithm was able to approach or exceed

both baselines with only 10 example texts per category and no online training.

Figures 5.3-5.6 show screenshots from the game along with interaction modes iden-

tified by AEGIM. Correct classifications are highlighted using boldface text. Overall (and

unsurprisingly), the human-generated captions produce far better results than automated

captions. This suggests that it would be worthwhile to either train a caption-generation

system on images that more directly align with the task, or to use in-game annotations as an

alternative to caption generation.
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Generated Text
AEGIM
Output

Clarifai:

‘no person’, ‘travel’,
‘landscape’, ‘outdoors’,
‘snow’, ‘sky’, ‘mountain’,
‘daylight’, ‘winter’, ‘water’

Explore

CaptionBot:
‘A tower with a mountain
in the background’

Explore

Human text:
‘A windmill near rocky
mountains’

Explore

Figure 5.3: Overall AEGIM correctly identifies exploration scenes regardless of captioning
method, perhaps because Clarifai and CaptionBot both detect landscape elements like hills,
clouds, and buildings.
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Generated Text
AEGIM
Output

Clarifai:
‘people’, ‘adult’, ‘smoke’,
‘flame’, ‘vehicle’, ‘military’,
‘one’, ‘man’, ‘weapon’, ‘war’

Barter

CaptionBot: ‘A man jumping over a fire’ Explore

Human text:
‘An archer ready to fight
against the enemy’

Threat,
Explore

Figure 5.4: This is one of the few combat images that was even moderately well-captioned by
the automated systems. (Scenes with similar elements were described as ‘A group of people
jumping’ or ‘a young man practicing his tricks on his skateboard’)

72



Generated Text
AEGIM
Output

Clarifai:

‘people’, ‘adult’, ‘religion’,
‘indoors’, ‘man’, ‘group’,
‘home’, ‘one’, ‘no person’,
‘travel’

Barter

CaptionBot:
‘A kitchen with wooden
cabinets and a fireplace’

-

Human text:
‘A blacksmith that is sitting
in his shop, but he also
looks very bu↵’

-

Figure 5.5: In this case the human captioner’s commentary on the shopkeeper’s physique
obscured the correct classification. AEGIM correctly returns the interaction mode ‘Barter’
when given the input text ‘A blacksmith sitting in his shop’.
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Generated Text
AEGIM
Output

Clarifai:

‘rusty’, ‘old’, ‘iron’,
‘security’, ‘dirty’, ‘safety’,
‘no person’, ‘steel’, ‘lock’,
‘door’

Puzzle

CaptionBot:
‘A clock that is looking at
the camera’

-

Human text:
‘A door lock which is trying
to be opened with a floating
knife and a sharp thingie’

Puzzle

Figure 5.6: It is not di�cult to see why CaptionBot mistook the image for a clock. Less
obvious is why AEGIM does not consider the clock a puzzle item to be interacted with.
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5.4 Conclusions and Future Work

AEGIM is a novel and potentially powerful tool for identifying the interaction modes evoked

by an image. Preliminary experiments show that it is able to produce correct classifications

in a variety of situations.

AEGIM o↵ers the following key advantages over methods that predict interaction

modes directly from images: (1) AEGIM’s semantic embedding space can be customized

via the selection of input corpus: Skip-thought embeddings trained using game manuals,

genre-relevant articles, or in-game dialogue may prove to be particularly e↵ective. (2) By

encoding images into the skip-thought embedding space, AEGIM is able to interpret the

gestalt meaning of items in a scene rather than evaluating each element independently. (3)

AEGIM o↵ers the possibility of dynamically-generated example sets extracted from game-

internal images. (4) With AEGIM, image descriptions may be augmented using character

dialogue, in-game annotations or other raw text produced by the game engine.

AEGIM’s greatest current weakness lies in the poor quality of the automatically

generated captions. More research is required to determine which (if any) of the currently

available open-source vision systems is able to produce acceptable descriptions of fictional

scenarios. For many games, this limitation may be circumvented by utilizing character dialogue

and/or in-game annotations instead of a vision system.

Future work in this area should include the use of neural networks or K-nearest-

neighbor classifiers in lieu of linear classification. AEGIM’s performance thus far indicates

that the skip-thought space is well-structured for the task of distinguishing between interaction

modes; however, the current system is easily foiled by modifying clauses. ‘A dragon flying’

is consistently classified as a threat, but ‘a dragon flying through a cloudy sky’ is not. We

anticipate that the use of more sophisticated classifiers will rectify this problem.

Lastly, attention should be given to the task of training high-quality image recognition

systems for computer-generated images extracted during gameplay. Such a system would not

only be useful for AEGIM, but also for many other potential applications.
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Chapter 6

Conversational Sca↵olding: An Analogy-Based Approach

to Response Prioritization in Open-Domain Dialogs

by Nancy Fulda, Tyler Etchart, William Myers and David Wingate,

to be submitted

Abstract

We present Conversational Sca↵olding, a response-prioritization technique that capitalizes

on the structural properties of existing linguistic embedding spaces. Vector o↵set operations

within the embedding space are used to identify an ‘ideal’ response for each set of inputs.

Candidate utterances are scored based on their distance from this ideal response, and the

top-scoring candidate is selected as conversational output. We apply our method in an open-

domain dialog setting and show that the most e↵ective analogy-based strategies outperform

both an Approximate Nearest-Neighbor approach and a neural network trained to predict

the next utterance in the sequence. We also demonstrate the method’s ability to retrieve

relevant dialog responses from a repository containing 19,665 random sentences.

6.1 Introduction

Language is combinatorial in nature, and thus resistant to brute-force information retrieval

approaches. The patterns of language, however, are far more tractable. In this paper, we use a

conversational sca↵old corpus to provide examples of these patterns, then use the analogical
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structure of a pre-trained embedding space in order to generalize to input sequences that do

not closely match any of the sca↵old examples.

The basic concept is simple. We begin by encoding a reference corpus, called our

sca↵old, using Google’s Universal Sentence Encoder Lite [17]. Incoming utterances are matched

against the sca↵old corpus using one of several possible contextualization techniques, and

the top n responses are then used to calculate an analogically coherent response, or target

point, for each sequence of inputs. This target point does not necessarily represent an optimal

reply; it may in fact be the vector embedding of a nonsense sentence. Rather, it functions as

a heuristic to gauge whether a specific candidate response is conversationally appropriate.

We examine the e↵ectiveness of our Conversational Sca↵olding algorithms on a

response prediction task and show that the most e↵ective combinations outperform both an

Approximate Nearest Neighbor classifier and a neural retrieval approach. We also contribute

an empirical study showing how sca↵olding algorithms can be combined with contextual

alignment techniques in large, curated datasets in order to improve overall accuracy. Finally,

we apply our sca↵olding technique in a real-time conversational scenario and show that it is

able to retrieve a series of plausible responses to human-generated input.

Our approach has two key advantages: First, it leverages the analogical properties of

pre-trained sentence embeddings to identify appropriate responses even when the disparity

between the input utterance and the nearest curated example is quite large. Second, it

operates directly on a curated reference corpus that can be updated dynamically, without

needing to retrain the neural models. Although not directly explored in this paper, we believe

this technique has potential for use in conversational systems that extend beyond information

retrieval. For example, it might lend itself well as a loss function when training generative

models, or when evaluating response quality in iterative self-play scenarios.
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6.2 Related Work

6.2.1 Utterance Retrieval

Retrieval systems for conversational AI have historically relied on statistical models such as

Term Frequency-Inverse Document Frequency (TF-IDF) [18, 50, 130] or token-level vector

space models [6, 18, 36] with cosine distance used to score candidate utterances. More recently,

a variety of neural models for information retrieval have been explored, including a paraphrase

matching algorithm utilizing recursive auto-encoders [110], models based on LSTMs and other

recurrent units [93, 110], and sequential matching networks that use an RNN to accumulate

vectors representing the relationship between each response and the utterances in the context

[171].

The recent availability of general purpose pre-trained linguistic embedding spaces such

as skip-thought vectors [74], quick-thought vectors [89], InferSent [23], and Google’s Universal

Sentence Encoder [17], as well as task-specific embeddings extracted from popular generative

models such as HRED [134], present new and interesting possibilities. Bartl and Spanakis [8]

use conversational contexts extracted from HRED embeddings to retrieve a set of n candidate

sentences via an Approximate Nearest Neighbor (ANN) algorithm. Each candidate is then

scored based on its cosine similarity to each of the other candidates in the retrieved set.

6.2.2 The analogical structure of embedding spaces

Our research builds on previous work by leveraging the analogical structure inherent in

language, and hence also present in linguistic embedding spaces, to improve response selection.

Researchers have shown that pre-trained word embeddings can be used to solve linguistic

analogies of the form a:b::c:d (‘a is to b as c is to d’). This is generally accomplished using

vector o↵sets such as [king - man + woman ⇡ queen] or [walking - walked + swimming ⇡

swam] [56, 100, 116]. Query accuracy can be further improved by averaging multiple vector

o↵sets [35, 45] or by extending the length of the o↵set vector [47].
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Our research contribution is the application of vector o↵set methods to response

retrieval in open-domain dialog settings. Rather than evaluating candidate responses based

on their strict distance to elements in the reference corpus, we instead rely on the relative

distance between pairs of sentences in order to localize an ‘ideal’ response vector, which

corresponds to point d in the classic a:b::c:d analogical form. Candidates are scored based on

their distance from this idealized point.

6.3 Conversational Sca↵olding

The technique of Conversational Sca↵olding, first introduced as an experimental sub-component

of [citation omitted for anonymity], is refined in this work by introducing multiple localization

techniques and by performing a structured evaluation of response accuracy across a variety

of scoring algorithms. We also provide an example of the algorithm in action, showing its

ability to retrieve relevant responses from a set of ca. 20,000 randomly-selected sentences.

Figure 6.1 gives an overview of the sca↵olding technique. Given a dialog context of

variable length, our method first locates a set of high-quality contextual matches within

the sca↵old corpus. These contextual matches, along with the utterance directly following

each context match, are then passed to one of several scoring algorithms. All utterances are

encoded using Google’s Universal Sentence Encoder Lite [17], a lightweight but impressively

robust embedding model.

6.3.1 Contextual alignment

Contextual alignment refers to the process of matching incoming utterances against similar

utterance patterns within a sca↵old corpus. This can be done naively by using an Approximate

Nearest Neighbor1 algorithm based on a simple Euclidean distance metric2. In this paradigm,

1Approximate approaches, rather than a more rigorous K-Nearest Neighbor algorithm, are used in order
to improve computation speed.

2Any valid distance metric, such as cosine distance, can be used. We tested both cosine and Euclidean
distance, but found the latter to be empirically better.
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Figure 6.1: Conversational Sca↵olding workflow: The dialog context is converted to an array
of sentence-level linguistic embeddings using Google’s Universal Sentence Encoder, then
passed to one of several localization methods in order to determine which utterances in the
sca↵old corpus represent the best context match. The matching contexts (orange), along
with the embedded representation of their direct successors (red) within the sca↵old corpus,
are then passed to the Response Scoring Algorithm, which assigns a numerical value to each
candidate response.
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for a dialog history of length n, the optimal contextual match can be identified using the

expression

minz

nX

i=1

||vi � sz+i|| (6.1)

where {v1, ..., vn} are the vector embeddings of the n most recent utterances in the current

dialog and {sz+1, ..., sz+n} represent the vectors located within a sliding window of length n

beginning at element z of the pre-embedded sca↵old corpus. The notation ||x|| represents the

Euclidean norm of vector x.

This Euclidean distance approach is easy to calculate, but it ignores the powerful

analogical structure inherent within the embedding space. For example, assume we have the

following dialog history coupled with two potential contextual matches in the sca↵old corpus:

dialog history
1. Did you watch the basketball game?

2. Yeah, that slam dunk at the end was really impressive.

contextual match A
1. Did you watch the football game?

2. Yeah, that touchdown at the end was really impressive.

contextual match B
1. Did you watch the basketball game?

2. Yeah, that was an impressive game.

A Euclidean distance approach using Google’s Universal Sentence Encoder Lite and

Eq. 6.1 above will select contextual match B (with a summed distance of 0.884) over A

(which has a summed distance of 1.191). And yet in many ways, contextual match A is a

closer semantic parallel to the actual dialog history. In particular, the conversational pattern

exhibited in A is an almost perfect match for the dialog, even though the topic of conversation

di↵ers.
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Figure 6.2: Naive Analogy, where: c (green) represents the embedded input utterance, ai
(blue) represent the nearest embedded utterances from the sca↵old corpus, bi (red) represent
the embedded successors to ai in the sca↵old corpus, d1 = c + b2 � a2 (yellow) represents
the ‘ideal’ response, and gi (grey and black) represent embedded candidate responses with g1

(black) representing the response selected by the naive-analogy scoring algorithm.

In order to capture these subtleties, we propose two alternate methods of contextual

alignment, represented in Figure 6.1 as Conversation Localization Methods:

1. Di↵erence Vectors

This localization method seeks to capture the flow of the conversation by tracking the change

in vector location between each turn in the dialogue history. The di↵erence between each

successive pair of vectors in the dialogue history is concatenated, and this concatenated vector

is then aligned with a similarly concatenated vector of the di↵erences between successive

turns in the sca↵old corpus. An optimal contextual match is calculated as:

minz ||concatn�1i=1 (vi+1 � vi)� concat
n�1
i=1 (sz+i+1 � sz+i)|| (6.2)

where {v1, ..., vn} are the vector embeddings of the n most recent utterances in the current

dialog, {sz+1, ..., sz+n} represent the vectors located within a sliding window of length n

beginning at element z of the pre-embedded sca↵old corpus, ||x|| represents the Euclidean

norm of vector x, and concat
n
i=1(xi) denotes the vector concatenation of the set {x1, ..., xn}.

2. Embedded Concatenation

This localization method leverages the structure of the embedding space directly by concate-
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Table 6.1: Dialog localization scores obtained using the dialog history and possible contextual
matches shown in Section 3.1. Lower scores (bolded) indicate a better contextual match.

naive Eucl. di↵. vectors embedded concat.

match A 1.191 0.846 1.353
match B 0.884 0.884 1.350

nating the input sentences prior to encoding them via Universal Sentence Encoder Lite [17].

A naive Euclidean distance metric is then used to match the embedded concatenation against

each element in the pre-embedded sca↵old corpus. The optimal contextual match is:

minz ||embed(h1 + ...+ hn)� sz|| (6.3)

where {h1, ..., hz} are the plain text (i.e. unembedded) utterances in the dialog history, the +

symbol represents string concatenation (with an extra space inserted between sentences), sz

is an arbitrary vector located within the pre-embedded sca↵old corpus, and embed(x) denotes

the process of embedding a plain text utterance x to obtain its vector representation.

Table 6.1 shows the relative scores obtained when applying each of these localization

methods to the dialog history and contextual match options presented above. In the case of

embedded concatenation, the concatenated dialog history was compared to both sentences

in contextual matches A and B, with the minimum distance being recorded in the table.

(Interestingly, although the embedded concatenation method prefers match B in this example,

it has an even higher preference for complex utterances such as ‘Did you watch the game last

night? That slam dunk at the end was amazing’, which produces a score of 1.347.)

Note that the described localization methods assume that only a single, optimal,

contextual match is desired. This was done for simplicity. In reality, it is often beneficial

to take the k best matches – and in fact many of the scoring algorithms in section 6.3.2

require k > 1. In the next section, we assume a value of k = 3 for clarity. In our empirical

experiments, a value of k = 5 was used.
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6.3.2 Candidate Response Scoring

Once the top k contextual matches for the dialog history have been identified, the candidate

responses can be scored. Candidate responses may come from a repository of pre-selected

utterances, or they may be produced dynamically via generative models, scripted templates,

or other text generation methods. For ease of representation, the algorithm descriptions in

Figures 7.3-7.5 assume a conversation history of length 1 combined with a Euclidean distance

approach to conversational localization. Extensions to longer conversation histories and more

complex localization methods are straightforward and easy to implement.

In Figs 7.3-7.5, the use of the letters ai, bi, c, and di corresponds to the classic linguistic

analogy structure a:b::c:d, which can be solved using vector o↵sets of the form c + b - a = d.

1. Naive Analogy (Fig 7.3)

This scoring algorithm represents the simplest possible use of analogical structure when

scoring candidate responses. Using a value of k = 1, the naive analogy locates the single best

context match within the sca↵old corpus, along with its (pre-embedded) successor. The vector

di↵erence between the successor and the last sentence in the context window is then added

to the embedded vector representation of the most recent utterance in the dialog history.

Candidate utterances are scored based on their distance from the resulting point in vector

space.

Intuitively, this process can be described as seeking a candidate response that is related

to the dialog history in the same way that the sca↵old corpus successor is related to the

sentences that precede it.

2. Scattershot (Fig 7.4)

The scattershot scoring algorithm takes the non-deterministic nature of language into account

by assuming that there are many valid responses. It therefore searches for a candidate

response that matches any of several high-scoring context matches. In this method, the vector

di↵erences between each context match and its respective successor are calculated separately,
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Figure 6.3: Scattershot Method, where: c (green) represents the embedded input utterance, ai
(blue) represent the nearest embedded utterances from the sca↵old corpus, bi (red) represent
the associated embedded successors to ai in the sca↵old, di = c+ (bi � ai) (yellow) represent
the ‘ideal’ responses, and gi (grey and black) represent embedded candidate responses with
g3 (black) representing the response selected by the scattershot scoring algorithm.

Figure 6.4: Flow Vectors Method, where: c (green) represents the embedded input utterance,
ai (blue) represent the nearest embedded utterances from the sca↵old corpus, bi (red) represent
the associated embedded successors to ai in the sca↵old corpus, d1 = c + 1/n

P
(bi � ai)

(yellow) represents the ‘ideal’ response, and gi (grey and black) represent embedded candidate
responses with g2 (black) representing the response selected by the flow vectors scoring
algorithm.

and then added to the vector embedding of the most recent utterance in the dialog history.

The result is a set of k target points, each of which represents a possible valid conversational

response. The candidate located nearest to any one of these points receives the highest score.

3. Flow Vectors (Fig 7.5)

Lastly, the flow vectors algorithm presumes that there is some manifold of acceptable responses

within the embedding space, and seeks to calculate the centroid of that manifold by averaging

the di↵erences between multiple context matches and their successors. The candidate response

nearest to this averaged centroid receives the highest score.
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6.4 Experimental Setup

In current state-of-the-art conversational systems, candidate utterances may be obtained via

generative models [143, 156], template-based algorithms [49], or pre-built language repositories

[2, 171]. Our experimental setup mimics a system that uses a small ensemble of response

generators to produce and/or retrieve candidate utterances. The task of the sca↵olding

algorithm is to leverage the dialog patterns in the sca↵old corpus in order to identify the

best possible response.

We also present two sample conversations generated using a much larger (ca. 20,000

utterances) set of candidates, as described in Section 6.5.2.

6.4.1 Text Corpora

To simulate an open-domain dialog setting, we merged data from four di↵erent sources:

1. Chit-Chat3 [citation omitted for anonymity]

2. Daily Dialog4 [84]

3. A 33 million word subset of Reddit5

4. The Ubuntu Dialogue Corpus6 [92]

This provided us with a broad spread of conversation topics and dialog styles. The

Chit-Chat dataset, developed in house by our research lab, contains 483,112 dialog turns

between university students using an informal online chat framework. The Daily Dialog dataset

simulates common, real-life interactions such as shopping or ordering food at a restaurant.

Reddit7 covers an array of general topics, with copious instances of web links, internet

acronyms, and trollish behavior. Finally, the Ubuntu Dialogue Corpus contains 966,400 dialog

turns taken from the Ubuntu Chat Logs, with a heavy emphasis on troubleshooting and

3url omitted for anonymity
4https://aclanthology.coli.uni-saarland.de/papers/I17-1099/i17-1099
5http://files.pushshift.io/reddit/
6https://www.kaggle.com/rtatman/ubuntu-dialogue-corpus
7Due to the massive size of Reddit, we only used a subset of the comments and posts from June 2014 to

November 2014.
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technical support. The datasets vary widely in terms of vocabulary size, average turn length,

and word count, as shown in Table 6.2.

6.4.2 Evaluation Task

To evaluate our sca↵olding algorithms, we began by splitting the combined dataset into two

blocks: (1) a sca↵old corpus, and (2) an evaluation corpus. The agent’s task was to predict

the correct follow-on sentence for each dialog in the evaluation corpus.

Table 6.2: Dataset Statistics
Chit-Chat

Number of Words 8, 433, 086
Number of Turns 483, 112
Average Length of Turns 88.86
Vocabulary Size 85, 952

Daily Dialog

Number of Words 3, 449, 782
Number of Turns 243, 520
Average Length of Turns 62.85
Vocabulary Size 26, 116

Reddit

Number of Words 33, 847, 503
Number of Turns 966, 400
Average Length of Turns 194.73
Vocabulary Size 434, 539

Ubuntu

Number of Words 15, 696, 635
Number of Turns 966, 400
Average Length of Turns 88.33
Vocabulary Size 145, 594

To set up this task, we first needed to standardize the formats of the datasets. Chit-

Chat, Daily Dialog, and the Ubuntu Dialogue Corpus are all two-partner conversations,

while the Reddit data was structured more like a tree with a post at the top followed by

comments responding to that post and then more comments responding to other comments.

In standardizing the data, we chose to ignore distinctions between actual users and flatten

88



the tree so that any Reddit thread was treated as a two-partner conversation between some

speaker A and another speaker B.

Because some datasets, like Chit-Chat and the Ubuntu Dialogue Corpus, had many

turns per conversation, we windowed our original data to create a sequence of shorter

conversations with smaller dialog contexts. We chose a window size of four and a stride of

one. Hence, if our original conversation had six turns, the windowed data would have three

new conversations all with four turns each. We then set aside 3,311 conversations (about 5%

of the smallest corpus) from each dataset to create the evaluation corpus, with the rest used

as sca↵olding.

Finally, the evaluation corpus was used to create a sequence of 13,244 windowed

conversations. Each dialog from this evaluation set was paired with six candidate responses:

(a) the correct follow-on sentence for the given dialog history, and (b) five distractors randomly

chosen from elsewhere in the evaluation corpus. The sca↵olding algorithms in Section 6.3.2,

along with several baselines described in Section 6.4.3, were tasked with identifying the true

response.

6.4.3 Baselines

We selected four baselines to compare against our candidate response scoring algorithms.

Naive Nearest

This algorithm is a non-analogical companion to the Naive Analogy algorithm depicted in

Figure 7.3. Rather than calculating the ideal response as d1 = c+ bi � ai, the naive-nearest

algorithm calculates d1 = bi.

Approximate Nearest Neighbor (ANN)

This algorithm implements an Approximate Nearest Neighbor scoring strategy. Its ideal target

point is calculated in the same way as the flow vectors algorithm, but with d1 = 1/n
P

bi.

The analogical structure of the embedding space is ignored.
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Neural Network

We also implemented a multi-layer regression network using Tensorflow [1]. As input it

accepts two utterances from the dialog history, each embedded as a 512 dimensional vector

using the Universal Sentence Encoder Lite. It then predicts the ideal target point as a 512

dimensional output vector. We used two hidden layers with 2048 and 2014 units respectively,

with exponential linear unit (ELU) activation functions and mean squared error (MSE) loss.

We found that training the network using a simple stochastic gradient descent optimizer with

a learning rate of .001 worked best. We employed a 25% dropout.

Random

This baseline randomly selects one of the candidate responses without reference to the dialog

history.

6.5 Results

Table 6.3: Algorithm accuracy on a response prioritization task with 13,244 distinct conversa-
tions. The value n denotes the length of the dialog history used. The neural network was
unable to select a response in some contexts because it requires two distinct vectors as input.
The highest-scoring algorithm in each column is shown in bold-face text.

n=1
Euclidean
dist.

n=2
Euclidean
dist.

n=2
di↵. vectors

n=2
embed. concat.

flow vectors .6729 .6041 .6153 .6247
scattershot .7088 .5930 .6399 .6807
naive-analogy .6751 .5616 .6188 .6229
naive-nearest .6500 .5615 .3645 .5897
ANN classifier .6906 .6554 .3771 .6496
network n/a .5041 .5041 n/a
random .1699 .1713 .1660 .1606

Experimental results are shown in Table 6.3. The scattershot algorithm shows a clear

advantage over other variants in most scenarios. We hypothesize that this is because it takes

the nondeterministic nature of language into account, allowing the sca↵olding algorithm

to select a candidate that most closely matches one of many possible valid responses. For
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example, the question “Have you seen any good movies lately?” can be appropriately answered

by statements including “Yes”, “No”, “I saw Iron Man last night”, and “Are you crazy? You

know I’m afraid of theaters.” Whereas the flow vectors or ANN algorithms would attempt to

average these wildly disparate utterances, the scattershot algorithm will seek a response that

lies close to one of the sca↵old examples.

Additionally, we observe that the naive-analogy algorithm outperforms the naive-

nearest algorithm in 3/4 scenarios, supporting the theory that response accuracy can be

improved by leveraging the inherent analogical structure of the embedding space.

Surprisingly, the same pattern was not observed when comparing the flow vectors

and ANN classifier algorithms. Like naive-analogy and naive-nearest, these two algorithms

di↵er primarily in their use of analogical structure. The fact that ANN tends to outperform

flow vectors suggests that in this case, the averaging of multiple o↵set vectors (e.g. flow

vectors) results in a target point that lies far from the manifold of valid responses, whereas

the averaging of multiple actual sentence embeddings (e.g. ANN) remains closer to the

ideal manifold. Further research is needed to understand this phenomenon and quantify the

complex structures found in semantic embedding spaces.

Lastly, we observe that a smaller dialog history (n = 1) seems to be most e↵ective

in terms of facilitating accurate responses. This seems counter-intuitive, since many dialog

scenarios include utterances like ‘yes’ or ‘of course not’, which are di�cult to respond

to appropriately unless a larger context window is used. This drawback appears to be

overshadowed by the relative ease of matching a context window of size 1 to the sca↵old

corpus, as opposed to attempting to find a set of sentences that match. In much the same

way that Mikolov et al. [96] argued that a computationally simple system, by leveraging

more data, can produce a superior model, we hypothesize that a smaller context window, by

enabling closer context matches, facilitates improved response accuracy.
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Table 6.4: Confusion matrix showing how well each dataset, when used as a sca↵old corpus, is
able to select appropriate responses for dialogues drawn from the other corpora. Each column
contains a sca↵old corpus, each row an evaluation corpus. The scattershot algorithm was used
in conjunction with the embedded concatenation localization method, with a dialog history of
size n = 2 and with 3,311 evaluation dialogues drawn from each corpus. The highest accuracy
level in each column is shown in bold-face text.

Chit-Chat Daily Dialog Reddit Ubuntu

Chit-Chat .5826 .6563 .6068 .3455
Daily Dialog .5421 .6540 .5847 .3582
Reddit .5886 .6261 .7508 .3860
Ubuntu .4971 .4666 .5639 .7523

6.5.1 Generalization Across Datasets

We found ourselves curious as to what extent each dialog corpus was able to generalize to

the other corpora in the evaluation set. We therefore implemented the following experiment:

Using the scattershot algorithm and embedded concatenation localization method, we created

a confusion matrix showing how well the algorithm performed when using only one of our

four corpora as its sca↵old.

Results are shown in Table 6.4. The unusually high performance seen when both

the sca↵old and evaluation corpus were taken from the Ubuntu dataset can be explained

by the high level of overlap within the Ubuntu dialog corpus. An investigation of the

data downloaded from Kaggle reveals that between the three files (“dialogueText 301.csv”,

“dialogueText 196.csv”, and “dialogueText.csv”) there was an overlap of 53.35% in the original

data (14,318,055 non-unique turns out of a total of 26,839,031 turns). As a result, the

evaluation corpus drawn from the Ubuntu dataset contained exact copies of dialogues in the

Ubuntu sca↵old corpus. The other corpora had little or no overlap.

6.5.2 Retrieval from Larger Data Repositories

To examine algorithm performance on large-scale retrieval tasks, we set up a system in which

a human typed an opening sentence and we then used di↵erent variants of our algorithms as

a retrieval method on the sca↵old corpus. We permitted one augmentation to our algorithms
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for this experiment: candidate responses that were too similar8 to the most recent statement

in the dialog history were excluded from consideration. This constitutes an extension at the

sentence level of the traditional exclusion of source words when solving analogical queries

via word embeddings [56, 97]. Without it, the sca↵olding algorithm tends to select sentences

that parrot or reflect the content of the dialog history.

Two typical conversations generated using this method are shown below. Human-

generated text is preceded by the > symbol.

(scattershot, n=2, embedded concatenation, ⌧ = 0.6)

> Hello.

Hey!

> How are you doing today?

How are you?

> I am good. How has your day been so far?

I’ve been pretty good, I was sick earlier, but better now.

> Oh man, that stinks. What were you sick with? I am glad you are feeling better

though!

I had like ten servings of it.

> Uh oh. That sounds like a lot. Was it good food?

I had such tasty food too.

> Yum. What is your favorite food?

yum sounds so good right now haha! I love every fruit! I like rice and pickles

too haha. but like you I like just about everything

> I love fruit too. So, have you seen any good movies lately?

Black panther is so good!!!

> Yeah I really liked it too. I think that or, Thor Ragnarok might be my favorite

Marvel movie.

No , I haven’t . This is my first time to watch it .

> Oh yeah?

*It flips him off.*

> haha ok. So do you like to read?

I do! I’d appreciate it.

> What are some of your favorite books?

8Similarity was defined as Euclidean distance < ⌧ , where ⌧ is a hand-selected threshhold value.
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It’s a little bit of romance and comedy.

> Cool. Well, I have to go. It has been nice talking to you!

Okay ! Bye !

(scattershot, n=2, embedded concatenation, ⌧ = 0.6)

> Hey. What’s up?

Hey, whats up?

> Not much. How is your day going so far?

Hi, it’s good!

> Good to hear. What are you working on?

I’m figuring out my budget .

> Oh that sounds fun. What are you going to do after you finish?

Well I plan to get into the accounting program

> Oh cool! Do you like accounting?

I’ve thought about going into cardiology, that seems interesting, but also I’m

considering anesthesiology.

> Oh wow. Those are both very different from accounting. Are they hard?

semester for you and me. Is your next semester seeming to look like its going

to be a little easier?

> I think this semester will be fun but a little challenging.

That it does! Even though you may not be getting everything out of your classes

now but oh well...;)

> Do you think you will have any time to go to see a movie this semester?

That it does! Even though you may not be getting everything out of your classes

now but oh well...;)

> So, where are you from originally?

Haha well I’m from Arkansas

> Oh cool. I have never been there. Do you like it?

Ya actually I did enjoy the shreveport one when I lived there last year (2012

Mardi gras) but you’re right, it’s almost nothing Compared to most of the NO ones.

Still very enjoyable. My of my friends lives right on the route so it was nice

having somewhere to go for it lol

> haha fun. Do you like it here then?

Cool

> If you could vacation anywhere, where would it be?

well,its like 1 am here,i should get to bed, it was nice talking to you, have

a great day.

> Oh wow. Goodnight. Talk to you later.

Thanks. You too!
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6.6 Conclusions and Future Work

We have presented a response prioritization method using pre-trained sentence embeddings

that (a) leverages the inherent analogical properties of the embedding space and (b) accounts

for the frequently non-deterministic nature of natural language conversations. In experiments

using dialog contexts of length 1 and 2, our scattershot algorithm exceeds the performance of

a random baseline by a factor of 4 and out-performs both an Approximate Nearest Neighbor

classifier and a neural model trained to predict the next sentence in a conversational sequence.

We also demonstrate that our sca↵olding algorithms are able to produce relevant and engaging

conversations when retrieving utterances from large sentence repositories.

Future work in this area should explore the e↵ect of using alternate embedding models

such as skip-thought vectors [74], quick-thought vectors [89], Universal Sentence Encoder

Large [17], InferSent [23], InferLite [71], or bag-of-words averaging [5]. The impact of dialogue

context length on classification accuracy should be further investigated, along with the

possibility of hybrid algorithms that use short dialogue histories unless suitable heuristics

indicate that a longer context is needed. Finally, more work should be done on understanding

the analogical structure of existing sentence-level embedding spaces, so that this structure

can be more e↵ectively leveraged in real-life applications.
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Chapter 7

BYU-EVE: Mixed Initiative Dialog via Structured Knowledge

Graph Traversal and Conversational Sca↵olding

by Nancy Fulda, Tyler Etchart, William Myers, Daniel Ricks, Zachary Brown,

Joseph Szendre, Ben Murdoch, Andrew Carr and David Wingate,

Amazon Alexa Prize Proceedings, November 2018.

Abstract

We present BYU-EVE, an open domain dialogue architecture that combines the strengths

of hand-crafted rules, deep learning, and structured knowledge graph traversal in order to

create satisfying user experiences. Rather than viewing dialogue as a strict mapping between

input and output texts, EVE treats conversations as a collaborative process in which two

jointly coordinating agents chart a trajectory through experiential space. A key element of

this architecture is the use of conversational sca↵olding, a technique which uses a (small)

conversational dataset to define a generalized response strategy. We also take the innovative

approach of integrating the agent’s self and user models directly within the knowledge graph.

This allows EVE to discern topics of shared interest while simultaneously identifying areas of

ambiguity or cognitive dissonance.
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7.1 Overview

7.1.1 Open Domain Dialog: Challenges and Opportunities

As demand for voice technology expands, the challenges inherent in conversational AI become

more pressing. Users desire voice assistants who behave less like machines and more like

humans [14, 121, 135]. They don’t simply want to query their devices; they seek to engage

with them in complex exchanges, use them as mental sounding boards, and receive social

validation in response to their statements. This type of interaction encompasses, but also

goes beyond, database queries and question/answer models. In order to engage with the user

fully, the system must understand the rhythms of conversational flow, maintain an internal

identity and provide information that is geared to satisfy the unspoken desires of the user.

Our architecture is designed to accomplish all three of these tasks. We address

conversational flow via the sca↵olding technique presented in Section 7.5.1. Internal identity

is maintained via specially tagged knowledge graph nodes as described in Section 7.3, and

targeted information retrieval is discussed in section 7.7.3. Additionally, we have structured

our model to sustain expansion into unrestricted dialog settings: rather than being an expert

in a few specialized areas, our infrastructure is designed to apply general-purpose knowledge

across a wide variety of topics and conversational settings.

7.1.2 Invisible Walls vs. Infinite Horizon: How Open Is ‘Open’?

Arbitrary social dialog is a challenging problem, yet highly promising, with potential ap-

plications in areas such as education [85], political activism [57, 79], and elder care [37],

among others. In order to manage the complexities inherent in unstructured, free-form dialog,

many conversational systems employ an ‘invisible wall’ technique. The system gives the

appearance of being able to discuss any topic, but is in reality guiding the conversation only

to those topics that it is able to handle well. This technique has been successfully employed

by [120, 161].

97



To make significant progress in this domain we seek to go further. Following the

example set by [59], we envision an ‘infinite horizon’ scenario in which the system is able to

navigate the full range of human conversation. This does not imply that the system must be

omniscient. Rather, it means that the system is able to apply the knowledge at its disposal

within a broad range of conversational contexts.

This is accomplished by housing the system’s core knowledge in a single location.

Instead of querying myriad APIs via dozens of specialized response generators, our architecture

accumulates information within a centralized knowledge graph. Individual response generators

navigate this graph in structured ways, creating a flexible, easily scalable system. In this

paradigm, expanding the socialbot to handle new topic areas becomes a simple matter

of augmenting the knowledge graph; no hand-coding and no new response generators are

required.

We hasten to note that vision and reality are often two separate things. EVE was

produced as part of Amazon’s Alexa Prize Challenge, with corresponding deadlines that

required her to enter production before the core structures were complete. As a result, the

system is currently a hybrid between our core architectural ideas and specialized, topic-specific

response generators that use direct API calls rather than relying on the central knowledge

graph. These were created to satisfy consumer demand until the centralized infrastructure is

finished.

7.1.3 Text Retrieval vs. Text Generation: Between a Rock and a Hard Place

Ultimately, a dialog system exists to generate text. This text may be retrieved from a curated

and/or web-scraped repository [77, 120], generated via neural network models [77, 163], or

constructed using a combination of templates and placeholders [77].

Each of these methods has drawbacks. In open domain dialog, the scope of possible

conversation topics makes retrieval-based systems unfeasible; there are simply too many

conversational pathways. On the other hand, templates tend to sound repetitive and robotic,
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Figure 7.1: Our architecture is built on the premise of multiple candidate response generators
vying for the attention of the dialog manager. Each generator produces a specific type of
response: emotive utterance, fact retrieval, conversation o↵er, self-analysis, etc. The dialog
manager analyzes these outputs, then selects and combines the best of them to produce a
fluid, natural-sounding response.
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while generative models su↵er from a lack of coherence, lack of consistency, and frequent lack

of propriety.

So what’s a bot to do? As an interim solution, EVE uses a combination of templates

and retrieval methods, but the long-term goal is to create generative models conditioned on

conversational context and knowledge graph data. In other words, we wish to control what

the system says while using a neural network to decide how the idea should be expressed.

7.1.4 Choosing What to Say: A Question of Composition

When preparing final output for the user, we rely on the insight that conversation is a

multi-channel communication stream along which not only information, but also emotive and

psychological data is being passed. For example, when Alice tells Bob that she failed her

math test, Bob’s response is likely composite: “Oh no!” he might say, “Will you get a chance

to re-take it?” The first statement acknowledges and empathizes with Alice’s emotional state,

while the second propels the conversation forward with a request for information.

We model this compositionality by classifying candidate responses into communication

‘channels’. For each user utterance, our system attempts to generate (a) an emotive response,

(b) an informative reply to the user utterance, and (c) a conversational o↵er such as a

follow-up question or proposed conversation topic. To simplify terminology, we refer to these

as emotes, answers, and o↵ers. An ensemble of ranking algorithms scores each candidate

response, and the highest-ranking emote, answer, and o↵er respectively are combined into a

final output response.

A key element of this process is the idea of conversational sca↵olding, the principle

that a relatively small set of example conversations can be leveraged to determine which

candidate responses are viable. This is accomplished by leveraging the analogical properties

of embedding spaces at the conversational level, as described in Section 7.5.1.
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7.2 Knowledge Representation

The storage, retrieval, and representation of knowledge is a core issue when it comes to

tackling open-ended conversation. Without some form of persistent memory, it is not possible

for a conversational AI to progress beyond simple social pleasantries or, at most, a generative

or probabilistic model that reproduces common factual statements. On the other hand, relying

on highly specialized memory retrieval mechanisms, such as an IMDb API for movies, an

ESPN API for sports, or other topic-specific cloud APIs, makes it di�cult to synchronize

knowledge across response generators or to find relationships that span multiple topics. A

unified, persistent memory allows for intelligent topic switching and strong contextualization

of conversation.

While many developers are more familiar with relational database management systems

(RDBMS), such as MySQL, they are not the right pick for representing general knowledge,

mainly due to their rigidity. Trying to come up with tables that make sense for actors, sports,

towns, books, planets, etc. is intractable; the tables would end up tremendously sparse.

Graph databases, on the other hand, lend themselves to these sorts of free-form ideas. In

addition, relationships between two ideas is a first-class citizen with graph databases, whereas

relationships in relational databases typically require an expensive join. When representing

knowledge, understanding and traversing the relationship between two ideas is crucial for

open-ended conversation.

In light of these factors, we have chosen to implement persistent memory in the

form of a graph database (a.k.a. knowledge graph) consisting of unique nodes connected

by labeled edges. Our knowledge base currently contains 36,367,345 nodes and 164,664,878

edges reflecting a wide array of topics such as literature, biology, genetics, visual media,

manufacturing, biographical information, and many others.
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Figure 7.2: A representation of a portion of our knowledge graph. Orange nodes and edges
correspond to general facts contained in the knowledge graph, the green node and edges
represent a model of the user associated with a specific userID, and the blue node and edge
represent a portion of the system model corresponding to the same userID. Bolded edge
labels represent facts of interest that elicit responses from the MCI and MCE algorithms
discussed in Section 7.3.1.

7.2.1 Property Graph vs. Resource Description Framework (RDF)

There are two main competing types of graph databases, property graphs and resource

description frameworks (RDF).

Property Graph A property graph can best be described as a free-form web of

information with a structure implied by its name. Nodes (or vertices) of the graph consist of

labeled items such as “J.K. Rowling”, “science fiction”, or “dalmation”. These nodes can

have properties attached: Thus, one property for “J.K. Rowling” might be an alias property

with the value “Joanne Kathleen Rowling”. Some properties are important enough to deserve

their own node. In these cases, the property itself is considered an edge (and will be referred

to as such from here on out) and the edge’s value is a pointer to another item in the graph.

For example, the edge “author of” would point from the “J.K. Rowling” node to the node

labeled “Harry Potter and the Sorcerer’s Stone”. In turn, that node might have an alias

property with the value “Harry Potter and the Philosopher’s Stone”, as well as a genre edge

pointing to the “fantasy” node. Storing knowledge in this way creates a flexible structure

that keeps related ideas close to one another via edges.
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The main benefit of using the property graph variant is the loose structure and the

ability to query it using the Apache Tinkerpop Gremlin language [41]. Gremlin allows the

user to make complex path queries that allow multiple degree jumps in a single query. We

found this extremely useful when writing generators that wanted to tap into the knowledge

graph as it allowed them to make multiple connections to a single idea, much as a human

might.

RDF RDF databases are at heart, triplet stores. They come in subject-predicate-

object format, such as “J.K. Rowling”-“author of”-“Harry Potter and the Sorcerer’s Stone”.

Storing the data in triplet form make queries very quick, but limited. SPARQL [118] is the

main query language for RDF databases and as eloquently put by Oracle: “The SPARQL

query language is intended primarily for pattern (subgraph) matching rather than path

traversal. ... SPARQL 1.1, however, still lacks the ability to reference a path directly in

a query (e.g., the ability to store the result of a property path query in a path variable).

Without this ability, it is not possible to match an arbitrary length path and return the path

itself or perform operations based on characteristics of the path, such as path length.” [27].

Even though most open knowledge graphs, like Wikidata and Conceptnet, come in

RDF format and RDF queries are on average faster than property graph queries [3], we

found the path traversal feature too important to pass up. As a result, we built a pipeline

that converted the RDF Wikidata graph into a property graph so that we could take full

advantage of the path traversal features o↵ered by Gremlin.

7.2.2 Wikidata

Our core knowledge graph content is based on Wikidata [159]. Wikidata is a Wikimedia

project that seeks to structure the world’s knowledge. It can be thought of as Wikipedia in

knowledge graph format. We originally based our knowledge graph on Conceptnet [? ], but

found that it was not large enough to facilitate open-ended conversation. We then turned
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to Wikidata, which we first had to repurpose by stripping out all non-English ideas. We

then stripped out nonconversational nodes like “Wikimedia Disambiguation”, and finally we

added Google’s Universal Sentence Embeddings [17] for the descriptions of each node. Even

with all the cleaning, we found that Wikidata was somewhat esoteric in the selection facts

surfaced, resulting in statements like “Do you consider cat to be a typical example of the

animal painting genre?”. While this problem persists today, we were able to greatly minimize

it by selectively traversing only edges that make sense in the context of the current topic, i.e.,

when talking about movies we want to traverse “acted in” edges and not “subclass” edges.

7.2.3 Knowledge Graph Hosting

Our knowledge graph is managed via the Amazon Neptune service, a choice which simplifies

load balancing, fault tolerance, and general updates to the graph. We use the Apache

Tinkerpop Gremlin language [41] (the python variant [40]) for queries.

7.3 User and Self Modeling

In order to approach human-level conversation, the system must not only remember what has

been said in exchanges with users, but it must interpret what has been said. This means the

system must understand how past utterances relate to each other, to each of the conversation

participants, and to potential future utterances.

We address this problem by modeling both the user and the system as unique nodes

within the knowledge graph (see Figure 7.2). Edges attached to these nodes represent the

core ideas expressed in previous utterances, such as a�nities, disinclinations, and factual

data including names and nicknames. As the conversation plays out, the system extracts

facts from what is said by both itself and by the user and stores those facts in the knowledge

graph, connecting them to appropriate nodes.

For example, if the user says “I like comics”, the system connects the user’s node with

a ‘likes’ edge to a ‘comics’ node. Conversely, if the system generates an utterance expressing
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an a�nity, such as “I enjoy Superman comics”, the system connects its own knowledge graph

node to a “Superman” node with a ‘likes’ edge.1

In this way, the system generates its own personality dynamically as a result of its

interactions with the user. Because each node representing the system is user-specific, the

problem of finding a personality for the system that makes a strong majority of users happy

is largely mitigated, as each individual user molds their personal system model by what they

choose to discuss with it.

We find this approach both novel and valuable because it places user utterances

in context with past statements as well as with general world knowledge encoded in the

knowledge graph. It also allows the possibility of self-reflection and conflict resolution on

the part of the system. For example, if the system were to detect that the user likes “J.K.

Rowling” but dislikes “Harry Potter and the Chamber of Secrets”, this might prompt it to

inquire more deeply as to why the user dislikes that particular book when they are generally

well-disposed toward its author.

Similarly, the system might seek to o↵er new conversational topics based on areas

of common interest. For example, if the user likes “Star Trek” and the system likes “Space

Odyssey 2001”, both of which are characterized as “science fiction”, then the system might

o↵er new conversation topics that fit into the same category. Alternately, if the user has

expressed an a�nity for “burritos” and “pizza”, but a dislike for “spinach”, then the system

might seek to explore conversational options that are closely related to the first two nodes

but relatively distant from the disliked node; see Section 7.7.1 for more details.

7.3.1 Current Implementation of Dynamic Knowledge Graph Models

The current system architecture relies on two response generators to handle user- and self-

modeling functionality: DataBot and ModelQueryBot. The purpose for dividing the task of

1One might wonder how or why the system’s response generators would express an a�nity that is not
already present in the knowledge graph. At present, this occurs as a result of stochastic algorithms that
seek to reflect the interests expressed by the user, as well as from topic-specific (i.e. non-knowledge graph)
generators that express a�nities while introducing new topics for discussion.
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user- and self-modeling among two separate generators is primarily due to time constraints on

how quickly the generators must return a response to the user and the latency (usually about

50-100ms database + 50-300ms network) involved in querying and updating the Neptune

Knowledge Graph API.

Populating Models - DataBot DataBot is designed to extract as many knowledge graph

facts about the user and the system as possible from the conversation history and to use

those facts to populate the user and self models. As of the writing of this paper, DataBot

uses a combination of named entity recognition and regular expressions to search for three

specific edge types: ‘likes’, ‘dislikes’, and ‘called’. ‘Called’ edges represent the name of the

user or the system. ‘Likes’ and ‘dislikes’ edges represent the stated preferences of the user

and the system.

Once a potential edge is found, Databot examines the utterance to identify its

associated nodes and pushes a new fact of the form (node1, edge, node2) - which we will

refer to as a ‘triple’ - to the appropriate model within the knowledge graph. The new triple

is immediately visible to all other response generators within the system, which can use the

stored information as they please.

Employing Models - ModelQueryBot ModelQueryBot’s design is twofold: (1) it en-

sures that no contradictory information exists in the system’s user and self models, and (2)

it generates novel responses using those models. To accomplish the first objective, Model-

QueryBot employs an algorithm which we call Model Error Detection (MED) to identify

contradictory information in the user and self models based on predetermined rules. One such

rule is that the user model should never have a ‘likes’ edge and a ‘dislikes’ edge connecting

the same two nodes in the knowledge graph. If any contradictory information is identified,

ModelQueryBot deletes the contradictory information and prompts the user for clarification

in a generated response.
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Algorithm 4 - Model Connection Identification (MCI)
Inputs:

K = (N,E,L, T )
N ⇢ R
E ⇢ R
L = range(f) where f : (N [ E)! L ⇢ S Labels, mapping Nodes N and Edges E into natural language S
T = {t|t = (ni, ej , nk);ni, nk 2 N ; ej 2 E}

M1 ⇢ K, M1 = (N1 ⇢ N,E1 ⇢ E,L1 ⇢ L, T1 ⇢ T )
M2 ⇢ K, M2 = (N2 ⇢ N,E2 ⇢ E,L2 ⇢ L, T2 ⇢ T )
n0
1 2 (N \M1)

n0
2 2 (N \M2)

X = A set of pre-determined epsilon pairs of interest
R = A set of ‘referenced’ pairs of triples

Parameters:

� 2 Z The maximum number of triples in returned sets of triples to be resolved
Output:

D

A  {a = {t1, t2} : t1, t2 2 T 0 satisfy n0
1 2 t1, n0

2 2 t2, and (eu, ev) 2 X for any eu, ev 2 E s.t. eu 2 t1 and ev 2 t2}
A0  A� (A \R) b < � Db  {db = {t0, t1, ..., tb�1, tb} : tb�1 = (ni, ej , nk) 2 db�1 2 Db�1, tb = (nk, ey , nz), i 6= z,D0 =
A0}D0

b  {d0b = {t0, t1, ..., tb�1, tb} : {t0, tb} 2 A, db 2 Db} D  (D [D0
b) D

If no contradictory information has been found, ModelQueryBot will generate a

response based o↵ of the user and self models using algorithms we introduce as Model

Connection Identification (MCI) and Model Content Extension (MCE). Using MCI ad MCE,

ModelQueryBot first examines the primary nodes and edges directly connected to the user

and user-specific system nodes, as well as all of the secondary nodes and edges directly

connected to the primary nodes. ModelQueryBot then uses one of the identified triples to

populate one of several relevant, predetermined templates; for example, one such template

reads as “Oh, you don’t like (node1) and since (node1 edge node2) do you also not like

(node2)? I’m rather fond of (node2)”. As the user and self models grow in complexity, so does

the level of reasoning apparent in the responses output by ModelQueryBot.

Model Connection Identification (MCI) MCI is an algorithm for finding all of the

connections between two nodes in a knowledge graph within a given search radius. MCI

takes the general knowledge graph K = (N,E, L, T ) as input, where N is a set of indices

corresponding to nodes, E is a set of indices corresponding to di↵erent edge labels, L is

the set of labels that correspond to the indices in N and E, and T is the set of all fact

triples of the form (node1, edge, node2) in the knowledge graph. MCI also requires two sets

of triples that model entities (either distinct or identical) which we refer to as M1 and M2
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as input, as well as the nodes n01 and n
0
2 that represent the entities themselves. Finally, a

set of pre-determined epsilon pairs of interest X (in ModelQueryBot, it is often the case

that X = {(likes, likes), (likes, dislikes), (dislikes, likes), (dislikes, dislikes)}), and a set R

of pairs of knowledge graph triples that have previously been addressed with the user are

input into MCI. Using its inputs as well as a parameter � to control the depth of its search,

MCI collects a set D of sets of triples from the knowledge graph that connect n
0
1 and n

0
2

together which is then returned as output. � = 2 is the maximum search window used in

ModelQuerybot currently. We define MCI more formally in Algorithm 1.

Model Content Extension (MCE) MCE is a special use-case of MCI; we write MCE

as its own algorithm here to highlight a few of the various uses for MCI that go beyond

merely finding relevant factoids relating two specific nodes which can then be used to generate

text. In MCE, MCI is given K, X, and R as normal (currently with the parameter � = 2

often kept constant as well), but then receives only one model M of a particular entity and

the entity’s associated node n
0. By performing MCI on only one entity, instead of trying to

connect two arbitrary entities as in MCI, MCE e↵ectively tries to find logical connections

within the nodes of M ; in essence, we currently use MCE to try and find causal relationships

between the “likes” and “dislikes” of the user (and potentially to give causal relationships for

the “likes” and “dislikes” of our own system in future work). Therefore, ModelQueryBot uses

MCE to detect particularly interesting subtleties in its model of the user - for instance, MCE

would be used to ask why a user would tell us that they both “like ice cream” and “dislike

dairy products” at the same time, or to ask the user if the reason they “like J.R.R Tolkein”

is because they also “like the Hobbit”. MCE is expressed formally in Algorithm 2.

Model Error Detection (MED) MED is the algorithm we use to remove contradictory

facts from our user and self models. Similarly to MCE, MED takes as input the Knowl-

edge Graph K, a single entity model M and its associated entity node n
0, as well as X,

which in this case represents a set of pre-determined contradictory epsilon pairs that should
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Algorithm 5 - Model Content Extension (MCE)
Inputs:

K The Knowledge Graph; see the description of K in Algorithm 1 - MCI for more details
M ⇢ K
n0 2 (N \M)
X
R = A set of ‘resolved’ pairs of triples

Parameters:

� 2 Z
Output:

D

D  MCI(K = K,M1 = M,M2 = M,n0
1 = n0, n0

2 = n0, X = X,R = R,� = �)

never be found connecting the same two nodes simultaneously (currently, MED is given

X = {(likes, dislikes), (dislikes, likes)} in ModelQueryBot). Furthermore, MED takes in

the set X 0 which represents a set of pre-determined ‘singular’ epsilons, which should connect

a given node (in the case of MED, this node is n0) to only one other unique node; in Model-

QueryBot, MED receives X 0 = {called}. Given its inputs, MED returns a set C representing

all of the ‘contradictory’ knowledge graph triples in the input Model. MED is expressed

formally in Algorithm 6.

Algorithm 6 - Model Error Detection (MED)
Inputs:

K The Knowledge Graph; see the description of K in Algorithm 1 - MCI for more details
M ⇢ K
n0 2 (N \M)
X
X0

Output:

C

Cpair  MCD(K = K,M = M,n0 = n0, X = X,R = ;,� = 1) Csingular  {p = {t1, t2} : t1 \ t2 = {n0, ej} with ej 2 X0,
and t1, t2 2 T} C  (Cpair [ Csingular) C

7.3.2 A Note on Privacy

When users interact with our system, they implicitly agree to share personal information

(e.g., opinions, facts about themselves, etc.) in the form of natural conversation. Our system

attempts to harvest this information in a way that will mold and personalize the experience

for each user by adding it to the general knowledge graph. However, if at any point this

becomes an issue or a user wishes to have their information deleted, it is trivial to delete
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the system node and user node associated with their ID, which will in turn delete all edges

associated with them and e↵ectively remove any personal information collected.

7.4 Response Generation

EVE’s response generators fall into three broad categories: Emotive generators, which seek

to identify and empathize with the user’s mood, Knowledge Graph generators, which seek

to find connections between user utterances and related nodes within the knowledge graph,

and API generators, which query local repositories or online data repositories in order to

respond to user inquiries. We also maintain a small set of Fallback generators designed to

engage when the system fails to find an appropriate response in one of the other categories

and a set of Scripted generators that engage when predefined text or sensitive topic material

is detected.

Generators are able to pass meta-data back and forth to one another between responses.

For example, if a response generator makes use of a keyword uttered by the user, it can pass

the keyword in the meta-data so other generators know what the topic of conversation was.

Response generators can also request priority from the dialog manager and preserve internal

state between dialog turns.

Long-term, it is expected that most API generators will be replaced with knowledge

graph generators; possible exceptions being news and social media-based generators. At that

point, API queries would be used primarily to populate the knowledge graph with new data.

7.4.1 Emotive Generators

Our emotive generators seek emotional cues in the text and attempt to respond appropriately.

For example, if the user says “I like flu↵y bunnies”, the SmartEmote generator might respond

“No kidding? Me too!” Alternately, if the user makes a statement like “I feel sad”, the EmoBot

generator will engage this emotion with a statement like “I’m sorry. You deserve to feel better

than that.”

110



7.4.2 Knowledge Graph Generators

The knowledge graph generators are the core of our infrastructure, and are still in active

development. DataBot and ModelqueryBot are described in Section 7.3.1. The remaining

knowledge graph generators are as follows.

FirstDegreeFact

Takes a node of interest and finds all relevant (by topic) first degree connections.

Randomly samples a connection and then uses a template to talk about the fact.

FirstDegreeConversationStarter

Similar to the FirstDegreeFact except that it takes the first degree connection and tries

to transition the conversation in a relevant direction.

SecondDegreeFact

Works just like the FirstDegreeFact, with the main di↵erence of using both the first

degree and second degree connections instead of just first degree connections.

The strength of the knowledge graph generators is perhaps best illustrated by EVE’s

handling of the ‘Literature’ topic. Our infrastructure does not use any book-based APIs or

knowledge repositories, and yet, using only the knowledge graph generators and a small set

of hand-coded conversation starters, the system is able to respond to book-related utterances

so well that ‘Literature’ is one of our highest-rated conversation topics.

7.4.3 API Generators

As discussed in Section 7.1.2, the API generators were implemented primarily as placeholders

to satisfy customer demand until the knowledge graph infrastructure is fully on-line. They

use an elementary combination of conversation templates combined with API calls to OMDb,

TMDb, ESPN, Washington Post, DuckDuckGo, Wikipedia, and Amazon Evi. Many of the

API generators maintain an internal state regarding the current conversation topic, which

questions were recently asked, etc.
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7.5 Response Evaluation

Free-form conversation is variational, not deterministic; this means that there is no single

correct response to a given utterance or sequence of utterances (although there are certainly

plenty of incorrect ones). Rather, the set of acceptable and/or excellent responses can be

modeled as a probability distribution across the range of possible utterances.

For example, the question “Have you seen any good movies lately?” can be appro-

priately answered by statements including “Yes”, “No”, “I saw Iron Man last night”, and

“Are you crazy man? You know I’m afraid of theaters.” Each of these responses is equally

valid, although not equally likely. In contrast, responses such as “copper filings”, “The United

States was founded in 1776”, or “My flashlight batteries are empty” are so unlikely as to be

implausible.

Within the context of conversational AI, this is both good and bad news. It’s good

because our response selection criteria need not concern itself with finding the most correct

response (because many possibilities are equally correct); It is su�cient to identify the subset

of possible responses that are relatively likely to occur. From these, a final response can be

selected based on criteria such as length, uniqueness, and literary quality.

Unfortunately, the variational nature of conversation makes it di�cult for a naive

neural network, or even a well-structured variational neural network, to learn a pattern of

correct conversational responses. We address this problem by introducing conversational

sca↵olding, a technique that allows a small set of sample conversations to guide the bot’s

overall behavior.

7.5.1 Conversational Sca↵olding: An Analogical Approach to Response Priori-

tization

Most practitioners of natural language understanding are familiar with the analogical coher-

ence demonstrated by word2vec [96], GLovE [116] and other word-level embedding spaces.

The basic principle is simple: (1) Take a word. (2) Convert it into a vector using a neural
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network trained based on word co-occurrence patterns. (3) Now examine its relationship to

other words in the embedding space. Mikolov et al. have shown and other researchers have

confirmed that within these embedding spaces, simple mathematical operations are su�cient

to solve analogical queries [45, 48? ? ].

Our conversational sca↵olding algorithm is based on the observation that similar

analogical coherence can be found in sentence-level embedding spaces, albeit not as precisely

or compactly structured. It is not, generally speaking, possible to mathematically compute

“I like apples” - “because they are red” + “I like pears” and end up at the embedding for

“because they are green”; but when one does the math, one ends up in the general vicinity of

pears and green-ness.

Our key insight is the idea that within the context of response prioritization, general

vicinity2 is su�cient to identify candidate responses that are viable and conversationally

coherent with respect to each user utterance. The basic principle is simple: A pair utterances

representing the two most recent dialog turns is converted into vector representations using

Google’s Universal Sentence Encoder [17]. These vectors are then matched against a conver-

sational dataset in order to identify likely subsequent sentences. (In theory, this task could

also be attempted using a sequence-to-sequence model. However, the scarcity of high-quality

training data combined with the variational nature of conversation makes this a challenging

proposition. Hence our decision to use a sca↵olding algorithm.)

Our conversational sca↵olding methods require a high-quality conversational dataset

that exemplifies the type of discourse the bot should emulate. As it turns out, these are hard

to come by. See the next subsection for further details.

7.5.2 The Chit-Chat Dataset

In order to find a suitable dataset for our sca↵olding technique, we first examined the Cornell

Movie-Dialogs Corpus [26] and related datasets [28, 112]. Unfortunately, movie scripts proved

2Here, general vicinity means ‘within a threshold distance’. We used a euclidean distance metric with
.6 ⇤ khk as the threshold, where khk is the number of utterences in the conversation history window.
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unsuitable for our purposes because of two key drawbacks. (1) The text and subject matter

tend to be overly dramatic rather than reflecting normal day-to-day dialog, and (2) The

characters often speak in response to physical events within the scene; thus the dialog when

taken out of context becomes meaningless. Social media dialogues like Twitter [129] or online

forums like Reddit [122] avoid the key pitfalls of movie scripts, but also tend to contain highly

controversial material, personal insults, and incendiary opinions: not exactly the behaviors

we wish our socialbot to emulate.

After reviewing and eventually rejecting the available turn-based datasets, we decided

to construct our own. We outsourced our data collection methods to students at our university

in the form of a competition [168] in which students were randomly paired with each other

in an online chat forum and asked to discuss one of several pre-defined topics. To heighten

interest and engagement we o↵ered various prizes, and these prizes were awarded to users with

the highest number of quality interactions (quality being defined as a complex relationship

between post length, word length, and other factors).

The resulting Chit-Chat dataset contains over 90,000 utterances from almost 1200

di↵erent users. The data is almost entirely free of o↵ensive or derogatory statements, however

it is a little noisy; we set out to capture authentic examples of human conversation, but

the task itself became a topic of conversation. Chatters tended to discuss the competition’s

prizes, the scoreboard, and their desire to win, which subverts the actual goal of the task and

creates the possibility of strange dialogue patterns in any system that uses it. (e.g. imagine a

socialbot talking about a competition to provide data for a socialbot). Overall though, the

data generated from our simple competition is quite good, and this dataset has become a

solid training basis for multiple components in the system architecture.

Our conversational dataset is unique in that, unlike Reddit and other popular con-

versational datasets, there is a minimum of personal attacks and mean-spirited discussion.

During account creation, each user committed to maintain high standards of behavior and

agreed to let us use and share their conversation data for research purposes. We will publicly
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release the dataset at a later date, pending further stages of our Chit-Chat competition. (For

example, we may want to increase the size of the dataset and/or filter out references to the

contest, scoreboard, and prizes).

7.5.3 Sca↵olding Algorithms

We are actively exploring three algorithms for response prioritization. All three methods

rely on the Chit-Chat dataset to provide conversational examples: however, the method for

selecting a follow-on sentence varies. We compare the performance of all three algorithms to

a multi-layer network trained to predict the correct subsequent sentence embedding for a

conversation history of 2.

For simplicity, the algorithm descriptions below assume a conversation history of

1, meaning the algorithm is provided only the user’s most recent utterance. However, we

have found the latter three algorithms more e↵ective when given a conversation history of 2,

consisting of the user’s utterance and the most recent utterance provided by the socialbot.

This allows the algorithm to contextualize and respond meaningfully to information-sparse

utterances like “yes” or “I’m not sure”.

All three algorithms assume the availability of a set of candidate responses gi, which

represent the outputs of the socialbot’s various response generators for user utterance c.

Naive O↵set This sca↵olding algorithm is based on the simplifying assumption that the

closest match for the user’s utterance within the Chit-Chat dataset is always paired with an

optimal response. (In reality, Chit-Chat utterances with a slightly larger distance from the

user utterance are often paired with superior responses; this is addressed in the scattershot

and flow vector methods, below.)

Scattershot The key insight in the scattershot approach is the idea that there isn’t really

a ‘single right answer’ when it comes to utterance/response pairs. Instead, there exists a

manifold (or perhaps multiple manifolds) of correct responses, any of which is equally valid.
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Figure 7.3: Naive O↵set, where: c (green) represents the embedded utterance, ai (blue)
represent the nearest embedded utterances from the Chit-Chat Dataset, bi (red) represent
the associated embedded response to ai in the Chit-Chat Dataset, d1 (yellow) represents
the ‘ideal’ response, and gi (grey and black) represent embedded responses generated by our
system with g1 (black) representing the response selected by the Naive ranking strategy.

Algorithm 7 Naive o↵set
Inputs:

~c = Embeddeduserutterence
~r = Candidateresponsesproducedbythegenerators.
C = Chit� Chatdataset

Output:

S = {s1 . . . si | s 2 [0, 1]} where si is the score for ri

~a min(dist(~u,C)) Where dist is any valid distance metric. ~b Find the utterance in C that directly follows ~a We ensure
~b is not an end of conversation token. ~d min(dist(~b,~r)) 1.0� ~g

k~gk

For example, the question “Have you seen Black Panther?” Can be answered with any of

[‘Yes’, ‘No’, ‘I’m going to watch it tonight’, ‘Are you kidding? Of course I’ve seen Black

Panther’]. From a strictly text-based perspective, all responses are equally valid. (You’d need

a knowledge graph/self-model to determine which of the valid responses are also truthful.)

Accordingly, the scattershot algorithm assumes that as long as you’re close to any one of the

valid responses, you’ve probably got a pretty good candidate.
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Figure 7.4: Scattershot Method, where: c (green) represents the embedded utterance, ai (blue)
represent the nearest embedded utterances from the Chit-Chat Dataset, bi (red) represent
the associated embedded response to ai in the Chit-Chat Dataset, di (yellow) represent the
‘ideal’ responses, and gi (grey and black) represent embedded responses generated by our
system with g3 (black) representing the response selected by the Scattershot ranking strategy.

Algorithm 8 Scattershot
Inputs:

~h = Embeddedconversationhistory.
~r = Embeddedcandidateresponsesproducedbythegenerators.
n⇥ khk � 1C = EmbeddedChit� Chatdataset, wherethecolumnsarepairwisedifferencesbetweensubsequentutterances

Output:

S = {s1 . . . si | s 2 [0, 1]} where si is the score for ri

~c [h1 � h0, . . . , hn � hn�1] i in 1..5 Find the n closest points in C to c. ~ai  mini(dist(~u,C)) Where dist is any valid

distance metric. ~bi  Find the utterance in C that directly follows ~ai ~di  ~bi � ~ai + ~c Where di is the “ideal” response

vector to ~bi. ri in ~r ~gi  min(dist(~ri, ~d)) 1.0� ~g
k~gk

Flow Vectors The flow vectors approach is based on the idea that conversations tend to

“flow” from certain regions of embedding space into others, and that all matching utterance

pairs will reflect the same general flow direction. Rather than using a single conversation

vector, this method averages multiple vectors and looks for a candidate utterance that matches

the resulting flow direction.

Tables 7.1 and 7.2 shows examples of two closely related queries and a set of human-

generated candidate responses. Notice that the two examples accurately distinguish the idea

of being “from” or growing up somewhere from the idea of simply being born somewhere.

In table 7.1, candidates that capture the idea of growing up somewhere, like “I am from

California” or “I grew up in California”, are ranked higher (lower distance).
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Figure 7.5: Flow Vectors Method, where: c (green) represents the embedded utterance, ai (blue)
represent the nearest embedded utterances from the Chit-Chat Dataset, bi (red) represent
the associated embedded response to ai in the Chit-Chat Dataset, d1 (yellow) represents
the ‘ideal’ response, and gi (grey and black) represent embedded responses generated by
our system with g2 (black) representing the response selected by the Flow Vectors ranking
strategy.

Algorithm 9 Flow vectors
Inputs:

~h = Embeddedconversationhistory.
~r = Embeddedcandidateresponsesproducedbythegenerators.
n⇥ khk � 1C = EmbeddedChit� Chatdataset, wherethecolumnsarepairwisedifferencesbetweensubsequentutterances

Output:

S = {s1 . . . si | s 2 [0, 1]} where si is the score for ri

~c [h1 � h0, . . . , hn � hn�1] i in 1..5 Find the n closest points in C to c. ~ai  mini(dist(~u,C)) Where dist is any valid

distance metric. We used Euclidean distance. ~bi  Find the utterance in C that directly follows ~ai. ~F = 1/n
Pn

i=1
bi � ai

~d = ~a + ~F Where ~d is the “ideal” response vector to ~c. ~g  min(dist(~r, ~d)) Where dist is any valid distance metric. We

used Euclidean distance. 1.0� ~g
k~gk

Neural Network As a baseline comparison, we implemented a multi-layer regression

network using Tensorflow [1]. Its input is two utterances from the Chit-Chat dataset (see

Section 7.5.2), each embedded as a 512 dimensional vector using the Universal Sentence

Encoder [17]. These are concatenated to produce a 1024 dimensional input vector. The output

is a single 512 dimensional vector prediction of the best response. We used two hidden layers

with 2048 and 2014 units respectively, with exponential linear unit (ELU) activation functions

and a Mean Squared Error (MSE) loss function. We found that training the network using a

simple stochastic gradient descent optimizer with a learning rate of .001 worked best. The

dropout value was 25%.
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Candidate responses Distance

I am from California. 0.789
California. 0.843
Cali. 0.845
I grew up in Santa Fe but my family just moved to Salt Lake City. 0.855
I grew up in California. 0.864
NY. 0.899
New York. 0.925
Manhattan. 0.998
Yes. 1.058
Have you ever been to California? 1.082
I love Star Wars. 1.112
Babies are usually born in a hospital. 1.203

Table 7.1: Query: “Where are you from?”

Candidate responses Distance

California. 1.065
Cali. 1.106
NY. 1.131
New York. 1.132
Manhattan. 1.158
I am from California. 1.18
I grew up in California. 1.21
I grew up in Santa Fe but my family just moved to Salt Lake City. 1.231
Have you ever been to California? 1.277
Babies are usually born in a hospital. 1.375
Yes. 1.394
I love Star Wars. 1.487

Table 7.2: Query: “Where were you born?”

Comparison

o✏ine testing In order to evaluate the performance of the sca↵olding algorithms in o✏ine

tests, we created a hand-annotated dataset taken from the bot’s dialog history. For each

user utterance, an Alexa Prize team member selected the best candidate response by hand.

Because this was a time-consuming process, we contented ourselves with a small initial

evaluation set of 630 examples. We then measured the performance of each algorithm variant
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O✏ine Number Correct Accuracy

Nave 333 52.8571%
Scattershot 337 53.4921%
Flow vectors 327 51.9048%

Neural network 402 63.8095%

Online Avg rating Conversations

Nave 3.14 177
Scattershot 3.11 180
Flow vectors 3.25 275

Neural network 2.99 214
No algorithm 2.99 204

Table 7.3: Top: Accuracy of sca↵olding algorithms in o✏ine tests. To count as correct, the
ideal answer must be in the top 40% of the algorithm’s preferred responses. Bottom: Average
rating received during A/B testing. Tests were performed between 8/18/2018 and 8/24/2018
inclusive, with each conversation randomly assigned to use one of the sca↵olding variants,
the neural network predictor, or no sca↵olding algorithm at all. All other system parameters
were held constant.

on our evaluation set. Results are shown in Table 7.3. In o✏ine testing, we found that the

neural network was the most robust algorithm.

online testing When deployed in production, use of the Flow Vectors algorithm created

the highest level of customer satisfaction, with an average rating of 3.25 (see Table 7.3). The

disparity between these results and the o✏ine tests suggests two things: (1) The combination

of the Flow Vectors algorithm with the Chit-Chat sca↵olding corpus was able to generalize

more e↵ectively than the neural network to the scope and variability of real-world human

conversation. (2) The Flow Vectors method, while less accurate in o✏ine tests, has the

advantage of failing with dignity in production settings. In other words, it does not reliably

select the ‘optimal’ response, but the responses it chooses instead are satisfactory to customers.

Further research is required to quantify this phenomenon.

data density The three sca↵olding algorithms implemented a failsafe mechanism when ~b

landed in a sparse region of the Chit-Chat corpus. If the algorithm could not find enough

nearby points to determine a good ~g, it returned a value of 0, indicating it could not determine
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a score. The raw distances were still returned as an indication of confidence. The neural

network, which did not have this failsafe mechanism, was especially problematic because it

simply guessed during inference when it found itself in a sparse region. During o✏ine testing,

data sparsity errors occurred approximately 25% of the time.

7.6 Supporting Infrastructure

Our response generators rely on preprocessing and keyword/entity extraction. These tasks

are performed by the system infrastructure, which also handles scalability, parallel processing,

response ranking, and so forth. An overview of this infrastructure is provided below.

7.6.1 Topic Detection and Entity/Keyword Extraction

Topic detection is accomplished using Amazon’s topic classifier, which usually runs in 600

ms or less and provides reasonably good accuracy. Entity detection is accomplished via a

combination of Spacey’s entity detection capabilities and Google’s natural language processing

API. Keywords are extracted using hand-coded text analysis; for example if the word ‘about’

appears in the user utterance, the words immediately following it are assumed to be keywords.

All entities and keywords are filtered to prevent the agent from processing inappropriate

language. More information about the filtering process is provided in section 7.6.4.

7.6.2 O↵ensive Speech Detection

It is vital that we prevent the socialbot from using language that could be considered

inappropriate, and it would be useful to know when the users are using inappropriate

language so that we can approach the conversation carefully. Amazon has a built-in o↵ensive

speech classifier, but it isn’t as fast as a homemade solution.

We started with the hand-annotated blacklist from Amazon’s sample code, which

consisted of a single long list of o↵ensive words. Language is not black and white though, and

we needed gray areas; there are some topics that some users might not want to hear about,
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while other users actively try to discuss them. We divided the blacklist into three di↵erent

categories: ‘severe’, ‘medium’, and ‘mild’. The ‘severe’ category is for words that we never

want the bot to say. This list is comprised of words that are o↵ensive alone, without context.

The ‘medium’ category is for words that usually occur in the context of o↵ensive language.

The ‘mild’ category is reserved for words that indicate possibly o↵ensive or inappropriate

topics such as ‘murder’ and ‘guns’. We do not want our socialbot engaging with these topics

without user permission, and possibly not at all. Yet for some users, ‘guns’ are a perfectly

acceptable conversation topic, and we wanted our code to reflect that.

7.6.3 Intent Recognition

We tested various methods for intent recognition, including neural networks and the use of

distance metrics within sentence-level embedding spaces to classify utterances. In the end, we

found that a hand-coded solution using a priori knowledge about conversational patterns was

most e↵ective. Our hand-coded intent recognizer is capable of triggering more than one intent

at a time. For example, if the user said “oh yes that is wonderful”, the intent recognizer would

identify “oh” as “useless”, “yes” as “yes response”, and “that is wonderful” as “positive”.

This is accomplished using simple regular expressions, so there is nothing particular novel

being done. That said, it works remarkably well, provided most cases of user speech can be

anticipated by the system’s designers.

Future work on intent recognition could include the use of embedding grammars to

generalize from a small set of hand-crafted expressions to a wide array of synonyms and

related terms [170]. Preliminary experiments suggest that this would allow the system to

extract intents from utterances that would otherwise remain unlabeled.

7.6.4 Response Evaluation (Ranking & Filtering)

In a system with many generators, a “best response” must be chosen from among the

generated candidates. Combined with the current state of the conversation, all generated
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response sentences must be evaluated for consistency and relevance. This evaluation should

also take into account user personality and the system’s synthetic personality elements.

During the design process, we decided that the function that selects the final response

to be spoken by the system (hereafter known as the Arbiter) should accept as input a matrix

containing ranked features about each possible output response. This function would evaluate

the features of each sentence, rank the sentences, and return a concatenation of several

highly-rated responses.

Response Ranker List

1. Confidence: Each response generator hands the ranker a confidence rating, which is a

measure of the value the generator places on its generated response. This requires a

division of labor, as well as some evaluative code in each generator.

2. Context: Some response generators are better equipped to handle certain topics than

others. The context ranker examines the topic of the user utterance to determine how

well-equipped each generator is to address the current conversation state. For example,

when the current topic is “movies”, the movie response generator will receive a higher

score.

3. Embedding Distance: A conversational sca↵olding method (see Section 7.5.1) is

used to evaluate how well each candidate response matches the “flow” of the current

conversation. Along with the Context and Preference rankers, this is one of the system’s

most heavily-weighted factors, as shown in Figure 7.8.

4. Intent: This is a measure of how well a response matches the intent triggered by the

user’s input sentence. The intents are shown in Figure 7.6.

Once the intents have been recognized in the user input, the intent recognizer is run

on each of the generated responses, and we use the comparison between the intents

found in those sentences to identify whether the responses have a compatible intent (see

Figure 7.7). As an example, if the user input is found to contain the “apathetic” intent,
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Intent Brief Description

yes response a�rmations
no response negations
imperative command words
opinion request question specifically about opinions
general fact request question regarding general knowledge
name info giving us their name
user fact o↵ering information about themselves
song request sing a song
rap request rap
meta request question about the conversation
hard stop stop talking right now
soft stop say goodbye and end the conversation
opening request general small talk
apathetic apathetic response
emotional cause (and e↵ects) user describes something
emotional e↵ect (and causes) user describes a state he’s in

Figure 7.6: A list of the created intents and a brief description of each one.

the generated response is said to match if it contains the “opinion request”, “general

fact request”, or “user fact” intent. If a user is not currently engaged, the system will

try to engage them with facts or questions.

5. Keyword Model: Measuring the state of a human’s personality is di�cult, but we

can measure certain aspects of their personality and try to tailor our responses to their

mood and interests. This would cause EVE to have more personalized conversations

with individuals, making for a more interesting experience. The keyword model tries to

detect the current mood/emotion of the user, and use that to upvote certain response

generators. If it detects that the user ‘wants to learn’, fact-based response generators

will score more highly.

6. Length: The length of the response is critical in influencing user engagement. In early

user trials, we observed that if the system talks for too long at a time, the user becomes

less engaged with the socialbot. But this also works in reverse; if the socialbot says too

little, the user also disengages. After watching several users interact with our system in

real-time, we calibrated the length ranker to rank a given sentence as ideal when it’s
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User Intent Response Intent Match

opinion request user fact yes
name info opening request yes

user fact
positive, opinion request, general fact request, meta
request

yes

soft closing re-
quest

soft closing request yes

opening request opening request yes
apathetic opinion request, general fact request, user fact yes
emotional cause emotional e↵ect yes
emotional e↵ect emotional cause yes

imperative
yes response, no response, opinion request, general
fact request

no

Figure 7.7: A list of user intents and response intents paired to indicate either a positive or
negative match.

between seven and 15 words. This is under the assumption that we will be concatenating

multiple responses to create a final output with a target length between 15 and 25

words. Our socialbot will never return a response comprised of more than 30 words.

7. Preference: As the system’s developers, we trust certain response generators to

generally answer better than others. We added the preference ranker to give individual

preference to the most sophisticated and well-coded generators. Each generator is

assigned a preference rank between zero and one, and that is handed to the Arbiter as

a feature and is factored into the final decision.

8. Repeat: No one wants to hear the same sentences over and over, and no human

communicates that way. The repetition ranker flags sentences that have been o↵ered

to the user in the last 15 conversation steps. This feature is essential to ensure a good

user experience with each new response from the socialbot.

9. Sentiment: The sentiment ranker seeks to emphasize positive responses while still

being respectful of the user’s mood. We use Google’s sentiment classification API to

evaluate the sentiment of each sentence.
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Feature Scalar

Confidence 0.5
Context 3.0
Embedding
Distance

2.0

Intent 1.0
Keyword Model 1.0
Length 0.5
Preference 4.0
Repetition 2.0
Sentiment 0.5

Figure 7.8: A list of the features and their respective scalars.

The Arbiter’s task is to accept a feature matrix comprised of scores from the various

rankers. Each feature in the matrix has an assigned scalar which is used to temper or enhance

its influence in deciding the final ranking of the responses. The final ranking is the sum of

the Hadamard product of the features and their respective scalars, multiplied by a throttle

factor composed of the score from the throttling ranker (repetition) and its respective scalar:

(repetition ranking ⇤ 2.0) ⇤
9X

i=1

feature vectori ⇤ scalarsi

It’s worth noting that this equation shows a feature vector (as opposed to a matrix), because

here we’re showing the Arbiter running on only a single response for clarity. It’s also important

to note that the ‘feature vector’ referenced in the equation doesn’t contain the throttling

feature.

7.6.5 Response Combination

Once the Arbiter has produced a ranking for each candidate response, the responses are

combined into an emote/answer/o↵er framework as described in Section 7.1.4. This is

accomplished by using a sequence of hand-coded rules including the following:

1. The highest-ranked answer response is always used.
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2. If an emotive response with a su�ciently high ranking exists, prepend it to the answer.

3. If the answer response does not end in a question mark or other conversational prompt,

and if an o↵er response with a su�ciently high ranking exists, append the highest-ranked

o↵er to the answer.

Additional rules ensure that the final response is not too long and that system does not

combine two responses which are substantially similar in content. Certain response generators,

such as MovieBot, generate responses that always include both an answer and an o↵er; no

o↵ers are ever appended to responses from these generators. Additionally, conversational

‘stitching’ is sometimes performed by removing the prefixes [‘Okay’, ‘Sure!’, ‘So’] from answer

responses when an emote is prepended.

7.7 Future Work

7.7.1 Improved Knowledge Graph Structure and Traversal

Moving forward, we wish to expand the number and types of edges detected by DataBot

and utilized by ModelqueryBot. In addition to ‘called’, ‘likes’, and ‘dislikes’ edges, we aim to

explore methods that might automatically identify and curate a list of important edges to

include in the entity models.

Our team’s near-field work is also focused on expanding the system functionality

to model other entities besides the user and the system itself. As an example, if the user

says “I really liked (movie title) because (name of actor) was hilarious.”, it would be fairly

straightforward to generate a user-specific node for ‘(name of actor)’ and record that the

actor is funny. The system would only remember this ‘fact’ when interacting with the specific

user who provided the information, and if the system interacted at a later point in time with

a user who disliked the same actor the system would adapt its knowledge graph model of

that actor to reflect the negative sentiment of the new user. In this way, the system could
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remember to avoid topics that the current user doesn’t enjoy and direct the conversation

towards topics the user finds more appealing.

By discussing particular topics with the system, the user will be able to mold the

personality of the system to themselves; future work aims to enable the system itself to alter

its own personality dynamically by incorporating probabilistic modeling into the user and self

models. Using statistics on the models gleaned across thousands of interactions with users,

probabilistic modeling could enable the system to infer unspoken opinions users might hold

and the types of utterances the system should produce given the current state of its models.

7.7.2 Optimized Embeddings Module

While our conversational sca↵olding techniques show valuable potential, much work remains

in order to determine the optimal algorithm for prioritizing candidate responses. We are

in the process of evaluating the e↵ect of sca↵olding algorithm, distance threshholds, and

conversation history on classification accuracy in o✏ine tests.

7.7.3 Similarity Metrics for Data Retrieval

Sca↵olding is only one of many possible uses for universal sentence embeddings. In the future,

we plan to deploy a data retrieval mechanism that will allow response generators to customize

their information to specific user utterances. This can be done by measuring the distance (in

embedding space) between the user utterance and each candidate response. For example, if

the user says “Tell me news about 12 people trapped in a mine”, a nearest-neightbor search

in embedding space would likely return headlines such as “Twelve boys trapped in a Thai

Cave, Crews working to rescue them”, a trending news topic from July 2018. Preliminary

experiments suggest that this method is more e↵ective than a keyword search (which would

have matched only the words ‘trapped in a’).

A similar approach can be used to improve the ability of response generators to

correctly identify which knowledge graph node was invoked by the user’s utterance. As
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described in Section 7.2.2, each node in the knowledge graph is accompanied by a universal

sentence embedding corresponding to the node’s description. This embedding can be used to

disambiguate between identically-labeled nodes.

For example, if the user says “I watched Harry Potter this weekend”, it can be

di�cult for our knowledge graph algorithms to determine whether the user is referring to

the “Harry Potter” node that describes a series of books, the “Harry Potter” node that

describes a movie series, or the “Harry Potter” node that describes the main character in

both. Selecting the wrong node can result in jarring conversational disconnects. However,

since previous utterances in the conversation were likely focused on movies (and because the

current utterance utilizes movie-related phrases like ‘watched’ and ‘weekend’) the average

distance of the preceding sentences to the embedded description of each knowledge graph

node will likely reveal the correct interpretation of the user’s meaning.

7.7.4 ScriptDog: A Language for Managing Conversational State

One challenge inherent in dialog management is tracking conversational state. As part of the

competition, we developed a language specifically built to describe complex, factored dialog

scripts with a natural, python-like syntax. The language is called “ScriptDog”, for “scripted

dialog” [169].

The primary feature of the language is the ability to store the program state in a

JSON-serializable object. This makes it easy to, for example, stash the program state in

persistent storage and reload it at a later time. (This is particularly useful when program

execution is broken up across multiple invocations that are distributed across multiple

machines). The model makes it easy to integrate with AWS Lambda and other serverless

computing frameworks. Tight integration with python makes it possible to cleanly separate

conversational state from the backend logic that drives transitions, such as integration with

databases, NLP processors, knowledge graphs, etc.
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Other key language features include (1) factored, reusable state sequences; (2) factored,

reusable transition definitions; (3) direct language support for random choices; (4) tight

integration with regular expressions; (5) global transitions that are defined once, but implicitly

accessible at any point. Future response generators for EVE will use the ScriptDog language

and its associated features.

7.8 Conclusion

BYU-EVE is an open domain dialogue architecture founded on the principle that centralized

knowledge representation coupled with self- and user-modeling can produce dynamic, human-

like conversations. The key innovations in this research are twofold: (a) we treat conversation

as a multi-channel information stream along which not only information, but also emotive

and psychological data is being passed, and (b) we combine structured knowledge graph

traversal with deep learning in order to produce fluid, personable responses that are grounded

in known facts.

As part of Amazon’s Alexa Prize Challenge, EVE remains a work in progress. Our

next research steps include improved knowledge graph traversal, optimized methods for

conversational sca↵olding, and dynamic text generation via neural networks conditioned on

knowledge graph nodes. Our goal of achieving truly open domain, free-form conversation is

ambitious, but it is also presents intriguing possibilities. If it can be achieved, it will open

doors for general purpose, responsive conversational systems that require far less retrieval and

far less hand-coding than the present state-of-the-art. The resulting systems would positively

impact fields including education, personal assistants, elder care, and many others.
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Part IV

A Well-formulated Embedding Space

If we wish to extend analogical reasoning beyond elementary word vector calculations,

we need a new kind of sentence-level embedding space. In particular, sentence-level embeddings

should be viewed not merely as useful input features for machine learning algorithms, but

rather as valuable common-sense repositories in their own right - knowledge-bases that can

be queried mathematically, and which are able to facilitate a wide variety of tasks with little

to no subsequent training.

As a consequence of our work in Parts II and III of this document, we concluded that

three properties are necessary in order to create an embedding space that functions optimally

at sentence-level linguistic reasoning tasks:

1. Analogical coherence. The analogical properties observed in word2vec, GLoVE, FastText,

and other single-word embedding spaces should be preserved in the trained sentence-

level vector space such that o↵set relationships like Spain:Madrid::France:Paris are

preserved. At the phrase or sentence level, this should extend to relationships like ‘if

you drop a ball’:‘it will bounce’::‘if you drop a glass’:‘it will break’.

2. Semantic alignment. Single-word embeddings should be located closer to sentences

that contain those words than to conceptually equivalent sentences that do not contain

them. Sentences that express similar ideas should be located near one another despite
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variations in syntax or structural complexity, and arbitrarily-ordered “bags of words”

should be located close to sentences in which those words appear.

3. Polarity displacement. A sentence and its negation should be located far from each other

along at least one basis dimension of the space, and the negated sentence should be

located close to non-negations that nevertheless convey the same concept. (For example,

‘The room is not empty’ should be located farther from the statement ‘The room is

empty’ than it is from sentences such as ‘The room is occupied’ or ‘The room is full’.)

This section documents the implementation of these three criteria in a cohesive network

architecture which we describe as deep constrained neural embeddings. In Chapter 8, we

introduce a novel training mechanism that induces desired properties of the embedding space

in a principled way. Rather than training on a smorgaspord of downstream tasks and hoping

the resulting embedding will exhibit the desired properties, we instead apply direct constraints

on the embedding layer. This constitutes a critical first step in the design, training, and

utilization of embedding spaces with improved coherence and analogical structure: embedding

spaces with the potential to change the landscape of conversational AI.
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Chapter 8

That is Not What I Said: Improved Discrimination of Negated

Sentences via Deep Constrained Neural Embeddings

by Nancy Fulda and David Wingate,

to be submitted

Abstract

Neural linguistic embedding models do not always reflect semantic changes caused by small

lexical di↵erences (for example, by the inclusion of the word ‘not’). This leads to problematic

behaviors when developers use sentence embeddings as an ad-hoc approximation for semantic

similarity, and may have downstream ramifications when pre-trained embeddings are used

for transfer learning. In this work, we present a deep recurrent neural model that is able to

capture these lexical di↵erences in the geometry of the resultant embedding space while still

performing competitively at traditional tasks such as SemEval 2013. Our model is lightweight,

trains quickly, and outperforms state-of-the-art models at a new semantic discernment task

designed to measure how well sentence negations and antonym substitutions can be detected

via simple cosine distances between embedded sentences.

8.1 Introduction

In natural language understanding, small lexical changes can lead to large semantic di↵erences,

and this behavior is not reliably captured by state-of-the-art embedding models like BERT

[30], Google’s Universal Encoder [16], or GPT-2 [119]. This is not particularly surprising:
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Such models were designed, not to encode semantic meaning, but to learn useful and relevant

features for downstream tasks such as machine translation, natural language understanding,

dialog modeling, document indexing, text classification, question answering and sentiment

analysis. Semantic structure has tended to emerge as a natural byproduct of this e↵ort rather

than as the primary research objective.

However, as the popularity of neural embedding models has grown, so too has the

general public notion that pre-trained embeddings can be used as a reliable heuristic for

semantic meaning, with cosine distance between embedded sentences serving as a measurement

of semantic similarity. This view can be found on Stack Overflow [150, 151], StackExchange

[152–154], popular blog posts [63, 115, 126], and in the recommended uses of the python spacy

package’s vector representations [140]. This has significant ramifications when developers

attempt to use embeddings for semantic association tasks like the one depicted in Figure 8.1.

The problem, of course, is that most embedding models do not encode semantic meaning

so much as semantic relatedness. It has long been known that vector space models trained

based on context (such as skipthoughts [75] and word2vec [97]) tend to place antonym pairs

in close proximity to one another [33, 43, 69, 146]. Similarly, multiword embeddings seldom

distinguish adequately between contextually similar but semantically divergent sentence pairs

[114, 172]. A particularly common failure mode occurs when a sentence is negated, as in the

tuple {‘I want to delete my account’, ‘I don’t want to delete my account’}.

This research poses the question: Why shouldn’t pre-trained embeddings behave in

such ways? Can we train a linguistic embedding model with the explicit goal of facilitating

semantic evaluations via cosine similarity? In other words, can we create an embedding space

that actually has the properties developers assume that it has?

Such a model would need to be lightweight, have a relatively small embedding size

(to enable swift nearest-neighbor matching), and distinguish e↵ectively between sentences

and their negations, while still retaining the general semantic properties observed in current

models. The goal is not merely to produce semantic similarity metrics, but to induce a coherent
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Figure 8.1: Screen Shot from FloydHub.com [63], outlining an automated customer support
algorithm that relies heavily on the semantic structure of a pre-trained embedding space.
The proposed algorithm is apt to deliver wildly inappropriate responses whenever the user’s
utterance is semantically distinct from - but contextually similar to - one of its previously-saved
questions.
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embedding space in which related sentences are grouped near one another in meaningful

ways.

As a first step toward this goal, we present two new semantic discernment tasks

designed to detect sensitivity to the lexical discrepancies described above. We then train

a deep recurrent neural model on an unsupervised language task while exerting explicit

constraints on the properties of the emergent embedding space. In other words, rather than

training on a smorgasbord of tasks and hoping that the resultant embeddings will have

desirable properties, we instead use distances between paired embeddings to induce the

desired properties in a principled way.

A key contribution of our work is the addition of a unique unsupervised task in addition

to the more common training task of context prediction. Reminiscent of the word2vec training

algorithm, but distinct in the use of firm sentence boundaries and a variable-size context

window, this training task uses the embedded representation of a central word to predict

earlier and later words within the same sentence, thus anchoring the learned representations

to the semantic structure of their composite words.

Our best-performing model achieves a 28% performance increase over Google’s universal

sentence encoder and a 32% increase over skip-thought vectors at a negations discernment

task, while remaining competitive the SemEval 2013 benchmark. It is relatively lightweight,

with only 4 layers and approximately 31 million trainable weights. The output embedding is

a 300-dimensional vector.

8.2 Related Work

As a research topic, neural embedding models are still in their infancy. The release of skip-

thought vectors in 2015 [75] has been rapidly followed by more complex models including

Google’s Universal Sentence Encoder [16], which features two variants: A lightweight imple-

mentation that disregards syntax in favor of a quickly trainable bag-of-words representation

[65] and a large model based on a Transformer architecture structured around attention
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mechanisms [157]. Both models were trained on a combination of tasks including context

prediction, an input-response task, and classification tasks using supervised data such as the

Standford Natural Language Inference dataset. The recently-released BERT architecture [30]

utilizes a multi-layer bidirectional Transformer encoder to create general purpose embeddings

that generalize to a variety of downstream tasks. Finally, many researchers have observed

that a simple average of word vectors, possibly weighted, and sometimes with PCA/SVD

manipulation [165], [5] often outperform RNN and LSTM models for multi-word embeddings.

Despite this rapid progress and the impressive performance demonstrated by some

of these models on downstream tasks, the research community is still only beginning to

understand the behaviors and representational power of di↵erently trained embedding spaces.

Numerous researchers have observed that the geometry of learned embedding spaces is often

inconsistent with human interpretations of semantic similarity [33, 43, 69, 114, 146, 172], and

a key focus area of recent research is the analysis and improvement of semantic properties

within such embedding spaces.

To that end, [24] and [172] have presented benchmark tasks that can be used to

compare the semantic properties of embedding models, and many researchers have proposed

architectural or curricular modifications in the pursuit of improved semantic representations

[22, 90, 142]. Our work is closely related to [114], [43] and [148] in that we use supervised

constraints to adjust the semantic structure learned via an unsupervised language task.

However, the constraints we apply are di↵erent than theirs, as are the unsupervised learning

tasks used as a basis.

8.3 A Deep Constrained Neural Network

Our network architecture and training curriculum are built on the premise of working

backward from the desired result. We ask, ”What properties do we desire to induce in our

model’s embedding space?”
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Typically, when researchers wish to develop a neural embedding model with specific

properties, they do so by selecting training tasks related to those properties. But this method

is only partially e↵ective. After all, a model trained to predict semantic similarity is not the

same as a model whose sentence representations embody semantic similarity.

To facilitate strong semantic structure in general and the discrimination of negated

sentences in particular, we begin with two unsupervised language tasks, hereafter referred to

as our basis tasks, that define a set of possible optimal combinations of network weights. From

the perspective of the basis tasks, all of these weight configurations are equally desirable,

but from a human perspective some are more preferable due to their crisp representation of

semantic structure. We therefore introduce a constraint on the system by requiring the vector

representations of specific sentence pairs to be orthogonal. Specifically, we require that the

network minimizes the value abs(1-distcos(a, b)) where a is the vector representation of the

first sentence, b is the vector representation of the second sentence, and distcos is the cosine

distance between them.

Our training curriculum relies on two basis tasks and two constraints:

1. w2v (basis task): Given a single input word, the model must predict the most likely

neighbors of that word within the input sequence. This is reminiscent of the skip-gram

task used by Mikolov et al. [97], but note that the definition of neighboring words is

bounded by the start and end tokens of a single sentence. There is no negative sampling,

and the context windows are not fixed. Instead, a randomly chosen window size of n 2

{2,4,6} is chosen on each forward pass. Note also that, although the task’s input value

is a single word, it is still passed through the entire network architecture of Figure 8.2

to produce its embedded representation. The embedding is then used as the input to

a fully-connected layer whose outputs contain log probabilities for each word in the

model’s vocabulary.

2. context prediction (basis task): Given a single input sentence, the model must

predict (a) the previous sentence, and (b) the next sentence in the training corpus. This
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is the sole training mechanism used by the skipthought model [75]. To learn this task, the

embedded sentence representation is passed through two fully-conntected single-layer

networks, one of which predicts the embedded representation of the next sentence in the

input corpus, and one of which predicts the representation of the previous sentence. The

predicted representations are used as inputs for a simple recurrent word-level decoder

with teacher forcing [166]. MSE loss between the output characters and the ground

truth characters is backpropogated through the entire network.

3. inv (constraint): Inversion constraint. This constraint passes pre-selected sentence

pairs through the encoder model. Paired sentences are identical except for 1-5 words

which have been swapped with antonyms acquired fromWordNet [102]. The loss function

returns abs(1-distcos(a, b)) where a is the vector representation of the first sentence and

b is the vector representation of the second sentence.

4. neg (constraint): Negation constraint. This constraint passes pre-selected sentence

pairs through the encoder model. Paired sentences are identical except for the insertion

of the word ‘not’ after the first verb in the sentence. The loss function returns abs(1-

distcos(a, b)) where a is the vector representation of the first sentence and b is the vector

representation of the second sentence.

Both basis tasks used the Toronto book corpus [174] as the source of input text. Input

sentences were constrained to be no longer than either 50 or 512 characters, depending on

the training curriculum used; longer inputs were ignored. When more than one basis task

was used during training, both tasks were trained simultaneously, with the network loss at

each time step being the sum of the losses of all basis tasks and constraint measurements.

8.4 Network Architecture

Our network is implemented as a standard feed-forward encoder whose averaged hidden states

are then passed to a single fully-connected layer, as depicted in Figure 8.2. The pre-trained
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Figure 8.2: Our neural model. Pre-trained FastText embeddings are fed into a GRU encoder,
with the averaged hidden states passed to a single, fully-connected layer. Although the network
architecture is straightforward, the training tasks used allow it to perform comparably with
state-of-the-art models on the SemEval 2013 benchmark, while outperforming them on two
semantic discrimination tasks. The model is relatively lightweight, with only 4 layers and
approximately 31 million trainable weights. The output embedding is a 300-dimensional
vector.

embedding layer was initialized with weight values taken from FastText word embeddings

[11], but was allowed to update during training.

Our model trained for two weeks on an Nvidia Tesla GPU. We used an Adam optimizer

with a fixed learning rate of 0.0001, a GRU hidden size of 300, and an output embedding size

of 300. FastText vectors were pruned to use only the most frequent 50,000 English words,

with less common words represented by an UNK token.

8.5 Semantic Discernment Datasets

If an automated system is to associate sentences with one another based on cosine distances

within an embedding space, it is critical that the embedding space e↵ectively represents the
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Negations
Original: this was bad.
Antagonist: this was not bad.
Similar: this was badness.

Inversions
Original: for me, that path was just beginning.
Antagonist: for me, that path was just ending.
Similar: for me, that way was just beginning.

Figure 8.3: Sample sentence trios from the Negation and Inversion evaluation sets.

semantic distinctions between antagonistic sentences. (Imagine the chaos that would ensue if

an automated voice assistant were unable to distinguish between the phrases ’No, call my

mother’ and ’No, do not call my mother’ or between similar but distinct commands such as

’I would like some warm milk’ and ’I would like some cold milk’.

In order to measure these distinctions, we introduce the Inversions and Negations

datasets. Each of these datasets consists of 10000 sentence trios: (1) An original sentence

taken from the Toronto book corpus [174], (2) a semantically similar sentence constructed by

swapping one or more words with close synonyms extracted from WordNet [102], and (3) an

antagonistic sentence designed to be semantically distinct from the original.

In the Inversions dataset, the antagonistic sentence is constructed by swapping one or

more words with WordNet antonyms. In the Negations dataset, the antagonistic sentence

is constructed by inserting the word ’not’ in syntactically appropriate locations. A correct

evaluation of each trio occurs when distcos(o, s) < distcos(o, a), where distcos is the cosine

distance between two vectors, o is the embedded representation of the original sentence, s is

the embedded representation of the semantically similar sentence, and a is the embedded

representation of the antagonistic sentence.

We note that although the names are analogous, the Inversions and Negations datasets

are distinct from the inv and neg constraints used during training. Sentences for both the

datasets and the constraints were generated from the Toronto BookCorpus, but the constraint

sentences were based o↵ of the first half of the dataset, while the Inversion and Negation

datasets were created from the second half.
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In addition to these evaluation sets, we also tested each sentence-level embedding

space on the SemEval 2013 dataset [167]. The purpose of this inclusion was to determine

how well our embeddings perform in comparison to state-of-the-art models on an established

semantic relatedness task.

8.6 Quantitative Analysis

Figure 8.4 shows the performance of seven well-known embedding models, as well as our

deep constrained neural models, on three semantic proximity tasks. Some models, like BERT

and GPT-2, were not designed to produce sentence representations per se, but rather to

produce input features for NLP tasks. In these cases, we have done our best to extract a

sentence representation from the model weights. In the case of BERT, we defined the sentence

representation as the mathematical average of the contextualized word embeddings from the

input sentence. For GPT-2, we defined the sentence embedding as the final hidden layer of

the network, an approach that seemed to work better than averaging all of the hidden layers.

Remarkably, without the use of transformers, convolutions, attention mechanisms, or

bi-directionality, four of our models are able to outperform state-of-the-art (SOTA) at either

the Inversions or Negations task, and three of them have a higher average score than all

SOTA models. The Negations task turns out to be surprisingly di�cult for several SOTA

models, including Google’s universal sentence encoder and the GPT-2 hidden state, both

of which score below 10%. Of the pre-trained models, spacy [62] has the highest average

performance and the best performance on the Negations task.

We attribute the success of these models primarily to the w2v basis task, which is

strongly associated with high performance on the Negations dataset and thus raises overall

average score. The context basis task, in contrast, is associated with high performance on

the Inversions dataset. These accomplishments come at a cost, however. Most of our models

show a slight reduction in accuracy on the SemEval task. We note that this reduction appears

to be mitigated by the inclusion of the inv constraint during training. The neg constraint,
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SemEval Inv Neg Avg
SOTA models
Google use lite 38.96% 55.25% 20.12% 38.11%
Google use large 41.50% 52.82% 5.79% 33.37%
spacy 37.13% 56.69% 30.56% 41.46%
FastText BoW 39.80% 53.93% 4.67% 32.80%
BERT BoW 34.78% 60.7% 22.35% 39.28%
GPT-2 38.43% 49.92% 17.8% 35.38%
Skip-thought 39.94% 58.7% 16.27% 38.30%
Our models
context (book corpus, len 50) 37.59% 60.38% 7.76% 35.24%
w2v (book corpus, len 50) 31.57% 54.05% 58.67% 48.10%
context+w2v (book corpus, len 50) 36.70% 60.41% 6.58% 34.56%
context+w2v (splt corpus, len 512) 37.45% 61.39% 19.73% 39.52%
context+w2v+inv (book corpus, len 50) 38.96% 56.92% 48.35% 48.08%
w2v+neg (wiki, len 50) 33.83% 54.52% 48.75% 45.70%

Figure 8.4: Categorization accuracy on a variety of semantic similarity and common-sense
reasoning tasks. SemEval: A sentiment analysis task requiring the model to predict the
human classification of sentences; Inv: An inversion task requiring discernment between
two sentences in which some words have been swapped for antonyms; Neg: A negation
task requiring discernment between two sentences that di↵er only by inclusion of the word
‘not’; Avg: The average of the values in the first three columns. The highest accuracy in
each column is bolded. A box has been drawn around the model that does the best job of
maximizing average score without compromising performance at SemEval.

ironically, appears to lower performance on the Negations dataset when combined with the

already proficient w2v basis task; however, experiments not depicted here suggest that it

raises proficiency at negation discernment when combined with the context task.

8.7 Qualitative Analysis

We next examine the behavior of each embedding model, including our w2v basis model (“our

model”), on 10 sentence 4-tuples. The objective is to determine whether high performance on

the Negations dataset is correlated with appropriate model behavior on a more human-centered

task.

Figure 8.5 shows the cosine distances between pairs of sentences. In each 4-tuple, the

first pair of sentences have semantically distinct meanings (e.g. ‘I am a cat’,‘I am not a cat’)

while the second pair have similar meanings (e.g. ‘I am a cat’,‘I am a domesticated cat’). An

embedding model scores a tuple correctly when the distance between semantically distinct
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sentences is greater than the distance between the sentences with similar meanings. We wish

to emphasize that the sentence tuples were chosen before we had evaluated our model’s

performance on any of them, and that no tuples were added or removed after the initial

evaluation. Thus, while these are hand-picked examples, they have not been cherry-picked.

We observe that our model and the spacy model, which have the highest percentage

accuracies on the Negations dataset, also scored correctly on the highest number of 4-tuples.

The pattern does not seem to hold at the other end of the spectrum: use-lite, which scored

quite well on the Negations dataset, fared poorly on the sentence 4-tuples, while the FastText

BoW embedding, which scored poorly on the Negations dataset, performed comparably with

other models on the 4-tuples.

Any concrete conclusions are impeded by the small size of this qualitative analysis. As

an exercise for future work, it might be profitable to compile a much larger list of 4-tuples.

For now, however, the results are indicative without being completely conclusive.

8.8 Conclusion

What does this mean for developers, researchers, and natural language processing in general?

One obvious conclusion is: ”Not all sentence representations are created equal”. While most

of us know this in theory, it is helpful at times to see it laid out in harsh numbers. Some

embedding models are best suited for use as pre-trained features for downstream tasks. Others

are better at representing semantic structure.

In this paper, we have presented two datasets that might be helpful in determining

which embedding spaces are best suited for which purposes. We have further developed a deep

constrained neural embedding model that has been explicitly trained to distinguish between

syntactically similar but semantically distinct sentences. It is our hope that this research will

pave the way for future improvements in semantic discernment, and that developers will one

day have neural embedding models that behave in the ways they subconsciously expect.
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use lite use large spacy FastText BERT GPT-2 skip our model

I am a cat
I am not a cat 0.069 0.045 0.115 0.025 0.070 0.0007 0.069 0.2047

I am a cat
I am a domesticated cat 0.098 0.111 0.150 0.072 0.188 0.0015 0.139 0.0141

I’m ready for this
I’m not ready for this 0.115 0.094 0.091 0.014 0.091 0.0006 0.052 0.0805

I’m ready for this
I am prepared for this 0.118 0.066 0.167 0.135 0.093 0.0017 0.128 0.0266

That’s bad
That’s not bad 0.107 0.184 0.166 0.029 0.086 0.0034 0.109 0.0480

That’s bad
That’s too bad 0.120 0.240 0.155 0.037 0.098 0.0134 0.119 0.0009

No, don’t play that song again
Play that song again 0.158 0.104 0.253 0.178 0.232 0.0019 0.218 0.0038
Could you play that song again
Play that song again 0.166 0.140 0.246 0.068 0.187 0.0009 0.180 0.0137
Delete that file
Don’t delete that file 0.153 0.065 0.366 0.130 0.144 0.0007 0.217 0.1045

Let’s keep that file
Don’t delete that file 0.379 0.273 0.183 0.142 0.317 0.0048 0.237 0.0879

I’m talking to you, Alexa
I wasn’t talking to you, Alexa 0.072 0.113 0.124 0.048 0.137 0.0019 0.073 0.0076
I’m talking to you, Alexa
Did you hear me, Alexa 0.201 0.273 0.420 0.127 0.206 0.0029 0.158 0.0303
That movie wasn’t too bad
That movie was terrible 0.108 0.055 0.320 0.208 0.158 0.0064 0.335 0.0269

That movie wasn’t too bad
That movie was pretty good 0.113 0.065 0.174 0.141 0.110 0.0054 0.311 0.0267

I want to make a reservation
I want to cancel my reservation 0.253 0.330 0.167 0.090 0.145 0.0014 0.258 0.0010
I want to make a reservation
I would like to make a reservation 0.084 0.051 0.084 0.030 0.181 0.0003 0.129 0.1595
That’s fair
That’s not fair 0.248 0.233 0.211 0.030 0.186 0.0032 0.120 0.0448

That’s fair
That seems fair to me 0.270 0.230 0.214 0.238 0.353 0.0076 0.584 0.0126

I was born in California
I was not born in California 0.071 0.088 0.113 0.024 0.081 0.0015 0.087 0.0036

I was born in California
I was born in San Francisco 0.120 0.146 0.098 0.134 0.075 0.0030 0.304 0.0001

Number of tuples correct: 1/10 3/10 6/10 3/10 3/10 3/10 3/10 7/10

Figure 8.5: cosine distances between sentences embedded using various neural models. Each
sentence pair comprises two rows, with distances shown after the second component sentence.
4-tuples that evidence semantically appropriate distances are bolded.

145



Part V

The Road Forward

A wise man once told me that a dissertation is a doorway, not a destination. Like a

book with ever more pages, the research documented here has produced at least as many

questions as answers: How can we train more e↵ective embedding spaces? What evaluation

criteria should we use to measure their utility? What other kinds of knowledge can be

harvested, encoded and extracted?

One might say that ‘The field is white already to harvest’ [136]. Looking forward, I

envision a future in which linguistic embeddings are not treated as mere input features for

downstream tasks, but are instead suited for use as sophisticated common-sense knowledge

repositories to facilitate a wide variety of cognitive functions.

Further research in this area should focus on theoretical examinations of the semantic

properties embedding spaces, ideally in conjunction with a formal analysis of linguistic

embeddings as a reasoning engine. High-quality benchmark evaluation tasks should be

developed to encourage collaborative e↵orts and to facilitate the comparison of results

among researchers. Further embedding spaces should be trained, and their utility should be

demonstrated on real-world tasks with human consequences. Finally, the principles explored

and developed here are highly applicable to more generalized embedding spaces, especially

those in which language, visual observations, and other sensor input are jointly represented

in multimodal configurations.
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As the work goes forward, I intend to supervise the development of truly exceptional

conversational agents. This will require a fast, scalable, lightweight impementation of enriched

knowledge harvested from uncurated corpora, and well-structured semantic embedding spaces

show strong potential as a method for achieving this goal. Ultimately, I hope to develop

embedding models that will be useful both to academia and to industry professionals, and

that will help advance multiple sub-fields related to General AI.
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