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ABSTRACT

A Shared-Memory Coupled Architecture to Leverage Big Data Frameworks in
Prototyping and In-Situ Analytics for Data Intensive Scientific Workflows

Alexander Michael Lemon
Department of Computer Science, BYU

Master of Science

There is a pressing need for creative new data analysis methods which can sift through
scientific simulation data and produce meaningful results. The types of analyses and the
amount of data handled by current methods are still quite restricted, and new methods
could provide scientists with a large productivity boost. New methods could be simple
to develop in big data processing systems such as Apache Spark, which is designed to
process many input files in parallel while treating them logically as one large dataset. This
distributed model, combined with the large number of analysis libraries created for the
platform, makes Spark ideal for processing simulation output.

Unfortunately, the filesystem becomes a major bottleneck in any workflow that uses
Spark in such a fashion. Faster transports are not intrinsically supported by Spark, and its
interface almost denies the possibility of maintainable third-party extensions. By leverag-
ing the semantics of Scala and Spark’s recent scheduler upgrades, we force co-location of
Spark executors with simulation processes and enable fast local inter-process communi-
cation through shared memory. This provides a path for bulk data transfer into the Java
Virtual Machine, removing the current Spark ingestion bottleneck.

Besides showing that our system makes this transfer feasible, we also demonstrate a
proof-of-concept system integrating traditional HPC codes with bleeding-edge analytics
libraries. This provides scientists with guidance on how to apply our libraries to gain a new
and powerful tool for developing new analysis techniques in large scientific simulation
pipelines.

Keywords: Apache Spark, Data-Intensive Science, High-Performance Computing, In-Situ
Analytics, Parameter Sweep, State-Space Pruning
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1 Introduction

Modern high-performance computing (HPC) produces a lot of data. This is especially

true of simulation codes. Some “... are producing petabytes and even exabytes of data,”

according to the data-intensive science team at Argonne National Laboratory [1]. The

massive data produced by these simulations is useless unless it can be efficiently analyzed.

Unfortunately, even storing data at this scale is difficult, and analyzing it is even more

challenging. There is a pressing need for creative new data analysis methods which can

sift through this mass of data and produce meaningful results.

For a specific example, consider the simulation in nuclear reactor design. Nuclear sci-

entists must simulate various reactor parts in a wide variety of conditions. In one study,

with a restricted case with few parameters, scientists still had to run 6561 simulations for

a total of about 18 hours of CPU time [2]. While scientists have managed to get by, the

types of analyses and the amount of data handled by current methods are still very re-

stricted. This has led to complex systems such as JobPruner[3], which integrates with job

schedulers to heuristically skip job submissions which are likely unproductive.

Systems like JobPruner are difficult to modify and tune, and they are perhaps more

limited than most systems by the main bottleneck of coupled workflows: the filesystem.

Generally, many simulations have to run and store data in files; these files are then ana-

lyzed serially, after which further simulations may be run, and the original simulations

must be rerun if any problems were detected during analysis. As a result, workflows take
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Figure 1.1 Traditional Coupled Workflows

the form shown in Figure 1.1, where standard runs combined with feedback mechanisms

can result in as many as six major filesystem bottlenecks in a single application.

These limitations seem artificial given current technology; there are now systems designed

to do general statistical analyses on large amounts of data in parallel. Unfortunately, these

systems were not developed to integrate with HPC, but rather with the large amounts

of data produced by business processes, internet-of-things devices, and a wide variety

of other real-world data. One especially popular framework is Apache Spark [4], which

aims to be a one-stop-shop for analysis of warehoused and streaming data. It provides

distributed machine learning algorithms, SQL queries, and most of the basic tools required

for doing any sort of distributed analysis. In theory, Spark could reduce the filesystem
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hits in Figure 1.1 from six to two simply because it subsumes all the pieces other than the

simulation that produces data.

Spark is designed to process many input files in parallel while treating them logically

as one large in-memory distributed dataset, so the intermediate I/O is gone, leaving only

the interface with simulations. This makes Spark ideal for processing simulation output,

except for one thing: Big data systems, including Spark, generally rely on distributed

filesystems to handle the most complex parts of distributed processing and fault toler-

ance, so these systems almost always read from and write to disk on every job they run.

Network filesystem I/O is one of the biggest overheads in running on a supercomputer,

which means that HPC applications try to avoid it, so Spark’s reliance on the filesystem

has thus far prevented Spark from being applied directly in HPC environments. To en-

able efficient coupling, processes need to send data to Spark through fast transports such

as shared memory rather than filesystems.

If Spark could ingest data from anything other than filesystems, databases, and low-

throughput network interfaces, HPC might already be using it. It is not trivial to change

Spark’s capabilities, though, because its limitations are mostly caused by the Java Virtual

Machine (JVM). The Spark core libraries have to do amazingly complicated workarounds

to deal with bottlenecks such as 32-bit array indices. Most attempts to circumvent Spark’s

sanctioned interfaces fail because they run into the same JVM problems that Spark has

managed to mitigate. Spark uses a complex custom memory management scheme which

provides, to end users, the illusion of effortless management of large address spaces. Un-
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fortunately, this management scheme is not designed for interoperability, so taking ad-

vantage of it is best done by exploiting Scala language features such as lazy singleton

instantiation; this can yield mostly stable results without requiring a rewrite of large parts

of Spark.

1.1 Thesis Statement

Any solution for connecting data-intensive HPC to Apache Spark must solve two prob-

lems: it must ensure co-location of the two applications, and it must use inter-process

communication (IPC) transports which work with existing Spark APIs. By ensuring and

facilitating co-location of Spark executors with HPC processes, we can enable the use of

local IPC methods such as shared memory. By using a ring buffer of shared memory,

we can efficiently transport bulk data into the JVM, removing the current Spark ingestion

bottleneck. Removing this bottleneck will create a significant speedup in Spark-coupled

simulation pipelines. This speedup will facilitate using Spark (and its ecosystem) to accel-

erate the development of new analysis methods for scientific simulation.
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2 Related Work

Truly related works are scarce in this field. We examine the closest existing applications,

HPC workflow systems, to show the opportunity for using Spark. Then we show existing

projects which integrate with Spark in some fashion.

Interoperability Cost

System

Scheduling

Flexibility

Analytic

Functionality State Native Spark

Ignite Low Low Production High Low

H2O.ai Low High Production High Low

OpenCPU High High Research Medium Medium

SnappyData High High Production High Low

Dask High Medium Alpha Low NA

JuliaDB Medium Medium Alpha Low NA

pbdR High Medium Research Low NA

Table 2.1 Feature Matrix of Current Systems
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The important features are summarized in Table 2.1 to demonstrate the lack of a system

which is sufficiently usable in all the areas needed for our application.

The trade-offs apparent in our table come because Spark is difficult to integrate with

other systems, so most projects directly using Spark are based entirely on the JVM plat-

form and on other projects in the Spark ecosystem. Unfortunately, the JVM does not mesh

well with supercomputing applications, and introduces all kinds of memory-management

issues and overheads.

We group projects by how they manage control flow between Spark and user code and

whether Spark is augmenting the application or vice-versa. In addition to projects from

the Spark ecosystem, we also examine three possible alternatives to Spark which all have

better potential for efficient coupling. We also examine interoperability tools which could

help solve the problem of coupling native and JVM code.

2.1 Workflow Systems

We looked first at existing workflow systems to confirm there was a Spark-shaped gap in

current tooling. While workflow systems abound, many are highly domain-specific. One

general-purpose system stands out as representative, in that it captures both the strengths

and weaknesses of most existing HPC workflow systems.

Dakota [5] is a general system for providing iterative analyses to HPC simulations. It

provides both loose- and tightly-coupled modes. Loose coupling in Dakota is based on
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pairs of input/output files for each program, and is representative of typical simulation-

analysis workflows. Tightly-coupled mode embeds the simulation into Dakota’s process,

which allows very efficient data exchange between the simulation and analysis halves

of the workflow. The problem with tightly-coupled mode is it does require modifica-

tion of the simulation program, although a wrapper based on Filesystem in Userspace

(FUSE) could probably be introduced for simulations which cannot be modified. In gen-

eral, Dakota seems useful, but only for situations where its built-in analyses are sufficient.

Implementing new and experimental machine learning and other analysis methods would

likely be difficult, as supporting these is not a goal of Dakota.

The main issue with existing workflow frameworks is a lack of flexibility. Thus they

can’t compete with Spark’s ecosystem for ease-of-prototyping. If an HPC framework de-

cided to prioritize prototyping and managed to keep its performance and robustness in-

tact, it could easily remove the need for Spark. Converting an existing framework to do

such a task would be a massive undertaking, as would developing a new framework with

feature parity.

2.2 Spark-Centric

Some projects achieve tight integration with Spark by creating custom Spark executors

which encapsulate instances of their program.

Ignite [6] uses this method to enable tight integration of Spark Resilient Distributed

Datasets (RDDs) with the Ignite data grid. Unfortunately, using this tightly coupled mode
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precludes the use of an existing Ignite cluster, and is thus not useful for integrating with

processes external to Spark.

H2O.ai [7] integrates with Spark through a sub-project named Sparkling Water. This

project enables the use of H2O’s Machine Learning APIs; this is good for avoiding dupli-

cation of effort in designing distributed machine learning algorithms, but as with Ignite,

provides no way to connect to external processes.

OpenCPU [8] provides a custom Spark executor which can offload various statistical

computations to a cluster of R processes. This project actually presents a real possibility for

coupling Spark to external systems which themselves embed R. Unfortunately, this library

currently focuses on the case where data exists in the Spark process and must be shipped

to the external cluster. It doesn’t seem to provide for situations in which data exists on

the external processes and needs to be sampled by the Spark process. The OpenCPU in-

frastructure might prove useful, but it is not yet being utilized in a way that solves the

problem at hand.

2.3 Subsume Spark

The ideal method of communicating with Spark would be to have it run in-process with

the data-producing code. There is currently only one system which embeds Spark into

itself in this manner.

SnappyData [9] is essentially a peer-to-peer data grid with Spark executors embedded

into the data serving nodes. This provides excellent data locality, as all data transfer be-
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tween Spark and the grid (which is also on the JVM) is in-process. To achieve this tight

coupling, SnappyData has to maintain its own Spark scheduling components; it has actu-

ally forked the Spark code base and embedded it in its repository. SnappyData requires

a large amount of maintenance to stay in sync with Spark’s main release branch, which

is undesirable. The biggest flaw for our purposes is that SnappyData hasn’t solved any

general Spark integration problems (ie. the embedding of Spark into arbitrary applica-

tions); it merely reduces them to the problem of how to integrate with SnappyData, which

is nontrivial to do in an efficient way, especially from a non-JVM process.

2.4 Language Interop

Babel [10] was named “The world’s most rapid communication among many program-

ming languages in a single application” by the R&D100. This award was given in 2006,

and the framework was showcased at Supercomputing 2007 and used for some time, but

it seems to have been inactive for about five or six years at present. In any case, Babel was

mostly concerned with single-process applications which happened to use modules writ-

ten in different languages. It provided some support for remote method invocation, but

was certainly not intended for use as a general framework for data movement between

co-located but mostly independent applications. If resurrected, Babel might contribute

insights on high performance interfaces between native code and the JVM, but would not

be a useful solution to the Spark problem by itself.
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Weld [11] is an intermediate representation (IR) designed for representing SQL oper-

ators and similar functions in a language-agnostic fashion. Weld is brand new, and the

developers have not published an efficient framework for code generation, so Weld specif-

ically might not be useful. However, Weld has demonstrated that generating native code

from Spark is possible and that it increases performance. This capability could be applied

to function shipping. That is, Weld does not care where the data on which it operates

is located when the code is being generated. This means that the IR could be generated

and shipped across a network to where the data resides, and the result shipped back.

By design, Weld could, in fact, be generated partially by a library on the JVM, then fur-

ther modified by operations from a native library before being executed on arbitrary data.

Using Weld in this fashion could at least provide an optimization in the form of query

push-down, but could also form the basis for a complete redesign of the Spark processing

model.

2.5 Embeddable Alternatives

Because embedding Spark is so difficult, completely switching analysis systems could be

a reasonable alternative. We investigated three potential replacements for Spark which in

theory would be far easier to embed.
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2.5.1 Dask

Our first alternative, Dask[12], was one we investigated early on in our research. We dis-

carded it because (a.) it was nearly brand new, (b.) it did not officially support machine

learning, and (c.) it had breaking bugs.

Later in our project we had cause to re-evaluate and found that Dask had greatly im-

proved and had better documentation and support for machine learning. Unfortunately,

Dask still manifested bugs when we attempted to test our workloads with it.

If Dask is developed further with an emphasis on correctness and it can become sta-

ble, then we believe it could be an excellent alternative to Spark for building coupled

simulation-analysis workflows. In fact, because many Spark users prefer the PySpark vari-

ant, they would prefer Dask to Spark simply because Dask is a Python framework and

complex Spark functionality requires the use of Scala.

2.5.2 JuliaDB

JuliaDB[13] is, like Dask, not mature yet. In fact, we only discovered it when we were

doing our second evaluation of Dask. JuliaDB is developed with commercial support and

has the potential to be a reasonable alternative to Dask or Spark, but it is currently far too

immature to be useful.

In addition to its own youth, JuliaDB has the problem of being written in Julia, which

is also immature and facing design challenges. If Julia could overcome certain develop-
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ment issues, especially the way it handles library dependencies and environments, then

Julia and JuliaDB would be excellent candidates for embedding in compiled programs. In

theory, the language’s built-in interoperability with C exceeds that of Python and R, so

JuliaDB could even be the best of our three alternatives. Whether this potential will ever

be realized is doubtful at this point.

Julia recently released a version 1.0 which didn’t address most of the problems we faced

with the language. This leaves little hope that Julia and JuliaDB will ever be suitable for

this type of project.

2.5.3 Programming with Big Data in R

Abbreviated pbdR[14], this framework has a traditional supercomputing background and

is developed by academics and national lab scientists. Its main contribution is an idiomatic

R interface to distributed and high-performance linear algebra libraries. While pbdR in-

tegrates well with other HPC applications, it does not currently provide a large library of

useful machine learning functions, as Dask and JuliaDB do in theory and as Spark does

in practice. If developers were to create such a library, this framework might be the most

functional of the alternatives we tested. It builds mostly on proven HPC technologies

whose bugs were mostly resolved long ago.
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2.5.4 Summary

We tested the most promising frameworks for three popular scientific and statistical com-

puting languages, and found each of them lacking. Each of them, if truly completed,

would be a strong contender and probably replace Spark for projects like ours. Unfor-

tunately, none of the frameworks is mature and as a result, important functionality, cor-

rectness, or both were absent from each one. So while there are promising alternatives,

the promises will be fulfilled too far in the future for the alternatives to be useful for our

work. Perhaps the best feature of Spark is that, while it does have flaws, it exists now, its

interface contains a large amount of functionality, and its implementation mostly works

as promised. Spark won’t always be the best framework, but it’s currently the only frame-

work that isn’t vaporware.
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3 Implementation

Our framework is agnostic concerning specific parallel libraries used in simulation codes,

so it would be equally correct to substitute arbitrary single-program multiple-data (SPMD)

processes in most places where we write MPI (Message Passing Interface). MPI, though,

is occasionally more convenient to use in discussion, and we also used MPI for our own

testing, so we hereafter refer to simulation processes as MPI processes.

Our solution addresses a number of outstanding issues for coupling Spark and tradi-

tional HPC codes. First, we ensure that Spark workers and MPI processes are co-located

one-to-one, as shown in the left block of Figure 3.1. We also smoothly coordinate the

launch and shutdown of both frameworks to facilitate co-location. Second, we provide

a simple, low-overhead node-local data transport between MPI and Spark workers. This

transport is the data channel (along with its connected components) shown in Figure 3.1.

The transport’s protocol requires a metadata channel, which is drawn above it in the figure.

Third, we offer a remote procedure call (RPC) interface through which MPI processes can

request arbitrary analytics on the datasets resulting from our second contribution via the

Spark driver. As shown in Figure 3.1, our RPC system is based on the hypertext transfer

protocol (HTTP).
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All of our framework’s runtime components are conveniently packaged as Java Archives

(JARs) and shared libraries which spare uninterested users the burden of dealing with im-

plementation details. Potential users only need three skills:

1. The ability to write Scala methods conforming to an interface

2. An average understanding of Apache Spark

3. The ability to inject a few lines of code (resembling standard C I/O routines) in an MPI

program.
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3.1 Launch Framework
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Figure 3.2 Colored processes implicitly communicate during startup. Arrows show con-
nections between Slurm and the supervisor, and between the supervisor and its child
processes.

Originally the only way to reliably co-locate anything with Spark was by using Apache

Mesos as Spark’s scheduler. With newer versions of Spark, this fortunately became un-

necessary, but Spark by itself is difficult to manage. Specifically, Spark creates complexity

with the handling of various log files, routing of non-file output from its numerous com-

ponents, controlling startup, ensuring graceful shutdown, and the integration of all these
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functions into a job submitted via an HPC scheduler such as Slurm. To handle these issues

we wrote a small supervisor framework which intercepts, for example, dying Spark jobs

to increase relevance of the job exit status for accounting. The supervisor also separates

logs for all the processes from both halves of the coupled application to prevent trashing

the standard Slurm output collector. We use this supervisor to cleanly launch, monitor

the profiling and benchmark applications we discuss in the following chapter.

In practice, the supervisor operates as shown in Figure 3.2. Processes from the same

application are shown in different colors and share common label prefixes. In the figure,

arrows denote explicit communication between groups, and each group also performs

internal communications for initialization.

• The green nodes form a semi-connected Erlang actor system.

• The red nodes run Spark’s internal RPC registration routines.

• The blue nodes perform an MPI_Init call during startup.

Note that while the actor system is supervising both Spark and an MPI program, Spark

and MPI processes do not communicate during launch. Our protocol (detailed in the next

section) requires that Spark be initialized before the MPI processes. This requirement

ensures that simulations cannot attempt to send data to a service which is not yet listening.
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3.2 Transport

Our transport method makes two major improvements over the traditional filesystem ap-

proach. First, it operates in-memory, avoiding any bottlenecks with local disk and with the

cluster storage network. This feature also makes our transport indifferent to differences

in cluster setup; eg. its performance is invariant to the presence or absence of local disks

on compute nodes. Second, our transport avoids the serialization-deserialization (serde)

overhead which plagues most existing frameworks and which can be just as expensive as

the actual data transfer. Serde is often mandatory because arbitrary data models mov-

ing between arbitrary machines are rarely binary-compatible. Because all our transfer is

between co-located processes, we can exploit raw data representations and avoid serde

for cross-machine purposes. We also avoid any serde that might be used for language

interoperability because all types in our data model are interoperable between Scala and

C.

3.2.1 Buffer

Our transport method is based on shared memory. We access /dev/shm directly due to

lack of full JVM support for shared memory as defined by the Portable Operating System

Interface (POSIX). This places a Linux dependency on our implementation, which should

be a non-issue in practice because a large proportion of HPC clusters run Linux. Several

major non-Linux systems have the ability to provide a compatible replacement for /dev/shm,
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and even without a Linux compatibility module, could support the necessary operations

if a few lines of one Scala file were edited. The stronger dependencies our system has are

on POSIX IPC; systems must support many of the standard constructs for our system to

work correctly.

Ro
w
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(Unit of Transfer)
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M

em
or

y
Bu
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r

Field1

Field2

FieldN

Figure 3.3 The “Ring” in “Ring Buffer” contains indexed segments comprised of rows.
In a fully-threaded implementation, segments could be randomly accessable and lockable,
but our single-producer-consumer paired version uses semaphores and a single modular
counter instead. All segments are transferred only when full, except for the very last,
which is allowed to be partially empty.

Our buffer is formed from a conservatively sized slab of memory-mapped shared mem-

ory (shown in Figure 3.3). The segments of this buffer are groups of rows. Transferring

less than a certain amount of data in one segment is bad for performance, as it greatly
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increases the number of copy calls as well as the number of semaphore operations. The

segment size should be set to minimize this under average conditions; calibrating it per-

application or per-cluster-configuration is advisable. Since users rarely transfer multiples

of the segment size, we allow the last segment to be partially empty when transferred.

3.2.2 Protocol

The actual transfer of data is a classic single-producer-consumer setup, with a sema-

phore for signaling a segment is ready and another for signaling a segment is empty. Both

processes keep their own modular index for tracking which segment to operate on next.

A third semaphore is used to signal the end of the transfer operations, so that one process

can clean up the resources before continuing.

Because flaws in this protocol would break our entire framework, we took great care to

design it correctly. We modeled the protocol in Promela; refer to Figure 3.4 for the pieces.

We cared about two main properties:

i. □(𝑟𝑖𝑛𝑔0 = 0 ∨ 𝑟𝑖𝑛𝑔0 = 1) ( Mutual Exclusion )

ii. (◊ (𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 > 0)) ∧ □(𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 > 0 ⟹ ◊(𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 = 0)) ( Completeness )

The properties use linear temporal logic, and for reference we provide the intuitive

(though imprecise) definitions of the unary operators □ and ◊.

□ This operator, often read globally, specifies that its operand (a formula) should hold in

every state.
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#define SLOTS 4
#define SLICES 12
byte ring[SLOTS];
byte sem_full;
byte sem_empty = SLOTS - 1;
byte to_transfer = SLICES;

inline sem_wait(sem) {
atomic {

(sem > 0);
sem--;

}
}
inline sem_post(sem) {

sem++;
}

Initial State Semaphores

active proctype mpi_process() {
byte segment = 0;
do

:: to_transfer > 0 -> {
assert(ring[segment] == 0);
ring[segment]++;
segment = (segment + 1) %

SLOTS;
sem_post(sem_full);
sem_wait(sem_empty);

}
:: else -> break

od
}

active proctype spark_executor() {
byte segment = 0;
do

:: to_transfer > 0 -> {
sem_wait(sem_full);
assert(ring[segment] == 1);
ring[segment]--;
to_transfer--;
segment = (segment + 1) %

SLOTS;
sem_post(sem_empty);

}
:: else -> break

od
}

Producer Consumer

Figure 3.4 Protocol Model

◊ Sometimes called eventually, this operator requires that its operand be true either in the

current state or in some future state.
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Mutual exclusion is a standard property in concurrent systems with shared resources.

Completeness is our own property we wrote to check the end-to-end behavior of the proto-

col, and would fail if undesirable properties such as deadlock could occur. It ensures that

when any data becomes available from the producer, that data is eventually consumed.

Before moving on with our work, we used SPIN to ensure that our model satisfied both

properties. A full state-space search for the corresponding never claims (with acceptance

cycles) runs without errors for each property. By carefully implementing our verified pro-

tocol, we more easily unmasked subtle bugs which manifested during development and

which, if not for our careful planning, would have led to many wrong debugging paths

through unrelated code.

To enable our simple setup, both processes need to be on the same page concerning

the schema and amount of data being transferred. Each process also needs to call initial-

ization methods to work with the POSIX IPC objects. We satisfy both these requirements

with a single HTTP exchange. When native processes have data to transfer, they send a

message, containing the metadata for the upcoming transfer, to their local Spark work-

ers. Our framework, embedded in Spark, has precisely one HTTP endpoint; this endpoint

takes an incoming message and calls a receiving method configured with the message’s

metadata body.

3.2.3 Data Model

The second feature of our transport is the most influential in its design. Raw data is only
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useable if programmers haven’t shaped it into complex structures.

Type Typical Size (bits)

Char 8

Int 32

Long 64

Float 32

Double 64

Table 3.1 All data types are signed scalar values corresponding to those implemented in
typical C compilers (Clang, GCC) when targeting x86.

We thus restrict our data model to a common subset usable across most language en-

vironments: records with signed scalar fields. For reference, the possible field types are

given in Table 3.1; they correspond to the set of types mutually understood by Java and C.

By design, this matches the standard Spark data model, which is in turn designed around

a subset of SQL. The trick of our model restriction is that we use the exact same model

everywhere in the coupled system, to minimize conversion costs.

While many low-level transport methods are byte-oriented, our row-oriented model

motivated us to make our transport row-oriented as well. For users to transfer data to

Spark, they simply need their data in the form of an array of structs (AoS). Not all user data

fits this model well, but although we considered making the transfer library use format

strings or schema files or some such structure to interpret and transform user data before
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transferring to Spark, we decided the associated complexity and the serde overhead would

both be too high. In order to avoid serde, users have to transform their data somehow, as

all raw binary methods are inherently constrained in similar ways. As a result, a number

of existing codes whose data is not, in theory, a good fit for our system might already

include suitable conversions for other I/O systems.

While we cannot do anything about codes whose data model is difficult to transform

to AoS form, it is better that users of such codes know the cost of using Spark up front.

It is easier to reason about conversion costs when the loops for flattening data are in user

code, not hidden in a transport library. We do assist users as much as possible once they

have a structure definition for the elements of an AoS; when they provide a C structure,

we generate the Spark side of the interface for them.

This may sound trivial, but Scala’s type system is often painful for new users. The

type system cannot be avoided in our framework because we require certain compile-time

information to ensure transferred data is interpreted correctly and to avoid spending any

more time than necessary on reflection-based data conversion. To help users avoid this po-

tential snare, we created a Clang-based code generator to complement the client libraries.

By generating all the glue, we spare users from the internal details of the Scala data model

for most common cases.

Users need only run the code generator and place the output in their application’s

source tree. As a result, users get the efficiency of compile-time optimizations with equal

convenience to Spark’s reflection-based schema inference.
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3.3 Library

By nature, every piece of our library was actually two pieces. Our framework comes in

two pieces: a C-compatible shared library to interface with simulation codes, and a JAR

file to use with Spark.

3.3.1 Native

Our native library is designed for embedding in high-performance programs with C-

compatibility layers; we wanted it to have a small footprint, few if any dependencies, and

a simple interface. We also wanted it to be easy to write, verify, and maintain, and to have

minimal chances of causing bugs due simply to implementation quirks. To this end, we

designed the library to be stateless and almost entirely statically linked, and we wrote it

in Rust.

We didn’t start out with a stateless library. In fact, we first designed the library in the

fashion typical of MPI, embedded language runtimes (Ada, Haskell, Lua, Scheme, etc),

HDF5 and NetCDF, database drivers, or graphics libraries. In other words, we started

down the traditional path followed by most C interface libraries. In C, libraries which deal

with external state tend to have initializers which return handles which are then provided

as arguments to other library calls. To avoid resource leaks, C programmers must always

call finalizers on these handles so the external code can clean things up.
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Initially, we set our library up the same way, but we noticed that we weren’t actually

storing state with our handle, so we refactored our library to get rid of the initialization and

termination code. It turns out that the main pieces of our library which might theoretically

be useful to keep around are the ones which tended to function best if we re-initialized

them every time. So, instead of allocating a set of buffers and semaphores and maintaining

them, we allocated one buffer and one set of semaphores when a transfer was initiated,

then freed them immediately after the transfer completed. While this does come with a

slight runtime cost, it decreases the chance of the program leaving garbage synchroniza-

tion objects behind in the event of program failure. If the overhead had been severe, we

would of course have found a way to use persistent state, but we did not encounter such

problems in practice, and our simplified approach helped solve some very real and persis-

tent synchronization debugging issues that were holding up development. Our stateless

interface was also smaller than the stateful version. It had three methods: one to transfer

data to executors, one to request analysis results, and one to free the resources associated

with the analysis results.

Note that our library is C-compatible but is written in Rust because Rust provided

useful development features that are missing from the C ecosystem.

• Debugging was greatly simplified by writing in Rust instead of C, thanks to built-in

memory protection and useful backtraces.

• Rust was also useful for its package ecosystem, which has multiple well-maintained
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HTTP libraries of varying complexity. Had we written in C or C++, we would have

been hard-pressed to find even one HTTP library suitable for our purposes.

• The Rust build tool defaults to static linking, so the only runtime dependencies our li-

brary has are standard C libraries, which would already be required by most potential

user code (the exceptions would likely be Fortran programs, and Fortran-C interop-

erability solutions would probably need the C libraries themselves). In addition to

simplifying dependency management, static linking enables more efficient job startup

on clusters. Static linking isn’t mandatory, of course, but having it by default is a useful

bonus of using Rust.

3.3.2 Scala

As we mentioned earlier, we generate code for Spark data model creation and loading.

These parts of the Spark library are written as templates which are expanded for every

struct provided by a user. The resulting code is responsible for storing, loading and casting

data into the correct form for use in DataFrame-centric codes. No actual generated code

is necessary to compile; empty stubs could be substituted. Our auto-generated file thus

only impacts runtime functionality.

The rest of our library internals are split between executor code and driver code. Ex-

ecutors have services provided by Akka HTTP; each executor has an actor listening for
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metadata submissions. The driver also has an Akka HTTP-based service which listens for

analysis requests and provides a simple form of RPC.

Worker
Coupler

Spark

Worker
Coupler

Spark

Lazy Object HTTPD

Storage

use
run

Spark
Driver

Framework
Registration

Library
Activation

Figure 3.5 Because of Spark’s implicit parallelism, the code for the coupler depicted here
is part of every Spark process. As shown on the left, the actual object does not exist at first.
When instantiated, the coupler contains the implementation of the transport described in
the preceding sections.

Executor services (collectively labeled the Coupler) start running only after the driver

accesses a lazy reference to the service object via a distributed function call (shown in

Figure 3.5). This is, to our knowledge, the only way to provide services on Spark executors

without modifying Spark itself. It relies on Scala’s built-in semantics for lazy variables and
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the fact that Spark code which references lazy values instantiates them on the node where

said code is actually executed.

Once executors’ HTTP actors start, they enter a loop of waiting for metadata-bearing

signals and handling them by assuming the consumer role from our transport protocol.

Once metadata is received, the library needs to map POSIX shared memory and open

some semaphores. It can map memory using a FileChannel, but POSIX semaphores have

no built-in JVM support. Accordingly, our library includes a wrapper class which uses the

foreign function interface (FFI) provided by the Java Native Runtime (JNR). JNR makes

semaphore access simple: load the pthreads library and call the relevant sem_(open, wait,

close, and unlink) methods. Once the library sets up its POSIX IPC constructs, it reads

segments from the ring buffer and stores them in an array builder. This array builder will

produce an iterator, upon request, as the source for a DataFrame. Each dataset has exactly

one buffer which produces the concatenation of all rows transferred since the last time the

buffer was cleared.

For distribution, we package our library code as a fat JAR file to minimize build com-

plexity for end-user programs. We planned to distribute a source-only library because

Spark uses multiple class loaders in a configuration which thwarts most attempts at dy-

namic class loading. Copies of the same class loaded by different classloaders are different

to the JVM and cannot be coerced together. Fortunately, the pieces enabling this behav-

ior are dropped by serialization; serializing and de-serializing a class from one loader can

bring it into the proper context for use with another loader. This enabled us to move all
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of our application-agnostic code into a JAR library, simplifying both file management and

the build process for end users.

3.4 RPC

In addition to implementing the producer and consumer halves of our transport protocol,

our libraries also implement a simple RPC framework. The RPC framework is based on

HTTP because it is simple and because we already had HTTP libraries involved for the

metadata piece of the transport protocol.

The Spark driver, in addition to its other tasks, hosts an RPC service. This RPC service

allows users to request analyses by name, and to provide a list of datasets upon which an

RPC depends. This list of dependencies is used to register the data stored on the execu-

tors as a named table for use in Spark SQL; this allows users to access their data with sim-

ple SQL statements rather than more complex DataFrame operations that would invoke

Scala’s type system. Users are free, of course, to write more complex code. Initial data

access is simpler for users, though, if they merely use SELECT * FROM <TableName>. Doing

otherwise requires either understanding our generated code, or writing replacement code

for the generated file; both options are likely unpalatable for most users.

The output of the RPC service is more flexible than the input. Users are free to return

anything they wish from their analysis methods, as long as it is serialized to byte form.

The RPC system returns bytes specifically to provide as much freedom as possible.
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Knowledgable users might wish to replace our simple RPC system with a more robust

and feature-full system such as Thrift or gRPC. Such replacement would be relatively sim-

ple for any users with the interest; we designed it to be swappable because we anticipate

the need of some users to have customized RPC which better suits their needs. The rest of

our system, by contrast, is designed such that end-users would likely not care to modify it

even though they could. Implementing a completely new data model would be the most

likely motivation for anyone wanting to try, and the necessary changes would result in a

near-complete overhaul.
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4 Analysis

During initial testing, we used the standard Network Filesystem (NFS), but we eventually

encountered the concurrency failure cases which make NFS unsuitable for this type of

workload. From the Spark point of view, a filesystem which resembled HDFS would have

been preferable, but such systems require local disks on compute nodes. This precludes

their use in many HPC clusters, where compute nodes are often diskless, as well in our

cluster, where we chose the same paradigm. Ultimately, we chose BeeGFS for storage

because it approximates the state-of-the-art in HPC filesystems. Its architecture resembles

that of Lustre, which would have been the ideal test system if not for its low stability and

its correspondingly high maintenance requirements.

CPU RAM Ethernet Infiniband Storage OS Scheduler

Intel® Xeon® X5560 24 GB Gigabit QDR BeeGFS CentOS 7 Slurm

Table 4.1 Cluster Configuration

After sorting out our filesystem issues, our cluster’s blades were configured as shown

in Table 4.1. Our test cluster was a single rack of these blades, with one group set aside

as BeeGFS storage and the rest registered with Slurm for use in compute jobs. Although

all nodes had disk bays, only the storage nodes actually configured and used them. Most
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traffic ran over Gigabit Ethernet, but QDR Infiniband was configured and used to access

BeeGFS.

4.1 Synthetic Benchmark

To establish basic performance data for our system, we wrote a synthetic workload which

tested the features we most expect users would need. In particular, because our data model

does not allow for nested structure, we chose to transfer two different but related datasets

and perform a join within Spark. At first, we weren’t sure what kind of analysis to run

and settled for a simple count. In implementing the count, we encountered some errors,

and the easiest way to debug and add a regression test was to write a Spark analysis which

verified correct receipt of all data in both tables. We controlled test data amounts with Ran-

dom123’s Philox counter-based random number generators[15] to obtain repeatable tests

which exercised Spark’s analysis interface in a realistic fashion with reasonable coverage.

The resulting test became our new synthetic benchmark as well as our main integration

test.

Our fake data was designed to mimic some kind of generic molecular dynamics or

computational chemistry application. Each node generated a rather large random number

of atoms every timestep, and transferred two tables to Spark. The first table had timestep

metadata, including the number of atoms intended to be in the second table. The second

table had atoms, each with a label and position and velocity information, as well as a field

indicating which timestep it belonged to.
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SELECT SUM(diff) FROM (
SELECT ex.rank, ex.total - got.total AS diff
FROM (

SELECT rank, SUM(natoms) AS total
FROM Timestep
GROUP BY rank

) ex
LEFT JOIN (

SELECT rank, count(*) AS total
FROM Atom
GROUP BY rank

) got
ON ex.rank = got.rank

)

Figure 4.1 Benchmark SparkSQL

Both tables had a field indicating the rank of the MPI process which generated a par-

ticular row. Normally, applications wouldn’t need or want such a field, but because our

application was verification of correct transfers at node granularity, we needed to track

data origins. The use of this field is clear from the actual SQL statement used in our test,

shown in Figure 4.1; it’s needed in two GROUP BY clauses.

The transfer to Spark was repeated ten times, after which the data size was increased

and the process repeated. All data was re-generated with new random values for each

iteration of the outer loop.

We were interested in transfer and analysis data times, so we measured them sepa-

rately. For transfer time, we measured from just before the master started writing to just

after an Mpi_Barrier placed after the write call. The write call was a function pointer

whose actual implementation was different depending on which transfer mechanism we
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were measuring. Because our transfer mechanism was stateless, all setup and teardown

was contained in the timing interval by default. For the filesystem, all resource opening

and closing was likewise done inside the timed section.

4.2 Overhead

When first running our benchmark, we discovered unexplained crashes were reliably re-

producible when our test data reached a certain size threshold. The discovered cause was

simple: we were exceeding our compute nodes’ memory limits. Normal Spark has the

ability to swap when it runs out of memory, and we initially failed to account for the effect

our embedded framework would have on Spark’s deployment constraints.

To demonstrate that our framework was not causing an undue resource drain, we in-

strumented our framework and made copious JVM measurements. The results, shown

in Figure 4.2, demonstrate that the ratio of overhead to the size of the data decreases to

negligible levels as our simulated datasets become realistically large.

Our tests show that our framework is not leaking memory or causing other unwar-

ranted behavior. They also provide a basis for estimating how much RAM to allocate for

a coupled workflow, or how large a workflow can be run given a known set of resources.

Most extra memory used by our system over pure Spark is an artifact of the need to copy

between two independent programs. The inability to swap data out is due to our custom

data structure not being a file and thus not having the same persistence abilities as other

Spark data sources.
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Figure 4.2 Ratio of Overhead to Data Size for Increasingly Large Data Steps

Our coupled codes need at least three times as much memory as just the simulation

code alone. This may seem high, but Spark alone likely uses more memory than the sim-

ulation code. The baseline we are comparing with, then, is already somewhere between

two and three times the memory of a standalone simulation. As a result, our library it-

self must uses less than one simulation’s worth of memory. By design, it should use a

predictable amount which is far less. Spark’s memory usage, however, increases during

certain execution stages and can be hard to predict. Because Spark has some lazy behav-

ior, larger-than-possible jobs may appear to work for a time and mysteriously crash when

the fatal allocation is finally attempted. Since this can cause difficulties in debugging, we

recommend that users carefully pre-calculate their expected resource usage, and that they
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err on the side of over-allocation.

4.3 Results

We ran our benchmark with a range of sizes from ridiculously small to as large as would

fit on a node without crashing from out-of-memory errors. For every size step we ran the

test ten times. Also, due to the local nature of our transfer library, we were able to collect

results from many pairs of Spark and native processes running concurrently on separate

nodes. This gave us a large number of samples for each step. We computed summary

statistics over these, and discovered several results.

• The first run in a program coupled with Spark should probably be thrown out because

the system’s initialization causes an enormous outlier. This was the case regardless of

which transfer system we used.

• There is little benefit to our system if data sizes are trivial. This is apparent from Fig-

ure 4.3, where small values of data have total overlap in times. If anything, our system’s

setup overhead takes it just a small amount longer than vanilla Spark, making it detri-

mental if you only compare initial startup speeds. These cases where the filesystem

method achieves lower speeds are more obvious when examining Figure 4.4.

• When real data starts moving, our system quickly takes and maintains a significant

lead over Spark-on-BeeGFS. The practical difference at the scale we were able to test is
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Figure 4.3 Comparing Filesystem (files) and Ring-Buffer (ring) Transports: Runtime
with Increasing Size

between jobs measured in minutes or seconds and jobs measured in hours. If systems

have enough memory, we expect the scaling would extend to enable job completion

in minutes or hours instead of days or weeks. As it is based on risky extrapolation,

the previous suggestion is unreliable for many purposes, but it does provide a likely

upper bound on the utility of our system. The possibilities permitted by this bound

should be enough to aid in getting future tests scheduled on large systems with enough

resources to properly explore the practical limits of our approach.
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Figure 4.4 Comparing Filesystem (files) and Ring-Buffer (ring) Transports: Time Distri-
bution

Other than the overall scaling of our approach, we wanted to know how it affected the

major phases of a coupled workflow. As seen in the boxplots of Figure 4.4, we separately

recorded the analysis and data transfer phases, and examined the distributions from both

methods. Note the presence of numerous outliers in the ring transport’s timing distribu-

tion; multiple factors could contribute to this.

• The ring buffer times increase slowly and thus our sample range contains many similar

results. The far end of the range is just starting to use data sizes which result in sig-

nificantly larger times. As size grows, though, our sampling density decreases and we
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have few enough data points to result in the last samples appearing as outliers against

the distribution of the more densely sampled low-runtime region.

• Our in-memory transport seems to be quite predictable, with a low variance in per-

formance. However, our compute nodes are diskless and all system services use a

ram-based filesystem. This creates a chance of the transport on a single node being

drastically affected, which would cause an outlier in our data. As we increase data size

and saturate nodes’ memory, this problem could become more common. The cluster

filesystem is unaffected by such problems, which would help explain the relative lack

of outliers in filesystem results.

Given that large data is the source of both factors we identified, the outliers are likely

an artifact of running our tests up to the memory limits of our test cluster.

Our contribution is targeted at accelerating transfers between simulations and Spark,

so we would expect the transfer phase to be accelerated. This is exactly what we observed.

Further, we did not observe a significant change in analysis time between the two methods.

In summary, we maintain normal Spark analytics performance while vastly improving

data ingestion.

4.4 Proof of Concept

Our benchmarks show, quantitatively, that our work enables novel interactions between

Spark and native HPC codes. However, while our benchmark was intended to resemble
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a simulation code, it was also a benchmark and a system test, so it may leave some uncer-

tainty about how to apply the new interactions we’ve enabled. To address this uncertainty,

we developed a qualitative test of our library interfaces, showing how a native system us-

ing a typical mix of C[16] and Fortran[17] can interact with Spark and its ecosystem.

Our example system performs adaptive Monte-Carlo sampling, and was inspired by

VEGAS [18]. The basic task is that of finding the shape of an unknown function on a

bounded Cartesian plane. The function we evaluate is created by fitting a fourth-order

spline to a random walk along the y-axis and an equally spaced set of integer x-coordinates.

1
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Figure 4.5 Demo Overview

In Figure 4.5, we display the high-level setup of our demo system. The figure’s labeled
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areas are explained in more detail below.

1. The sampling distribution is calculated from a two-dimensional histogram which tiles

the search plane into equal size blocks, as specified in Figure 4.6. Initially, this his-

togram is uniform, but can be updated using data produced in item 4 of Figure 4.5.

Histogram
𝑏𝑖𝑛𝑠 : seq ℝ
𝑏𝑖𝑛𝑠𝑃𝑒𝑟𝐷𝑖𝑚 : ℤ
𝑐𝑜𝑢𝑛𝑡 : ℤ → ℝ

Search Plane
𝑥0, 𝑦0, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡 : ℤ
𝑣𝑎𝑙𝑖𝑑 : ℝ2 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}

∀ (𝑥, 𝑦) : ℝ2 • 𝑣𝑎𝑙𝑖𝑑 (𝑥, 𝑦) =
𝑥0 ≤ 𝑥 < 𝑥0 +𝑤𝑖𝑑𝑡ℎ ∧
𝑦0 ≤ 𝑦 < 𝑦0 + ℎ𝑒𝑖𝑔ℎ𝑡

Init
Histogram
Search Plane

𝑥0 = 𝑦0 = 0
𝑤𝑖𝑑𝑡ℎ = ℎ𝑒𝑖𝑔ℎ𝑡 = 100
𝑏𝑖𝑛𝑠𝑃𝑒𝑟𝐷𝑖𝑚 = 64
𝑏𝑖𝑛𝑠 = {(𝑖, 100) | 𝑖 ∈ 0..𝑏𝑖𝑛𝑠𝑃𝑒𝑟𝐷𝑖𝑚2}

Tiling
Histogram
Search Plane
𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ : ℝ
𝑏𝑖𝑛 : ℝ2 → ℤ

𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ =
𝑤𝑖𝑑𝑡ℎ

𝑏𝑖𝑛𝑠𝑃𝑒𝑟𝐷𝑖𝑚

∀(𝑥, 𝑦) : ℝ2 • 𝑣𝑎𝑙𝑖𝑑 (𝑥, 𝑦) ⟹

𝑏𝑖𝑛 (𝑥, 𝑦) = let (𝑖, 𝑗) = ⌈
(𝑥, 𝑦)

𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ⌉ •

(𝑖 ⋅ 𝑤𝑖𝑑𝑡ℎ) + 𝑗

Sampling Distribution
Tiling
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 : ℝ2 → ℝ
𝑑𝑟𝑎𝑤 : ℕ → seq ℝ2

let 𝑎𝑟𝑒𝑎 = 𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ2•
∀(𝑥, 𝑦) : ℝ2 • 𝑣𝑎𝑙𝑖𝑑 (𝑥, 𝑦) ⟹

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥, 𝑦) =
𝑐𝑜𝑢𝑛𝑡 (𝑏𝑖𝑛 (𝑥, 𝑦))
𝑠𝑢𝑚 (𝑏𝑖𝑛𝑠) ⋅ 𝑎𝑟𝑒𝑎

Figure 4.6 Both halves of the demo use the same model for histograms discretizing a
search space. The monte-carlo search process initializes its histogram to a uniform posi-
tive value and uses it to drive its sampling distribution. The given parameter values cor-
respond to the output graphs later in this section.

An adaptive program which uses this updating strategy can also choose to use the sum

of this histogram as criterion for early termination; it can stop, for example, if all the



43

bins have been updated. This stopping condition, labeled Swept, is described (along

with the update procedure) in the lower-right corner of Figure 4.7.

2. At each simulation step, the native library samples numerous points from the distri-

bution in item 1. It evaluates these points and labels them with 1 if they fall strictly

under the target curve, and -1 otherwise.

Spark Client
𝑎𝑛𝑎𝑙𝑦𝑧𝑒 : seq SAMPLE → seq ℤ

Spline
�̅̅̅̅�, �̅̅̅̅� : seq ℝ
𝑒𝑣𝑎𝑙 : ℝ2 → SAMPLE

Parameter
𝑠𝑡𝑒𝑝𝑚𝑎𝑥 : ℤ
𝑛𝑝𝑜𝑖𝑛𝑡𝑠 : ℕ

Program
Parameter
Sampling Distribution
Spark Client
Spline
𝑠𝑡𝑒𝑝 : ℤ

Init
Program

𝑠𝑡𝑒𝑝 = 0
𝑠𝑡𝑒𝑝𝑚𝑎𝑥 = 1000
𝑛𝑝𝑜𝑖𝑛𝑡𝑠 = 1000
�̅̅̅̅� = {𝑖 | 𝑖 ∈ ℤ ∧ 𝑖 ∈ 0..100}
�̅̅̅̅� ⊂ 𝑊𝐴𝐿𝐾
# �̅̅̅̅� = # �̅̅̅̅�

SAMPLE== ℝ× ℝ × {1,−1}
WALK== seq ℝ
Exhausted
ΞProgram

𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝𝑚𝑎𝑥

Iterate
ΔProgram
𝑠𝑡𝑒𝑝 : ℤ
𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 : seq ℤ

𝑠𝑡𝑒𝑝? < 𝑠𝑡𝑒𝑝𝑚𝑎𝑥
𝑠𝑡𝑒𝑝′ = 𝑠𝑡𝑒𝑝 + 1
𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝑎𝑛𝑎𝑙𝑦𝑧𝑒(𝑒𝑣𝑎𝑙(𝑑𝑟𝑎𝑤(𝑛𝑝𝑜𝑖𝑛𝑡𝑠)))

Swept
ΞProgram

𝑠𝑢𝑚 (𝑏𝑖𝑛𝑠) = #𝑏𝑖𝑛𝑠

Adaptive Step
Iterate
ΔHistogram

𝑠𝑢𝑚 (𝑏𝑖𝑛𝑠) > #𝑏𝑖𝑛𝑠
𝑏𝑖𝑛𝑠′ = 𝑏𝑖𝑛𝑠 ⊕ {(𝑖, 1) | 𝑖 ∈ 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘}

Figure 4.7 Spark feedback can be used to update the probability distribution. While a
more complex model is easily enabled by letting Spark choose new values for each bin,
this simple version merely sets bin values to one when Spark returns their indices.
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The x and y coordinates as well as this label are sent to Spark for all the samples from

the current round, according to the interface in Figure 4.7.

3. The observed distribution which Spark maintains is a histogram with the same di-

mensions as the one in item 1, but is initialized with empty bins.

Observed Distribution
Tiling

Init
Observed Distribution

𝑏𝑖𝑛𝑠𝑃𝑒𝑟𝐷𝑖𝑚 = 64
𝑏𝑖𝑛𝑠 = {(𝑖, 0) | 𝑖 ∈ 0..𝑏𝑖𝑛𝑠𝑃𝑒𝑟𝐷𝑖𝑚2}

Update
ΔObserved Distribution
𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠? : seq 𝑆𝐴𝑀𝑃𝐿𝐸

𝑏𝑖𝑛𝑠′ = 𝑏𝑖𝑛𝑠 ⊕ {
(𝑏𝑖𝑛 (𝑥, 𝑦) , 𝑐𝑜𝑢𝑛𝑡 (𝑏𝑖𝑛 (𝑥, 𝑦)) + 𝑣)
| (𝑥, 𝑦, 𝑣) ∈ 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠?

}

Figure 4.8 Updating Observed Distribution

Spark updates its histogram with the data described in item 2 according to the model

in Figure 4.8. At the end of the program, this histogram is the one written to disk and

plotted for analysis.

4. In addition to updating its persistent histogram, Spark also calculates a per-round his-

togram and weights the bins using data from its persistent histogram. This temporary

histogram is identical to the one described in Figure 4.8, but the initialization step is

performed every round instead of once at the beginning of a long program.
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Historical Bin Weighting
𝑝𝑎𝑠𝑡?, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡? : seq ℝ
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑! : seq ℝ

dom 𝑝𝑎𝑠𝑡? = dom 𝑐𝑢𝑟𝑟𝑒𝑛𝑡?
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑! = { (𝑖, ∣∣𝑝∣ + 𝑐∣)

| (𝑖, 𝑝) ∈ 𝑝𝑎𝑠𝑡? ∧ (𝑖, 𝑐) ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡?
}

Sufficiently Sampled
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑? : seq ℝ
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑? : ℕ
𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘! : seq ℤ

𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘! = {𝑖
| (𝑖, 𝑣) ∈ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑? ∧ 𝑣 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑?

}

Figure 4.9 Histogram Feedback

The weighting and thresholding rules we used are summarized in Figure 4.9, but they

can be reconfigured. Cells with values exceeding some threshold are considered suf-

ficiently sampled, and their locations are sent in response to the RPC request. If it so

chooses, the native client can update the histogram for the sampling distribution (item

1) to effectively stop sampling these locations and focus on other areas of the plane.

4.4.1 Spark Analysis

We chose one representative library to demonstrate the power of Spark’s ecosystem: Sys-

temML[19]. SystemML augments Spark’s numeric matrix processing and enables a mix

of dynamic scripting with compiled Spark code. While it also has numerous libraries of

its own, its dynamic script loading is the most interesting feature when combined with

our library’s simple HTTP RPC interface. This combination allows simple embedding of

scriptable network APIs into workflows to simplify the bulk of the application code.
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The Spark half of our program relies on mutable driver state to track what happens

over time. SystemML-computed values are extracted from its symbol table and stored.

These values are iteratively updated by registering the same symbol for input and output,

and passing in the stored value as input. The symbol table is initially empty, so SystemML

does require an initialization phase. An easy way of dealing with this is to simply make

a separate handler function that (re-)initializes the symbol table. A more clumsy solution

could involve editing the script run by the analysis handler to include the initialization

code, running one iteration of the workflow, and reverting the script for future iterations.

SystemML and Spark are adept at different things. Calculation of histogram updates

and many other numeric array operations are easily expressible with SystemML, but if

a list needs to be sorted, grouped, or manipulated by myriad other functional operators,

Spark SQL and Scala are the only sensible recourse. In the end it seems best to have Spark

deal with parsing, reshaping, filtering, sorting, encoding, and other data manipulations

for input and output to simulation processes. SystemML, meanwhile, should be left to do

the most dynamic operations. Anything which is likely to change and can be expressed

in the form of a SystemML script probably should be. Output for debug or statistical

purposes is a special case of dynamic operation which SystemML excels at, and having a

zero-dependency zero-return method that takes all state variables as inputs and calls an

output script is a simple way of performing on-demand introspection into Spark’s system

without affecting unrelated components.
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4.4.2 Glue

Adding scripting to a system is often a major undertaking, but scriptable systems are typ-

ically easier to prototype with. To clarify, here scripting denotes a system of dynamic code

loading and execution with hooks to a compiled program’s interfaces. SystemML pro-

vides an interface through which code resembling R or Python can be loaded at runtime

from arbitrary files. While the system doesn’t support most of the standard libraries of its

syntactic lookalikes, it does have a number of its own libraries, and it uses a distributed

matrix model that is stable and performant because it is based on Spark.

We did not include a scripting interface with our library, but here we demonstrate

how to add one without modifying any native code. Because we used HTTP for the RPC

analytics interface, any language with an HTTP client can interact with it. When writing

the Scala code for a workflow, arbitrary methods can be inserted purely for interacting

with a script. As the Spark driver is capable of storing and manipulating state, it can

be convenient to have setup methods called by a script before launching a simulation.

Likewise, writing Spark’s state to a file can be part of a post-run script. This makes it

easier to change the internal behavior of the analytics without affecting how interaction

happens with a simulation. Many simulations have heavy limitations on modification of

their binaries, so this embedding of a flexible interface has significant potential.
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4.4.3 Output

We ran two versions of our program. One, which we call adaptive, modified the histogram

based on information polled from Spark at the end of each timestep. The other, dubbed

exhaustive, never modified the histogram. We called the second exhaustive because the

first method was allowed to stop once Spark’s replies had updated all the histogram cells.

In our demonstration run, the adaptive method was able to finish in 23 iterations instead

of running for a full 1000 like the exhaustive version. We did not collect statistics on the

exact advantage the method has; that is not the focus of this section. Rather, we direct

attention to what information this much shorter runtime was able to collect, compared to

its exhaustive counterpart.

In Figure 4.10, we show the two-dimensional histograms which our Spark process cal-

culated. Note that the curve discovered is nearly identical, with the main difference being

the scale of values in the histogram bins.

More complex decision criteria can be implemented with few-to-zero changes to the

interfaces between system components. If interface changes are needed in a program such

as this, our system can support them because the main infrastructure doesn’t care what

high-level behavior is running atop it. Every bit of code in this example is user code, and

thus end users have full control over it.

Compare this to traditional analytic workflow engines; many libraries have a version

of the method we implemented. In fact, we could have avoided using Spark at all and

simply used built-in functions from the GNU Scientific Library. Once we wanted to do



49

10

0

-10

Adaptive (23 Iterations)

10

0

-10

Exhaustive (23 Iterations)

200

0

-200

Exhaustive

Figure 4.10 Adaptive Monte Carlo quickly terminates while maintaining good space
coverage. Non-adaptive programs of the same length produce noisy, low-quality output.
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something new, and modify our system, we would be stuck if the monolithic libraries

did not provide built-ins to support our new ideas. So although our simple code is not a

complete replacement for any given library, it provides many of the benefits with none of

the traditional costs of library usage.
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5 Conclusion

Apache Spark and its ecosystem offer great potential to enhance the development of sim-

ulation analysis workflows. Spark seems nearly incompatible with other parallel frame-

works, and most Spark interactions must use the filesystem because guarantees on other

interfaces are scarce. Fortunately, Spark’s implementation language, Scala, allows a work-

around.

We leveraged Scala’s lazy semantics to embed, into executors, services which listened

for metadata using local sockets and which transferred datasets from shared memory into

local storage buffers. This allowed simulation processes to efficiently inject data into ex-

ecutors. By concatenating the resulting rows and registering them as virtual SQL tables,

we enabled Spark to analyze live simulation output as normal data frames. We gave cou-

pled simulations access to analyses conducted on these data frames by registering analysis

methods with a simple RPC-over-HTTP interface.

With these few manipulations, we obtained a library which completely bypassed the

filesystem. By comparison with a state-of-the-art cluster filesystem, we showed that our

method’s performance significantly exceeded the previous threshold for this type of cou-

pled program. We also showed, through profiling, that while our method introduces ad-

ditional memory overhead, the overhead is not unreasonable.

We showed that not only is our library performant; it also meets its usability goals

by making analysis codes easy to write and maintain. Using Monte-Carlo search as a
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representative example, we showed that adaptive codes can easily be expressed in our

framework. Similar programs already exist, but are implemented in user-unmodifiable

libraries and cannot be easily customized for different client applications. In contrast, our

framework places the whole algorithm in user code; it thereby facilitates simple and even

dynamic updates to key parts of the algorithm. By combining dynamic updates with

our RPC-over-HTTP system, live script-based analysis can be integrated with arbitrary

workflows for ultimate flexibility.

Our build and distribution systems are also tuned for usability. We packaged our com-

ponents in convenient library formats for users to include and link with. Users need only

write normal simulation code with a few added library calls, and normal analysis codes

conforming to a simple interface. We even simplify launching coupled codes with a help-

ful supervisor framework for use with Slurm clusters.

In summary, our contributions make Spark’s potential a reality and demonstrate some

of the power that Spark brings to scientific workflows. Of course, our system is not perfect.

We took note of outstanding problems which we encountered and had to work around.

We discuss the most prominent drawbacks along with our recommendations for future

research using our system.

5.1 Future Work

Projects to improve on the work in this paper could extend the data model, making the

APIs more flexible on the simulation side. They could also enhance the RPC mechanism
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for getting results back. For example, they could craft a system where all nodes can inde-

pendently fetch results without involving the others. That would likely require broadcast-

ing data back down into the executors and setting up an automatic trigger that bypasses

the need for explicit requests to execute analysis tasks. Regardless of their purpose, future

projects in this area should consider the versioning problem we encountered.

5.1.1 Versioning Issues

It cannot be overstated how badly version-locked the Apache data ecosystem has become.

The symptom is partly due to general trends in JVM development, but is exacerbated by

projects’ imprecise API management, which leads to frequent breakages even with minor

version shifts. As a result, most projects only officially support the version of tools that

existed when their code was originally developed.

We took great care to avoid this problem in our own project, but found it impossible

to escape entirely. While our project’s core functions are flexible with regard to Scala and

Spark versions, libraries like SystemML are not. This effectively defeats the goal of lever-

aging an existing machine learning ecosystem, because most of that ecosystem is frozen

in the past.

Besides the inability to simultaneously keep up with Spark development and use its

ecosystem, we encountered issues with the maintenance of foundational tools. The Java

Native Runtime (JNR) and a common Java serialization library both use code generation,

but their versions are not necessarily compatible. There are records of breakages caused
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by this incompatibility, but the error messages are vague enough that other bugs could be

confused with it. We discovered this behavior when JNR refused to work with the latest

Spark and Scala versions. Because we couldn’t isolate the cause, we had to rewrite the

semaphore code using the Java Native Interface (JNI) and C directly.

Were we to adopt that change permanently, it would mostly kill the utility of a JAR

library and add more complexity to Spark environment setup. We only experimented

with JNI to verify that our library was otherwise portable to Spark 2.4.3 and Scala 12.8; we

also modified SystemML for the same purpose. While working on updating SystemML,

we noted the library and build system are badly designed for use with Spark and Scala,

instead relying on half-converted Java code. A proper rewrite would simplify many things,

without requiring overly much time from proficient Scala developers. Thus, the greatest

barrier to SystemML being up-to-date is ultimately a lack of time or interest from properly

skilled developers.

We managed a forced upgrade of dependencies within a few days, but we suggest that

a change of mindset in this community may be necessary for interoperability to have a

future.

5.1.2 Future

Even assuming the versioning issues become more manageable, there are limits to how far

this work can go. However much improvement is made to this system, the performance
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data we collected demonstrates that there will always be drawbacks to coupling two dis-

parate systems this way. Node memory is effectively halved at best due to maintaining a

copy for each system. Also, communication times still have a high penalty; copying mem-

ory into transport and back is obviously slower than not copying memory at all. The inter-

process barrier is ultimately the biggest hindrance to any coupled-process workflows.

Ultimately the best use of our system is probably in designing its own replacement:

a system that is process-native and truly integrated with simulation codes, not forcibly

divorced from them. Our system can serve as a prototype to help select functionality

that any new system should have. It also provides a minimal API that a replacement

could implement, which facilitates testing. Our project could also provide some code-

generation utilities that convert prototype methods into useful native libraries. With the

ongoing development of Scala’s LLVM backend, it is possible that the main development

language could even remain the same.

Obviously, much work is needed to build native libraries with feature parity to the ones

in the Apache ecosystem, but given that this particular line of research ignores the various

fault-tolerance schemes used in such systems, building comparable systems is potentially

far simpler than building the originals. By leveraging existing HPC suites in new ways,

a suitable system might ultimately be assembled without writing much more than glue

code.
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APPENDIX A Spark Demo Program

This is code from the qualitative analysis in Chapter 4. It includes operations which

make similar programs easier to write, but which is uninteresting on its own (eg.

boilerplate), and thus is not included in the main document. Still, it is novel code

facilitated by our library and thus placed here for completeness. The corresponding

native code is not novel or interesting, so we omit its full version entirely; this appen-

dix only contains Scala code and SystemML scripts.

A.1 Spark Driver Code

import edu.byu.csl.courier.service.SimpleRPC
import com.typesafe.config._
import collection.JavaConverters._
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.sysml.api.mlcontext._
import org.apache.sysml.api.mlcontext.ScriptFactory._
import scala.collection.mutable.{Map => MutMap}

trait HandlerFactory[A] {
def apply(spark: SparkSession): Array[Byte]

}

object HandlerFactory {
implicit val f1 = new HandlerFactory[Initializer] {

def apply(spark: SparkSession) = new Initializer(spark).apply
}
implicit val f2 = new HandlerFactory[UpdateHandler] {

def apply(spark: SparkSession) = new UpdateHandler(spark).apply
}
implicit val f3 = new HandlerFactory[Printer] {

def apply(spark: SparkSession) = new Printer(spark).apply
}
def apply[A:HandlerFactory]: HandlerFactory[A] =

implicitly[HandlerFactory[A]]
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def applyMap(handlers: Map[String,HandlerFactory[_]]) =
handlers.map { case (k,v) => (k, v.apply(_)) }

}

object State {
var symT: MutMap[String,Matrix] = MutMap()
def update(k: String, v: Matrix) = symT.put(k,v)

}

class ScriptPlus(name: String)(implicit val spark: SparkSession) {
val mlctx = new MLContext(spark)
val conf = ConfigFactory.load("pruner")
val namespace = "systemml.dml.scripts"
val path = conf.getString(s"$namespace.$name.path")
val intentOut = conf.getStringList(s"$namespace.$name.out").asScala
var script = ScriptFactory.dmlFromFile(path).out(intentOut)

def chain(f: () => Script): ScriptPlus = { script = f(); this }
def in(name: String, data: DataFrame) = chain(() => script.in(name,data))
def in(st: MutMap[String,Matrix]) = chain(() => script.in(st))
def asVal() = chain(() => script.out(name)) //Name = return value
def withDf() = in("df", spark.sql("SELECT * FROM Point"))
def withState() = in(State.symT)
def execute() = mlctx.execute(script)

}

abstract class Handler(spark: SparkSession) {
implicit val session = spark
val state_vars = new ScriptPlus("init").intentOut

//Abstract
def apply(): Array[Byte]

//Shared
def voidHandler(f: () => Unit) = { f(); "()".getBytes() }
def updateState(res: MLResults) = state_vars.foreach { v =>

State.update(v,res.getMatrix(v))
}
def dmlScript(name: String) = new ScriptPlus(name)

}

class Initializer(spark: SparkSession) extends Handler(spark) {
def apply() = voidHandler(()=>updateState(dmlScript("init").execute))

}

class UpdateHandler(spark: SparkSession) extends Handler(spark) {
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def apply() = {
val res = dmlScript("analysis").withDf.withState.asVal.execute
updateState(res)
res.getMatrix("analysis").toDF().createOrReplaceTempView("Hist")
val saturated = spark.sql("""

SELECT * FROM (
SELECT __INDEX as Idx, ABS(C3) as Sat
FROM Hist

)
WHERE Sat > 3
ORDER BY Sat DESC
"""

)
saturated.collect().map(_.mkString(" ")).mkString(" ").getBytes()

}
}

class Printer(spark: SparkSession) extends Handler(spark) {
def apply() = voidHandler(()=>dmlScript("printer").withState.execute)

}

object Main extends App {
SimpleRPC.run("0.0.0.0", HandlerFactory.applyMap(Map(

"Init" -> HandlerFactory[Initializer],
"Update" -> HandlerFactory[UpdateHandler],
"Printer" -> HandlerFactory[Printer]

)))
}

A.2 SystemML Scripts

Note that for these scripts and the preceding Scala code to work together, an appro-

priate application.conf is needed. The configuration file contains the locations and out-

parameter lists for of each script, and should look like the following:

systemml.dml {
scripts {

init {
path = "<dml path>/init.dml"
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out = [
h

]
}
analysis {

path = "<dml path>/analysis.dml"
out = [

h
]

}
printer {

path = "<dml path>/printer.dml"
out = [
]

}
}

}

A.2.1 Initialization

nbins = 64
h = matrix(0,nbins,nbins)

A.2.2 Histogram Update

nbins = nrow(h) #for square space
dmin = 0
dmax = 100
stride = dmax/nbins
cuts = seq(dmin,dmax,stride)
x=df[,1]
y=df[,2]
b=df[,3]
gx=ceil(x / stride)
gy=ceil(y / stride)
analysis = matrix(0,nbins*nbins,3) #one-round hist
for (i in 1:nbins) {

for (j in 1:nbins) {
analysis[(i-1) * nbins + j,1] = cuts[i]
analysis[(i-1) * nbins + j,2] = cuts[j]

}
}
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for (i in 1:length(gx)) {
j = as.scalar(gx[i])
k = as.scalar(gy[i])
analysis[(j-1) * nbins + k,3] = (analysis[(j-1) * nbins + k,3] +

b[i]) - (-sign(h[j,k])*h[j,k])
h[j,k] = h[j,k] + b[i]

}

A.2.3 Output Writer

nbins = 64
h = matrix(0,nbins,nbins)
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APPENDIX B Glossary

AoS Array of Structs

API Application Programming Interface

CPU Central Processing Unit

FFI Foreign Function Interface

FUSE Filesystem in Userspace

GB Gigabyte

GCC GNU Compiler Collection

GSL GNU Scientific Library

HDF5 Hierarchical Data Format, Version 5

HDFS Hadoop Filesystem

HPC High-Performance Computing

HTTP Hypertext Transfer Protocol

IPC Inter-Procedural Communication

IR Intermediate Representation (as in compilers)

JAR Java Archive

JNI Java Native Interface

JNR Java Native Runtime

JVM Java Virtual Machine

MPI Message Passing Interface

NetCDF Network Common Data Format

NFS Network Filesystem

OS Operating System

POSIX Portable Operating System Interface
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RAM Random Access Memory

RDD Resilient Distributed Dataset (Spark data structure)

RPC Remote Procedure Call

SPMD Single Process, Multiple Data (parallel programming paradigm)

SQL Structured Query Language
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