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ABSTRACT

Video Prediction with Invertible Linear Embeddings

Robert Thomas Pottorff
Department of Computer Science, BYU

Master of Science

Using the recently popularized invertible neural network we predict future video frames
from complex dynamic scenes. Our invertible linear embedding (ILE) demonstrates successful
learning, prediction and latent state inference. In contrast to other approaches, ILE does
not use any explicit reconstruction loss or simplistic pixel-space assumptions. Instead, it
leverages invertibility to optimize the likelihood of image sequences exactly, albeit indirectly.

Experiments and comparisons against state of the art methods over synthetic and
natural image sequences demonstrate the robustness of our approach, and a discussion of
future work explores the opportunities our method might provide to other fields in which the
accurate analysis and forecasting of non-linear dynamic systems is essential.

Keywords: system identification, invertible neural networks, Hammerstein-Wiener, video
extrapolation
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Chapter 1

Problem Statement and Contributions

This thesis aims to tackle high dimensional video frame extrapolation by modeling

the problem as high dimensional non-linear system identification and using modern neural

network training techniques to solve.

Formally, we consider a video sequence as an ordered tuple of T real valued frames,

each denoted as ot ∈ RN . We can frame the abstract problem of video extrapolation as

learning the conditional distribution over future frames, given past frames:

p(ot | ot−1, . . . , o0)

This distribution, in general, is complicated with no closed form we can use to tractably

sample, score, or approximate with directly. In lieu of direct approximation, we consider

transformed frames gθ(ot) = zt, where g is a neural network parameterized by θ, which we

refer to as embeddings or encodings :

p(gθ(ot) | ot−1, . . . , o0) = pθ(zt | zt−1, . . . , z0)

Provided that gθ is sufficiently expressive (i.e that it is capable of closely approximating

a given transformation) and invertible, we can define an equivalence between a tractable

distribution over observations pθ parameterized by θ and the true distribution over frames p
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using a change of variables:

p(ot | ot−1, . . . , o0) = pθ(zt | ot−1, . . . , o0) | det
∂zt
∂ot
|

This allows us to fit to the true distribution using a maximum likelihood objective on the

transformed variable:

max
θ

pθ(zt | ot−1, . . . , o0) | det
∂zt
∂ot
| (1.1)

In this work, we use an invertible neural network as the model class for gθ(ot) = zt and a

linear time-invariant dynamic system (LTI) to define the tractable likelihood pθ. To our

knowledge, this is the first work to demonstrate successful learning in reversible flow networks

using an LTI prior and one of the few works in video frame extrapolation to avoid making

any assumptions about the data distribution.

Our main contribution, an invertible linear embedding (ILE), combines invertible

neural networks and a latent linear dynamical system to explicitly model the true distribution.

By leveraging an invertible function approximator and the change of variables formula, frame

prediction likelihood can be precisely equated with the likelihood of an observation from a

linear dynamical system.
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Chapter 2

Video Prediction

Video frame extrapolation (sometimes called video prediction) is the estimation of

future frames conditioned on past ones. Thanks primarily to the ubiquity of image and video

sensors, this prediction plays a central role in diverse fields such as self-driving vehicles and

reinforcement learning. In robotic applications like these, cheap passive sensors like video

cameras that provide a rich detailed summary of the world (truly unparalleled by any modern

sensor) are invaluable and learning to understand the evolution of this sensor data over time

is a critical component of perception, planning and control.

2.0.1 Representation Learning

Frame prediction also offers a well-posed unsupervised objective for representation learning.

Any successful algorithm must have extracted salient features useful for describing both

the content and dynamics of a scene. To some degree, video prediction and representation

learning are essentially the same task. With the right representation, prediction is easy,

stable, and efficient; with the wrong one, it may be difficult or impossible [1].

The grand vision of representation learning is to understand how useful encodings can

be learned. Although there is no consensus as how this should be done, a video prediction

objective offers a well-posed unsupervised task that must describe a rich understanding of

the world and. As a result, video prediction may provide insight into how these productive

representations may be learned [18]. Thus, in addition to practical applications successful

video prediction also offers much in the way of furthering our theoretical understanding of

how artificial agents need to perceive the world.
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2.0.2 Video Prediction as Probabilistic Modeling

Video prediction as a task can be modeled as accurate approximation of the conditional prob-

ability distribution over future frames. This stochasticity presents a challenge to prediction

tasks. Consider a video of a falling leaf - it may float in one direction or another with little

indication of future direction but predicting only the average direction makes little sense. A

truly accurate model would attempt to model the entire distribution over frames.

To fit this distribution of future frames, some approaches use invalid assumptions. For

example, some minimize pixel-wise mean squared error (MSE) reconstruction loss which as we

will discuss assumes, among other things, that pixels are independent. Others optimize a lower

bound, typical of variational auto-encoders (VAEs). Still others use generative adversarial

(GAN) discriminators to approximate the likelihood in the data domain. However, none of

these approaches model the true distribution. We consider these approaches in slightly more

detail in the subsequent section.

2.1 Related Work

Frame prediction is an well studied problem with decades of research. We summarize

important relevant bodies of work here.

2.2 Flow Based Methods

In flow based methods, the model extrapolates optical flow (pixel deviations) that can be

used for backward sampling to “warp” the frame at t − 1 to the frame at t. Pixel-based

optical flow methods unilaterally assume that object materials are Lambertian (perfectly

matte), without reflections, dis-occlusion (when new pixels are revealed as the result of an

object uncovering another), or transparency. Despite the error in these assumptions, flow

based methods represent the state-of-the-art in short-term frame prediction applications

where sharp edges are highly valued such as video compression and feature estimation in
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robotics [5, 15, 19, 22, 24, 31]. Thanks to the compounding nature of repeated bi-linear

sampling and an inability to handle dis-occlusion, flow based methods are unable to provide

the stable predictions needed for prediction horizons beyond a few frames, leaving longer-term

prediction to latent-variable based generative models.

2.2.1 Connection to Linear Dynamic Systems

Optical flow methods are essentially a sparse, structured, linear dynamical system operating

in pixel space directly xt+1 = Atxt with the state x as the flattened frame, and the matrix A

has only four non-zero entries corresponding to the four the bi-linear interpolation coefficients,

the location of which are determined by the optical flow. Although efficient, the required

structure and sparsity in A results in a poor approximation to the true non-linear dynamics,

a limitation I plan to overcome by learning dense dynamics in a latent space coupled with a

decoder.

2.3 Generative Models

In contrast to optical flow methods, generative models hallucinate the entire frame from

a latent representation. This enables the model to imagine new pixels that appear as the

result of dis-occlusion. The most common assumption made by these models is induced via

reconstruction loss. Reconstruction loss is almost unilaterally used as a way to describe the

likelihood of prediction error in pixel-space but erroneously assumes independence between

pixels. We discuss this in great detail in the subsequent section. Generative methods can

loosely be divided between Generative Adversarial Network (GAN), Variational Auto-Encoder

(VAE), and factorization methods.

In contrast to VAE approaches, GANs employ a learned generator to produce an

imagined sample, and a learned discriminator to determine the likelihood that the imagined

sample came from the true distribution [6, 9, 17, 32]. Note that the discriminator is not

estimating the likelihood of the produced image in the true distribution, but only the likelihood
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that it is a true sample or not. VAEs on the other hand use an auto-encoder architecture to

approximate the true distribution over frames conditioned on a latent code p(x|z). Because

the true distribution is intractable, it is approximated by maximizing a lower bound [11].

Both of these methods, while extremely powerful, suffer from the limitation that the true

likelihood is never computed. Common failure modes, which differ between the methods,

include extreme difficulty in training, mode collapse (when the generator produces the same

memorized that perfectly fools the generator) or blurry reconstruction from the independent

pixel assumption. Hybrid approaches that use generic reconstruction loss augmented with

GAN discriminator losses or VAEs to improve generalization or fill in estimated dis-occlusion

are common [14, 18, 27].

2.4 Reconstruction Error and Implicit Assumptions

To distinguish between a large class of prior work and our main contribution, we highlight

a distinction between a common candidate objective function and the true distribution

described in Equation 1.1. A common framework for video prediction involves learning an

encoding function eθ, a separate decoding function dθ, and a transition function fθ. Learning

the decoder has the practical purpose that the system avoids perfectly predictable but not

particularly useful minima such as eθ = 0. For example, optical flow models use bilinear

sampling as fθ, VAEs have a literal encoder and decoder, and GAN approaches have a

generator as a decoder with a simultaneously trained encoder.

A typical loss in this framework is usually defined:

min
θ

α‖fθ(eθ(ot))− eθ(ot+1)‖+ β‖dθ(eθ(ot))− ot‖

When using L2 as the norm, minimizing this candidate objective function is equivalent to

maximum log likelihood learning under three assumptions.
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1. First, that the conditional distribution of the error of the embedding is an isotropic

Gaussian.

pθ(eθ(ot+1)|eθ(ot)) = N (eθ(ot+1), α
−1)

2. Second, that the input images are isotropic Gaussian with a mean defined by the

decoder

p(ot|eθ(ot)) = N (ot, β
−1)

3. Third, that the determinant of the encoder’s Jacobian is 1.

If our observations are image pixel intensities, these may not hold. While the first

assumption is relatively mild (it is valid given any sufficiently expressive encoder), the second

and third are not. The term ‖dθ(eθ(ot))− ot‖, which we call reconstruction loss, compares an

observation ot with its reconstruction dθ(eθ(ot)) using pixel-wise mean-squared error, known

to perform poorly in the case of translations and brightness variations. More generally, it

completely ignores valuable higher-order information in images: pixel intensities are neither

independent nor do they share the same variance. The third assumption is likewise almost

certainly not true for traditional auto-encoders. Put simply, this loss implies false assumptions

and results in a different objective than the one we would truly like to minimize.

2.5 Hammerstein-Weiner System Identification

In our work, in addition to the rich history of frame prediction research, we also consider

connections to control theory. Conceptually, modeling a nonlinear dynamic system as an tuple

of an encoding function and a linear (possibly time-invariant) dynamic system is known in

control literature as a Hammerstein-Wiener block model1 [10]. This literature has historically

focused on low-dimensional systems using methods which do not scale well to high dimensional

1Technically the model presented here is a Wiener model, but we consider the connection to the generalized
model in the literature to be important.
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systems like video. We extend this body of research here with neural network techniques for

high dimensional systems such as image sequences.
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Chapter 3

Invertible Neural Networks & Linear Dynamic Systems

In this chapter, we look at how an invertible neural network can be constructed and

used as our invertible function gθ. Recall that the goal of video prediction is to estimate:

p(oT |ot−1, . . . , o0)

Which we do by learning an invertible function g−1θ (ot) = zt and computing the likelihood in

the space of the tractable changed variable:

p(ot | ot−1, . . . , o0) = pθ(zt | ot−1, . . . , o0) | det
∂zt
∂ot
|

This particular implementation is common to a body of work on reversible flows, a relatively

new approach to deep generative modeling [3, 4, 12] which leverage a special functional form

for an invertible neural network to learn generative models of complex distributions.

We consider a generative model using a known parameterized distribution pθ(z) and a

deterministic function gθ(z):

z ∼ pθ(z)

o = gθ(z)

9



where gθ(z) has the compositional form

g
(N)
θ (g

(N−1)
θ (· · · g(0)θ (z) · · · ))

in which each successive layer operates on the output of the layer before (abbreviated

notationally as giθ(hi−1)). The change of variables formula enables us to relate:

log p(o) = log pθ(g
−1(z)) +

N∑
i=0

log | det
∂hi
∂hi−1

|,

with h0 = o and hN = z. Because pθ is tractable, we need only for the determinant of each

layer’s Jacobian to be tractable to efficiently compute the density log p(o).

Borrowing on the early work in this field, we use the following technique for g
(i+1)
θ (hi)

called an affine coupling which makes this determinant easy to compute:

hlefti , hrighti = split(hi)

si = fi(h
left
i )

hrighti+1 = si � hrighti + bi(h
left
i )

hi+1 = Pi

 hlefti

hrighti+1


where hi ∈ RD is the layer input, � is the element-wise product, fi and bi are arbitrary neural

networks (not necessarily invertible), and Pi is a unimodular matrix which mixes elements

between the two halves of hi. Although this may seem intimidating, the computation is

straightforward: using half of the layer’s input we learn to produce an affine transformation

to apply to the other half. This operation is invertible, and the log-determinant of this layer

10



is simply:

log |det
∂hi
∂hi−1

| = log

D/2∑
j=0

|sij|.

The log-determinant of the entire encoding function is the sum of these terms for all layers i:

log |det
∂g−1θ (ot)

∂ot
| = log

N∑
i=0

D/2∑
j=0

|sij|.

Taken together, this functional form enables us to define our decoding function gθ(z),

its exact inverse, and an efficient computation for the log-determinant of its Jacobian.

One particular downside to this method is a near-prohibitive memory and parameter

requirement. Because the input and output dimensions are equal, and the individual affine

transformations are so simple these reversible networks require a large number of layers with

a large number of parameters. This complexity can make gradient propagation slow and

optimization difficult corresponding to long training times. As the body of literature on

reversible flows expands and new techniques are developed we expect to see improvements

that would also apply to our model.

3.1 Linear Dynamic Systems

Recall that in our primary objective function, in addition to being able to learn g−1θ (ot) =

zt with a tractable way to compute the determinant of the Jacobian as described the

previous section, we must also be able to define a tractable computation for the distribution

pθ(zt|zt−1, . . . z0). In this section we introduce linear time-invariant systems as the structure

for this density function.
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A natural model for the evolution of a vector-valued observation is that of a linear

dynamic system:

xt = Axt−1 zt = Cxt−1 + γt−1 γt−1 ∼ N (0, I)

Where xt represents the hidden state, and zt the observation at that hidden state. In this

work, we assume that this system is time-invariant ; however, we note that it is possible to

extend this model to not only include time-varying dynamics, but also inputs, process noise

over the hidden state, or noise distributions with different distributions, but omit them in

this work for simplicity.

Linear Time Invariant (LTI) systems define a conditional distribution with tractable

density over observations:

pθ(zt|zt−1, . . . , z0) = N (CAtx∗0, I)

where x∗0 is the result of optimal latent state inference. For LTI systems, this is the result of

a Kalman filter when conditioned on only past observations, and the Kalman smoother when

conditioned on both past and future observations [30]. Although many algorithms [26] exist

to compute the optimal smoothing estimate x∗ they can all be shown to produce the same

least squares estimate:

x∗0 = arg max
x0

∥∥∥∥∥∥∥∥∥∥∥∥∥



z0

z1
...

zT−1


−



C

CA

...

CAT−1


x0

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= arg max
x0
‖Z −Ox0‖22

= O+Z
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The tractable density function is:

pθ(zt|ot−1, . . . , o0) = N (CAtO+Z, I)

where we use M+ as the pseudoinverse of M . The efficiency of optimal hidden state inference

is one of the motivating factors behind our choice of a linear model for the latent evolution

of embeddings.

Using a linear dynamic system as the transition model for our system introduces two

major assumptions. The weaker assumption is the Markov property, that future observations

are independent of past observations when conditioned on the hidden state. The stronger

assumption is that the future hidden states are a linear mapping from past states and that

this mapping remains constant through time. Although the linear dynamics prior may seem

quite restrictive, LTI systems are surprisingly expressive and have been shown to model

the latent dynamics of many high dimensional models [2, 16]. A key theoretical insight in

control literature proves the existence of an infinite dimensional linear operator, the Koopman

operator, for some nonlinear projection of all nonlinear dynamic systems [13]. When choosing

a large latent hidden dimension, we are approximating this infinite-dimensional operator. So

while the modeling assumption made by a linear dynamical prior is almost certainly not true,

a large enough state space is a good approximation and will demonstrate the viability of ILE

for difficult non-linear systems. Future work could explore options for more expressive yet

tractable time-variant dynamic system models.

3.2 Parameterization

Given the numerical instability induced from computing a least-squares solution in our

training loop, the parameterization of the linear dynamic system is of critical concern. In

particular, we must parameterize the learning method to maintain stable state transition

matrices A. A stable discrete-time linear dynamic system is one in which the singular values

13



are less than one so At does not explode for large t. A common necessary condition is that

the largest singular value, or the spectral radius of A denoted σ(A), is less than one.

One feature of LTI systems that we can exploit to ensure training stability is that,

for a given state-space parameterization A,C, there exist an infinite number of equivalent

parameterizations that correspond to the same input-output relationship and thus produce

the same observation sequences some of which will be more efficient to regularize during

training. This property can be explained intuitively: one can rotate the hidden state space

by some transformation T , evolve the state in this transformed space before de-transforming

observations with T−1. In practice, this means we can consider any parameterization for

A which has the eigenvalues of the true system provided we also learn an unconstrained C

matrix.

Because the stability of a linear dynamic system is characterized by the magnitude of

the eigenvalues of A, we can choose T so it is easy to compute and restrict these values. If

the true system A∗ = QΛQ−1 with a complex diagonal matrix of eigenvalues Λ and matrix

of eigenvectors Q, then we imagine T = Q, implying that we instead learn A = Λ. This

technique both decreases the number of learnable parameters in A while also making enforcing

stability relatively trivial.

Jordan Normal Form

The primary issue with learning A = Λ is that Λ as the eigenvalues of a real matrix will

come in complex conjugate pairs1. However, Real Jordan Normal Form (JNF) offers a simple

solution. By splitting the real and imaginary parts, we can construct an all-real matrix

for which matrix multiplication simulates complex multiplication with this constraint. The

1If we assumed that A∗ was symmetric, the eigenvalues would have no imaginary components and we
could instead simply learn a diagonal real matrix Λ.

14



following represents a 4× 4 example:

A =



α0 β0 0 0

−β0 α0 0 0

0 0 α1 β1

0 0 −β1 α1


This form does have its drawbacks. In scenarios where any imaginary components

are actually zero, then there should be an additional unique real component. Although

somewhat inelegant, the negative impact of this scenario can be mitigated by simply increasing

the dimensionality of A. Additionally if α0 = α1 and β0 = β1 true Jordan blocks should

additionally have a one in the off-diagonal corresponding to eigenvalues with multiplicity

greater than one. In practice this is not an issue as it is difficult to produce exactly identical

eigenvalues via gradient descent.

Recall that the goal is to learn stable A matrices. Although there are many ways to

ensure that the magnitude of each eigenvalue in the JNF does not exceed 1, we found the

following re-parameterization to be effective, using θα and θβ as vectors of unconstrained

real-valued parameters to produce the vectors of properly constrained real and imaginary

components α and β:

α = max((1− ε)− |θα|, 0)

β = max(1− |θβ|, 0) ∗
√

1− α2

where ε = 10−14. This particular transformation ensures that every unique real parameter

pair θα, θβ corresponds to a unique complex eigenvalue. The small epsilon subtraction ensures

that we never compute
√

0. In our implementation, ε is chosen such that when we compute

α and β with double precision, and then cast to single precision floating point we avoid
√

0

and allows α = 1.
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3.3 Shur’s Decomposition

Similar to Jordan Normal Form, Shur’s decomposition expresses a matrix as A′ = ZUZ−1

only with U as an upper triangular complex matrix instead of a diagonal one. The diagonal

of U are the eigenvalues of A′ and thus assuming T = Z we can learn A = U Using the

same block-diagonal form and constraints from Jordan Normal Form for the diagonal. This

decomposition is an over-paramterized way to express A relative to Jordan Normal Form.

Although over-parameterization has has been shown to be useful to the success of gradient

descent algorithms and system identification[8], in our experience we did not see any major

difference in performance between Shur’s Decomposition parameterization and Jordan Normal

Form.

3.4 Singular Value Decomposition

In addition to the parameterizations above, it is also possible to learn the Singular Value

Decomposition of A, and place limits on the singular values directly. The SVD defines a

unique2 factorization of a matrix A using a unitary matrices U and V (matrices whose inverse

is equal to their conjugate transpose) and a diagonal matrix of positive values Σ generally

referred to as singular values.

A = UΣV ∗

The singular values Σ of a matrix A are equivalent to the magnitude eigenvalues of ATA, and

as a result are ideal for enforcing stability. In our work we use a real valued unconstrained

parameter vector θσ and define Σ such that Σ = 1− clamp(abs(θσ), 0, 1). Learning unitary

matrices U and V with unconstrained parameters is decidedly more difficult.

2To a permutation, although generally the singular values are ordered to ensure the decomposition is
unique
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3.5 Parameterizing Unitary Matricies

Although important for our parameterization here, unitary matrices have also been shown to

help improve gradient propagation and initialization in neural networks [21], and long horizon

recurrent models[28]. We borrowed insights from this literature to develop fast computations

which construct these matrices. We consider three practical methods for constructing a

unitary matrix from unconstrained parameters and summarize the methods here:

1. Product of Householder matrices The details of this algorithm are better under-

stood in the context of a large body of literature, but the core idea is that all orthogonal

matricies can be represented as the product of N householder reflection matrices.

2. Cayley’s Transform Author Cayley showed how all orthogonal matricies Q have a one-

to-one correspondance with skew-symmetric matricies A such that Q = (I−A)(I+A)−1.

Constructing a skew-symetric matrix S from unconstrained matrix M is relatively easy:

S = M−MT , thus the parameterization becomes Q = (I−(M−MT ))(I+(M−MT ))−1.

In practice, the inverse operation was a bottleneck and the householder method was

faster.

3. LQ decomposition The simplest method is to simply take the LQ decomposition of

an unconstrained matrix, and use only the Q product. The utility of this method will

depend greatly on the differentiability and efficiency of the LQ algorithm in a particular

implementation.
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Chapter 4

Invertible Linear Embeddings

4.1 Learning Problem Refined

Recall the learning problem described earlier:

max
φ

pφ(yT+1 | y0, y1, . . . , yT−1) | det
∂yt
∂ot
|

We now present our primary contribution: the invertible linear embedding.

Using an invertible neural network as our encoding and decoding function gθ(o) and

g−1θ (z), and an LTI dynamic system as described for the conditional distribution, we can

derive our final loss function:

L = − log pθ(ot | ot−1, . . . , o0)

= − log[ pθ(g
−1
θ (ot) | ot−1, . . . , o0)|det

∂g−1θ (ot)

∂ot
|]

= − log pθ(zt | ot−1, . . . , o0)− log |det
∂zt
∂ot
|

= − log N (CAtO+Z,Σ)− log |det
∂zt
∂ot
|

Which results in:

L =
1

2
‖Z −OO+Z‖22 − log

N∑
i=0

D
2∑
j=0

|sij| (4.1)
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When minimized using sufficiently expressive gθ(z), A, and C parameters, this loss function

corresponds to the exact maximum likelihood model of a video sequence which is assumed to

have latent linear dynamics.

We can describe the function of these two terms intuitively. The first term (the

predictive error) is the result of encoding each frame independently, solving for the best

possible LTI dynamic system trajectory, and applying gradient descent to minimize any error.

The more the embeddings behave as a linear system, the lower the predictive error. The

second term (the log-determinant) encourages the embeddings to be large, preventing the first

term from collapsing to easy-to-predict but useless trajectories such as zt = 0. Although it

may seem like a strange regularization to “maximize the embedding values”, the application

of change of variables and strict invertibility ensures that this is the correct way to learn a

mapping between our assumed latent model, and the true observations in image space.

4.2 Addressing the Scale Ambiguity

When learning both the encoding function and the dynamic system parameters simultaneously,

there is an ambiguity between the scale of the embedding and the scale of the dynamic system

when the covariance is learned. As an illustrative example, consider the following system:

yt = γtfθ(ot) ŷt = γtCxt

A scaling ambiguity occurs when we try to learn the covariance of the error in addition to

the other parameters of our network, i.e when the predictive loss becomes:

log p(yt|yt−1) ∝ (yt − ŷt)TΣ(yt − ŷt)

= (γtfθ(ot)− γtCxt)TΣ(γtfθ(ot)− γCxt)

= γ2t (fθ(ot)− Cxt)TΣ(fθ(ot)− Cxt)
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The γ2t term, which induces downward pressure on the embedding magnitudes when Σ

is constant, can be absorbed as a learned Σ adjusts during training. This effectively removes

its impact, but leaves behind the upward pressure on magnitudes from the log γt term, which

will result in the system maximizing γt, rather than prediction error. In practice, this results

in a runaway scale of the embeddings and numerical issues.

To address this we model the γ−1 as another layer in our invertible network which we

simply adds another term to our loss function:

L = log p(γ−1t yt|·) + log|det
∂yt
∂ot
| − log γt

If we assume the covariance of the error to be the identity (i.e unlearned), the

log predictive loss (when the model for error is Gaussian) is proportional to (yt − ŷt)2 =

γ2(fθ(ot) − Cxt)2 and thus scales with γ. As γ decreases, so too does the predictive loss.

This induces downward pressure on γ, which in turn induces downward pressure on the

scale of the embeddings y. This downward pressure is somewhat mitigated by the upward

pressure on the magnitude of the embeddings from the negative log determinant term, but is

asymmetric: the downward pressure scales with γ2 while the upward pressure scales with

log γ. Nevertheless this implies that there exists an equilibrium between these two forces and

that training should be stable regardless of the scale of γ.

In practice, we found that adjusting for γ in the loss improved training stability

and wall clock time even when the covariance is held constant during training. Although

training is stable without the adjustment, the asymmetry results in a bias toward smaller

magnitude embeddings than if γ was fixed. This biases the norm of the decoder’s Jacobian

to be large1. This unfortunately has the unintended consequence of translating small error in

the embedding space to large error in the image space. Although asymptotically this issue

should equalize, by holding γ constant, this effect is lessened earlier in training.

1If the magnitude of the embeddings is small, and the outputs are large, then the norm of the Jacobian of
the decoder must be large.
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Although γt could be learned, we used γt = 1
N
‖yt‖1. We also found that the L1 norm

performs better than the L2 norm2. But we note that ”better” in this case refers to wall-clock

time needed for quality predictions and not asymptotic correctness.

4.3 Algorithm

Combining all of these, we can now formulate our method, Invertible Linear Embeddings, as

an algorithm for video prediction

Algorithm 1 Invertible Linear Embedding

1: Returns the following:
2: gθ: a learned invertible neural network
3: A: a learned state transition matrix
4: C: a learned observation matrix
5: while L is not minimized do
6: Sample o0, . . . , oT−1 frames
7: for t = 0, · · · , T − 1 do
8: zt = g−1θ (ot) ∈ RD

9: st = |det ∂zt
∂ot
|

10: end for

11: Z =


z0
z1
z2
...

zT−1

 O =


C
CA
CA2

...
CAT−1


12: x∗0 = O+Z
13: Ẑ = Ox∗0
14: γ = 1

D
‖Z‖1

15: L = 1
2
‖γ−1(Z − Ẑ)‖22 +

∑T
t [log st]− log γ

16: Take gradient step in A, C, θ to minimize L
17: end while
18: oT = CATx∗0

2Presumably because it better propagates small gradients in each dimension of yt.
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Chapter 5

Experimental Results

5.1 Datasets

We show results for both a synthetic and realistic dataset. The synthetic data, entitled

Bouncing-MNIST, is generated using the Moving Symbols algorithm, a published benchmark

designed to support the objective study of video prediction networks [25, 29]. Each video

sequence samples an MNIST digit, assigns it an initial trajectory, and simulates elastic

collisions with the image boundary.

The realistic sequences are sampled from UCF Sports Action [20, 23]. This dataset

contains video sequences of various sports such as diving, running, horseback riding, and

golfing.

5.2 Network Topology

Our network is most similar to that used by [12], but without 1 × 1 convolutions, or the

act-norm operation. We used 4 blocks of 10 affine-coupling layers each, where each block

has an early connection out to the final embedding. Our non-invertible networks used at

each step of flow were simple 3-layer networks of 3× 3 convolution with two output channels

for the affine transformation parameters and 512 channels in the center. For comparison,

we implement the adversarial training algorithm of [18], which is known for its sharp image

quality.
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5.3 Results

Method
First Frame Fifth Frame

PSNR SSIM PSNR SSIM

Invertible Linear Embedding 23.5 0.92 17.4 0.69

Adversarial Training 20.6 0.95 12.1 0.83

Last Input 17.3 0.76 14.5 0.67

Figure 5.1: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) scores,

taking the mean over 100 held-out test sequences. We generate future frames o1, o2, ..., o5

and calculate scores on o1 and o5 to measure both immediate and longer-horizon prediction

quality. We again note that our approach does not explicitly minimize the mean squared

error between predicted frames and ground truth.

We evaluate our algorithm by comparing against adversarial training in three ways: qualita-

tively through examples, with peak signal-to-noise ratio (PSNR), and with the structural

similarity (SSIM) index [29]. Statistical results are reported on the synthetic dataset.

Figure 5.2: The Bouncing-MNIST dataset, modeling elastic collisions which preserve object
shape.
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Figure 5.3: The UCF Sports Action dataset, modeling the progression of a golf swing.

Although adversarial training has a slight advantage in SSIM, the ILE algorithm

outperforms it in PSNR. The difference is especially pronounced over a longer time horizon.

Adversarial training maintains crisp shapes, yet lacks accurate motion projections over even

moderate time horizons. After five frames it performs significantly worse than the naive

baseline. ILE maintains a reasonable representation of the digit shape, and excels at motion

projection over a long time horizon, even accurately predicting bounces off image boundaries.

This suggests that the nonlinear dynamic system is being fit quite well.1

While adversarial training performs well on sequences where the motion is strictly

linear, such as those pictured, it performs poorly in motion that is nonlinear in pixel space.

For example when the digit bounces off a wall or when a golf club accelerates in the frame.

In contrast, ILE models all motion sequences well, suggesting better generalization ability.

1The adversarial training PSNR scores are lower than those reported in [18] because the synthetic dataset
has much more motion than the UCF-101 dataset, which the original paper used as a benchmark. In our
tests, digit velocity is up to 3 pixels/frame in each direction. However, the high velocity is intentional; a
quality benchmark for video prediction should use sequences where motion is noticeable.
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Chapter 6

Directions for Future Work

Our work moves toward exact maximum likelihood optimization to improve perfor-

mance in video prediction. We present here what we consider to be natural next steps, and

the implications they might have.

6.1 Action-conditional Latent Structure

By extending the model of the hidden dynamical system to include an action u and linear

mapping B it becomes possible to use ILE for model based reinforcement learning and optimal

control.

6.2 Time Variant Models

Additionally a simple extension to our model which may prove promising is to learn a

time or state-conditional state-transition matrix At in lieu of the constant A presented.

This particular extension could be done using any standard autoencoding neural network

architecture as a JNF state transition matrix is diagonal and invertibility is not a requirement.

Although time-varying linear dynamic systems are more difficult to analyze, they are models

of much greater capacity and therefore could be better suited for difficult problems that

would require infinite, or near-infinite dimensional state dimensions.
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6.3 Scaling to larger frame dimensions

Invertible networks, perhaps as a direct result of the difficult task of modeling the entire

unknown distribution over video frames, are large and difficult to train. In particular, memory

usage in our model even for these relatively small frame sequences was a computational

constraint. Architectural improvements such as those recently proposed by Grathwohl et al.

could extend our results into images approaching modern video resolutions.
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Chapter 7

Conclusions

We have presented the invertible linear embedding, which provides exact maximum

likelihood learning of video sequences. Our key contribution is to combine invertible networks

with linear dynamical systems. While images sequences may lie on a complex probability

manifold in high-dimensional space, an invertible network coupled with a change of variables

learns how to properly map that manifold of probability to the well-behaved conditional

Gaussian created by a linear dynamic system. By formulating this with a single learning

objective, we arrive at an elegant joint optimization problem. The primary advantage of

this approach is that we avoid making any assumptions about the distribution of the input

domain.

In future work we believe even better qualitative performance can be had as more

becomes known about optimization and training of invertible networks.
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