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ABSTRACT

Measuring Influence on Linear Dynamical Networks

Jaekob Chenina
Department of Computer Science, BYU

Master of Science

Influence has been studied across many different domains including sociology, statistics, 
marketing, network theory, psychology, social media, politics, and web search. In each of these 
domains, being able to measure and rank various degrees of influence has useful applications. 
For example, measuring influence in web search allows internet users to discover useful 
content more quickly. However, many of these algorithms measure influence across networks 
and graphs that are mathematically static. This project explores influence measurement 
within the context of linear time invariant (LTI) systems. While dynamical networks do 
have mathematical models for quantifying influence on a node-to-node basis, to the best of 
our knowledge, there are no proposed mathematical formulations that measure aggregate 
level influence across an entire dynamical network. The dynamics associated with each 
link, which can differ from one link to another, add additional complexity to the problem. 
Because of this complexity, many of the static-graph approaches used in web search do not 
achieve the desired outcome for dynamical networks. In this work we build upon concepts 
from PageRank and systems theory introduce two new methods for measuring influence 
within dynamical networks: 1) Dynamical Responsive Page Rank (DRPR) and 2) Aggregated 
Targeted Reachability (ATR). We then compare and analyze and compare results with these 
new methods.

Keywords:  network reconstruction, targeted-reachability, page-rank, influence, authority, 
dynamical networks
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Chapter 1

Influence

1.1 The Beginning of Influence

Humans have an innate need to understand their environment and identify the factors that

influence their ever changing circumstances. Judea Pearl, a renown Israeli-American computer

scientist and philosopher, famously illustrates how this need to understand causal effects was

documented at the beginning of one of the world’s oldest books - the Bible. After Adam

ate the forbidden fruit in the garden of Eden and was awakened to his own nakedness, God

asks him “Who told thee that thou wast naked? Hast thou eaten of the tree, whereof I

commanded thee that thou shouldest not eat?” Adam responds “The woman whom thou

gavest to be with me, she gave me of the tree, and I did eat.”

Figure 1.1: The serpent influences Eve and then Eve influences Adam to eat the forbidden
fruit
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Adam is essentially implying that Eve had an effect on Adam that causally influenced

him to eat the fruit. God then follows up His inquiry with Eve “And the Lord God said unto

the woman, What is this that thou hast done? And the woman said, The serpent beguiled

me, and I did eat.” Yet again mankind is explaining the factors that causally influenced their

actions and current circumstances.

If we take this Bible passage and abstract the dialogue into an influence diagram

as described by [26], then we will get the diagram shown in Figure 1.1. Visual models

are one way of understanding how distinct entities influence each other. The first step in

understanding a causal relationship between two distinct entities is confirming whether there

is any sort of influence taking place in the first place. Here is a list of questions that aim to

answer such “is there a relationship” type of questions:

• Does smoking contribute to lung cancer?

• Does posting speed limit signs cause drivers to drive slower?

• Does teaching method X make students learn more?

• Is there a relationship between drug X and symptom Y?

As we apply the various information gathering methodologies regarding the question

at hand (scientific method or day-to-day observation, etc.), we form an opinion about whether

or not there is a relationship between the distinct entities. If we establish through controlled

experimentation that drugs X and Y do have an influence on health condition A, then the

influence diagram could look the diagram in Figure 1.2.

If, however, we discover that Drug X and Drug Y have no influence on health condition

A, then our influence diagram will not have edges as in Figure 1.3. These simple influence

diagrams are one way that mankind strives to understand the causal influences in their

environment and in turn influence them directly. Throughout this thesis we will continue to use

influence diagrams in combination with other tools like transfer functions, linear time invariant

systems (LTI systems), PageRank computing, and other mathematical functions to enrich
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Figure 1.2: Drug X and Drug Y do have an influence on health condition A

Figure 1.3: Neither Drug X nor Drug Y have an influence on health condition A

our understanding of these fundamentally important influence relationships. The influence

diagrams that we have shown thus far are binary influence diagrams, meaning that either their

is an edge or there is not an edge. Similarly, the world famous PageRank computing algorithms

function with binary graphs (either there is a link or there is not a link). Throughout this
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thesis we will introduce scenarios where the existing tools (including PageRank and binary

influence networks) are insufficient to describe the rich nuance relationships that might exist

within an LTI network (particularly a dynamical network). The goal of this research is to

empower mankind with a more advanced tools for measuring influence and in turn deepen

our understanding of the influencing factors that shape our world. Although there are many

conjectures and theories regarding influence, it is a slippery concept that could be defined and

measured in many different ways. However, among the various definitions across sociology,

communications, marketing, and political science a common theme indicates that

1) There are distinct entities (example : A and B)

2) There is a change that is happening in at least one of the entities

3) The change in one entity is caused by the other entity.

In this research, we will focus on measuring aggregate level influence within LTI

systems. Before we dive into this level of detail, we will provide an overview of the theory of

influence across research disciplines.

1.2 Influence in the Mathematical Sciences

Visual diagrams are not the only way that people have tried to reason about the influences of

the world. Much of the scientific method itself is designed to validate or invalidate whether

or not certain influence relationships exist. This introduces the long-lasting dilemma of

correlation versus causation. Without dwelling much on this fundamental challenge of parsing

the two apart, it is worth discussing that there is a variety of tools for measuring patterns,

which may or may not indicate causal influence.

As early as the 1800s, Legendre and Gauss used linear regressions to measure the

influence of correlated variables and to estimate the planetary movement [43]. The chi-

squared (x2) test was also introduced around the same time to test the “goodness of fit” in

a hypotheses test. However, one weakness of the chi-squared test is that it is difficult to

measure to what degree one variable changes as values of another variable change [24]. A
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variation of the chi-squared test is the contingency coefficient, which automatically adjusts

for different sample sizes; however, it is also limited in the possible ranges of values to show

various strengths of correlation [48]. Then in the 1940’s, Cramer introduced Cramer’s V as

another chi-based method of measuring causality across nominal variables, which made it

easier to detect the strength of the correlation [18].

Later the concept of Granger causality was introduced. Granger causality is a statistical

measure for estimating influence between two variables. It is based on linear regressions

and stochastic processes. In practice, if including an X1 term reduces the variance E1 when

forecasting X2, then it is said that X1 granger-causes X2 [23]. A similar concept from

information theory is mutual information, which measures how much more you know about a

random variable given another random variable [30].

1.3 Influence in the Social Sciences

Another area of influence research focuses on practical aspects of how to influence the

people and the world around us. Classic books such as Dale Carnegie’s “How to Win

Friends and Influence People” describe fundamental qualities and attributes that make a

person more influential and likeable. This includes humility, accepting fault quickly, sincere

appreciation of the efforts of others, genuine honesty, remembering other peoples’ names,

making others feel important, and smiling. Robert Cialdini’s book “Influence, the Psychology

of Persuasion” describes specific interpersonal and psychological strategies of influence such

as social obligation through reciprocity, providing reasoning and explanations, social proof

(“everyone else is doing this”), perceived authority, and scarcity (“your offer expires today!”).

Moving beyond influence at the individual level, marketing research studies the various

factors that influence consumers at scale [38]. This includes customer value [19], a desire to

be recognized, company perception [20], product positioning [12], cultural factors [34], and

the physical environment [41]. Business researchers have studied how to measure influence in

organizational decision making [42] and how to identify and measure influential customers
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[29]. In marketing research the notion of influence is especially important because if one can

identify customers or potential brand-advocates that will have a network effect, then this

information can be used to sell and market much more effectively [32, 33].

In politics there is also an active community of research seeking to understand the

factors that influence public opinion. This field of research studies how individual politicians

can advance their careers [28], influence through lobbying [13], economic power and influence

[40], religious influence on the political system [21], influence through social media [8],

the influence of education and universities [27], and the political influence of interpersonal

relationships [36].

These areas of influence research deepened our understanding of the effects and

influences that Adam and Eve described in the Bible. However, to what degree precisely did

the Serpent really influence Eve to partake of the fruit? Fifty Percent? 10 percent? How do

we quantify that influence and how do we quantify the degree to which smiling makes us more

likeable and influential as Dale Carnegie observes? Experiments have been conducted in an

attempt to answer some of these questions under arguably artificial controlled circumstances.

However, with the birth of the internet a new unbiased data set became available. This data

set has and is propelling quantifiable influence research to the next level.

1.4 Influence in Computer Science

With the adoption of the internet, a vast data set became available of websites, social media,

blogs, discussion forums, and other publicly shared data sets where computer scientists have

created a variety of use-case specific methods for computing influence. By far one of the most

successful algorithms ever deployed for measuring influence in the world of computer science

is indisputably the PageRank algorithm. Later we will have a dedicated section for the

PageRank algorithm and build upon it to create a new and improved responsiveness-based

method for computing influence and page rank. Before we do this, we will survey other

non-PageRank contributions relevant to the topic of measuring influence.
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With the rise of social media, many more quantitative models were created for

measuring influence on social media [44, 47]. In the early days of social media, influence

was often measured by evaluating graph structure [25]. However, it was noted that a node

may have many social media connections, but those connections may not actually respond

to a source node [5, 11, 14]. Hence others defined social media influence as the magnitude

of a information propagation across a network originating from a source node [6, 39]. With

Twitterthe retweet metric can be helpful for measuring such propagation. However, people

may be influenced by a tweet without explicitly re-tweeting or commenting on a post. Such

influence is much more difficult to measure and the possible solutions that we outline in this

thesis could potentially be used to measure such implicit influence.

1.5 Other Areas of Influence

Statistics, psychology, business, politics and computer science are a few areas with active

communities that study influence-related topics that we have mentioned, but if we think

of influence broadly, it truly touches nearly all disciplines. Even in academics we also use

a variety of techniques for evaluating the influence of research itself including the h-index

(used to measure the influence and importance of academic publications) [9, 10], and Lokta’s

Law and Bradford’s Law (“bibliometrics” that help measure the impact and influence of

researcher’s and academic journals) [3]. There are even influential books that advise poets

how to gain influence within the world of poetry [7]. Here we have just provided a sample of

some of the influential highlights, however it is arguable that influence influences everything.

Now we will shift gears from discussing influence broadly and we will dive deeper into

a more focused area of influence with gaps and opportunities for improvement that we will

illustrate. Next we will discuss influence in the context of dynamical networks and transfer

functions.
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1.6 Influence in Dynamical Networks

Transfer functions are functions of complex variables that model a system’s output for each

possible input. Transfer functions can be determined from 1) experiments on a system, 2)

inspection, or by 3) algebraic manipulations of differential equations that describe the system.

The Transfer function of a system can be represented by the rational function

G(s) =
b(s)

a(s)

where a(s) and b(s) are polynomials of a system of arbitrary order, n and m, although

typically we consider systems that are proper, i.e. where n > m, given by

a(s) = sn + a1s
n−1 + a1s

n−1 + · · ·+ an−1s+ an

,

b(s) = b0s
m + b1s

m−1 + · · ·+ bm−1s+ bm

and where s is the Laplace variable. These system equations are useful because they

can be computed from data and can model the overall system and subsystem behavior of

interconnected networks. In previous work, we use a method called network reconstruction

to obtain system models from raw data [16, 50, 50]. In this process, we use the dynamical

structure function to relate inputs and outputs through the following equation:

Y (s) = Q(s)Y (s) + P (s)U(s), (1.1)

where entries (often called links or modules) in P (s) define the direct causal mapping from

individual inputs to individual outputs and entries in Q(s) define the direct causal mapping

from individual outputs to other outputs (the diagonal entries of Q(s) are zero). As the

state of one of the network nodes changes, it can have ripple effects on the other nodes in

8



the network. This downstream effects are essentially how one node influences another node.

For certain types of reconstructed network models (such as the ones we evaluate in [15])

the direct inputs into the system are not observable and hence the U(s) component, which

represents the inputs of the system goes away and we are left with

Y (s) = Q(s)Y (s). (1.2)

The entries inside of Q are transfer functions and Y (s) are the measured output variables on

each link. Once these values have been solved for, the magnitudes of the transfer functions

can be visualized as in Figure 1.1. From this point however, it is difficult to identify which

node in the network is overall the most influential given that this is a dynamical network. To

simplify the calculations we can apply a norm to the Q matrix to simplify the calculations.

For some of the examples going forward we will continue to use the Q matrix (the matrix of

transfer functions that model a dynamic network) as the starting point and we will continue

to apply a norm in order to simplify comparisons.

The dynamical structure function was introduced in 2008 [22], and further developed

[1, 31, 45, 46, 49–51] to create input-output transfer functions from data that model how a

network node influences another node as a function of input variables and time. In previous

research of ours, we demonstrated how this framework can be adapted to model the influence

between nodes in a social media network [15]. Figure 1.4 represents a network of social media

nodes where the edges in between nodes represents the relative level of influence from node to

node. After completing this work, we were left wondering which of the nodes in the network

was the most influential node overall in the network. A naive solution to this problem might

be to simply sum up the norm of the transfer function of each edge, however, this would not

account for the impact of ripple effects across the network. Seeking to solve this problem

was the genesis of the research in this thesis. As we thought deeply about this specific use

case in social media, it became apparent that this is a generalizable problem that applies

to a wide range of transfer-function based time-invariant systems networks. Much of the

9



Figure 1.4: The relative magnitude of edge-to-edge influence, ‖Qij(s)‖∞, reconstructed by
the B-VNR Algorithm on the Twitterdata [15].

research related to the dynamical structure function was applied in areas of biology, finance,

and operational research and solving this problem could help identify key influencer nodes

across any modeled network in all of the respective domains mentioned.
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1.7 Thesis Outline

When it comes to identifying “influencers” in a connected network, PageRank immediately

comes to mind, but in the upcoming section on PageRank we will demonstrate some of the

limitations with PageRank in solving the problem of identifying an influencer in a time-

invariant system. In Chapter 3, we will then introduce two novel methods for computing

influence in a dynamic network. In chapter 4, we will demonstrate experimental results and

the final chapter will draw conclusions and discuss future work.
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Chapter 2

Problem Statement

In this chapter, we discuss in greater detail the problem we are seeking to solve in this

thesis. The focus of this thesis is to formulate and evaluate new methodologies for quantifying

influence in dynamical networks.

2.1 The Complexity of Dynamical Networks

Since Sergey Brin and Larry Page’s first introduction of the random surfer model, PageRank

computing has been primarily focused on static networks with binary links (i.e., there is

or there isn’t a link between any two nodes). Within dynamical networks, much like static

networks, there is a need to measure influence within a complex body of information. In

the case of a web search, the complexity is largely due to the sheer volume of individual

graph nodes. Within dynamical network applications, the number of nodes may be smaller

by comparison. However, the number of possible network states is infinite and instead of a

binary value on an edge, it could be zero but it could also be a rational function such as

(s2 + 5)

(s+ 2)

or something even more complex such as

(s2 + 6s+ 9)

(s3 + 9s2 + 25s+ 21)
.

12



and where s ∈ C. These rational functions can be summarized and simplified to a scalar

value by applying a norm to the rational function (we will demonstrate using this method

starting in Section 3). However, treating the existence of a link between two nodes as a

binary value in order to apply the well-established PageRank algorithm has limitations that

we will illustrate here.

2.2 Problem Illustration

This example illustrates that nodes may technically be influencing each other, but the rate,

frequency and intensity of that influence may be very low. Hence PageRank with binary

edges will not accurately represent the full dynamic level of influence that is taking place. In

the image below (Figure 2.1), the dark edges are represented by transfer functions tf1 with

the value

tf1 =
10

s+ 3

which has a 2-norm of 4.0825. The lighter colored edges are represented by

tf2 =
1

5s+ 5

which has an norm of 0.1414.

In the world of PageRank, a link implies that the receiving node has some sort of

influence or authority that is represented by the incoming link. However, the actual intensity

or severity of the link is not accounted for. As such, we will treat these edges as binary values

and apply the PageRank algorithm as outlined in [37]. This yields the results displayed in

Figure 2.2. However, comparing the step response of tf1 and tf2 we see that the other nodes

in the network are much more “disturbed” by the effects of the tf1 edges coming out of Y2.

According to the Merriam-Webster dictionary, influence is defined as the power or capacity of

causing an effect in indirect or intangible ways. Although there are other ways that influence

could be defined, intuitively we can sense from the example that the PageRank algorithm

13



Figure 2.1: Problem Illustration

Figure 2.2: Problem Illustration Results Using Standard PageRank
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Figure 2.3: tf1 and tf2 step responses compared (orange is tf1 and blue is tf2)

is not fully representing the effect or change that node Y2 is evoking across the network.

After all, Y1 and Y2 are clearly not equivalent in their impact on the network with a value of

40.84%.

Social science research by Cialdini [17] suggests that influence evokes a change that

causes other individuals to change their perspectives, opinions and overall emotional state [4].

Hence, influence is highly coupled with the concept of responsiveness and change. If somebody

does not respond to a candidate “influencer” (i.e. their opinions, beliefs, and overall emotional

state are not changing as a result of the influencer, then the candidate influencer is not truly

influential). Using this social science conceptual model as a foundation for this paper, we will

generally define influence as responsiveness and create a new responsiveness-based method for

measuring influence in linear time invariant systems. This is evidenced by the step response

(Figure 2.3) for tf1 and tf2.

Being able to solve this problem with a responsiveness-based approach has a wide

range of applications. In previous work of ours, we created dynamical networks that modeled

the influence of social media accounts on one another on Twitter[16]. In the diagram from

Figure 1.4 for example, there are 400 possible edges and each of the edges could have an

infinite number of functions and values. The raw data itself is difficult to work with, but even

15



with the visualization it is nearly impossible to look at the diagram and easily understand

which node in the network is the most influential, especially when you account for 2nd

order and 3rd order ripple effects on the network. PageRank would not be able to clearly

quantify which social media account in this network is the most influential since it is fully

connected. Each of these edges using PageRank would be treated a binary edge and hence

the influence would be evenly distributed across all nodes. However, if we define and apply a

new responsiveness based approach to solving this problem, we would be able to discover

which node in the network is the most influential. A social media marketer or a political

strategy team could use this team to target and collaborate with specific influencers in the

audience segment that is most relevant to their area of interest.

In the following section we will introduce two new methods for measuring influence

that are designed for dynamical network applications. The first is Dynamical Responsive

Page Rank (DRPR) and the second is Aggregate Targeted Reachability (ATR). Following

this, we will review computed results using these methods and finally we will illustrate how

these methods more intuitively model the network from the problem illustration detailed in

this section.

16



Chapter 3

New Approaches to Measuring Influence in Linear Dynamical Networks

In this research, we introduce two new methods for measuring influence in Linear

dynamical networks. We will begin with introducing an adaptation of PageRank that

incorporates responsiveness for dynamical networks. After that, we will explain another

model for measuring influence called aggregated targeted reachability (ATR).

3.1 Page Rank

A simple version of PageRank introduced by Page and Brin [37] is defined as

PR(u) = c
∑

v∈B(u)

PR(v)

Nv

where u is a web page and, B(u) is the set of pages that point to u. PR(v) are the PageRank

scores for page u and v. Nv is the number of outgoing links of page v and c is a factor that

is used for normalizing the results across all nodes in the network that are being relatively

compared in terms of importance and influence. For all the nodes that node p points to, the

score is evenly divided and distributed among them in their respective calculations of PR(p).

When calculating the PageRank scores for a set of pages, the scores could be calculated

iteratively starting with any of the candidates nodes. However, there are cases that there

is a loop (which is common especially in a web search context where multiple pages on a

single website point back to each other to form a loop). If these pages are linked by other

web pages outside the loop, then they accumulate rank but never distribute scores. This

scenario is called a rank sink problem [37].
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3.2 Rank Sink Problem

Not all users on a website visit all existing links on a web page. After visiting a page, the user

may not choose to visit any of the connected links and instead choose to go to an entirely

new website in the relevant content domain. To solve this problem, a damping factor is

introduced, which allows us to draw implicit connecting lines in the network to simulate the

behavior of a web visitor that jumps from one page to another that is completely unrelated.

These implicit lines don’t only allow us to better model the user behavior, but it allows us to

more holistically compare all the nodes in the network to one another, even though in reality

they are not connected to each other. To dampen the affect of an edge in the network that

in reality doesn’t exist, a dampening factor is used. The damping factor d is often set to 0.85

and is incorporated as such:

PR(u) = (1− d) + d
∑

v∈B(u)

PR(v)

Nv

Using this algorithm, the scores are iteratively computed for all nodes in target network

until the calculations converge to a reasonable tolerance. For the use case of web search, this

algorithm has been widely adopted for its usefullness. The search results are typically highly

relevant and the calculation normally converges within log(n) time. However, in the world

of dynamical networks, the links are not binary, and the level to which one node influences

another cannot be assumed to be equal. Before we build upon the PageRank algorithm

to create an improved version to handle aggregated influence computation for linear time

invariant systems, we will introduce the types of networks that we will use.

3.3 Responsiveness to Model Various Degrees of Relationships

In the domain of web search all relationships between one node and another are treated as

equal (they are all given a binary value). This model has limitations when translated into

scenarios where relationships are unequal. For example, an individual may be connected
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with many people on a social media network. However, on a day to day basis this person

interacts much more frequently with family members and close friends. For the use case

of analyzing and computing influence in social dynamical situations (such as twitter) or

even regular human-to-human interaction, a new system is needed to accurately model these

various degrees of influence. For example, just because person A has one conversation with

person B and another conversation of similar length with person C does not mean that each

of those interactions influenced person A to the same degree. Based on social science research

from [2], the level of responsiveness is highly reflective of the depth of influence that a person

has.

3.4 Dynamical Responsive PageRank (DRPR)

Now we will demonstrate how we will incorporate responsiveness into the PageRank calculation.

We will ground the discussion in a concrete use case from previous research in order to illustrate

the usefullness of this method. In previous research we demonstrated how natural language

data from a social media network could be computed to find causal relations between various

accounts on Twitter using network reconstruction [16]. Let us assume we have already applied

a network reconstruction algorithm in order to obtain a dynamical structure function with

an equation Q and P. We will assume that there are no explicit inputs and as such P = 0. Q

and P will have the form

Q =



0 q12 q13 . . . q1m

q21 0 q23 . . . q2m
...

...
...

. . .
...

qm1 qm2 qm3 . . . 0
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,

P =



0 0 0 . . . 0

0 0 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 0


and where each value of Q is a transfer function that is a rational function of the Laplace

variable s ∈ C. From here there are several approaches we can use to incorporate PageRank.

Since PageRank uses binary ranks, we could compute the binary adjacency state matrix.

P bin =



1 0 ... 0

0 1
. . .

...

...
. . . . . . 0

0 ... 0 1


and Qbin =



0 1 0 ... 0

...
. . . . . . . . .

...

...
. . . . . . 0

0 ... ... 0 1

1 0 ... ... 0


where each value 1 indicates that there is non-zero transfer function and that there is some

causal relationship. This is a binary matrix and PageRank is designed to work with binary

links. The problem illustration example uses this binary approach. If, however, we want

to create an algorithm that weights the influence transfer functions more “fairly” we will

compute the norm for each individual index inside of the Q matrix. Thus we will compute

‖qab‖ for each entry inside of Q and obtain the QInfluence matrix:

QInfluence =



0 ‖q12‖ ‖q13‖ . . . ‖q1m‖

‖q21‖ 0 ‖q23‖ . . . ‖q2m‖
...

...
...

. . .
...

‖qm1‖ ‖qm2‖ ‖qm3‖ . . . 0
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Where each individually normed transfer function represents an overall summary of the

node-to-node influence, irrespective of time. If we then take the column sum for each index

then we will have

Influenceq =
m∑

n=1

‖qmn‖

for each individual node in the network. This Influence column sum can be computed for

each column, corresponding to each node in the network.

INFnetwork = Influence1, Influence2, . . . , Influencem

And these column sum measure for the total influence for each node in the network could

be normalized. Then, when computing pageRank, this normalized influence weight can be

applied to the page rank algorithm as such

DRPR(u) = (1− d) + d
∑

v∈B(u)

INFv ∗ PR(v)

Nv

such that the PageRank score is offset by the influence weighted-score that is computed.

Thus the edges are not being treated equally and nodes with a higher score measured by

their normalized transfer function influence will have a strong page rank score and vice versa.

This method of computing the influence of a node is called Dynamical Responsive PageRank

(DRPR) and is one of the novel contributions of this research. In an upcoming section we will

share technical results using this method and compare it to alternative influence measurement

techniques. In the next section we will introduce a 2nd candidate methodology for computing

responsiveness-based influence. We call it Aggregated Targetted Reachability (ATR).
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3.5 Aggregated Targeted Reachability (ATR)

Next we will introduce another algorithm for measuring influence in dynamical networks. We

will leverage the same Q and P construct discussed earlier. Let us examine

Y = QY + PU

and take note that P is the identity matrix. Now we can rearrange the equation in order to

obtain the net effect:

Y −QY = PU.

Rearranging we obtain

Y = (I −Q)−1PU

and then finally obtain the matrix

G = (I −Q)−1PU.

Where all U’s were just copies of Y’s and P’s in the identity. This essentially computes the

net effect from and Yi to Yj which is the overall net effect that any node i has on any node j.

This accounts for all the ripple effects of influence from node i to node j.

This effectively is another measurement of influence where we measure one node’s

overall ability to influence another node through the network. It is an influence metric, but

not a metric that compares the source nodes influence overall throughout the whole network.

However, this can be used for another use case where we measure one nodes “influence” over

another node and can answer questions such as “which node has the greatest influence over

node X?”
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We can then take the norm of each entry of the transfer function matrix, G in order

to get a real number that summarizes this effect. This gives us a score that we can call

Sij = ‖Gij‖

and sum up all of the normed scores for node i going to all other nodes in the network. Thus

we obtain

ATRi =
m∑
j=1

‖Gij‖

which gives us a number of how node i impacts all the other nodes in the network. We

can use this number as is, or we can normalize it so that it can more easily be compared

side-by-side with DRPR (since this way the results for all nodes will also add up to 1).
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Chapter 4

Technical Results

Now that we have introduced DRPR and ATR we will demonstrate technical results

using these methods and discuss trade-offs.

4.1 Simple Canonical Networks

We will define a handful of canonical examples for which we will execute DRPR and ATR.

Let us define

TF1 =
1

s+ 1

TF2 =
1

s2 + 5s+ 6

where the 2-norms each compute as .7071 and 0.1291 respectively. Now, using these transfer

functions, we will define the following canonical network examples and then compare results

of DRPR and ATR.

Figure 4.1: Simple Canonical Example 1
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Figure 4.2: Simple Canonical Example 2

Figure 4.3: Simple Canonical Example 3

Figure 4.4: Simple Canonical Example 4

Figure 4.5: Simple Canonical Example 5
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As a first step, we apply the 2-norm to each of the transfer functions. We used these

as the edge weights of the DRPR algorithm. Here we present the results in the table below.

Note that the relative influence of each node is a percentage of the total influence, so each

row in the table sums to 1.

Example Node 1 Node 2 Node 3

1 0.4489 0.3474 0.2036
2 0.4791 0.3253 0.1955
3 0.54936 0.3523 0.0982
4 0.57897 0.2105 0.2105
5 0.3489 0.4410 0.2099

Table 4.1: DRPR algorithm results with canonical examples

Next, we will evaluate the results of ATR for the same canonical examples in Table II.

Example Node 1 Node 2 Node 3

1 1, 0, 0 0.71, 1, 0 0.5, 0.71, 1
2 1, 0.1, 0.13 73, 1, .1 53, .73, 1
3 1, 0, 0 .74, 1, .13 .55, .74, 1
4 1, 1, .14 .11, 1, .14 .11, 1, .14
5 1, .17, .27 85, 1, .89 .89, .27, 1

Table 4.2: Results for Targeted Reachability

Summing the column values of Table 4.2, we obtain the ATR results found in Table

4.3.

Example Node 1 Node 2 Node 3

1 .45 .35 .2
2 .44 .32 .24
3 .44 .34 .22
4 .46 .26 .26
5 .39 .30 .31

Table 4.3: Normalized ATR Results

Comparing ATR and DRPR, node 1 appears to generally be the most influential node

across both methods, with the exception of Example 5. At a glance, it appears that node 1
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should also be the most influential node for both methods because node 1 has the greatest

sum of norms of the outgoing edges (a simplistic approximation of influence that seems to

work for small examples). However, for the DRPR algorithm, the influence of node 1 appears

to be diminished when the network is fully connected. It may be that this is due to the

cyclic effects of PageRank and the timing of when the algorithm times out. Since, measuring

influence is a subjective and slippery concept ther is no ground truth against which we can

compare these measurements, but as we introduce these new methods, we can intuitively

argue which methods

4.2 Medium Sized Networks

The initial results that we just compared were some simple examples to get a good grasp of

the general trends. Now we will do some more advanced examples. To make the networks

more intuitively understandable at a glance, we will set the value of each transfer function to

TF3 which has a value of q = 1/(s+ 3) and a corresponding 2-norm of 0.4082. The purpose

of these following examples is to analyze how the behavior of DRPR and normalized targeted

reachability change as new edges are added to the network.

Figure 4.6: Medium Example 6
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Figure 4.7: Medium Example 7

Figure 4.8: Medium Example 8

The only difference between canonical Examples 6 and 7 is that there are two additional

edges that have been added from Y7 to Y3 and from Y7 to Y5. Likewise, the biggest difference

between canonical Example 7 and 8 is that there are two additional edges from Y7 to Y2 and

from Y7 to Y6.

Analyzing the results for ATR, it is clear that adding additional edges for Y7 increases

its ability to influence other nodes and hence boosts the overall ATR score for Y7. Adding

the additional edges to node Y7 does not influence the ATR for the remaining six nodes in
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Figure 4.9: ATR results for large canonical examples

the network. For ATR, unlike some versions of PageRank, having an incoming edge does

not change the ATR for the node that is being pointed to. There are only increases in the

ATR score for edges that come out of the source node. Incoming edges have no change on

the score since the incoming edges do not immediately influence a destination node’s ability

to influence other nodes.

However, for DRPR it is clear that adding the additional outgoing edges from a source

node does influence the scores of all other nodes in the network. If we normalize the results

from ATR then we get the graph in Figure 4.11. If you compare this to the DRPR results,

the score of Y7 is very comparable across both algorithms. They both contain a score that is

close to .30 and all other nodes have scores that is close to .10. However, for the network in

Example 6 and 7, there appears to be more of a variety of dynamics across all other edges.

We see that as we saturate a node with outgoing edges then the DRPR results begin to look

more like the targeted ATR results in this scenario.
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Figure 4.10: DRPR results for large canonical examples

4.3 Larger Network

On Figure 4.12, we see the graph of the larger network with the same default transfer

functions where we ran DRPR and ATR. The results for DRPR are shown in Figure 4.13

and intuitively they seem to make sense given the structure of the network and given the fact

that all transfer functions are the same. Likewise the results for ATR in Figure 4.14

4.4 DRPR and ATR Results for Problem Illustration Example Network

Finally, to illustrate the usefullness of these methods, we will compute results using ATR

and DRPR for the problem illustration example network from Section 2. Computed results
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Figure 4.11: Normalized ATR results on large canonical Example 8

for DRPR are in Figure 4.15 and ATR results are shown in Figure 4.16. Analyzing and

comparing the results, both ATR and DRPR both appear to model the influence behavior of

the problem illustration example more intuitively then the regular binary PageRank results

shown in Figure 2.2. Interestingly, it appears that normalized ATR appears to distribute the

influence values more throughout the network, whereas with DRPR the influence value is

more highly concentrated with Y 2. Because of the itertive nature of PageRank computing,
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Figure 4.12: An influence diagram for a larger network

there is more opportunity for an influential node in the network to “claim” the influence

value of other nodes in the network that have fewer outgoing edges. Likewise the results

from the larger network example from Figure 4.12 appear to be more polarly distributed

with DRPR wheras ATR appears to have a slightly more even distribution by comparison.
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Figure 4.13: Normalized ATR results on larger network.

Figure 4.14: DRPR on a larger network
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Figure 4.15: DRPR Results Computed on Problem Illustration Example from Section 2
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Figure 4.16: Normalized ATR Results Computed on Problem Illustration Example from
Section 2
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this work, we provide an overview of research across disciplines related to influence and

how to measure influence. We show that for certain scenarios related to linear time invarient

systems that exisitng approaches like PageRank do fully represent different levels of influence

that occurs across differing transfer function magnitudes. We introduce the DRPR algorithm

which builds upon PageRank in order to incorporate a weighted link structure computation

into the influence calculation. We also build upon systems theory concepts to introduce a

second approach for modeling the influence inside of dynamical networks called targeted

reachabilty. In the technical results, we show that these algorithms intuitively model the

dynamical relations and more fully describe the various degrees of influence relationships in

scenarios like the problem illustration.

Comparing the DRPR algorithm and ATR, it appears that for some scenarios the

two approaches have very similar results (for example the network in Figure 4.8). However,

for other networks such as the larger network (Figure 4.12) the algorithms appear to have

quite different results. Overall, it appears that DRPR tends to accumulate more of the

influence value from other nodes. Hence the results tend to be a bit more polarized with

DRPR whereas with ATR they tend to be more evenly distributed.

It is difficult at this point to make a determination about which influence algorithm is

“better” than the other. However, ATR appears to model the behavior of the larger network in

Figure 4.12 more intuitively than does DRPR. It seems that DRPR doesn’t give Y6 that high
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of a score because Y10, Y11, Y12, and Y13 are sinks that don’t have much influence. Instead

it seems that DRPR allocates a much higher score to Y7 and Y8 because of their ability to

influence other nodes in the network that are not sink nodes. Yet, it is arguable that Y6

should be given a higher score (as ATR allocates) because of Y6’s ability to influence a larger

quantitiy of nodes overall throughout the network. Y7 and Y8 have no ability to influence Y10

through Y13 and yet Y6 can influence Y10 through Y13 plus all the same nodes that Y7 and Y8

can influence. Hence it is our conclusion that ATR is the superior algorithm for the use-cases

and examples that we have outlined in this research.

ATR also has an additional advantage over DRPR as well. Targeted Reachability

(without aggregation) is very precise in it’s calculation of one single node’s ability to influence

another specific node. DRPR can only measure one nodes influence overall (not in respects

to any single particular node). Comparing the normalized ATR results to that of DRPR on

example 8, it is clear that there is a relationship between the two algorithms especially as

you saturate individual nodes in the network and in certain network scenarios the output of

DRPR and ATR appear to yield very similar results.

5.2 Future Work

The research of this thesis is the first of its kind that helps analyze aggregated influence

across a linear time invariant network by introducing two new algorithms. Yet more work

needs to be done to understand the mathematical relationship between these two algorithms.

To date much of the influence modeling approaches happen in the world of static graphs.

This research attempted to bridge the gap between the linear time invariant systems and the

established static graph influence computation methods. There are likely other algorithms

and other approaches to simplify the insight extraction process from working with dynamical

networks. The analytical algorithms proposed in this work could also likely be extended

or adapted to derive deeper insight other scenarios involving dynamical networks transfer
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function modeling. Further work needs to be done to understand the advantages and the

limitations of each of these algorithms.
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