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ABSTRACT

Signal Structure for a Class of Nonlinear Dynamic Systems

Meilan Jin
Department of Computer Science, BYU

Master of Science

Signal structure is a partial structure representation for dynamic systems. It char-
acterizes the causal relationship between manifest variables and is depicted in a weighted
graph, where the weights are dynamic operators. Earlier work has defined signal structure for
linear time-invariant systems through dynamical structure function. This thesis focuses on
the search for the signal structure of nonlinear systems and proves that the signal structure
reduces to the linear definition when the systems are linear. Specifically, this work:

1. Defines the complete computational structure for nonlinear systems.

2. Provide a process to find the complete computational structure given a state space
model.

3. Define the signal structure for dynamic systems in general.

4. Provide a process to find the signal structure for a class of dynamic systems from their
complete computational structure.

Keywords: signal structure, complete computational structure, dynamical structure functions,
nonlinear dynamic systems, linear time-invariant systems, partial structure representations,
structure representations
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Chapter 1

Introduction

Studies of network structure and behavior play an important role in understanding

dynamic systems and vulnerability analysis. Consider a prototype application of the Sevier

River system in Utah; it is the primary water supply that irrigates 286,600 acres of farmlands

[1]. Sensors are placed at various locations along the river to measure the water flow. The

river commissioner controls the gates at reservoirs that adjust the amount of water leading

into the downstream river systems according to readings of water flow data he gets every

day on his electronic device. One problem for such a cyber-physical system is that this layer

of computers/sensors introduces additional vulnerabilities. Cyber attackers could modify

the readings of water flow data and cause more water to be let out of the reservoirs, such

that not enough water is stored by July for irrigation. The attack could lead to millions of

dollars lost. However, this problem can be detected and solved through the analysis on the

signal structure of the river system. The signal structure is a novel notion of system structure

developed recently to study the causal relationships among a system’s manifest variables. We

will use the Sevier River example to introduce a system’s signal structure.

Water flow out to the branching canals along the main Sevier River and the flow

is controlled by the gate at each canal. Each canal is manged by an individual company,

which in turn services requests made by farmers needing irrigation water downstream. A

sensor is placed at each canal gate to measure the water flow. The River commissioner

receives aggregated request through his electronic device and he then schedules releases from

dams to meet the demand represented by these requests. With these details, we can first
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model the Sevier River system and represent it with a linear state-space model with states

{x1, x2, ... , xn} ∈ Rn, inputs {u1, u2, . . . , um} ∈ Rm, and outputs {y1, y2, ..., yp} ∈ Rp.

The states are all the water flow in cubic feet per seconds(cfs) along the Sevier River. The

outputs are the positive water flow in cfs out of the mains river stream to the branching

canals. The controlled inputs includes the water flow into the Sevier River from the upstream

reservoir chosen by the river commissioner. More details about how the river system is

modeled can also be found in [1] and [2]. Then, exposed states are identified. In an attacker’s

view, the exposed states can be, for example, the measured water flow at each canal gate,

which are the outputs in the river’s state space model. These measured water flow data are

published on the internet for the public. After identifying the exposed variables, an attack

surface can be constructed with a signal structure, see in Figure 1.1b. A signal structure

is a graph where nodes represent the manifest variables and edges characterize the causal

dependency relationships between these nodes. Signal structure considers only the causal

dependency relationships between manifest variables. Since attacker’s have access only to

exposed variables, the signal structure will precisely characterize the attack surface in the

attackers perspective and reveal the dynamic relationships among these variables. After we

construct the attacker’s view of the river through the signal structure, vulnerable links can

be identified and analyzed. Then we can design possible attacks and create attack mitigation

plans to secure the system. The same technique can be applied to many other cyber-physical

systems, including, air traffic controls, power systems, municipal water systems, chemical

plants and many more.
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(a) The complete computational structure for the Gunnison
section of the Sevier River system. The nodes are inputs and
states of the river system, and a directed edge represents
direct dependency between two nodes. A node that the
directed edge points to is said to directly depend on the
node a edge starts.

(b) The signal structure for the Gunnison section of the
Sevier River system. Blue nodes represents inputs to the
system, and green nodes are the system states. Blue links
from a input to a state is always secure and cannot be
perturbed. The red links represents links that are most
vulnerable within this system and can be manipulated by
attackers, while green links are secure.

Figure 1.1: The complete computational structure and the attack surface for the Gunnison
section of the Sevier River. 3



The signal structure is a powerful tool for studying the “manifest behavior” of a system.

Vulnerability analysis is only one of its many applications. The signal structure has also been

widely used in network reconstruction for financial, social, chemical and biological networks.

However great the signal structure may be, it is defined only for linear time-invariant (LTI)

systems. The purpose of this thesis is to define the signal structure for a class of arbitrary

nonlinear system and provide a process to find the signal structure given the state space

equations of that system.

1.1 Problem Statement

This thesis will extend the existing definition of signal structure given for linear time-invariant

systems to a class of nonlinear systems, and provide a process for finding it given a state

space model of the form:

ẋ = f(x(t), u(t)),

y(t) =

[
I 0

]
x(t),

(1.1)

where state x ∈ Rn, input u ∈ Rm, and output y ∈ Rp, with p < n. When t ∈ R, ẋ =
dx

dt
for

continuous time systems, or t ∈ Z and ẋ = x[k + 1] for discrete time systems. We follow the

same notation style throughout this thesis.

Much of this thesis is devoted to the definition of signal structure and the process for

constructing a signal structure given a nonlinear state space model in the form of (1.1). The

construction of nonlinear signal structure builds on the linear signal structure and another

type of structure representation for dynamic systems, the complete computational structure.

The linear signal structure is characterized by the dynamic structure function (Q(s), P (s)).

A detailed derivation and some related property of dynamic structure function (DSF) is

included in Chapter 3. The complete computational structure defined in Chapter 4 is a core

step for constructing the signal structure. The last and most important part of this thesis

is included in Chapter 5, which provides a definition for signal structure in general and a
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process to find it for a class of nonlinear systems. The main contributions of this thesis are

as follows:

1. A precise definition of the complete computational structure.

2. A process for finding the complete computational structure of an arbitrary nonlinear

system.

3. A precise definition of the signal structure.

4. A process for finding the signal structure given the state space model of a class of

nonlinear dynamic systems.

Because both the definition and process for finding the signal structure depend on

the complete computational structure, it is critical to understand the relationship between

the state space model, the complete computational structure, and the signal structure. To

illustrate their relationship, we will continue with the Sevier River example. A state space

model describes the time evolution of states for a system with specific rules of how these states

change. It contains the most comprehensive information about a dynamic system. The system

views in Figure 1.1 are built from the state space model of the Gunnison section of the Sevier

River system. The complete computational structure is in one-to-one correspondence with the

state space model. It is a complete view of the system, which characterizes mainly the causal

dependency relationships among all the system inputs, states, and outputs. Figure 1.1a is

the complete computational structure for Gunnison. This structure shows the dependency

relationships of all the variables in the state space model and is equivalent to having all

the states measured/exposed. An outsider, however, had access to only part of the systems

information and can measure only a subset of states. Figure 1.1b shows what an outsider’s

view of the same system looks like - only a partial view of the Gunnison section, a view

that is created by selecting the variables that are considered measured/exposed from the

complete computational structure, which are then used to find the signal structure. The
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signal structure only shows the causal dependency of inputs to manifest states, and between

two manifest states.
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Chapter 2

Related Works

Studying system structure is important because the structure of a system can directly

impact its behavior. Sometimes different structures can yield the exactly same behavior.

A considerable amount of literature has been written about the representations of system

structures and their properties. [3], [4] and [5] provide a framework for understanding different

ways to represent system structures, specifically in linear systems. My work extends the idea

of the complete computational structure and signal structure presented in these works to

nonlinear systems.

The same system can be represented by different types of structures. However,

each structural representation contains different level of information about the system.

The complete computational structure discussed in this work contains the most structural

information about a system, detailing in the internal computations and shows the dependency

relationships of all the variables in a system. On the other hand, black box models, often

in the form of transfer functions, describe only the manifest behavior and not the internal

computations. The manifest structure associated with the black box model is a graph with

nodes representing inputs and outputs of the system and edges showing the mapping from

inputs to outputs. Black box modeling is most useful in fitting data but contains the least

amount of structural information.

The signal structure is a partial structure representation. It shows the causal depen-

dencies between manifest variables without affecting other manifest variables. Another most

commonly used partial structure representation is the subsystem structure [4]. Interconnect-
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ing systems together through variable sharing and forcing these variables to take on the

same values creates a new composed system. Each subsystem is represented by its transfer

function. The internal structure of each subsystem is unknown. The subsystem structure is a

graph that describes the interconnection of subsystems in a composite system. [6] provides a

methodology that models interconnected subsystems with tearing, zooming and linking. First,

tearing a black box model into several mini black box models, where these mini models can

be modeled by first principle physical laws. Then, zooming into each subsystem and model

individually. Finally, all subsystems are linked by setting up interconnection constraints.

The subsystem structure is a great tool for analyzing dynamic systems, especially

for large complex systems. For many physical systems, the structure can be understood as

how components are interconnected together. In this case, subsystem structure is great for

representing these engineered systems. However, for fluidic, biological and chemical systems,

components are hard to be compartmentalized and described as interconnected components.

The signal structure is particularly useful for such systems. The signal structure is also

used in the design of an LTI controller over a network with a prespecified topology [7]. As

mentioned in the introduction, the signal structure is useful in the vulnerability analysis of

cyber-physical systems [8], [9]. More studies about meanings of structure in dynamic systems

are published in [10], [11].

This work focuses on the signal structure for nonlinear systems, but a lot of the linear

results are very helpful for analysis and verification in the nonlinear cases in the later chapters.

The signal structure for a linear invariant system is represented by the system’s dynamical

structure function [12]. Following this remark ,[13], [14], [15], [16] discuss conditions when

dynamical reconstruction is possible and applications of network reconstruction from data.

Besides modeling from first principle and computer simulations, system theorists often

draw from the studies of graphical models when studying structures for complex networks.

In [17], the authors exemplify how graphical models help solve control and identification

problems. Neural networks are also used in the identification of nonlinear discrete dynamic
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systems in [18]. A survey on major concepts and results in the study of modeling structure

and dynamics of a complex network as graphs is included in [19]. These works pose a learning

problem to find the underlying model. Different from these works, we are not learning the

structure from data. Rather, my work starts with a given state space model, which could

be modeled from first principles and computer simulations. Then the state space model is

utilized to construct the complete computational structure and the signal structure.

Unlike lots of existing research that assumes a static relationship between the time

series data, the signal structure characterizes the dependency relationships of manifest

variables with a dynamic operator for both continuous and discrete time. It shows the

inter-relatedness of data that are dynamically related. The linear dynamical graph is another

representation of stochastic processes that are interconnected through dynamic relations.

Inspired by random variables interconnected through static relations and d-separation, [20]

carries over the technique to linear dynamical graphs. The concept of linear dynamical graphs

are used in multiple studies for reconstructing networks in [21], [22], [23] and [24]. Essentially,

the linear dynamic graph and the dynamic structure function are the same except that they

take different form of inputs. The linear dynamic graph (LDG) is defined to be a pair of

(H(z), e), where H(z) is a n× n matrix of transfer functions, and e is a vector of n rationally

related random processes. The output process for LDG is x(t) = H(z)x(t) + e, while DSF is

defined to be Y = QY + PU , where Q and P are matrices of transfer functions and U are

the inputs to the dynamic system.

There are many other representations of networks of stochastic processes. In [25], a

directed information graph is proposed to represent networks of stochastic processes. The

directed information graph is proven to be equivalent to generative model graphs under

mild assumptions and can be used for causal inferences and also be generalized to nonlinear

settings. To further improve on identifying the nonlinear causal relationship with the

presence of hidden nodes, [26] introduced an information-theoretic criteria in general model of

stochastic dynamical systems with no restriction on the mapping function or the underlying

9



structure. The causal structure graph introduced in [26] is developed based on the functional

dependencies defined in [27], where it states that vj causes vi if vi is a function of vj. In

Chapter 4, we also adopt the same concept for the definition of dependency. Identifying

dependencies contained in the state space model is a very important step towards constructing

the signal structure in this work.

10



Chapter 3

Background

In this section, we will show the derivation of the dynamic structure function (DSF),

which is essential when validating the process for constructing the complete computational

structure and the signal structure for nonlinear systems in Chapters 4 and 5. For linear

time-invariant (LTI) systems, the signal structure is represented by the dynamical structure

function.

In [8], [15], the authors showed the derivation of dynamical structure functions of LTI

systems from its state space representation. Given a state space model of an LTI system,

 ż1

ż2

 =

Ā11 Ā12

Ā21 Ā22


 z1

z2

+

 B̄1

B̄2

u,
y =

[
C̄1 C̄2

] z1

z2

 ,
(3.1)

where

[
C̄1 C̄2

]
is full row rank. We can find a transformation T such that the system can

be transformed into  ẏ

ẋ

 =

A11 A12

A21 A22


 y

x

+

 B1

B2

u,
y =

[
I 0

] y

x

 ,
(3.2)
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where vector y represents states that are measured, and vector x represents states that are

hidden. When we take the Laplace transform of x, y, and u in terms of t, assuming zero

initial condition, we get

 sY

sX

 =

A11 A12

A21 A22


 Y

X

+

 B1

B2

U. (3.3)

Solving for X in the second equation in of (3.3), we have

X = (sI − A22)−1A21Y + (sI − A22)−1B2U, (3.4)

where (sI − A22)−1 is always invertible. Substituting (3.4) into the first equation of (3.3),

sY = WY + V U,

W = A11 + A12(sI − A22)−1A21,

V = A12(sI − A22)−1B2 +B1.

(3.5)

When we let D be an diagonal matrix, where its diagonal entry is the diagonal term of matrix

W,

(sI −D)Y = (W −D)Y + V U. (3.6)

Rewriting this equation and we get,

Y = QY + PU,

Q = (sI −D)−1(W −D),

P = (sI −D)−1V.

(3.7)

Through the derivation process of DSF, we suppress the hidden variables and arrive

with matrix Q, which preserves only the causal dependency among manifest variables and P ,

12



which captures relationship among inputs and outputs. Together, the pair (Q(s), P (s)) is

called the dynamical structure function.

Definition 1 (Dynamical Structure Function). Given a state space model of the form (3.1),

we define the dynamical structure function of the (3.1) to be a (Q(s), P (s)) pair, where

transfer function matrices Q(s) and P (s) are the internal structure and control structure,

respectively, and is given as in (3.7).

Both Q and P are transfer function matrices. Entry Qij in Q characterizes how signal

(measured states) Yi is causally dependent on Yj, where i 6= j. Note that Q is zero on the

diagonal and either zero or a strictly proper transfer function on the off-diagonal. The fact

that Q is hollow reflects that self-loops are eliminated from the dependency relationships. P is

a matrix with entries of zeros or strictly proper transfer functions, where each entry describes

how inputs are associated with outputs without depending on any additional measured states.

The Boolean structure of (Q(s), P (s)) characterizes the signal structure graph for an LTI

system. The entries in Q and P are corresponding weights on each link in the signal structure.

Earlier work has proven that there is only one pair of Q and P associated with a given

linear state space model. On the other hand, given Q and P , we can find many state space

realizations of the system. Every DFS specifies a unique transfer function, but many DFS

architectures can represent the same transfer function. Given P and Q, the transfer function

of a system is given by,

G = C(sI − A)−1B = (I −Q)−1P.

This result is particularly useful in finding a Q and P pair that secures the system from

attacks that aim to destabilize it.

13



The following is an example of deriving DSF from a state space form of an LTI system.

Consider a state space model:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



−1 0 0 1 0 0

0 −2 0 0 1 0

0 0 −3 0 0 1

0 0 1 −4 0 0

1 0 0 0 −5 0

0 1 0 0 0 −6





x1

x2

x3

x4

x5

x6


+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




u1

u2

u3




y1

y2

y3

 =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





x1

x2

x3

x4

x5

x6



(3.8)

After following the above process, we can compute a P (s) and Q(s) for this dynamical

system.

Q(s) =


0 0 1

(s+1)(s+4)

1
(s+2)(s+5)

0 0

0 1
(s+3)(s+6)

0

 P (s) =


1

(s+1)(s+4)
0 0

0 1
(s+2)(s+5)

0

0 0 1
(s+3)(s+6)

 (3.9)

Figure 3.1 shows the corresponding unique signal for the above system. The directed

graph shows the dependency of states to states and input to states that are captured by the

Q(s) and P (s) matrices. The non-zero entries in P and Q represent a link in the graph. The

link from y3 to y1 is the Q13th entry in the Q(s) matrix.

14



Figure 3.1: Signal structure for system given in (3.8). Green nodes are all the inputs and blue
nodes are measured states. Non-zero entries in P (s) indicates dependency of state on inputs
without going through other measured states. Non-zero entries in Q(s) indicated dependency
of measured states on other measured states without going through other measured states.

In cases where a state yi depends on multiple other measured states, the node

representing yi in the graphical representation of its signal structure will have multiple links

coming in from the nodes it depends on (the parent nodes). For linear cases, this can be easily

interpreted as adding all the weights from node it depends on. However, for nonlinear systems,

how to interpret multiple dependencies remains a difficult problem. For example, consider

ẋ1 = x2x3. Assume that we know x1 depends on x2 and x3, without a clear derivation of

nonlinear signal structure, we cannot interpret how the weights for link (x2, x1) and (x3, x1)

are combined and affects x1, see in Figure 3.2. The derivation and calculation for weights

in nonlinear system in general are non trivial. In this thesis, we will focus on precisely

defining the complete computational structure and the signal structure for nonlinear systems

and provide a process for finding the graph representations of the complete computational

structure and the signal structure. The calculation and interpretation of weights for signal

structure will be included in future works.
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(a) The signal structure for ẋ1 = x2 + x3. x1

depends on x2 and x3. The weights Q1,2 and Q1,3

are summed up.

(b) The graphical representation of the signal struc-
ture for ẋ1 = x2x3. The interpretation of how the
two weights on link (x2, x1) and (x2, x1) are com-
bined is unknown.

Figure 3.2: Hyper links in the signal structures.
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Chapter 4

Complete Computational Structure

4.1 Definition of the Complete Computational Structure

In order to define the complete computational structure for dynamic systems, we need a

description of dependency of a function on its arguments. A notion of dependency defined in

[26], [27]:

Definition 2 (Dependency). A function f(x), which maps an m-dimensional domain to a n

dimensional co-domain, is said to depend on its ith variable xi, if there exist values of the

other m − 1 variables xj, where i 6= j, such that f(x) is not constant over all values of xi

while holding the other variables fixed. If m=1, then f(x) depends on x if it is not constant

over all values of x.

Consider state space systems of the form:

ẋ = f(x(t), u(t))

y(t) = g(x(t)),

(4.1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp, with p < n and g(x(t)) =

[
I 0

]
x(t). State xi,

0 < i 6 n, depends on xj, i 6= j, if xi is not constant over all values of xj while holding the

other n-1 variables fixed. For example, state x1 in ẋ1 = x1(t) + x2(t)x3(t) + u1(t), depends

on state x2 when x3 6= 0. Based on this notion of dependency, the complete computational

structure for (3.1) is defined below.
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Definition 3 (Complete Computational Structure). The complete computational structure

for system 4.1 is a weighted directed graph C = {V,E}, where V is a set of vertices V (C )

with each vertex representing a variable in system 4.1, and E is a set of edges E(C ). There

are m+n+p vertices corresponding to the inputs ui, states xj and outputs yk. A directed edge

exists from node i to node j if node j depends on node i, where (i, j) ∈ E. The weight on edge

(i, j) is a dynamic operator that describes how node j depends on i.

4.2 Process for Finding the Nonlinear Complete Computational Structure

Based on the notion of dependency in Definition 2, and complete computational structure in

Definition 3, an edge exists from node j to node i if and only if i depends on j. Here, we use

three matrices to represent a system’s complete computational structure: a state adjacency

matrix X , a input-to-state adjacency matrix U , and a state-to-output adjacency matrix Y .

Matrix X is n× n in size and describes the dependency relationship of one state to another

state. U , and Y are n×m and p× n matrices that represent dependency relationships of a

system’s inputs to states, and the states to outputs. With each matrix, the ijth entry is 1 if

node i depends on node j, otherwise, ijth entry is 0. In the corresponding graph, there is an

edge from node j to node i if the ijth entry is 1, and no edge exists from j to i if the ijth entry

is 0. For example, if the ith state depends on the jth state, then Xij = 1. Since x1, x2, ..., xp

are identically equal to the measured outputs y, we call these first p states “measured states”

and the remaining n− p states “hidden states”.

Given a state space model of the form (4.1), we can find the complete computational

structure of the system by:

1. Instantiating all nodes for each element of X, U , and Y , where X is a set of states, U

is a set of inputs, and Y is a set of outputs.

2. Constructing a state adjacency matrix X , where entry Xij = 1 if state i depends on

state j and i 6= j; otherwise Xij = 0.
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3. Constructing the input-to-state adjacency matrix U , where entry Uij = 1 when state i

depends on input j; otherwise Uij = 0.

4. Constructing the state-to-output adjacency matrix Y and Y =

[
I 0

]
. Y is a p x

n matrix indicating the first p states are measured and last n− p states are hidden.

5. Drawing directed edges based on the adjacency matrices constructed from Steps (2),

(3), and (4). No edges are allowed from ui to uj or yi to yj.

4.3 Nonlinear Complete Computational Structure Example

Example 1.

ẋ1 = x1(t)x2(t) + x3(t)x5(t) + u1(t)

ẋ2 = x3(t) + x4(t) + x2(t) + u2(t)u1(t)

ẋ3 = x1(t)x2(t) + x5(t) + x3(t) + u3(t)

ẋ4 = x3(t)x4(t) + x1(t) + u4(t)

ẋ5 = x4(t)x2(t) + x3(t) + x5(t) + u5(t)



y1(t)

y2(t)

y3(t)

y4(t)


=



x1(t)

x2(t)

x3(t)

x4(t)



(4.2)

Given the state space model in (4.2), first, instantiate all nodes fromX = {x1, x2, x3, x4, x5},

U = {u1, u2, u3, u4, u5}, and Y = {y1, y2, y3, y4}. Then follow Steps 2, 3, 4 to construct the

state, input-to-state and state-to-output matrices: X ,U and Y , see in Equation (4.3). After

drawing all the edges following the adjacency matrices, the resulting complete computational

structure produced by the above procedure is shown in Figure 4.1. Note that we do not draw
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self loops in the complete computational structure and X is always hollow.

X =



0 1 1 0 1

0 0 1 1 0

1 1 0 0 1

1 0 1 0 0

0 1 1 1 0


,U =



1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,Y =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


(4.3)

Figure 4.1: Complete computational structure for System (4.2).

4.4 Validation

In this section, we will validate that the process for constructing the complete computation

structure in Section 4.2 is correct by applying this process to an LTI system and show that it

produces the right complete computational structure.

Consider an LTI system, in the form of:

ẋ = Ax(t) +Bu(t),

y(t) = Cx(t),

(4.4)
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where vector x ∈ Rn, u ∈ Rm, and y ∈ Rp, with p ≤ n.

Following the process for constructing the complete computational structure in Section

4.2, we need to first find the state adjacency matrix X , input-to-state adjacency matrix U ,

and state-to-output adjacency matrix Y . From the definition of dependency, it is easy to

see that for an LTI system, the Boolean structure of matrix A in Equation (4.4) contains

the dependency relationships among all states. Because we do not draw any self-loops in

the complete computational structure, the Boolean structure of (A− diag(A)) is the state

adjacency matrix X ; diag(A) denotes the diagonal of matrix A. Similarly, the Boolean

structure of matrix B is the input-to-state adjacency matrix U and the Boolean structure of

matrix C is the state-to-output adjacency matrix. Thus,

X = Bool(A− diag(A)),

U = Bool(B),

Y = Bool(C).

Bool() denotes the Boolean structure of a matrix. Then we can construct the complete

computational structure graph from X , U , and Y .

Another way to find the complete computational structure is to look at the signal

structure where all states are measured. For LTI systems, we can find the complete computa-

tional structure using DSF with all states are measured and prove that the result is the same

as the complete computational structure constructed by process 4.2. From the Background

section, for an LTI system that:

1. The (Q(s), P (s)) pair is the DSF of an LTI system. Q(s) characterizes how measured

states depend on other measured states and P (s) represents how measured states

depends on the inputs;

2. The Boolean structure of Q and P constructs the signal structure graph and the entries

in Q and P are weights for each link;
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3. The signal structure describes the causal dependencies of manifest variables.

The complete computational structure of a state space model can be considered the same

as the signal structure with no hidden states. Extending DSF, we can derive the complete

computational structure for an LTI system.

Theorem 1. Consider an LTI system in the form of (4.4), its complete computational

structure is characterized by (Q̂, P̂ , Ĉ), where

Q̂ = (sI − diag(A))−1(A− diag(A))

P̂ = (sI − diag(A))−1B

Ĉ = C.

Proof. According to the derivation of dynamical structure function in Chapter 3, Q =

(sI −D)−1(W −D), and W = A11 + A12(sI − A22)
−1A21. Here, D is the diagonal entries

of W. Suppose this LTI system has zero hidden states, then y = x, and A11 = A,A12 =

A22 = A21 = 0. Therefore, W = A11 = A. Then Q̂ = (sI − diag(A))−1(A − diag(A)).

Similarly, when there are no hidden states, V = A12(sI − A22)−1B2 +B1 = B1 = B. Then

P̂ = P = (sI −D)−1V = (sI − diag(A))−1B. Because y(t) =

[
I 0

]
x(t), it is trivial that

Ĉ = C.

Transfer function matrix Q̂ shows how states directly depends on other states and

P̂ represents how states causally depends on inputs. Ĉ maps states to outputs. We know

the structure of a matrix remains the same when it is multiplied by a diagonal matrix on

its left side. Since (sI − diag(A))−1 is a diagonal matrix and (A− diag(A)) is hollow with

zero on its diagonal, then Q̂ remains to be hollow. Thus, A-diag(A) has the same Boolean

structure as Q̂. Similiarly, B has the same Boolean structure as P̂ . Therefore, X = Bool(Q̂),

U = Bool(P̂ ), and Y = Ĉ. We have validated that process 4.2 produces the right complete

computational structure.
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Example 2. Consider an LTI state space model:

ẋ =



−4 2 −7 0 6

0 −9 10 4 0

3 5 −6 0 8

1 0 4 −5 0

0 5 1 1 −1





x1(t)

x2(t)

x3(t)

x4(t)

x5(t)


+



3 0 0 0 0

1 4 0 0 0

0 0 5 0 0

0 0 0 −8 0

0 0 0 0 7





u1(t)

u2(t)

u3(t)

u4(t)

45(t)



y(t) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





x1(t)

x2(t)

x3(t)

x4(t)

x5(t)


When there are no hidden states, the computational structure is the same as the signal

structure. Using DSF, we find:

Q̂ =



0 2
s+4

−7
s+4

0 6
s+4

0 0 10
s+9

4
s+9

0

3
s+6

5
s+6

0 0 8
s+6

1
s+5

0 4
s+5

0 0

0 5
s+1

1
s+1

1
s+1

0


, P̂ =



3
s+4

0 0 0 0

1
s+9

4
s+9

0 0 0

0 0 5
s+6

0 0

0 0 0 −8
s+5

0

0 0 0 0 7
s+1


Observe that the Boolean structures of P̂ and Q̂ are the same as A−diag(A) and B−diag(B):

A− diag(A) =



0 1 1 0 1

0 0 1 1 0

1 1 0 0 1

1 0 1 0 0

0 1 1 1 0


, B − diag(B) =



1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.
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Chapter 5

Signal Structure

5.1 Definition of the Signal Structure

The definition of complete computational structure allows us to define and find the signal

structure of dynamic systems. Before defining signal structure, we need to understand the

notion of path. In a directed graph, a path exists from node i to node j if there is a set of

distinct and directed edges of the form {(i, n1), (n1, n2), ..., (nk, j)}. When there are multiple

paths from node i to node j, the netpath is the sum of all paths from node i to node j.

Consider a system of the form 4.1 from Chapter 4 with p measured signals; its complete

computational structure is given by C = {V,E}. The signal structure can be defined as:

Definition 4 (Signal Structure). Consider a system of the form (4.1) with complete compu-

tational structure C . It’s signal structure is a weighted directed graph S = {V,E}, where V

is a set of vertices V(S ), and E is a set of edges E(S ). There are m+p nodes corresponding

to the m inputs and p outputs. A directed edge exists from node i to node j if the netpath from

node i to node j — without going through any measured state xi— is nonzero. Weights on the

edges are dynamic operators describing the causal dependencies of each node on the others.

The idea of netpath (through the hidden states) is very important when constructing

a signal structure for dynamic systems. A directed edge exists from node i to node j in

the signal structure if there exists a path from node i to node j without going through any

measured states in the complete computational structure. However, sometimes there can be

multiple paths from node i to j in the complete computational structure that directly cancel

each other, so that the net path from i to j is zero. In this case, there is no edge from i to j
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in the signal structure, since j does not depend on i. On the other hand, partial cancellation

of paths only changes the weights on the edge from node i to node j without causing the link

to disappear.

5.2 Constructing a Signal Structure With No Exact Cancellation: The Graph

Theoretic Approach

Assume there is no exact cancellation among paths. By Definition 4, we can find the signal

structure of a dynamic system following the procedure below. Note, we limit our problem to

only systems in the form of (4.1), where y(t) =

[
I 0

]
x(t).

1. Instantiate all nodes for each element in U and Y . U is a set of all the inputs and Y is

a set of all the outputs in a new signal structure graph.

2. Mark all the measured states in its complete computational structure.

3. For each input node ui in the complete computational structure, if a path exits from ui

to a measured state xj without going through another measured state, (i can be the

same as j), draw an edge from ui to yi in the signal structure graph.

4. For each measured state xi in the complete computational structure, if a path exits

from xi to another measure state xj without going through another measured state,

i 6= j, draw an edge from yi to yj in the signal structure graph.

Note, when a path from a measured node j to another measured node i goes through one or

more hidden nodes in the complete computational structure, we draw a link from node j to i

in the signal structure as long as it does not go through any other measured nodes.
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Example 3.

ẋ1 = x1(t)x2(t) + x3(t)x5(t) + u1(t)

ẋ2 = x3(t) + x4(t) + x2(t) + u2(t)u1(t)

ẋ3 = x1(t)x2(t) + x5(t) + x3(t) + u3(t)

ẋ4 = x3(t)x4(t) + x1(t) + u4(t)

ẋ5 = x4(t)x2(t) + x3(t) + x5(t) + u5(t)



y1(t)

y2(t)

y3(t)

y4(t)


=



x1(t)

x2(t)

x3(t)

x4(t)


Figure 5.1b is the signal structure of Example 3 constructed by following the procedure

defined in 5.2. Given the complete computational structure of Example 3, we first identify

the measured signals, U = {u1, u2, u3, u4, u5} and Y = {y1, y2.y3, y4}, and instantiate these

nodes. Mark all the measured signals in the complete computational structure. All the

measured signals for Example 3 have been colored as orange in Figure 5.1a. Check each input

node in the complete computational structure according to Step 3. For example, there is a

path from u1 to x1 and x2, denoted as {(u1, x1)} and {(u1, x2)}. As mentioned earlier, there

is always a 1:1 relationship between a measured state xi to its corresponding output yi, so

we draw a direct edge from u1 to y1, and u1 to y2 in the signal structure. When we check

each input node, we find path {(u2, x2)}, {(u3, x3)}, {(u4, x4)}. There is also a path from

{(u5, x5), (x5, x1)}, {(u5, x5), (x5, x2)}, which does not go through another measured state.

Draw all the edge from inputs to outputs based on the valid paths we found. Note, a path is

only valid when it does not go through any measured states. The last step is to identify the

dependencies among the measured states. As illustrated in Step 4, find all valid paths from
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each measured state to other measured states in the complete computational structure and

then draw the corresponding edge in the signal structure.

(a) The complete computational structure with measured
states highlighted as orange.

(b) The signal structure of Example 3. Red links are gen-
erated by paths that are from a measured node to another
measured node through hidden nodes in the complete com-
putational structure. For example, red link {u5, y1} is gen-
erated by {(u5, x5), (x5, x1)} in its corresponding complete
computational structure.

Figure 5.1: The complete computational structure and signal structure for Example 3.

5.3 Validation

In order to validate the graphical approach for finding the signal structure for a dynamic

system in process 5.2, we will prove that this process will produced the correct signal structure

for LTI systems that have no cancellation of paths. Clearly, the graphical approach in process
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5.2 will not detect exact path cancellation. We will discuss cases of cancellation in the next

section.

There are two conditions for a link exists from node j to node i in a signal structure

when constructing it from its corresponding complete computational structure using process

5.2:

1. Direct link: A link from node j to node i is called a direct link in the signal structure

when it is generated by a direct link from a measured node to another measured node

in the complete computational structure.

2. Indirect link: A link from node j to node i is called a indirect link in the signal structure

when it is generated by a path from a measured node to another measured node through

one or more hidden states in the complete computational structure.

Recall in the Background section, the signal structure for an LTI system is represented

by (Q(s), P (s)):

Q = (sI −D)−1(W −D),

W = A11 + A12(sI − A22)−1A21,

P = (sI −D)−1V,

V = A12(sI − A22)−1B2 +B1.

The structure of a matrix remains the same when it is multiplied by a diagonal matrix on

its left side. Thus, Q has the same structure as W and P contains the same structure as V .

Therefore, Qij = 0 if and only if Wij = 0. Likewise for P and V . When we calculate the DSF,

we first partition state matrix A to A11, A12, A21 and A22 based on measured and hidden

states. A11 shows links from measured states to measured states; A12 shows links from hidden

states to measured states; A21 shows links from measured states to hidden states and A22

shows links from hidden states to hidden states. From the definition of W , it is clear that all

the direct links among measured states in a signal structure are contained in A11, while all

the indirect links are generated from A12(sI − A22)−1A21. Likewise, all the direct links from

28



an input to an output are contained in B1 and all indirect links are in A12(sI −A22)−1B2. To

prove process 5.2 and that the DSF will generate the same signal structure graph, we only

need to prove that they will generate the same direct and indirect links of a signal structure.

Lemma 1. DSF and the graphical approach find the same direct links in a signal structure.

Proof. A direct link in the complete computational structure is always preserved in the signal

structure constructed using the graphical approach in process 5.2. Because the direct links

are all from A11 in DSF, it is easy to see that the direct links are also all preserved. From

Section 4.4, for an LTI system, its state adjacency matrix is A− diag(A). When we partition

the state adjacency matrix to Â11, Â12, Â21 and Â22 base on measured and hidden states the

same way as DSF, then Bool(A11) = Bool(Â11). The same logic applies to matrix B and the

input-to-state adjacency matrix. Therefore, DSF and the graphical approach find the same

direct links.

Lemma 2. DSF and the graphical approach find the same indirect links in a signal structure.

Proof. Suppose A12, A22 and A21 are weighted adjacency matrices, then A12 contains links

from hidden nodes to measured nodes, A22 contains links from hidden nodes to other

hidden nodes and A21 contains links from measured nodes to hidden nodes. The product

of A12(sI − A22)−1 finds all paths from hidden nodes to measured nodes that goes through

other hidden nodes. Then multiply this product with A21 on its right, we find all paths

from measured nodes to hidden nodes and from these hidden nodes to other measured nodes.

This final matrix A12(sI −A22)−1A21 finds all paths from measured states to other measured

states through one or more hidden nodes without going through measured nodes. This is

the same as the graphical approach where we find all valid paths from measured node j to

measured node i without going through any measured nodes.

Theorem 2. For an LTI system, Q = 0 iff there are no direct and indirect links between any

measured states.
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Proof. From DSF, assume Q = 0, then all entries of Q are zero. Therefore, A11 = 0, and

A12(sI − A22)
−1A21 = 0. From Lemma 1 and Lemma 2, when A11 = 0, and A12(sI −

A22)
−1A21 = 0, there are no direct or indirect links between measured nodes. Assume

there are no direct and indirect links between any measured states, then A11 = 0, and

A12(sI − A22)−1A21 = 0. Therefore, Qij = 0.

Theorem 3. For an LTI system, P = 0 iff there are no direct and indirect links from any

inputs to any outputs.

Similar to Theorem 2, we can prove that Theorem 3 is also true. From Theorem 2 and

Theorem 3, it is clear that when there is a link in DSF from node j to node i, the same link

also exits from node j to node i in the signal structure generated by the graphical approach.

There are no links between measured node j to node i in the graphical approach when no

link exists in the DSF from node j to node i.

5.4 Case with Cancellations

Subsection 5.2 defines the process for constructing the signal structure works under the

assumption that no links will be canceled from node i to node j when the netpath between

them are zero. In reality, exact cancellation almost never happens.
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5.4.1 Cancellation in Linear Time Invariant System

Below is an example of a cancellation of path in the signal structure of a linear time invariant

system. Given a LTI system 5.1:

˙

x1

x2

x3

x4


=



−3 0 0 0

0 −1 1 −1

1 0 −4 1

1 0 1 −4





x1

x2

x3

x4


+



1 0 0 0

0 1 0 0

0 0 5 0

0 0 0 6





u1

u2

u3

u4


 y1

y2

 =

1 0 0 0

0 1 0 0




x1

x2

x3

x4



(5.1)

Its complete computational structure can be represented by first constructing the adjacency

matrices: X , U , and Y . The state adjacency matrix X is the Boolean structure of matrix

A in LTI system 5.1. The input-to-state and the state-to-ouput adjacency matrix is the

Boolean structure of B and C. Figure 5.2 shows the complete computational structure for 5.1.

Figure 5.2: Complete computational structure for System (5.1).

Under the assumption of no cancellation of paths in the system’s signal structure and

following the procedure in Section 5.2, we can construct the signal structure for 5.1. First,
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instantiate input nodes u1, u2, u3, u4, and measured output nodes y1, y2. Then, check each

input in the complete computational structure. The resulting graph is shown in Figure 5.3.

The signal structure shows that y2 depends on y1.

Figure 5.3: The signal structure for System (5.1) constructed by the process in Section 5.2.

Although the actual signal structure generated by DSF for this LTI system shows no

edge exists between y1 to y2. We can quickly validate this by calculating W = A11 +A12(sI−

A22)−1A21.

A12(sI − A22)−1A21 =

0 0

0 0


In this case, W = A11. By subtracting the diagonal entries of W, we get Q = 0. There is

no direct dependency among any of the system’s measured states. Such cancellation is also

possible in P .
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5.4.2 Cancellation in Nonlinear Systems

The following is a very simple example to illustrate that cancellations can also happen in

nonlinear system. Given a nonlinear system:

ẋ1 = −0.5x1

ẋ2 = x3 + x4

ẋ3 =
√
x2

1 + 5

ẋ4 = −
√
x2

1 + 5

y =

1 0 0 0

0 1 0 0




x1

x2

x3

x4



(5.2)

The complete computational structure constructed by following the process in Section 4.2 is

shown in Figure 5.4.

Figure 5.4: The complete computational structure for Equation (5.2).

We do not yet have the technique for computing the weights for complete computational

structure of nonlinear systems, but for this example, it is clear that there is an exact

cancellation in the signal structure when x1 and x2 are measured signals. The non-linearity

is contained in only x3 and x4, and the relationship between x3 and x4 to x2 remains to be

linear. From Equation (5.2), there are two paths from x1 and x2 that does not go through
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another measured variable: {x1, x3, x2} and {x1, x4, x2}, which cancel each other. The actual

signal structure for (5.2) has no links from x1 to x2.

5.4.3 Process with Cancellation

So far, we have defined only the process for finding the signal structure with no exact

cancellation. To find the signal structure with exact cancellations like Section 5.4.1 and 5.4.2,

we can find another system that well approximates the original system but has no exact path

cancellation.

To illustrate the idea, consider the signal structure for the LTI system in (5.1). There

are supposed to be four paths from x1 to x2: {x1, x3, x2}, {x1, x4, x2}, {x1, x3, x4, x2}, and

{x1, x4, x3, x2}, but because their weights exactly cancel each other, the resulting signal

structure actually has no links from x1 to x2. By adding a different perturbation that is

small enough on each link from in Figure 5.5, we can construct a new system that well

approximates the original system and these four paths no longer exactly cancel each other.

Then we could apply process 5.2 to the class of systems that have exact path cancellations.

Figure 5.5: Perturbation on the complete computational structure. The four paths from x1 to
x2 exactly cancel each other out: {x1, x3, x2}, {x1, x4, x2}, {x1, x3, x4, x2}, and {x1, x4, x3, x2}

Given a stable LTI state space model ẋ = Ax, we can always find a stable perturbation

∆, such that ẋ = Ax+ ∆x stays stable with no exact cancellations and the solutions of the

original system and the perturbed system stay close.
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Consider a stable LTI state space model below:

ẋ = Ax. (5.3)

We will find a stable perturbation ∆ such that the perturbed system ˙̂x = Ax̂+ ∆x̂ meets the

following three conditions:

1. The perturbed system ˙̂x = Ax̂+ ∆x̂ is stable.

2. The error between the solutions of the original system and the perturb system is small.

3. The perturbed system has no exact cancellations.

In order to find such ∆, we first pick an arbitrary stable ∆, where Bool(A) = Bool(∆)

and each entries of ∆ is different. This guarantees that there is no exact cancellation in the

perturbed system.

Then we will find a perturbation ∆̄ with the smallest Frobenius norm that destabilizes

system ˙̂x = Ax̂+∆̄x̂ and results in A+∆̄ having one or a pair of eigenvalues at the imaginary

axis. Pick a small ε, where 0 < ε < 1, such that ‖ε∆‖F < ‖∆̄‖F . This way, we are guaranteed

to have all eigenvalue of A+ ε∆ on the left half plane and the perturbed system ˙̂x = Ax̂+ ε∆x̂

is stable.

The perturbed system then becomes ˙̂x = Ax̂ + ε∆x̂. This perturbed system will

have no exact cancellation and is stable. Now, we need to verify that the error between this

perturbed system and the original LTI system is small.

The solution to an unforced LTI system ẋ = Ax is x(t) = eAtx(0). And the solution

of the perturbed system ˆ̇x = Ax̂+ ∆x is x̂(t) = e(A+∆)tx(0).

Let e be the error between x and x̂, and assume x(0) = x̂(0),

e(t) = x̂(t)− x(t) = e(A+∆)tx̂(0)− eAtx(0) = e∆tx(0). (5.4)
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Because ∆ is very small and stable, e(t) stays small and e −→ 0 as t −→ 0. Therefore,

˙̂x = Ax̂+ ∆x̂ meets the three conditions. Now we can find the signal structure for ẋ = Ax

using the process defined in Section 5.2 on the perturbed system. We will leave the reader to

verify that the same process can be used to find the perturbation for LTI state space model

with inputs.

Example 4. System (5.1) is a stable LTI system with exact cancellation of paths in the

signal structure. We can find a perturbed system that well approximates (5.1) and has no

exact cancellation of paths following the above methodology.

First, an arbitrary ∆ is chosen, with Bool(∆) = Bool(A) and each entry of ∆ is

different:

∆ =



−2 0 0 0

0 −2.2 −1.3 −1.4

−1.5 0 −2.6 1.1

−1.8 0 −1.9 −2.1


. (5.5)

Then we can pick a small ε. Any ε∆ with Frobenius norm smaller than the Frobenius norm

of perturbation ∆̄, which has the smallest Frobenius norm that results in A+ ∆̄ having just

one or a pair of eigenvalues at the imaginary axis, is a good candidate of perturbation that

guarantees the stability of the new perturbed system. Here we simulated three values of ε: 1,

0.1, 0.01. All values of ε∆ are verified to make the perturbed system ˙̂x = (A+ ε∆)x̂ stable.

The smaller the ε is, the closer the solutions of the original and the perturbed system stay.

Figure 5.6 shows the responses of the original and the perturbed system.

The last step is to verify that the new perturbed system has no cancellation of paths in

the signal structure. Computing the DSF for ε = 0.1:

Q̂ =

0 0

∗ 0

 .
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(a) ε = 1

(b) ε = 0.1

(c) ε = 0.01

Figure 5.6: Simulation comparing the original and perturbed system. All three simulation
has an initial condition of x(0) = [1; 2; 3; 0].
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Note, * in Q̂ represents a transfer function. The DSF for the original system is Q =

0 0

0 0

.

Comparing Q̂21 with Q21, the path from y1 to y2 has been cancelled out for the original system,

while with the perturbed system, there is no exact cancellation from y1 to y2.

The perturbation ε∆ satisfies all the three conditions. Once we find a desired perturbed

system with no exact cancellation, we can apply Process 5.2 on the perturbed system to

construct the signal structure for the original system.

Similar to LTI systems, we can also perturb a stable nonlinear system with exact

cancellations, such that the perturbed system is stable with no exact cancellations and

well approximates the original system. However, nonlinear systems need to be stable and

“additively separable” in order to use this perturbation method. Given a nonlinear function

ẋ = f(x1, x2, x3, . . . , xn), f is only additively separable if f(x1, x2, x3, . . . , xn) = f1(x1) +

f2(x2) +f3(x3) + · · ·+fn(xn). When a nonlinear system is additively separable, we can design

a linear perturbation ∆x that satisfies the three conditions mention earlier.

Suppose ẋ = f(x1, x2, . . . , xn) and it could be separate to fi(x1, x2, . . . , xn) = fi1(x1) +

fi2(x2) + · · ·+ fin(xn). Then we can find perturbation ∆x:

f(x1, x2, . . . , xn) + ∆x =



f11(x1) + ∆11x1 + f12(x2) + ∆12x2 + · · ·+ f1n(xn) + ∆1nxn

f21(x1) + ∆21x1 + f22(x2) + ∆22x2 + · · ·+ f2n(xn) + ∆2nxn
...

fn1(x1) + ∆n1x1 + fn2(x2) + ∆n2x2 + · · ·+ fnn(xn) + ∆nnxn


.

We outline the idea of proof as follow:
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Consider the nominal nonlinear system:

ẋ =



f11(x1) + f12(x2) + · · ·+ f1n(xn)

f21(x1) + f22(x2) + · · ·+ f2n(xn)

...

fn1(x1) + fn2(x2) + · · ·+ fnn(xn)


+ g(u), (5.6)

and u is vector valued.

1. Picking an arbitrary ∆ with unique entries and let Bool(∆) = Bool(X ). Recall from

Chapter 4.1, X is the state adjacency matrix of the nonlinear system’s complete

computational structure.

2. Picking a small ε, and let the perturbation be ε∆.

3. Linearizing the perturbed system around the trajectory of (u(t), x(t)), which are

solutions to the original nonlinear system in (5.6). The result will be a linear time

varying(LTV) system: ẋ = A(t)x(t) +B(t)u(t).

4. Bounding the resulting LTV system with an LTI system, such that ‖xltv(t)‖ < ‖xlti(t)‖,

where xltv(t) and xlti(t) are solutions to the LTV and LTI system.

5. Verifying that ∆ will not destabilize the LTI system that bounds the LTV system.

If the ∆ we found does not destabilize the LTI system, and the LTI system bounds the LTV

system, then this ∆ will not destabilize the LTV system. Base on the Lyapnov’s indirect

method, if the LTV system is stable, then the perturbed nonlinear system is also stable.

Since we have validated the graphical approach will produced the correct signal

structure for nonlinear systems without exact path cancellation and we know that we could

perturb a nonlinear system that is stable and separable, we conclude that the graphical

approach is the process for a class of nonlinear systems we proposed in this thesis.
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Chapter 6

Future Work

There are several directions for future work. First, the process in Chapter 5 works

on a certain class of nonlinear dynamic systems. The nonlinear state space model has to be

stable and separable. The work can extend the process to work on other classes of nonlinear

systems. Another clear extension for this thesis is to expand the form of nonlinear system we

use. We limited the output equation of the state space model in the form of y =

[
I 0

]
x.

This conveniently saves us any effort of transforming the system to partition the measured

and hidden states. Future work can include systems with different forms of output equations,

and discuss how to transform these systems to partition the measured and hidden states.

Secondly, the current process only constructs the signal structure without weights

on any of the edges. Computing weights on the edges opens up some question. Computing

the weights for links in the complete computational structure is not so trivial. Even for a

simple system like ẋ1 = x2x3, putting a weight on edge {x2, x1} and {x3, x1} requires some

thought. Another problem is how weights are aggregated when multiple paths in the complete

computational structure form one link between two manifest states in the signal structure.

For LTI system, the weight for a single link in the signal structure is the netpath, which is

the sum of all the paths. But for nonlinear systems, the relationship of how multiple paths

forms a single link is unclear.

Once we could find a way to compute the weight with a proper interpretation of how

the weights work on the dependent nodes, we could apply this theoretical result to many

applications. A current ongoing project created a software application that utilized the results
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on the signal structures of LTI systems and helps mitigate any vulnerabilities in distributed

systems. This software can be extended to solve same problems but for nonlinear distributed

systems.

In summary, this work leveraged the linear DSF and some of its properties to create a

signal structure for a certain class of nonlinear systems. Specifically, we defined both complete

computational structure and signal structure. Then by finding the complete computational

structure of a nonlinear system with the corresponding adjacency matrices X ,U and Y ,

we were able to use some linear properties to construct the signal structure. My definition

and the corresponding processes for finding the complete computational structure and signal

structure is validated by proving the process produces the correct signal structure in linear

cases and thus is a proper generalization of the existing linear theory.
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