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ABSTRACT

Moderating Influence as a Design Principle for Human-Swarm
Interaction

C. Chace Ashcraft
Department of Computer Science, BYU

Master of Science

Robot swarms have recently become of interest in both industry and academia for
their potential to perform various difficult or dangerous tasks efficiently. As real robot
swarms become more of a possibility, many desire swarms to be controlled or directed by a
human, which raises questions regarding how that should be done. Part of the challenge of
human-swarm interaction is the difficulty of understanding swarm state and how to drive the
swarm to produce emergent behaviors. Human input could inhibit desirable swarm behaviors
if their input is poor and has sufficient influence over swarm agents, affecting its overall
performance. Thus, with too little influence, human input is useless, but with too much, it
can be destructive. We suggest that there is some middle level, or interval, of human influence
that allows the swarm to take advantage of useful human input while minimizing the effect
of destructive input. Further, we propose that human-swarm interaction schemes can be
designed to maintain an appropriate level of human influence over the swarm and maintain or
improve swarm performance in the presence of both useful and destructive human input. We
test this theory by implementing a piece of software to dynamically moderate influence and
then testing it with a simulated honey bee colony performing nest site selection, simulated
human input, and actual human input via a user study. The results suggest that moderating
influence, as suggested, is important for maintaining high performance in the presence of
both useful and destructive human input. However, while our software seems to successfully
moderate influence with simulated human input, it fails to do so with actual human input.

Keywords: human swarm interaction, human robot interaction, swarms, robot swarms
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Chapter 1

Introduction

On September 3, 2014, then United States Secretary of Defense Chuck Hagel delivered

a keynote speech at the “Defense Innovation Days” event in which he proposed that robotics

and automation would be key in maintaining United States military dominance in the

following years [1]. Shortly after, Paul Scharre published a work on how robotics swarms fit

perfectly within Chuck Hagel’s proposed mission [2]. He claims: “Swarms of robotic systems

can bring greater mass, coordination, intelligence and speed to the battlefield, enhancing

the ability of warfighters to gain a decisive advantage over their adversaries.” They also

have the potential to be significantly cost effective, which, while always useful, is particularly

important as military budgets fluctuate.

Robotic swarms also appear to have great potential for application to various problems

of interest outside of the military due to their robustness properties arising from decentraliza-

tion. By being decentralized, the swarm is able to incur minimal risk to itself by having a

built-in redundancy that helps alleviate failures caused by faults in individual agents or by

unexpected environmental events and conditions. This is referred to by Winfield and Nembrini

as fault tolerance in robot swarms [3], and is possibly the most significant contributor to

robot swarms’ robustness.

Until humans can design sufficiently intelligent and capable algorithms to appropriately

govern these systems for all applications, human interaction or control of the swarm will

likely be required in real-world applications. Kira and Potter state: “Real-time control is a

particularly important issue because the locality and unpredictability of emergent behavior
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makes influencing the entire swarm after deployment both difficult and necessary” [4]. Swarm

technology is based on having simple agents perform complex tasks through local sensing

and communication between agents. The complex or intelligent behavior is said to emerge

through the interactions between the swarm agents rather than through a centralized controller.

Because the emergent behaviors are often the result of complex interaction rules that are

not well understood, it is difficult to design algorithms that ensure that the swarm will

exhibit the desired behavior during deployment, especially for large swarms. Part of Winfield

and Numbrini’s solution to this is extensive testing, validation, and analysis of a swarm

system, but a principle problem with their approach is the assumption of a “reasonably

well understood operational environment,” which we believe will be regularly violated in

real-world swarm deployment.

Allowing human interaction will likely provide additional flexibility to a robot swarm

in less well-understood environments and in unpredicted scenarios [5]. Also, for military

use, the military will likely prefer human interaction because it facilitates maintaining their

hierarchical command and control structure and the general public will prefer it due to

various ethical questions regarding lethal force with autonomous agents.

Yet, at the same time, utilizing robot swarms presents a new challenge for command

and control both in and out of the military. Scharre notes that, as the size of the swarm

increases, control must become more focused on the swarm as a whole rather than on the

individuals of the swarm. This may seem obvious considering humankind’s limited capacity

to multitask, [6, 7], but how this is to be done is less so. Winfield and Nembrini state

that “A distinguishing characteristic of distributed systems based upon swarm intelligence

is that they have no hierarchical command and control structure, and hence no common

mode failure point or vulnerability.” Ironically, the thing that makes swarms so useful, their

decentralization, is what makes human control over them difficult. By adding a human

operator to the swarm, one adds an element of centralization in the operator and potentially
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restricts the autonomy of each agent, which is usually the source of the swarm’s robustness

and emergent behavior.

Scharre suggests that human control of a swarm could take many forms, hinting at

hierarchies of human control and what we call “playbook” style control [8–10], where the

human assigns a task to the swarm and completely relies on the swarm’s autonomy to perform

it. However, Scharre also suggests that mixed types of control mechanisms are likely desirable,

which include control paradigms where the human interacts with the swarm at low levels as

well as high levels. Yet for the case of low-level interactions, it will likely be challenging for

humans to know how to interact with swarms in order to achieve a desired affect. He states:

“Human controllers will need to know when to intervene to correct autonomous systems, and

when such intervention will introduce suboptimal outcomes” [2].

We take this a step further by asking what form the human-swarm interaction interface

should take to ensure correct or beneficial behavior in robot swarms. While training is one

way of preventing poor quality or suboptimal outcomes from a swarm [11], another is by

controlling how the human will interact with the swarm, perhaps by preventing certain types

of interactions, where such interactions would lead to a suboptimal result. In this work, we

propose a theory of interaction scheme design to do exactly this by keeping the amount of

influence the human has over the swarm at a moderated level, thereby allowing the swarm

to take advantage of useful human input and ignore detrimental input. We then create a

software implementation of our theory for a specific swarm and interaction method, and show

that our implementation can help for at least two types of scenarios using simulated human

input. Testing with human input confirms the importance of moderating input based on

human skill with the swarm and the information they are provided, but also shows that our

implementation to do so fails to perform as desired.
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Chapter 2

Related Work

Kolling et. al. published a survey in 2016 summarizing work in human-swarm

interaction [5], discussing work on commonly studied swarm models and various aspects

of human-swarm interaction. Kolling et. al. categorize swarm models into four categories:

Bioinspired, Control-theoretic, Amorphous Computing, and Physics-inspired. Biological

systems are likely some of the earliest inspirations for swarms, and are probably the most

commonly thought of by people when they hear the word “swarm.” Various algorithms in

swarm intelligence, a related but distinct field [12], have already been successfully developed

and applied to real world problems [13–16]. Perhaps one of the most popularly implemented

and studied model, at least in simulation, is Couzin et. al.’s model presented in [17]. Using

this model, various researchers have been able to show a variety of interesting spacial behaviors

and have also studied their performance with human-swarm interaction [18, 19].

The model we propose to use in this paper is bioinspired, but is different from most

models in that the behavior we are interested in is less the spacial positioning of the swarm

than their ability to accomplish a certain task; however, there are other bioinspired models

with similar interests [15, 20, 21]. Sumpter has published many studies on biological swarms

and collective behavior, as well as principles for engineering bioinspired swarm systems [22, 23].

There have been numerous publications in control theory regarding swarms [24–27],

many of which are of significant practical value regarding implementation of actual robotics

swarms. Benefits of the control-theoretic studies include consideration to physical dynamics

often absent in bioinspired work, powerful mathematical tools, and certain theoretic guarantees.
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However most of the control-theoretic work in swarms seems only to be concerned with

spatial orientation tasks, and the simplifying assumptions needed for the theory are often

impractical or restrictive. An explanation of amorphous computing can be found in [28],

and while its purpose differs significantly from swarm robotics, the principles governing its

implementation are very similar. Applications of amorphous computing to swarm robotics

can be found in [29, 30]. Finally, physics-inspired systems attempt to use physics-based laws

to produce swarm-like behavior. In this case, each agent can be thought of as an entity

that interacts with other entities in the environment based on an established physical law or

mathematical equation, like particles in an environment [31–33]. Kolling et. al. [5] note that

while the results of the physics-inspired swarms are often similar to that of some bioinspired

swarms, the perspective is distinct in that interactions in a physics-based swarm are thought

of more as passive effects while those in bioinspired swarms are chosen actions.

Two topics that are particularly related to our work are Neglect Benevolence and

Levels of Automation. Neglect Benevolence in swarms is the property that the human-swarm

system’s performance will improve by having the human delay input [34]. This is opposed to

Neglect Tolerance [6], which regards how long a system can continue to perform sufficiently

well without human input. In their study, Nagavalli et. al. ([34]) show that allowing a

human operator of a simple swarm to provide input to the swarm too early will result in a

sub-optimal outcome. It can further be inferred from that study that input too early or too

late can also result in failure of the swarm to achieve a goal.

Level of automation (LOA) scales for human-machine systems were originally suggested

by Sheridan and Verplank [35] and then adapted and applied to human-supervisory control

systems in [36–38]. Applications to human-swarm interaction include [39–41]. LOA is related

to our work in that it is also used to measure the relationship between the human and

the machine and to design human-machine interaction, however, there are several minute

differences. In particular, there is a strong focus in the LOA on communication between the

human and the machine on whether the machine will require human input, which we do not
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address, and LOA is typically used to design both the machine and the interaction, while we

assume the machine is set and focus on the interaction alone.

Shared control is another topic both related and applied to our work. Shared control

attempts to improve the performance and capability of a human-machine system by balancing

the intent of the operator with the sensors and algorithms that run the machine [42, 43]. For

example, Crandall and Goodrich show that sharing control during teleoperation of a single

robot increased performance of the human-robot team, reduced the amount of attention

the robot needed to function correctly, and was easier to use than manual teleoperation. In

2014, Brown, Jung, and Goodrich studied shared control with a bio-inspired swarm based on

Couzin’s model [44]. Control is shared with the swarm by allowing the human to control only

a small subset of the agents in the swarm. The rest of the swarm consists of agents that are

not influenced by the human-controlled agents, and agents that are influenced by both the

human controlled agents and the human-immune agents. They then propose graph-theoretic

methods for measuring human-influence over the swarm, which they dub persistence, span,

and connectivity.

Finally, while much research in swarms is done using techniques such as graph theory

and differential calculus as explained above, we have chosen to use an agent based model.

Agent based models are often used to examine or study the effects of simple rules or behaviors

on a large set of agents interacting in an environment [45], especially when more rigorous

methods of analysis become computationally prohibitive. Common areas where this is done

include business [46], economics [47], and social science [48].

In this work, we attempt to combine these ideas and build upon them in order to

address the problem of humans interacting with large, task-based robot swarms. Much of

the current work in swarms, for example, simulate smaller swarms that are not focused on

any particular task outside of spatial distribution. We attempt to work with a swarm that

is both larger in number of agents and is focused on accomplishing a non-spacial task, to

prepare for the eventuality of actual robot swarm implementations. There has also been a
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large amount of work done to understand how best for a human to interact with a single

robot, or a few robots that do not behave as a swarm. We attempt to use the ideas from

these works, especially neglect benevolence and shared control, to then enable quality human

interaction with large, task-based robot swarms.
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Chapter 3

Theory

3.1 Terminology

In order to facilitate discussion of our theory and methods, we define three, not necessarily

distinct, parties of interest integral to the development and deployment of robot swarms:

the Problem Holder, the Designer, and the Operator. The Problem Holder is the person or

group of people who define the purpose of the swarm, fund the Designer, and most likely

employ the Operator. The Designer is the person or group responsible for the design and

implementation of the robot swarm of interest, and the Operator is the person or group that

interacts with the swarm during its deployment. A possible example of the three would be a

military entity, a military contractor, and enlisted military personnel.

Another important term for this work is influence. Influence is the ability of the

Operator to control the behavior of the swarm. Thus, the higher the influence a human

operator has over a given swarm system, the more ability said operator has to force the

swarm to do his or her bidding. In the context of complex distributed systems, a general

definition of influence is difficult to derive. Therefore, in this work, we will only analyze

influence comparatively, i.e. we will claim that one interaction scheme provides an operator

with more influence than another if it gives the operator greater ability to dictate the actions

of the members of the swarm. This imprecise definition is less than ideal, but is sufficient for

this work.
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3.2 Theory

Due to the complexity of swarm systems, it is typically very difficult for a human to understand

the state of the swarm at any particular time, let alone how to interact with it in order to

drive it to some desired state. Thus, while it may be desirable in some cases to have a human

operator in a swarm system, how best to make use of the human is challenging. For example,

allowing an operator to have high influence over the swarm with little training may cause the

operator to hinder or block the desirable emergent behaviors that make the swarm useful in

the first place. We propose that there are three primary methods to overcome this problem:

1. Human training: Overcome challenges and problems with swarm interaction by making

the operator an efficient and knowledgeable user of the swarm. This solution is expensive

and time consuming, as each human operator must be trained to expertise, and still

may make mistakes.

2. User interface design: Make the user interface sufficiently intuitive and easy to use

such that human users can easily know what to do and how to do it. As this type

of solution is difficult to implement, it is an active area of research. It also requires

extensive testing with potential human operators, and may not generalize to many

tasks or environments.

3. User interaction design: Design the interaction method in order to take advantage of

useful human input while moderating the effect of bad input. Ideally, this could be

done mostly at the Designer level using solid human-swarm interaction principles and

the Designer’s understanding of the swarm, reducing the need for human training and

testing with human operators.

Our research falls into the third category. If able to be done well, this should be a

cost-effective and efficient method of creating practical human-swarm systems.
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3.2.1 Using Influence to Guide Human-Swarm Interface Design

Some have suggested that the best way to for a human to interact with a swarm is via a

“playbook” type interface [8–10], which means that the Operator interacts with the swarm by

assigning a task to be performed, and then allowing the swarm to perform that task until

termination or until a new task is assigned. We are interested in allowing the Operator to

interact with the swarm during the performance of the task in addition to assigning the

task. However, with the challenge of understanding the swarm’s behavior and what to do to

alter it, we believe that a primary consideration when designing a human-swarm interaction

scheme should be the influence the Operator has over the swarm.

At a high level, the Problem Holder will have a purpose for the swarm, as well as some

measure of performance, but will depend on the Designer and Operator to fulfill that purpose

and maximize performance. The Designer can design the swarm to maximize the performance

function given by the Problem Holder, but usually requires various assumptions be made,

which will most likely be broken at various times during deployment. The Operator can

assist the swarm in maximizing its performance by providing information unavailable to the

swarm’s sensors, providing high-level reasoning the swarm is unable to perform, or overcoming

issues caused by the violation of swarm design assumptions. However, the Designer will have

implemented the swarm agents’ behaviors for a reason, and if the human operator is provided

enough influence to sufficiently override those behaviors, then the human can decrease the

performance of the swarm with poor input. We propose that finding a balanced level of

influence will potentially allow the swarm to take advantage of useful Operator input while

being unaffected by detrimental input. A theoretical example of this relationship for some

human-swarm system is given in Figure 3.1.

The sweet spot, or balanced interval, in Figure 3.1 will vary based on the system,

environment, specific operator knowledge and capability, but some general principles for

designing balanced interaction schemes would be desirable. We propose Feedback Based

Dynamic Influence as a general principle, which is the idea that Operator influence should
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Figure 3.1: Theoretical relationship between Operator influence and swarm task performance
for some task and swarm.

change over time based on feedback from the swarm and Operator. The key to this principle

is the understanding that Operator behaviors will vary over time and between operators,

therefore, no one influence setting will likely suffice to maintain balanced influence in general.

By allowing influence to change based on feedback from the swarm and Operator, the Designer

can maintain balanced influence for the duration of any deployment for any operator. Exactly

how the influence should vary based on the feedback will depend on the swarm, task, and

possible feedback, but as the Designer will be designing and implementing all three, these are

variables the Designer can control for and use to do so.

In the following sections, we provide results that demonstrate the usefulness of

balancing influence in a simulated swarm, we propose a possible implementation of our

proposed general principle, and then test our implementation by simulation and a user study.
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Chapter 4

Swarm Simulation Tool

In order to study human interaction with a swarm, we implemented a simulator that

can both run a simulated swarm and allow human interaction with it. While we hope this

research will apply to general swarms, for this study we use a hub-based colony as our model,

which is a swarm that revolves around a central location or hub, such as an ant colony, a

bee colony, or a termite colony. We are interested in hub-based colonies for various reasons,

in particular: 1) Natural hub-based colonies already seem to be task oriented, rather than

spatially oriented, 2) Natural hub-based colonies range in size from hundreds to hundreds of

millions of individuals [8], and 3) mathematical models for hub-based colonies already exist

[5, 22, 49].

The particular hub-based colony we use is a honey bee model inspired by Nevai et.

al. [49], and modified for our purposes. In this chapter, we will describe our model and user

interface, and then introduce our method of human interaction with this swarm.

4.1 Honey Bee Model

When a honey bee colony hatches a new queen, the colony divides with one part staying in

its current location and the other moving to a temporary one, such as a large tree branch,

while specific bees, referred to as scouts, seek a new nest location [49]. This process is known

as swarming. While the majority of the new colony stays at the intermediate hub, the scout

bees search the area for an acceptable new nest site. When a scout discoverers a site, it

assesses its quality, and then returns to the hub to recruit other scouts to assess it further.
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The scout recruits other bees via what is known as the waggle dance, as the scout bee does a

sort of dance to indicate the relative location and quality of the new site. If an observing

scout at the hub (one that is not currently assessing or advertising a site) sees a dancer, it

will then attempt to find the advertised site, assess it itself, and return to recruit. Once

enough scouts are assessing a single site, the bees ‘select’ that site, and return to inform

the colony of the new nest site location. Additional information about honey bee nest site

selection is available in [50–52].

Nevai et al. [49] published a dynamical systems approach to modeling this behavior

and showed the existence of several equilibria. However, while we were originally inspired by

this paper, we instead use an agent based model in an attempt to more accurately represent

swarm behavior with individual robots. The simulated swarm is mostly based around a

honey-bee agent that we implemented as a state machine. A state transition diagram as well

as a brief description of states and transitions for our agents is given in Figure 4.1.

The task this model attempts to accomplish is high quality site selection in a large

environment in limited time. Practical applications of this model are likely few, but could

include any task that requires selecting a single location out of many in a large environment,

where site quality can be assessed by an agent. Two examples are selecting a location at

which to establish a base of operations in a large, unknown environment, and determining

the location most likely to contain iron ore on a mountain. Further applications could be

plausible by making small modifications to the swarm, such as designing the swarm to work

with non-stationary sites, but for simplicity, we work with the model as stated.

Further, given the task this swarm is meant to perform, we assume that the Problem

Holder’s purpose for this swarm is to select the best site in the environment. Therefore,

selection of the best quality site in the environment will be the primary measure we use to

gauge our swarm’s performance for the entirety of this work. We consider a few others for

completeness and because they are interesting, but assume they are all secondary to best-site

selection.
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Explore The agent randomly explores the environment for a finite time, seeking potential
nest sites.

Observe The agent returns to the hub (if not there already) and randomly moves about
the hub watching for dancers and pipers.

Assess An agent in this state is attempting to assess the quality of a site. This may
come from the agent discovering a site during exploring or by observing a dancer
advertise a site.

Dance After an agent discovers a site and assesses it itself, it returns to the hub to
communicate its findings to the rest of the colony through a “dance.” Real honey
bees perform what is called a waggle dance, but we only simulate its effect.

Rest Biological bees need to rest, and we assume robot bees will need to charge or
something similar. Regardless, having agents simply go to the hub and do nothing
for a period of time seems important to the total dynamics of nest selection.

Pipe When the number of agents assessing a site exceeds a threshold, agents begin to
pipe. In real bees this is thought to be done by bees vibrating their wings at a
certain frequency around the bees at the hub. This “warms them up” and they
start doing the same.

Commit When all agents at the hub are piping, the collective concludes that it has made a
choice, and the whole colony moves to the site that was piped for.

Figure 4.1: Honey bee model state transition diagram and table.
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4.1.1 Model Implementation

Our implementation of a swarm that follows these dynamics consists of a custom built state

machine for the agents and an environment class which contains all of the information about

the environment and runs the simulation. The agent implementation closely follows the

previously described model, but includes various parameters and low level behaviors that

define each agent’s movement behavior and how the agent’s interact with each other in each

state. These parameter settings evolved over the course of our research to create the desired

behaviors and performance. For example, the initial settings for convergence often caused the

agents to converge too quickly to sites that were near the hub. While this is normal for the

honey bee model, because nearer sites are more desirable in terms of the swarm’s survivability,

we desired site selection based on pure site quality regardless of location. Therefore, we

implemented additional convergence criteria to slow the swarm’s convergence and increase

the likelihood a higher quality site would be chosen regardless of its proximity to the hub.

The environment class contains all the information about the environment the agents

are in, such as site information and obstacles, the behaviors governing interactions with the

agents and their environments, and the loop running the simulation. It also contains the

code for data collection and communication with the user interface.

4.1.2 Model Assumptions

We make various assumptions about our model both in an attempt to make it more realistic,

and to make it sufficiently simple to work with. For example, an important assumption we

make is that the agents are inexpensive robots. This is reasonable as one of the desirable

qualities of a swarm agent is to be disposable. However, the implications we assume result

are that the agents are incapable of complex processing, their sensors are noisy, they can

only communicate short range, and that they do not carry locating technology like GPS. All

of this limits the abilities of the agents, the interactions available to the Operator, and the

information available to the Operator. The primary consequences we see in this work are
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that we assume that the Operator cannot see agent locations on the user interface, swarm

agents have noisy site assessments, and that the agents only communicate in the hub or if

they are at the same potential nest site. We may also assume that the agent behaviors are

limited, as more complex agents could be designed to effectively perform this task without

any need for human interaction.

4.2 User Interface

The user interface (UI) is set up as a web server, written in Node.js, that allows a user

to initialize simulations in a web browser and then interact with the simulation through a

display within the browser. The display is a 2D representation of the simulated environment

contained in the previously mentioned environment class. The primary elements displayed

include the hub, a radial display providing information about the swarm distribution in space,

and potential site locations. The hub is a yellowish circle in the center of the environment,

and is where all agents are located at the beginning of the simulation. As the simulation

begins, agents leave the hub in different directions and begin to explore the environment

for possible nest sites. Again, while the UI is capable of drawing the agents as they move

throughout the environment, we assume that the agents will be equipped with GPS, and

therefore will not be visible during actual deployments. Therefore, we provide other means

of feedback based only on information the agents report when they leave and return to the

hub. The magnitude of agents leaving in a given direction and returning in each direction is

shown via blue and green dots, respectively, on the radial display (Figure 4.2), which appear

as spikes due to lines of the same color drawn to connect the dots. Sites are displayed as

colored circles, with the color of the site indicating its quality. Site qualities are real numbers

in the left open interval (0, 1], which map to colors between dark red and dark green. The

darker the red, the nearer its quality is to 0, and similarly with green and a quality of 1.

Qualities near 0.5 appear yellow. An example of the user interface is given in Figure 4.3,

which displays the elements just discussed, as well as a possible agent distribution.
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Figure 4.2: Centered on the hub, the radial display indicates the directions agents leave and
enter the hub, and in what quantities. Blue dots connected by blue lines create spikes on
the display in the direction agents leave the hub. The larger the spike, the more agents are
leaving in that direction. The green spikes behave in the same manner, but indicate agents
entering the hub rather than leaving. This provides the Operator with an idea of the current
swarm state using available information from the agents, as they are not equipped with GPS.

Figure 4.3: Example environment. Agents are shown here as bees (not visible to user), potential sites are
shown as colored circles, with more red denoting poorer sites and more green denoting better sites.
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4.2.1 Interface Assumptions and Additional Features

A very important assumption we make regarding our interface is that the site information it

provides is is imperfect. We believe this is a reasonable assumption, as real environments are

subject to change over time and may be inaccurately recorded. Further, if the environment is

perfectly known, there is no purpose in deploying the swarm to seek the best potential site.

This swarm is meant to explore a large area, to discover potential sites in the environment,

and then to choose the best one, The Operator is meant to assist the swarm do so. Therefore,

we assume that for each simulation with human interaction, even if the information shown

on the UI is accurate, this cannot be assumed by the Operator. Having the Operator make

this assumption will be our primary justification for poor Operator input in the following

Chapters.

Because we assume agent locations will not be known (and therefore not shown on

the display) and the agent feedback so far is rather limited, for Chapter 6, we will provide

the Operator with two types of additional agent feedback on the UI that fall within our

agent model assumptions. The first we call agent markers, which display the locations and

qualities of sites being assessed by agents via colored circles (Figure 4.4a) similar to potential

sites but much smaller. The location of a marker indicates the location of a site, and the

color indicates the site’s quality as before. The second is called the best site indicator, which

indicates the best quality report via a large purple circle with the reported quality printed

next to it (Figure 4.4b). This value is “forgotten” every 1,000 time steps to allow newer

reports to take precedence and to overcome excessively noisy reports. We felt that these

two types of feedback, in additional to the radial display, were sufficient for an operator to

understand the current state of the swarm and were reasonable under our model and display

assumptions.

Finally, also for the user study discussed in Chapter 6, to further help human users

to understand the operations of the swarm, we add three things to the user interface: 1. a

site quality color legend, 2. circular site quality indicators, and 3. a timer. The first two are

18



(a) Example of a site with an agent
marker. Note that the marker and site
are displaying the same quality.

(b) Example of the best site indicator
around an agent marker.

Figure 4.4: Examples of UI feedback.

(a) Example of site with with
circular quality indicator.

(b) Site quality legend and timer. Located just under the
swarm display.

Figure 4.5: UI additions for user study.

to assist the human in comparing site qualities, as it can be difficult to differentiate similar

site qualities based on color. The legend is a simple bar showing the color change from site

quality 0.0 to site quality 1.0. The circular site quality indicators are thick black arcs around

the outside of sites, whose circumference is proportional to the site’s quality. Lastly, the

timer is provided to show the users how long they have been in the simulation. An example

of a site with the circular indicator, as well as an image of the timer and legend, are shown

in Figure 4.5.

4.3 User Interaction – Beacons

While the swarm is relatively capable on its own, it does not always find the best quality site

in its initial exploration, nor does it always choose the best site if it is found. This is partly

by design. Optimizing the swarm and, as mentioned in Section 4.1.2, implementing more

complex swarm behaviors practically eliminate the need for human input for this task. By

keeping the swarm simple, we adhere to our assumption of inexpensive robots and provide a

purpose for a human operator. This allows us to study how altering Operator influence in

the interaction scheme affects swarm performance without the difficulties of a more complex
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swarm system. Thus, for our imperfect swarm, the Operator can assist the swarm through

additional exploratory behaviors, additional reasoning about the environment, and by pushing

the swarm to converge to higher quality sites.

The method of human interaction that we chose to use was beacon placement. Beacons

are placed in the environment by the Operator and interact with the agents that come within

its radius of effect. Beacon placement is a relatively simple method for interacting with

swarms, and has been used by others studying human-swarm interaction [53, 54]. In our case,

the user places a beacon at the desired location in the environment via a mouse click. The

beacon is displayed as a green circle without a black lining, as the sites have, and is slightly

transparent. The size of the circle shows the beacon’s radius of effect. The radii of effect

of the beacons will usually be preset for each simulation we discuss, but, in principle, they

could be chosen by the Operator at the time of placement.

The primary effect we chose our beacons to have is attraction towards the beacon’s

center. The idea is to allow the operator to direct the agents towards areas that he or she

believes are worth exploring or contain a high quality site. As with the swarm, beacon

behaviors evolved over the course of our research. For this work we will only discuss two

particular sets of behaviors, referred to as Attractor 0 and Attractor 1. Descriptions of the

two sets of behaviors are as follows:

• Attractor 0: When an explorer agent enters the radius of effect of Attractor 0, with

probability 0.8, the agent will be attracted to the center of the beacon, and all of its

movements become biased towards the beacon’s center. The resulting effect is that most

agents that enter the area of effect wander towards the center with small variations,

and once at the center start wandering around the immediate center until the beacon

expires. If a site is found within the beacon’s radius of effect, the agent becomes an

assessor and the beacon no longer has effect on it.

• Attractor 1: Attractor 1 has the same base behavior as Attractor 0, but has an

additional effect on agents in the hub. For each time step a beacon exists in the
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environment, there is a 30% chance that the hub will convert an observing agent (also

in the hub) to a special type of exploring agent and send it towards the placed beacon.

The sent agent’s exploring behavior is less random, biased towards moving forward,

and the length of time it spends exploring is reduced. The sent agents also will ignore

sites not in the radius of effect of a beacon, thus increasing the likelihood that the area

the Operator is interested in is explored.

While there are many different methods of human interactions possible, we chose these

because of their simplicity, because we believe they provide near-balanced influence to the

Operator, and because their similarity simplifies the comparison of influence. We argue that

Attractor 1 provides the Operator with more influence than Attractor 0, giving us at least

two levels of influence to consider. Seeing why this is the case is relatively straightforward.

Attractor 0 only operates on exploring agents that are exploring on their accord, while

Attractor 1 creates additional exploring agents and biases their initial movements towards

itself. The difference in influence becomes especially obvious when noticing that, later in

the simulation, exploring agents are very rare due to the assessing and recruiting processes.

Therefore, Attractor 0 tends to only have influence towards the beginning of the simulation,

while Attractor 1 maintains some influence until the swarm converges. In the next chapter

we provide results demonstrating how Attractor 0, although seemly too low influence to be

very useful, allows the swarm to perform better than with Attractor 1.

21



Chapter 5

Development and Early Testing

In this chapter we provide initial simulation results that lead us to propose a theoretical

design principle for appropriately moderating Operator influence. We then propose an

implementation of this principle for our swarm model and interaction method, and show that

it improves performance over Attractors 0 and 1 alone.

5.1 Model Characterization

To better understand the swarm, we evaluate it’s ability to select the best site in the

environment under various circumstances. In particular, we exam (a) how the number robots

in the swarm and (b) the distribution of potential sites in the environment impacts the

swarms ability to find the site with the highest quality.

5.1.1 Quantity Increases Performance

We experimented with various numbers of agents in the swarm in two environments, shown in

Figures 5.1 and 5.2, with equidistant sites and various site qualities. Experiments consisted

of 100 simulations for each environment/agent-number combination. The results are given in

Figures 5.3 and 5.4. These results illustrate that having more agents increases the likelihood

the swarm selects the best site. However, more agents also increase the time it takes for the

swarm to make a choice. This is because more agents search the environment more thoroughly

and with more redundancy, but more agents make it more difficult for the convergence criteria

of the swarm to be satisfied.
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Figure 5.1: Environment 1 in agent quantity experiment.

Figure 5.2: Environment 2 in agent quantity experiment.
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Figure 5.3: Site choices for two different environments, with equidistant sites of various
qualities, and six difference numbers of robots.

Figure 5.4: Convergence rates for two environments and six different numbers of robots.

24



Figure 5.5: Environment with 6 sites with qualities evenly distributed between 0.01 and 0.9.

5.1.2 Effects of Site Distribution

The distribution of sites throughout the environment strongly affects the performance of

the swarm. Three particular characteristics of site distribution that we noticed regard the

number of sites in the environment, the distance the sites are from the hub, and if sites are

blocked (by line of site to the hub) by other sites. We tested the swarm in environments with

6, 12, 24, and 48 equidistant sites with qualities evenly distributed between 0.01 and 0.9.

Environments with 6 sites and 48 sites are shown in Figures 5.5 and 5.6 respectively. Each

experiment was performed with 50 robots, and consisted of 100 simulations. The results,

given in Figures 5.7 and 5.8, show a steady increase in convergence time and a steady decrease

in best site selection as the number of sites increases.

We also varied the distances of sites from the hub. In one environment (Figure 5.9)

we placed 20 sites evenly distributed around the hub and at equidistance from the hub. In a

second environment (Figure 5.10), we moved the best site 150% farther from the rest of the
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Figure 5.6: Environment with 48 sites with qualities evenly distributed between 0.01 and 0.9.

Figure 5.7: Swarm site selection results for different numbers of sites, including second and
third best site selection.
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Figure 5.8: Swarm convergence rate results for different numbers of sites, including second
and third best site selection.

sites. A swarm with 100 agents exhibited a 52% decrease in best-site selection in the second

environment compared to the first, and a 49% increase in average convergence time.

We did a similar test with the environment in Figure 5.11, with and without the

(yellow) blocking sites, which obscure the higher-quality sites from the hub. This makes the

higher-quality sites more difficult for the agents to find since an agent returns to the hub

once it encounters a site to report its quality. The results are given in Figures 5.12 and 5.13.

In all, the blocking sites reduced the frequency of best site selection from 95% to 55%, and

increased the average convergence time by 26%.

We see that when these environment characteristics are combined in more complex

environments can drastically effect swarm performance. For example, results for site selection

in the environments displayed in Figures 5.14 and 5.15 are given in Figure 5.16, and show

that, despite consistent selection of the top three quality sites, best site selection performance

for the swarm alone is less than 25%.

These initial results illustrate that this swarm, with a sufficient number of agents, often

identifies the best site in the environment under ideal environmental conditions. However,

27



Figure 5.9: 20 equidistant sites with qualities evenly distributed between 0.01 and 0.9.

Figure 5.10: Environment in Figure 5.9, with the best site 150% farther from the hub.
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Figure 5.11: Environment with higher-quality (green) sites obscured from the hub by lower-
quality (yellow) sites.

Figure 5.12: Swarm site choice results for the environment in Figure 5.11 with and without
the yellow “blocking” sites.
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Figure 5.13: Swarm convergence results for the environment in Figure 5.11 with and without
the yellow “blocking” sites.

Figure 5.14: Complex environment with sites in a grid pattern. Site quality increases from
left to right and from bottom to top.
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Figure 5.15: Complex environment with the best site blocked by poor quality sites in the
bottom left, the second best site in the top right, and 0.7 and 0.8 quality sites closely
surrounding the hub.

Figure 5.16: Swarm site choice results for the environments in Figure 5.14 and Figure 5.15.
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Figure 5.17: Environment with environmental hazards (traps) around the highest quality
site.

when the swarm has lower numbers of agents or the environmental conditions are not ideal,

the swarm often fails to find the best site.

5.2 Early Results

To justify that moderating human influence could be valuable, we tested a scenario where

we use Attractors 0 and 1 in an environment with potential hazards. We implemented

environmental hazards we call “traps” in the environment, which kill or destroy agents that

enter them. We then simulated the effect of an operator providing poor input to the swarm

by attempting to attract agents to traps.

We experimented with this behavior in the environment shown in Figure 5.17 with 100

agents. The best site in the environment is the lower left site, which is essentially surrounded

by traps. Because assessing agents travel straight from the site to the hub, it is impossible

for agents to go from the site to the hub, or to choose it. However, we assume that the

operator, with knowledge of the sites but not the traps, consistently places beacons over the
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Figure 5.18: Regardless of when the beacon begins being placed with Attractor 0, only about
21% of the swarm agents enter the trap. However, with Attractor 1, if the beacon is placed
before the swarm has essentially converged, up to 80% of the agents enter the trap, at which
point the simulation terminates.
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best site from some point in the simulation until the simulation ends (we called this Infinite

Persistence). The results are given in Figure 5.18.

In this experiment, higher influence (Attractor 1) leads the simulated operator to

usually kill the entire swarm instead of choosing a lower quality, but obtainable, site, while

the interaction scheme with lower influence (Attractor 0) only resulted in the loss of a few

agents. We further argue that our swarm was not designed to deal with environmental

hazards, so this environment violates an assumption of the Designer, and poor Operator

input with higher influence made the consequences worse than the same Operator behavior

with lower influence. Thus, it seems that the lower-influence setting may be preferred.

However, in other simulations we observed that Attractor 0 provided too little influence

to allow the Operator to explore the environment and push the swarm to a better site, even

if the Operator knew of one that the swarm did not. This is mostly because the beacons only

affect agents in the exploring state, which becomes rare as the simulation progresses and the

agents spend most of their time assessing sites, dancing, and observing. On the other hand,

Attractor 1 provided enough influence to allow the Operator to force the swarm to choose a

sub-optimal site, even when the swarm was assessing the optimal one. One example of this

is shown by the results in Figure 5.19, which consists of the simulated Operator dropping

beacons on a single site for the duration of the simulation, done 100 times for each site. This

Operator behavior may occur if the site quality information on the UI is incorrect, and either

there is no feedback from the swarm, or swarm feedback is ignored. Because of the simplicity

of the environment (Figure 4.3, all four sites are found 100% of the time. However, with

Attractor 1, the swarm always chose the site on which the Operator placed beacons.

5.3 Increasing Performance By Moderating Influence

In context of the previously defined parties of interest, we can interpret the previous results

as the Problem Holder desiring a swarm that discovers and selects the best quality site in an

environment, the Designer used a modified honey bee model to develop a swarm to do that,
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Figure 5.19: Site selection results with the Operator consistently placing beacons on a single
site for the whole simulation.

and the Operator uses beacons to assist the swarm and increase its performance. However,

an assumption of the Designer was violated by the environment containing hazards, and the

Operator, through poor decision making or lack of information, instead of increasing the

swarm’s performance, decreases it. As previously mentioned, two approaches to overcome

this problem would be to further train the Operator to better decision making and plan for

environmental hazards, or to augment the UI in some way as to achieve the same effect.

Further, one may argue that the Designer could attempt to make changes to the swarm itself

in order to overcome these problems. In this case, with such a simple swarm and simple

task, it would likely be easy to do any of these, but we would like to attempt to increase

performance by instead simply modifying the interaction mechanism between the Operator

and the swarm.

There are various ways to modify the Operator’s influence over the swarm, including

setting beacon delays, beacon durations, and the number of beacons the Operator is allowed

to use. We experimented with all of these, but also tried implementing our proposed principle,
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Distance Number of Agents
> 400 5

(300, 400] 4
(200, 300] 3
(100, 200] 2
< 100 1

Table 5.1: Number of agents the IVAM allows to leave the hub in one direction, based on the
distance the beacon is placed from the hub. Note that distance is unit-less.

Feedback Based Dynamic Influence, by implementing software that monitors agent information

as they enter and exit the hub, and then dynamically adjusts what actions the Operator can

take and how the agents respond to them. The result is a constant varying of influence over

the swarm depending on the information reported by agents and the actions being taken by

the Operator, but intended to keep the influence balanced, or in the sweet spot in Figure 3.1.

We call this software the Influence Verification and Adjustment Module, or IVAM. While we

tried various IVAM behaviors, the primary behavior we chose the IVAM to exhibit was to only

allow a certain number of agents to leave the hub in a given direction when using Attractor

1, until agents leaving in that direction return to the hub. The number of agents allowed to

leave in a direction depends on the distance from the hub the beacon is placed, and is given

in Table 5.1. The different number of agents based on distance is to compensate for sites

being near to the hub. Beacons placed near the hub are easily found by any agents leaving

the hub, resulting in higher influence for close beacons than for farther, more difficult to find

beacons. We believe that, by restricting agents in this way, we provide enough influence to

the Operator to provide good input at any distance, but restrict the influence enough that

the swarm will overcome poor input, even for nearby, low-quality potential sites.

5.3.1 Preliminary IVAM Results

Note that the IVAM immediately fixes the problem with environmental hazards by behaving

like Attractor 0 once a few agents die in response to Operator input. So for environments

in which the swarm would overcome the traps and choose a site without poor Operator
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Figure 5.20: Results for four-sited, simple environment with IVAM algorithm, for various
delays between beacon placement.

input, with the IVAM, they will now usually choose a site even with poor Operator input.

Additionally, we repeated the simulations for the environment in Figure 4.3, in which we

simulate the Operator stubbornly pushing the swarm to a single site, for each site in the

environment. The results, shown in Figure 5.20, show that, despite the Operator attempting

to force the swarm to choose poorer quality sites, the swarm more often than not chooses the

best site. Thus, the IVAM balances influence, supporting the desires of the Problem Holder,

without Designer modifications to the swarm, and despite poor Operator behavior.
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Chapter 6

User Study

While these results are promising in simple environments with simulated operators,

the success of the IVAM depends on its performance with actual human operators, and in

more complex environments. Therefore, we perform a user study to confirm our results. We

describe the user study in this chapter, and provide the results in Chapter 7.

6.1 User Study Design

In order to further compare types of influence, we define new interaction schemes that

arguably have different levels of influence, making influence the first independent variable

in our study. We also include an additional independent variable that we call information.

Information refers to the accuracy of the site information shown on user interface. By

displaying incorrect site information, we force the human to rely more on agent feedback or

potentially provide input that is detrimental to swarm performance. Even with feedback, the

incorrect information can confuse human operators, and impact their decision making. Thus,

information improves our ability to test human performance under various conditions and

with poor human input.

For each independent variable, we designate three possible values. The values for

influence are High, Low, and IVAM, while the three possible values for information are

Perfect, Missing, and Mislabeled. The values of influence, which will be defined later,

vary between subjects, while the values for information, defined in Table 6.1 vary within

subjects. The result is a 3x3 user study.
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Information Type Description
Perfect The information displayed to the user is the same as the true

environment.
Missing Some sites are not displayed to the user, this always includes

the best quality site in the environment. Qualities of sites
shown are accurate.

Mislabeled All site locations are shown accurately, but most or all site
qualities are incorrectly displayed.

Table 6.1: Description of information settings.

Each user’s experience consists of three simulated deployments. Each deployment is

in a different environment and is displayed with a different type of information. However,

the interaction scheme (influence type) is constant for all three. Environments are designed

to be difficult for the swarm to find the best site, but include patterns that the human can

potentially recognize and use to provide information outside of the swarm’s sensing and

reasoning capability (environments are shown in the Appendix). This helps provide the

Operator with a purpose in our study. Each simulation is given a time step limit of 65,000

time steps and ran at 70 time steps per second, resulting in a time limit of 15 minutes and 28

seconds per simulation. If the swarm does not converge before the time limit, it is recorded

as a failure to converge.

While each user experiences the same environments in the same order, we alter the

order of information types for the environments between users. Three types of information

allow for six possible orderings of information, and with the three influence types, there are a

total of 18 combinations of influence-information orderings for the three environments. We

generate the user study by creating all 18 combinations, and then pseudo-randomly assigning

one to each of 18 users. Doing this twice results in a total of 36 users required to complete

the study, and 108 individual data points.

We have each user use Attractor 1, and isolate the differences between influence

variables to the number of beacons allowed to be placed and whether or not the IVAM is
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Number of Agents 100
Simulation Speed 70 ts/s
Simulation Duration 65,000 ts
Beacon Type Attractor 1
Beacon Radius 75
Beacon Duration 500 ts (≈ 7.1s)
Probability Agents Ignore a Beacon 0.2

Table 6.2: Constant simulation parameters across all variables. Note that ts stands for “time
steps,” and s for “seconds.”

enabled. Table 6.2 shows the default simulation parameters for all interaction schemes, while

the specific influence variables are set as follows:

• High: 8 beacons may be placed simultaneously.

• Low: 1 beacon may be placed at a time.

• IVAM: 1 beacon may be placed at a time, and IVAM is enabled.

We argue that the three influence types are obviously different, and are shown above in

descending order of influence, i.e. High provides the Operator with the most influence, and

IVAM with the least. However, because of the IVAM’s design, we hypothesize that it will

provide enough influence to allow the human to help the swarm when it receives useful input,

and sufficiently reduce influence so that the swarm can overcome poor human input.

6.2 Assessing Performance

We continue to assume that the performance measure the Problem Holder has designated is

whether or not the best site is chosen for a given deployment. Therefore, for the user study,

our primary performance measure is the ratio of simulations where the best site was chosen

to the total number of simulations ran for each influence-information pair. We also consider

the same ratio for the influence variables alone.

In addition to the above performance measure, we record swarm agent locations,

beacon placement, best site indicator information, and convergence times. In Chapter 7,
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we use this information to perform a qualitative analysis of user behavior in cases of non-

convergence, and examine performance in terms of near-best-choice selection, beacon usage,

and convergence times.

6.3 Expected Results

To support our theory, the IVAM needs to demonstrate that it appropriately balances

influence for general environments and Operator behaviors. Our user study incorporates

multiple environments with differing information accuracy, and behaviors from 36 different

human operators. If the performance measures previously described are higher for the IVAM

influence type than for the others, this suggests that the IVAM successfully and appropriately

keeps Operator influence balanced for our human-swarm system, and provides evidence for

our theory. Otherwise, the IVAM is providing too much or too little influence to the Operator,

and our theory and implementation will require further examination.

6.4 Algorithmic Considerations

While the IVAM is meant to implement Feedback Based Dynamic Influence, because we

attempted to isolate differences in influence, some IVAM functionality was omitted or

integrated into the UI for all influence types. For example, originally the Operator could

set the size of the placed beacons and the IVAM would restrict the size options based on

Operator choices and the state of the swarm. But for the user study, we fixed the size of

beacons and eliminated the need for that functionality. The end result is the IVAM behavior

restricted to only what was given in Chapter 5.3.

6.5 Simulation Results

Before running the user study with human Operators, we elected to test the user study with

simulated operators. To do this, we generated the user study for 90 users, using the same
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Environment Ratio Probability
1 39/100 0.39
2 38/100 0.38
3 26/100 0.26

Overall 103/300 0.34

Table 6.3: Baseline results for swarm choosing best site, by environment and combined.

methods previously described, and implemented two simulated operator behaviors. We refer

to the two operators as AI 1 and AI 2, and assign them the following behaviors:

• AI 1 (poor input): Place beacons on the best site given in the initial information until

convergence or the end of the simulation.

• AI 2 (better input): Keep a belief about the best site in the environment, starting with

the information provided at the beginning of the simulation, and update that belief

based on swarm agent reports. If at any time the best known site indicator reports

a site with a higher quality than the currently believed best, update the best known

to that marked by best known site indicator. Drop beacons on best known site until

convergence, or until the simulation ends.

Both AIs begin beacon placement 150 time steps (about 2.1 seconds) into the simulation.

AI 1 then attempts to place a beacon every 150 time steps for the rest of simulation, and AI 2

attempts to place beacons at the same rate until 30,000 time steps have past, at which point

it attempts every 225 (about 3.2 seconds). This slightly varies the delay between beacon

expiration and beacon placement for the agents.

We also used simulation to establish baseline performance for the swarm without

human input. Those results are provided in Table 6.3. Results for the user study with the

two simulated operators are given in Table 6.4, and Table 6.5. Again, the performance metric

we used was whether or not the best site was chosen in each simulation.

For AI 1, in the case of Perfect information, the persistence of the operator easily

drives the swarm to the best site for all influence types, with the exception of one case with
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Infl\Info Perfect Missing Mislabeled Totals
High 30/30 (1.0) 0/30 (0.0) 0/30 (0.0) 30/90 (0.33)
Low 30/30 (1.0) 0/30 (0.0) 1/30 (0.03) 31/90 (0.34)
IVAM 29/30 (0.97) 7/30 (0.23) 11/30 (0.37) 47/90 (0.52)

Table 6.4: Simulated user study results for AI1.

Infl\Info Perfect Missing Mislabeled Totals
High 20/30 (0.67) 11/30 (0.37) 10/30 (0.33) 41/90 (0.46)
Low 22/30 (0.73) 6/30 (0.2) 10/30 (0.33) 38/90 (0.42)
IVAM 28/30 (0.93) 11/30 (0.37) 18/30 (0.6) 57/90 (0.63)

Table 6.5: Simulated user study results for AI2.

IVAM. However, in the cases of both Missing and Mislabeled information, the IVAM allowed

the swarm to overcome the operator’s push towards a poor quality site and choose the best

one in 18 out of 60 simulations, or 30%, which about as well as the swarm performs without

any Operator input according to Table 6.3.

AI 2’s input is better, improving performance over AI 1 with both incorrect information

types and with both High and Low influences, but still imperfect. AI 2 caused the swarm

to choose poorer quality sites in 1/3 of the simulations with Perfect information and High

and Low influences. With IVAM influence, AI 2 performed almost just as well as AI 1 with

Perfect information, and did just as well or better than High and Low influence and incorrect

information. We believe this is this case for two reasons. The first is that the IVAM prevented

the swarm from overreacting to the excessive input from AI 2, as excessive input can cause

the swarm to fail to converge within the time limit (further discussed in Chapter 7). AI 2

failed to converge in almost 1/3 and 1/4 of the simulations ran with High and Low influences,

respectively (see Table 7.6). The second reason is that the IVAM allowed the swarm to

maintain focus on the best quality site, even when the operator did not believe it was the

best and focused on another.

In both cases the results suggest that the IVAM algorithm helps maintain or increase

swarm performance compared to the other two influence types. This is a good indication that

the IVAM algorithm is balancing influence as desired. Not only does it solve the problem with
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traps, but it also allows the swarm to take advantage of useful input, and at least somewhat

overcome poor input in the absence of environmental hazards. These results are encouraging,

and provided us with sufficient motivation to continue with the user study.

6.6 Format

The user study consisted of a 15 minute slide-show presentation informing the user of the

purpose of the study, how the user would contribute, an explanation of the swarm model and

the user interface, instruction on how beacons worked and how to place them, and how to

understand the various types of agent feedback displayed on the interface. The task they were

instructed to perform was to assist the swarm in finding and choosing the best quality site in

the given environment. This instruction was provided once at the beginning of instruction,

and once at the end. Users were informed about the various sources of imperfection in the

system, particularly noisy agent reports, that the radial display was restricted to pointing

to a finite number of directions, and that the site information displayed may be inaccurate.

They were also informed about the time limit, and instructed that the simulation would end

in failure somewhere between the 15 and 16 minute mark. At the end of the instruction they

were also provided with an overview of the whole study process and instructed that they

were allowed to ask questions at any time during the study.

After instruction, users were asked to complete a short questionnaire, after which they

began the study with a practice simulation. In this simulation, the users were allowed to

interact with the swarm using their assigned influence type, in the environment shown in

Figure 4.3, with all agents shown, and with the assurance that the environment they were

in was displayed correctly. After the practice simulation, each user performed the three

simulations in their assigned information order, and then filled out a post-study questionnaire.
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Figure 6.1: Distribution of user ages.

6.7 User Demographics

36 users were recruited via campus advertising and word of mouth. Most participants were

students from the BYU community. Out of all participants, 30 were students, 20 were male,

16 were female. 10 of the students were in Computer Science or Computer Engineering,

while the rest came from various other fields ranging from open major to Physiology and

Developmental Biology. The age demographics are given in Figure 6.1.
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Chapter 7

Analysis

In this chapter, we provide and discuss the results of the user study described in

Chapter 6. First we provide the immediate results using the measure provided by Problem

Holder as described in Chapters 4 and 6, then we provide a brief statistical analysis of those

results and some qualitative analysis of user behavior. We finish the chapter by analyzing

the results using decision trees, and considering some alternate measurements that are also

mentioned in Chapter 6.

7.1 Primary Results

The direct results of the study are shown in Table 7.1. We observe that the IVAM was

outperformed for each information type, and overall, compared to the other influence types,

which contradicts our hypothesis. In the case of Perfect information, it seems that the IVAM

was perhaps too restrictive, or too low influence, as Low influence outperformed it. For both

imperfect information types, High influence performed the best. This suggests that High

influence is the best choice for imperfect information, Low is for Perfect information, and

IVAM should not be used at all. Although the IVAM influence dealt effectively with the

challenges discussed in Chapter 5 and seemed to perform best with the simulated operators,

it ultimately failed with human operators and the current user interface.
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Infl\Info Perfect Missing Mislabeled Totals
High 6/12 8/12 11/12 25/36
Low 11/12 4/12 7/12 22/36
IVAM 9/12 4/12 5/12 18/36

Table 7.1: User study results.

Infl\Info Perfect Missing Mislabeled Totals
High 0.5 0.67 0.92 0.69
Low 0.92 0.33 0.58 0.61
IVAM 0.75 0.33 0.42 0.5

Table 7.2: User study results in decimal notation.

7.1.1 Comparison to Baseline and Simulation Results

Displaying the results in Table 7.1 in decimal notation, we can easily compare swarm

performance with human operators with swarm performance alone (Table 6.3). Over all

possible environments, we estimate that the frequency that the swarm converges to the best

site is about 0.34. Table 7.2 shows that the human-swarm system chooses the best site greater

than or equal to 33% of the time, suggesting that the human operators, on average, allowed

the swarm to converge just as often or more so than the swarm would alone. The cases where

the human-swarm system failed to perform better are those where Missing information was

combined with Low and IVAM influence types. We speculate why this may be the case in

Section 7.4.

We may repeat the above analysis with the simulated results in Chapter 6. The decimal

notation results for the two simulated behaviors were already given in Tables 6.4 and 6.5, but

are shown together in Table 7.3. For Perfect information, both simulated operators improve

the frequency that the best site is chosen. For imperfect information, AI 1 almost never

chooses the best site unless using the IVAM influence type. With Mislabeled information, the

IVAM brings the frequency slightly above baseline, and with Missing, the IVAM frequency

of convergence to the best site–though higher than those of High and Low influence–is only

23%, much less than baseline. In other words, AI 1’s behavior is terrible for the swarm when
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Infl\Info Perfect Missing Mislabeled Totals
AI 1

High 1.0 0.0 0.0 0.33
Low 1.0 0.0 0.03 0.34
IVAM 0.97 0.23 0.37 0.52

AI 2
High 0.67 0.37 0.33 0.46
Low 0.73 0.2 0.33 0.42
IVAM 0.93 0.37 0.6 0.63

Table 7.3: Simulated operator results in decimal notation.

Effect Num DF Den DF F Value Pr > F
Influence 2 66 1.26 0.2906
Information 2 66 3.55 0.0344
Infl*Info 4 66 3.02 0.0237

Table 7.4: Type III Test of Fixed Effects results.

information is poor, and AI 2’s seems to improve or maintain performance over baseline–even

with imperfect information–in every case but one; that of Missing information combined with

Low influence.

Comparing these results with those of the human operators suggest that the human

operators likely did not behave like AI 1 very often, if ever, and produced a somewhat

opposite pattern of results as AI 2. The only similarity seems to be with Missing information

and Low and IVAM influence, where both AI 2 and the human operators perform poorly.

7.2 Statistical Analysis

We use the GLIMMIX procedure from the SAS statistical software to examine the statistical

significance of our results. The results for the Type III Test of Fixed Effects are provided in

Table 7.4. From these results, we observe that influence was not statistically significant alone,

but information was, and that there is an interaction effect between influence and information.

Therefore, influence should not be considered independently from information, but we may

consider influences within each information type or between influence-information pairs.

48



(Infl, Info) 1 (Infl, Info) 2 t Pr > t
(H, ML) (H, P) 2.04 0.0453
(H, ML) (I, ML) 2.23 0.0289
(H, ML) (I, MS) 2.50 0.0149
(H, ML) (L, MS) 2.51 0.0145
(I, ML) (L, P) -2.26 0.0271
(I, MS) (I, P) -2.01 0.0486
(I, MS) (L, P) -2.53 0.0139
(L, MS) (L, P) -2.63 0.0107

Table 7.5: Statistically significant differences (using p = 0.05) between influence-information
pairs. Note that H=High, L=Low, I=IVAM, P=Perfect, MS=Missing, and ML=Mislabeled.

Out of the 36 possible pairwise comparisons, only eight show statistically significant

differences (i.e. p ≤ 0.05). Those significant comparisons are given in Table 7.5, but most are

easy to identify from the raw results simply by noting that High influence with Mislabeled

information and Low influence with Perfect information scored very high compared to other

influence-information pairs. The only slightly less obvious comparison is IVAM influence with

Missing information and IVAM influence with Perfect information.

7.3 Non-convergence Analysis

Examining our data shows that a significant number of failures to choose the best site were

caused by the swarm failing to converge in the allotted time. This is the case with both

the simulated operators and the human operators. The exact results are given in Table 7.6.

In the case of the simulated operators, the results are not particularly surprising, as the

AIs react very quickly and are always placing beacons. For these cases, the IVAM appears

to improve performance by allowing the swarm to more frequently converge to a site in

the presence of excessive operator input. However, in the case of human operators, IVAM

influence had practically the same number of failures from non-convergence as High influence.

This further suggests that the IVAM is failing to appropriately balance influence, as we expect

an appropriate balance to prevent failure due to non-convergence.
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Infl\Info Perfect Missing Mislabeled Totals
AI 1

High 0/30 0/30 10/30 10/90
Low 0/30 0/30 12/30 12/90
IVAM 0/30 3/30 5/30 8/90

AI 2
High 10/30 7/30 8/30 25/90
Low 8/30 4/30 5/30 17/90
IVAM 1/30 3/30 0/30 4/90

Human
High 4/12 2/12 1/12 7/36
Low 0/12 0/12 1/12 1/36
IVAM 1/12 3/12 2/12 6/36

Table 7.6: Non-convergence counts for influence and information variables.

In order to better understand this, we reviewed the data saved from the simulations

in which the failures occurred. As part of the study, we recorded agent locations, beacon

placement, and best site indicator information at each time step, which we can play back to

observe user behavior. In most cases of High influence, excessive input was indeed the culprit

of the failure, whether by consistently placing beacons over the best site or by consistently

sending agents to assess multiple sites. This was particularly a problem in Environment

2 (A.2) where centered beacon placement over the best site allows agents to assess the

surrounding six sites as well as the best one, making it difficult for the swarm to meet their

threshold value of assessors at a single site. However, while some of the non-convergence

cases with the IVAM were caused by having the agents consistently assess too many sites, it

appears that a few were the result of the user not having enough power to push the swarm

to decide between two equal, or near equal, quality sites. This occurred when the best site

found was equal, or near equal, in quality to the next best site. The swarm seemingly reached

a type of equilibrium between the two sites, and would not reach the convergence criteria for

either before the time limit. With the IVAM influence, even consistent beacon placement on

one of the sites was insufficient to push the swarm to choose it.
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Infl\Info Perfect Missing Mislabeled Totals
High 9/12 9/12 11/12 29/36
Low 12/12 4/12 7/12 23/36
IVAM 9/12 5/12 5/12 19/36

Table 7.7: Possible user study results if the users had been provided with additional training
regarding when to discontinue input to the swarm.

From this we draw two conclusions. The first is while human operators are more likely

to realize that too much input is a bad thing for this swarm, it is still a problem for humans

that the IVAM could potentially solve. The second is that the IVAM provided too little

influence to allow the human to push the swarm out of an equilibrium assessing two similar

quality sites and converge to one or the other.

A final observation we noted from the non-convergence results was the number of cases

where the user would likely have converged to the best site given that they knew reducing

their input would allow the swarm to converge. We intentionally omitted that information

from the instruction to see if the users would express this behavior, and some did. However, if

that instruction had been provided, one plausible outcome would be the results in Table 7.7.

This is based on whether the user found the best site in the environment, and if focus on it

was maintained through the end of the simulation. The difference is most notable with High

influence and Perfect information and in the totals, but the conclusion is the same; High

influence performs best for imperfect information and Low for perfect information.

7.4 Qualitative Analysis

Something we noticed by examining the behavior of the users with different interaction

schemes and comparing it with collected data was the utility of having multiple beacons.

Users given High influence were much more liberal with their beacon use, and were more apt

to explore the environment and confirm the displayed site information. Users with a single

beacon (Low and IVAM) were quick to make their choice and attempt to convince the swarm

to choose a site. This is particularly important because choosing the best site is strongly
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dependent on whether the swarm finds the best site during its initial exploration. If it does,

between the agent reports and the best quality site indicator, users would notice it early in

the simulation and attempt to drive the swarm there. If not, whether the best site was found

was determined solely on users’ exploration decisions. Thus with High influence, users were

more likely to explore, and more likely to find the best site when not initially discovered by

the swarm. In particular this explains the difference in performance between High influence

and the other influence types with Missing information.

Another thing we observed was that most of the time taken by the users was usually

spent trying to convince the swarm to make a choice, even when that choice was the best site.

A legitimate question arises regarding the utility of letting the swarm make the final decision,

instead of somehow expressing the confidence of the swarm’s current choices and allowing

the user to decide to have them converge before reaching their assessor threshold. From a

practical standpoint, for most of the simulations in our study, users would have been been

able to save a significant amount of time by being provided with this option, with minimal

change to site choice performance.

7.5 Decision Tree Analysis

A brief but interesting analysis we performed was to train a decision tree model to our data

and examine what it learned. We trained a DecisionTreeClassifier from sklearn’s [55]

library with various parameters and achieved fairly consistent results. An example of the trees

we trained is shown in Figure 7.1. Information is mapped to integers such that Perfect=1,

Missing=2, and Mislabeled=3, while influence is mapped similarly such that High=1, Low=2,

and IVAM=3. We see in Figure 7.1 that Perfect information is the top node, and that High

influence is the next node in both branches. This reinforces the statistical analysis’s claim

that the amount of influence the Operator is given depends on the quality of information

provided. It also suggests that the most important determining factors for success in our

study were Perfect information and High influence. Another interesting feature from the
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Information <= 1.5
gini = 0.479

samples = 100.0%
value = [0.398, 0.602]

class = Success

Influence <= 1.5
gini = 0.401

samples = 33.3%
value = [0.278, 0.722]

class = Success

True

Influence <= 1.5
gini = 0.497

samples = 66.7%
value = [0.458, 0.542]

class = Success

False

gini = 0.5
samples = 11.1%
value = [0.5, 0.5]

class = Fail

Influence <= 2.5
gini = 0.278

samples = 22.2%
value = [0.167, 0.833]

class = Success

gini = 0.153
samples = 11.1%

value = [0.083, 0.917]
class = Success

gini = 0.375
samples = 11.1%

value = [0.25, 0.75]
class = Success

Information <= 2.5
gini = 0.33

samples = 22.2%
value = [0.208, 0.792]

class = Success

Information <= 2.5
gini = 0.486

samples = 44.4%
value = [0.583, 0.417]

class = Fail

gini = 0.444
samples = 11.1%

value = [0.333, 0.667]
class = Success

gini = 0.153
samples = 11.1%

value = [0.083, 0.917]
class = Success

Influence <= 2.5
gini = 0.444

samples = 22.2%
value = [0.667, 0.333]

class = Fail

Influence <= 2.5
gini = 0.5

samples = 22.2%
value = [0.5, 0.5]

class = Fail

gini = 0.444
samples = 11.1%

value = [0.667, 0.333]
class = Fail

gini = 0.444
samples = 11.1%

value = [0.667, 0.333]
class = Fail

gini = 0.486
samples = 11.1%

value = [0.417, 0.583]
class = Success

gini = 0.486
samples = 11.1%

value = [0.583, 0.417]
class = Fail

Figure 7.1: An example of a decision tree trained using our user study results.

DecisionTreeClassifier object is the ability to output feature importance. The sklearn

website states that “The importance of a feature is computed as the (normalized) total

reduction of the criterion brought by that feature. It is also known as the Gini importance.”

[56]. For the decision tree in Figure 7.1, the feature importance is roughly 0.7 and 0.3 for

influence and information respectively. Using a RandomForestClassifier instead, with 100

trees and a max depth of four, gives a feature importance of roughly 0.57 and 0.43 for influence

and information, respectively. This suggests that, while influence and information are highly

related in our study, influence is possibly playing a more important role in determining the

end performance outcome than information.

7.6 Other Measurements

While we assume that the Problem Holder’s metric for performance is that the best site is

chosen, we may also explore other reasonable measurements that indicate something regarding

the human-swarm system’s performance. The measurements we explore here are: scores for
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Infl\Info Perfect Missing Mislabeled Totals
High 7/12 10/12 11/12 28/36
Low 12/12 9/12 9/12 30/36
IVAM 11/12 8/12 7/12 26/36

Table 7.8: User study results by counting “good enough” sites as successes.

Infl\Info Perfect Missing Mislabeled Overall
High 18.87 22.89 16.81 19.5
Low 4.92 5.09 4.80 4.94
IVAM 5.89 5.76 5.41 5.69

Table 7.9: Average beacon per minute usage for influence-information pairs.

choosing sites that are “good enough,” average times for the swarm to converge, and beacon

usage.

To consider near-best choice selection, we first must define what “near best” means.

We do this based on the sites in each environment. For Environment 1, good enough is a site

value ≥ 0.85, for Environment 2, ≥ 0.7, and for Environment 3, ≥ 0.8. With this metric, we

get the results in Table 7.8. At first glance, it appears that Low influence is now the best

performer, but we have also further reduced any statistical significance between influence,

and influence-information pairs, so no viable conclusions can be made in that regard.

We may also consider resources used in terms of average beacons placed per minute. Ta-

ble 7.9 shows the average number of beacons placed per minute for each influence-information

pair. As anticipated, there is a significant difference between High influence and the other

two influences since the latter were only allowed to place a single beacon at a time, while

High influence was able to place 8 beacons consecutively. It may be worth noting, however,

that the limit for High influence is around 67 beacons in a minute, while the limit for Low

and IVAM is around 8. That the average for High is so much less than the limit suggests that

users were often more conservative with their beacon placement than expected. Table 7.9

also shows that users’ beacon use was higher for IVAM influence than for Low influence,

suggesting that Low influence not only outperformed IVAM, but did so using fewer beacons.
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Influence Min Max Avg StDev
High 2.7 14.5 6.8 3.1
Low 3.1 12.9 6.4 2.5
IVAM 3.1 13.3 6.8 2.5

Table 7.10: Convergence time results by influence type with non-convergence cases omitted.
Units are in minutes.

Lastly, the average time to convergence for each influence type is given in Table 7.10,

omitting the cases when the swarm does not converge. We see that there is surprisingly little

difference in each of the values, perhaps with the exception of a higher standard deviation

with High influence and a slightly lower average with Low influence. The only conclusion we

draw from this is that users seemed to be able to converge slightly faster, on average, with

Low influence than with High influence or IVAM influence. However, this also demonstrates

that the IVAM is failing to outperform the other influence types.
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Chapter 8

Conclusions and Future Work

As robot swarm systems become more of a reality, techniques for effective human-swarm

interaction and efficient implementation of these techniques will become more important. In

this work, we described a dynamic between three parties of interest in regards to the design

and implementation of a robot swarm, the Problem Holder, the Designer, and the Operator,

proposed a theory for cost-efficient human-swarm interaction design, and tested our theory

using swarm simulation software we implemented. The theory is based on the idea that,

given a performance metric from the Problem Holder, the Designer can increase or maintain

performance by implementing an interaction scheme that balances the influence of the

Operator according to the principle of Feedback Based Dynamic Influence. We demonstrated

the need for balancing influence by implementing a simulated swarm an incorporating

human interaction through beacon placement, and then showing how Operator input can

be detrimental to swarm performance using a simulated operator. By incorporating the

IVAM algorithm, an Operator influence balancing piece of software, into the the interaction

mechanism, we were able to improve performance of the swarm using the same Operator

behaviors.

To further test the effectiveness of the IVAM, we designed a user study where human

operators would interact with the swarm and accomplish a task with different influence types

corresponding to different levels of influence, including the IVAM, and different information

types across difference environments. We ran the study with two simulated operators, one with

exceptionally poor behavior and one with more reasonable behavior, and were encouraged by
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the results. Results from the user study show that the IVAM algorithm fails to appropriately

balance influence with human operators, and performed worse overall than either of the two

other influence levels considered. However, the results also demonstrate further the need

to carefully allocate influence to each operator based on the skill of the operator and the

reliability of the information provided. Further research would be required to support our

theory for accomplishing this, or to discover other theories for how it should be accomplished.

8.1 Future Work

An obvious next step in this research would be to redesign the IVAM and re-test, possibly

with a larger number of users, more environments, and more differences in information. We

would want to further isolate influence as the independent variable, and see if the modified

IVAM is maintaining or improving performance over other levels of influence. Simplifying

the IVAM for our user study, as discussed in Section 6.4, also may have affected our results.

Therefore, allowing more complex human interactions and additional IVAM behaviors may

improve our results.

Another natural step would be to apply our theory to additional swarms and tasks, to

see if we can find evidence to support it and see if it generalizes. We attempted to implement

other swarm models to incorporate with our simulator for this purpose, but processing for

simulations with a large number of agents performing a complex task is slow without special

parallel processing techniques, and we were unable to do so successfully.

Finally, something that would be of great value to this research would be to find

a working model for influence in general swarms. Having such a model, or perhaps some

measurement that correlates with our intuitive notion of influence, would allow us model

functions that map influence to performance in meaningful ways that could then be used in

interaction scheme design. We also attempted this unsuccessfully, but advocate the utility of

such a result, should it be accomplished.
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Appendix A

User Study Environments
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(a) Environment 1 with perfect information.

(b) Environment 1 with missing sites.

(c) Environment 1 with mislabeled sites.

Figure A.1: The first environment seen in the user study, called “world spiral”, with each
type of information.
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(a) Environment 2 with perfect information.

(b) Environment 2 with missing sites.

(c) Environment 2 with mislabeled sites.

Figure A.2: The second environment seen in the user study, called “hill vs hole”, with each
type of information.
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(a) Environment 3 with perfect information.

(b) Environment 3 with missing sites.

(c) Environment 3 with mislabeled sites.

Figure A.3: The third environment seen in the user study, called “grad up right”, with each
type of information.
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