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ABSTRACT

Informing the Use of Hyper-Parameter Optimization Through 
Meta-Learning

Samantha Corinne Sanders
Department of Computer Science, BYU

Master of Science

One of the challenges of data mining is finding hyper-parameters for a learning
algorithm that will produce the best model for a given dataset. Hyper-parameter optimization
automates this process, but it can still take significant time. It has been found that hyper-
parameter optimization does not always result in induced models with significant improvement
over default hyper-parameters, yet no systematic analysis of the role of hyper-parameter
optimization in machine learning has been conducted. We propose the use of meta-learning to
inform the decision to optimize hyper-parameters based on whether default hyper-parameter
performance can be surpassed in a given amount of time. We will build a base of meta-
knowledge, through a series of experiments, to build predictive models that will assist in the
decision process.

Keywords: Meta-learning, Hyper-parameter optimization
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Chapter 1

Introduction

1.1 Background

With growing interest in data science and the proliferation of algorithms, practitioners are

faced with the challenge of deciding what algorithm works well where. Currently there is no

hard and fast method for choosing the best algorithm for a given dataset, so practitioners are

left to fumble around a dark room searching for the best algorithm. To help, some researchers

have turned to meta-learning, the use of machine learning to build algorithm selection models

from data about the application of machine learning [3]. Since most algorithms also have

hyper-parameters that can be adjusted, the selection of adequate hyper-parameter values

adds yet another dimension to this search problem. Work on meta-learning for algorithm

selection has, however, often been criticized because it mostly considers only the default

hyper-parameter settings of the base learning algorithms.

The assumption behind this criticism is that hyper-parameter settings could have

a significant impact on the generalization accuracy of learned classifiers, and by ignoring

hyper-parameter settings practitioners are getting suboptimal results. Surprisingly, little has

been done to validate this claim, which has at once been used to discredit past work and to

justify large research efforts in hyper-parameter optimization. What if this hyper-parameter

optimization claim does not hold in general? We could be turning down valid research that

uses default hyper-parameters. We could also be wasting considerable time and computational

effort finding optimal hyper-parameters for datasets and/or algorithms that are not sensitive

1



to hyper-parameter settings. In reality, we do not know at what cost, by how much, or for

what kinds of datasets and algorithms hyper-parameter optimization makes a difference.

1.2 Significance

1.2.1 Researchers

Information about the potential impact of hyper-parameter optimization is useful for re-

searchers and reviewers. When designing experiments, researchers would like to make informed

decisions about whether to use hyper-parameter optimization. When reviewing the work of

others, researchers must be able to offer accurate and well-founded critiques. If we know

when hyper-parameter optimization makes a difference, then we stand on firm ground in

a decision to accept or reject a piece of research based on whether hyper-parameters are

optimized or not.

1.2.2 Practitioners

The data deluge has only begun and the demand for data mining is increasing, so another

group of people affected by this research are non-expert practitioners. By building automatic

advice strategies, we lower the barrier of entry into data mining. As a result, those for whom

the technology is intended may actually have access to it in an economical and direct way,

without having to resort to expensive consultants.

1.2.3 Time Limitations

This research has particular impact in areas where time is a limited resource and data analysis

is critical for best performance. Consider the business world where quick results are important

for competitiveness. If practitioners know ahead of time that optimizing hyper-parameters is

not going to make a difference, then they could potentially save hours or days, depending on

the dataset, and make quicker decisions.
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1.2.4 Big Data

Consider now a practitioner dealing with a large dataset, one that would be regarded as

“Big Data”. How important would it be to know whether hyper-parameter settings are

significant? Users could save massive amounts of time if they knew that their dataset was

not sensitive to hyper-parameter settings for certain learning algorithms. Even if it was

common practice to perform hyper-parameter optimization with small datasets, datasets

that fit in memory, we may have to rethink the possibility of this practice in the realm

of Big Data. Often, commonly used practices and methods that we use on small datasets

cannot be easily applied to distributed data. Such is the case with the practice of performing

hyper-parameter optimization. If hyper-parameter optimization takes a long time with current

methods and small datasets, it will take significantly longer with huge datasets. This research

is the beginning of thinking more intelligently about when we perform hyper-parameter

optimization.

1.3 Thesis Statement

When it comes to hyper-parameter optimization, not all datasets are created equal nor are all

classification learning algorithms, and thus we can use meta-learning to predict when, to what

extent, and at what cost, hyper-parameter optimization for a given learning algorithm/dataset

combination will have an impact on the generalization performance of the resulting model.
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Chapter 2

Related Work

2.1 Meta-learning

In meta-learning we are generally concerned with matching machine learning algorithms

and datasets [3]. This is done using metaknowledge, which is knowledge about the learning

process. Such information includes statistics about the dataset and how different kinds of

datasets respond to different algorithms. We also use meta-learning here, but with the goal

of matching datasets with the decision to optimize or not, rather than matching datasets

with algorithms. The metaknowledge-base for this meta-learning problem is quite limited

and we must expand it.

2.2 AutoML

The question of how to do hyper-parameter optimization in the general case is being actively

explored (e.g., see [2, 7, 12, 13]). There are a number of optimization approaches, but

none of them take the initial step to determine if parameter optimization will improve

performance. AutoML [5] recently emerged as an area of research with the goal to make

machine learning more accessible to non-experts. The goal is to automate the machine

learning process including preprocessing the data, selecting appropriate features, selecting

a model, optimizing hyper-parameters, and analyzing the final results. Some examples of

AutoML implementations include AutoWEKA [15] and HPOlib [5]. Our research takes

advantage of meta-learning techniques to build predictive models that will help with the

prerequisite decision of whether to optimize parameters.
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2.3 Bias-Variance Trade-off

Machine learning algorithms all have a bias: an assumption they make about the data. For

example, linear regression models have the bias that all data can be modeled by a hyperplane,

and multilayer perceptrons have the bias that all data can be modeled by non-linear functions.

By the No Free Lunch theorems [17], however, there is no one bias, or learning algorithm,

that works best in every situation. Thus we must find the bias that works best for each

situation. Each bias is accompanied by a certain amount of variance, or precision in the

induced models. We often talk about the bias error, or the amount of error in the model

resulting from the assumptions of the learning algorithm [4]. Linear regression models have a

large bias error and less variance error in the results of the model. Most of the error comes

from the learning algorithms bias that the data can be fit with a line which may not be

a good representation of the data. The error due to variance is low because the induced

models do not change significantly when a different training set from the same population

is used. Multilayer perceptrons have a smaller bias error because the assumptions made

by the learning algorithm are more “flexible, but more variance error in the induced model.

Changing the training set for a multilayer perceptron has a much more significant impact

on the induced model than it would for the linear regression model. We would expect that

models with smaller bias error and larger variance error, such as the multilayer perceptron,

would benefit more from hyper-parameter optimization than models with larger bias error

and small variance error, such as a linear regression model, because the induced models

change more drastically with smaller changes.

2.4 Impact of Hyper-parameter Optimization

In [14], the authors address explicitly for the first time the issue of hyper-parameter opti-

mization. They consider 466 datasets and for each, compute the difference in AUC among

20 algorithms between their default hyper-parameter setting and the best possible hyper-
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parameter setting after optimization. While they seem to focus on non-zero difference in the

aggregate, their results suggest that the impact of hyper-parameter optimization is highly

variable across datasets. For 19% of the datasets there was no improvement over default

hyper-parameters and for 95% of the datasets there was less than 5% improvement over

default hyper-parameters for all algorithms. This work is a good starting point because it

shows that hyper-parameter optimization does not have a universal effect on datasets, but it

does not uncover any information that would be useful for making the decision whether to

hyper-perform parameter optimization.

The question of when to perform hyper-parameter optimization is glossed over in this

study. They simply saw that in most cases there was some performance improvement and

decided that hyper-parameter optimization is beneficial in every case. Not every dataset

saw improvement from hyper-parameter optimization, and some datasets had very little

improvement, so we would like to know when we can expect improvement for a particular

dataset and how much. Such information could significantly decrease the amount of time

spent on possibly unnecessary hyper-parameter optimization.

Information that is not provided in [14] is how individual algorithms respond to

hyper-parameter optimization. The differences in performance observed in [14] are computed

from among the best in 20 algorithms, which means that the best optimized version could be

obtained with one algorithm, while the best default version for the same dataset could be

obtained with another. It is likely, however, that some classification learning algorithms are

more sensitive to hyper-parameter settings. Understanding how sensitive individual learning

algorithms are to hyper-parameter optimization could influence the way that we approach

hyper-parameter optimization. For example, if we knew that SVM had little sensitivity to

hyper-parameter settings then we could decrease the search space, and thus search time. We

would omit SVM from the search and just compare the output model from hyper-parameter

optimization with the default settings for SVM. Such a method could be used when only

close-to-optimal results are needed and time is a major consideration.
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This study also does not consider the dimension of time on a per-algorithm basis. We

would like to know how long it takes for individual algorithms to reach a certain level of

performance. Indeed, optimization is an expensive process, and one may be interested in

knowing how much improvement (if any) may be expected within a given time budget, or how

much time should be invested to reach some expected level of improvement. Understanding

when and how much improvement we expect from hyper-parameter optimization, how sensitive

individual algorithms are to hyper-parameter optimization, and how long it takes for those

algorithms to reach a certain level of performance will give us a basis for how and when to

perform hyper-parameter optimization. This knowledge will enrich our understanding of the

behavior of learning algorithms and inform our hyper-parameter optimization decisions.

Another recently published paper [11] begins to analyze the hyper-parameter op-

timization results obtained in [14]. They used meta-learning techniques to build models

that can predict when a dataset will have performance improvement over some threshold

using the same 466 datasets as [14]. They generated meta-features for each of the datasets

and labeled each dataset as 0 if it was below the performance threshold and 1 if it was

above the performance threshold. Then they used machine learning methods for inducing

a model with the meta-data. With thresholds of 1.5% and 2.5% improvement their model

could claim 83.21% and 73.60%, respectively, of the performance improvement that would

be obtained by performing hyper-parameter optimization for all of the datasets. Not only

did this study begin to build models for predicting when hyper-parameter optimization is

expected to improve performance by a certain amount, but it also makes some conclusions

about which meta-features are informative to predict whether a dataset will have performance

improvement. However, there again, no per-algorithm analysis is offered, nor is there a

discussion of budget.

Other than these two studies, we have not found other attempts at addressing the

validity of the parameter optimization claim.
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Chapter 3

Experimental Setup

As stated above, our goal is to help researchers and practitioners make decisions about

when and how to perform parameter optimization. To accomplish this goal this project has

two main parts: (1) analysis on a per-algorithm basis and (2) optimization on a budget.

3.1 Experiment Components

3.1.1 Optimization Method

Popular methods of optimization include grid search, random search [1], particle swarm

optimization (PSO), Bayesian optimization [10], and genetic algorithms. In [14] the authors

use PSO. We have decided not to use PSO because it is best suited for continuous parameters,

and not all of the parameters we want to optimize are continuous. Actually, there are often

combinations of continuous and discrete parameters for each algorithm and it seems more

reasonable to seek an optimization method that can deal with that.

We initially tried a Bayesian optimization approach using a software package called

Auto-WEKA [15] as it handles both continuous and discrete parameters. After extensive

experimentation with of the package, however, we found that it did not meet all of the

needs of this project. We used a similar approach to the setup in [8] so we used a simple

genetic algorithm for hyper-parameter optimization as this is a common approach for doing

a pseud-random search. We chose the hyper-parameters for the genetic algorithm based on

other implementations of genetic algorithms and no tuning was performed with the genetic
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algorithm hyper-parameters for this experiment. The following is the setup we used for the

genetic algorithm:

Population: The initial population of 100 individuals contained an individual with

default hyper-parameters. This guarantees that the end solution would be at least as good as

default hyper-parameters.

Selection: Tournament selection with 5 individuals per selection. We also employed

elitism, carrying over the best individual from the previous generation into the next.

Crossover: Uniform crossover rate of 0.5

Mutation: 0.015 chance of mutating each gene

• Floating-point hyper-parameter mutation: We sample from a Gaussian distribution

with mean set to the current value of the gene and the standard deviation is specified

at the creation of the floating point gene. Sampling is repeated until a value within the

specified range for the hyper-parameter is selected.

• Integer hyper-parameter mutation: As with floating-point parameters we sample from

a Gaussian distribution with mean set to the current value of the gene and the standard

deviation is specified at the creation of the integer gene. The value sampled is rounded

to the nearest integer. Sampling is repeated until a value within the specified range for

the hyper-parameter is selected.

• List hyper-parameter mutation: These gene types are used for hyper-parameters that

have a mixture of types, ex: [None, 10, 100, 1000] or hyper-parameters that have string

values. To mutate, we randomly select a member of the list of hyper-parameter settings

that is different from the current setting.

Fitness Function: We use 10-fold cross-validation for each algorithm with Multi-class

AUC (MAUC) as the result metric.
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3.1.2 Data

We considered using the same 466 datasets used in [14], but after looking closer at those

datasets we felt it better to build our own base of datasets to test with. All of the 466

datasets were binary classification problems, even if the dataset was not naturally a binary

classification problem (only instances from the top two classes were used). We felt that it

was important for us to do as little pre-processing as necessary in order to account for a wide

variety of dataset types. We gathered all of our 229 data sets from OpenML [16] with the

requirement that each dataset has at least 100 instances. See appendix for a list of datasets

used.

3.1.3 Algorithms

We consider three algorithms in this study: SVM, MLP, and Decision Tree (an optimized

version of CART). We chose these algorithms because they are widely used, they come from

distinct classes of learning, and they have a significant number of parameters. We use the

algorithms as found in the scikit-learn library [9] since scikit-learn is becoming an increasingly

popular machine learning library, and we wanted our results to be relevant to the practitioner

as well as to the researcher. We used as many hyper-parameters for each algorithm as

were provided by the sci-kit learn package and that made sense for our experiment. The

hyper-parameter value ranges were chosen to be within a common range of use and then a

little beyond that if the hyper-parameter type allowed. See Table 3.1, Table 3.2, and Table 3.3

for a complete listing of the hyper-parameters used.

3.1.4 Performance Measure

In [14] they binarized all of their datasets, allowing them to be able to use AUC as their

performance measure. They note in [14] that they used AUC because it is less sensitive

to data skew, which was present in some data sets. We also wanted to use a performance

measure that is less sensitive to data skew, but because we did not want to modify our

10



Parameter Name Data Type Default Value Range

Criterion List gini [gini, entropy]
Splitter List best [best, random]
Max. Features List None [None, sqrt, log2]
Max. Depth List None [None, 10, 100, 1000]
Min. Samples Split Integer 2 [2 - 10]
Min. Samples Leaf Integer 1 [1 - 20]
Min. Weight Fraction Leaf Float 0.0 [0.0 - 0.5] std: 0.25
Max. Leaf Nodes List None [None, 10, 100, 1000]

Table 3.1: Decision Tree Hyper-parameters

Parameter Name Data Type Default Value Range

C Float 1.0 [0.0 - 1.0] std: 0.1
Kernel String rbf [linear, poly, rbf, sigmoid]
Degree Integer 3 [2 - 5]
Gamma Float 0.2 [0.0 - 1.0] std: 0.1
Coef0 Float 0.0 [0.0 - 1.0] std: 0.1

Table 3.2: SVM Hyper-parameters

datasets we were not able to use the AUC metric. As an alternative, we used MAUC [6],

which is the generalized version of the AUC metric which can be used for data sets with

multiple (more than two) class labels.

We encountered an unforeseen limitation of MAUC metric when there were scenarios

when a learning algorithm predicted all of the instances in a particular fold to be the same

label, which resulted in a zero division error. We discussed this issue with the authors

of [6] and determined that there was not a clear solution to this problem that would not

introduce any bias. In order to move forward with our experiment we assigned individuals, or

hyper-parameter settings, in the genetic algorithm with these issues a fitness value of 0 out of

a maximum score of 1.0. The effect was that these hyper-parameter settings that produced

the zero division error quickly dropped out of the population.

11



Parameter Name Data Type Default Value Range

Hidden Layer Sizes Tuple (100,) ([1-200], [0-200], [0-200])
Activation List relu [identity, logistic, tanh, relu]
Solver List adam [lbgfs, sgd, adam]
Alpha Float 1e-4 [1e-4 -1]
Batch Size List auto [auto, 10, 100, 1000]
Learning Rate List constant [constant, invscaling, adaptive]
Max. Iter. Integer 200 [50, 100, 200, 500, 1000, 5000]
Tol Float 1e-4 [1e-6 - 1e-1]
Learning Rate Init. Float 1e-3 [1e-4 - 1]
Power T Float 0.5 [0.01 - 1]
Warm Start Boolean False [True, False]
Momentum Float 0.9 [0 - 1]
Nesterovs Momentum Boolean True [True, False]
Early Stopping Boolean False [True, False]
Validation Fraction Float 0.1 [0 - 1]
Beta 1 Float 0.9 [0, 1)
Beta 2 Float 0.999 [0, 1)
Epsilon Float 1e-8 [1e-10 - 1e-2]

Table 3.3: MLP Hyper-parameters

3.2 Analysis on a per-algorithm basis

We will similarly re-run the analysis in [14] on a per-algorithm basis. The analysis in [14]

compared the best AUC scores from 20 optimized algorithms for each dataset to the best

AUC scores from the same 20 algorithms with default hyper-parameters. For each algorithm

and dataset combination we want to compare the MAUC scores of the optimized algorithm to

the MAUC scores of the algorithm with scikit-learn default hyper-parameters. This analysis

will help us understand how individual learning algorithms respond to hyper-parameter

optimization.

We suspect that some algorithms will have a greater response to hyper-parameter

settings than other algorithms. We would expect, for example, that decision trees may not

be as sensitive to their hyper-parameter settings because they have fewer (discrete-valued)

hyper-parameters. On the other hand, we would expect Support Vector Machines, which

have more (real-valued) hyper-parameters, to be more responsive to hyper-parameter settings
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and thus benefit more from hyper-parameter optimization. In the case that not all algorithms

respond equally to hyper-parameter optimization, we could make decisions about which

algorithms make sense to optimize and when. This would reduce the search space and thus

decrease the time needed for hyper-parameter optimization.

3.2.1 Method

We ran the genetic algorithm 30 times for each algorithm / data set combination each time with

a random start (30 starts × 3 algorithms × 229 datasets = 20,610 runs). These experiments

were performed on BYUs supercomputer allowing us to run thousands of experiments at once.

The stopping condition for the genetic algorithm is either a solution is found that yields a

perfect MAUC, or 24 hours has elapsed. For each run we record the best solution so far

with the time it was found (relative to the time the genetic algorithm started running), the

generation, and the algorithm hyper-parameters that produced that solution. We also ran

the default hyper-parameters 30 times for each algorithm / data set combination to use as a

baseline for the amount of improvement achieved through hyper-parameter optimization. We

then calculated confidence intervals (0.95) for the end optimized results with the 30 runs for

each data set / algorithm combination for both optimized and default results.

If we were to find no overlap between the default confidence interval and the optimized

confidence interval, we would label that data set as “optimize meaning that given time,

optimization would yield improvement over default hyper-parameters. Otherwise, that data

set would be labeled “dont optimize meaning that there may not be improvement over

default hyper-parameters after doing hyper-parameter optimization. Then after calculating

meta-features for each data set we could use meta-learning to try to predict when a data set

/ algorithm combination would benefit from hyper-parameter optimization.

13



3.3 Optimization on a budget

We will further extend the analysis with a notion of budget. Indeed, optimization is an

expensive process, and one may be interested in knowing how much improvement (if any) may

be expected within a given time budget, or how much time should be invested to reach some

expected level of improvement. Hence, performance differences will be computed along three

dimensions: algorithm, dataset and time, i.e., for each algorithm, and for each dataset, we will

consider the increase in MAUC as a function of time spent optimizing hyper-parameters. Such

detailed information will greatly enrich our understanding of the impact of hyper-parameter

optimization and will help inform practitioners decisions. If no improvement is to be expected

from hyper-parameter optimization, then one would gladly save the extra computational time

required to effect it.

3.3.1 Method

In our analysis on a per-algorithm basis, we were just interested in the MAUC by the time

the stopping criteria was met. Here we are interested in the time at which improvement over

default hyper-parameters is expected to be met. No additional data was needed here since

we recorded improvement over time as the genetic algorithm ran. We then went back and

gathered the 30 times at which the optimized results surpassed or equalled the upper bound

of the default confidence interval for each algorithm / data set combination. With those 30

times, we calculated confidence intervals (0.95) and the average time needed to surpass the

upper bound of the default confidence interval. If a particular run (one of the 30) did not

surpass the upper bound of the default confidence interval, then the maximum run-time was

used.
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Chapter 4

Results

4.1 Analysis on a per-algorithm basis

We expected to see a number of cases in which there would be little to no improvement over

default hyper-parameters as a result of hyper-parameter optimization, similar to the results

found in [14]. However, we found that across the three algorithms, there were only a handful

of data sets where there was no statistical improvement over default hyper-parameters, and

for those data sets it was because the default hyper-parameters yielded a perfect MAUC score.

So not surprisingly, if the default hyper-parameters give perfect results then do not spend time

optimizing hyper-parameters, otherwise, statistically significant improvements over default

hyper-parameters as a result of hyper-parameter optimization is likely. In some cases, there

was significant improvement in MAUC after hyper-parameter optimization. This is especially

true for MLP and SVM. In one extreme case for SVM there was a 2034% improvement over

default hyper-parameters. The histograms in Figures 4.1 and 4.2 show the distribution of

percent improvement over hyper-default parameters.

For each of the algorithms, there were two data sets that did not benefit at all from

hyper-parameter optimization. It was not the same two data sets for all three algorithms. In

each of those cases, there was no improvement from hyper-parameter optimization because

the default hyper-parameters performed perfectly. However, there were seven data sets with

MLP in which the default results confidence interval and the optimized results confidence

interval overlapped. In other words there were seven data sets out of the 186 successfully

optimized with MLP in which it would be possible that default hyper-parameters could
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Figure 4.1: Average percent improvement over default hyper-parameters

Figure 4.2: Average percent improvement over default hyper-parameters, zoomed in.

perform as well as optimized hyper-parameters. For SVM and Decision Tree, there was always

a gap between the confidence intervals for default results and optimized results, meaning that

there was always improvement over default hyper-parameters. See Figure 4.3.

Since it is clear that hyper-parameter optimization will almost always yield statistically

significant improvements over default hyper-parameters, we went a step further and built

meta-learners to predict how much improvement can be expected. We used an MLP as the

meta-learner and the meta-features as listed in the appendix. We preprocessed the features

with PCA, which yielded better results than using the original features. Looking at the

results in Table 4.1, it would seem that the results for SVM was just about on par with MLP

and Decision Tree results, but looking at Figure 4.4, it would seem that overall the predictions
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Figure 4.3: Average gap between default hyper-parameters confidence interval and optimized
hyper-parameters confidence interval.

for SVM were not as close to the actual improvement values. This could be because there

are not as many data points for the SVM data set so the predictions look more scattered.

Learning Algorithm Correlation Coefficient Mean Absolute Error Root Mean Squared Error

MLP 0.47 0.15 0.23
SVM 0.54 0.17 0.26
Decision Tree 0.56 0.06 0.11

Table 4.1: Meta-learner performance results for predicting MAUC improvement after hyper-
parameter optimization.

These meta-learners used here are built specifically for the genetic algorithm and

experiment conditions used in this paper so while these particular meta-learners may not

be directly usable with other optimization methods, they do show that it is possible to

predict with some certainty how much improvement can be expected from hyper-parameter

optimization.

On average, SVM and MLP benefited the most from hyper-parameter optimization.

SVM and MLP both had an average MAUC gap between default and optimized confidence

intervals of 0.21, and data sets optimized with Decision Tree had an average gap of 0.12.

Some data sets, however, were not able to complete even one generation of optimization in

the 24 hour time period with the genetic algorithms hyper-parameter settings. We suspect
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that this is a result of the learning algorithm taking a long time to run with particular data

sets due to their size. This was especially true for SVM where only 111 of the 229 datasets

were able to successfully yield 30 runs that completed at least one generation.

4.2 Optimization on a budget

As expected, we found that the Decision Tree algorithm reached or surpassed the expected

default results early on in the optimization process and on average, it took longer for SVM

and MLP to reach the same benchmark. SVM had a lower average time to meet the default

hyper-parameter benchmark than MLP, but it also had a wider range of times needed to

meet the default hyper-parameter benchmark. See Table 4.2 and Figure 4.5.

Data Set Avg. Time Min. Avg. Time Max.Avg. Time

MLP 11,353 39.9 58,156
SVM 9,594 1.5 64,943
Decision Tree 190 0.4 4,198

Table 4.2: Average runtimes for meeting the default upper bound in seconds.

We also did some meta-learning with a linear regression model to predict the average

runtime to meet the upper bound of the default confidence interval for each learning algorithm

(Decision Tree, SVM, and MLP). We used 68 meta-features, which are listed in the appendix.

The purpose of using a linear regression is to find the most significant meta-features for

predicting the runtimes for surpassing default hyper-parameter results. Table 4.3 summarizes

the results from the learned model for each data set.

Dataset Correlation Coefficient Mean Absolute Error Root Mean Squared Error

MLP 0.89 4,378 7,874
SVM 0.53 13,496 26,974
Decision Tree -0.01 88,736,389 1,213,424,801

Table 4.3: Linear regression performance results for predicting runtimes.
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The Linear Regression model had poor results with the Decision Tree data set. We

tried a few other regression models with that data set but all yielded unsatisfactory results.

It is important to note, however that of the 187 data sets used to generate the Decision Tree

data set, 181 of them took less than 35 minutes to reach a performance level that exceeded

the upper bound of the default hyper-parameter confidence interval. This means that a model

for predicting runtime to reach the upper bound of the default confidence interval may not be

useful in practice if it is a small time investment to optimize Decision Tree hyper-parameters

anyways.

The model yielded by the SVM data set had a decent correlation coefficient, however

the RMSE and MAE are not as good since the mean runtime to meet the upper bound of

the default hyper-parameters confidence interval was 9,594 seconds. The results for the MLP

data set were the most promising with a correlation coefficient of 0.89, indicating that there

is a high positive correlation between the estimated amount of time needed to exceed the

upper bound of the default hyper-parameters confidence interval and the actual time needed.

The RMSE and MAE results are slightly more respectable than SVMs considering that the

average runtime to exceed default hyper-parameter results was 11,353 seconds.

The tables below have the top five most significant meta-features for predicting average

runtime to meet the upper bound of the default confidence interval. The table for Decision

Tree is not included since the model is not useful for prediction. See Tables 4.4 and 4.5 for

the top five meta-features for predicting MLP and SVM runtimes.

Rank Sign Meta-feature

1 + Number of attributes
2 - Number of numeric attributes
3 - Standard deviation of the number of nominal attribute values
4 + Maximum number of nominal attribute values
5 - Maximum Decision Tree branch length

Table 4.4: Top five meta-features for predicting MLP runtimes.
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Rank Sign Meta-feature

1 + Number of numeric attributes
2 - Number of attributes
3 + Average number of nodes per Decision Tree level
4 + Maximum Decision Tree branch length
5 + Number of samples

Table 4.5: Top five meta-features for predicting SVM runtimes.

The results for the SVM and MLP models have three of the same top five meta-features:

number of attributes, number of numeric attributes, and branch maximum. For MLP the

time it takes to surpass default hyper-parameter performance is positively correlated with

the number of attributes. The more attributes there are in a problem, the more weights there

are to learn–which results in longer runtimes. However, the number of numeric attributes is

negatively correlated with the time to reach default hyper-parameter performance. Because

MLPs naturally deal with numeric attributes it could make sense that the number of numeric

attributes is negatively correlated with runtime. The meaning behind the coefficients for

SVM are a little less intuitive.

We also tried building a classifier to predict whether default hyper-parameter per-

formance could be surpassed within a certain amount of time. For example, if the instance

(data set) exceeded default hyper-parameter performance in less than an hour it received a

label of 1 otherwise it received a label of 0. We used a Decision Tree as the meta-learner,

because of its interpretable nature, to predict these values. We used 10-fold cross-validation

to test the models. See Tables 4.6, 4.7, and 4.8 for the meta-learner performance results.

Runtime Cutoff Baseline Acc. (prediction) Accuracy Precision Recall ROC Area

30 minutes 56% (≥ 30 min.) 90% 0.91 0.87 0.91
1 hour 57% (< 1 hour) 90% 0.91 0.92 0.91
3 hours 68% (< 3 hours) 88% 0.93 0.90 0.90

Table 4.6: MLP runtime classifier results
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Runtime Cutoff Baseline Acc. (prediction) Accuracy Precision Recall ROC Area

30 minutes 58% (≥ 30 min.) 88% 0.86 0.84 0.86
1 hour 50% 81% 0.82 0.80 0.78
3 hours 77% (< 3 hours) 73% 0.81 0.85 0.58

Table 4.7: SVM runtime classifier results

Runtime Cutoff Baseline Acc. (prediction) Accuracy Precision Recall ROC Area

10 seconds 52% (≥ 10 sec.) 89% 0.90 0.87 0.91
60 seconds 68% (< 60 sec.) 91% 0.94 0.92 0.88
30 minutes 97% (< 30 min.) 97% 0.98 0.98 0.68

Table 4.8: Decision Tree runtime classifier results

The results from the classifiers are a little more promising than the regression results.

The Decision Trees for the MLP dataset did an excellent job of improving over baseline

accuracy, ranging from a 20-34 percent improvement. The models for the MLP dataset also

had very respectable precision and recall values. A good precision value means that nearly

all of the instances labeled as needing less than a given amount of time to reach the default

hyper-parameter benchmark, actually needed less than that amount of time to reach that

benchmark. A good recall value is achieved when a large portion of the instances needing less

than a given amount of time to reach the default hyper-parameter benchmark were actually

labeled as such.

The root node for all three decision trees for the MLP data set were nn time, which is

the amount of time it takes to run the k-nearest neighbors algorithm (k = 1) for a dataset.

This would indicate that nn time is a good discriminator for the amount of time it will take

to reach default hyper-parameter performance with MLP for a given dataset.

Also of note is that the Decision Tree dataset results were much better with a classifier

than with a regressor. However, 97% of the datasets reached default hyper-parameter

performance in under 30 minutes, so in practice these models may not be useful because it

takes relatively little time to surpass default hyper-parameter performance.
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The success of these models indicates that if a practitioner has a given amount of time

to perform hyper-parameter optimization, they can refer to these classifiers to determine if

it is likely whether they can improve over default hyper-parameters in the given amount of

time that they have. This could be a great time-saver for a practitioner that may need quick

results especially when trying to optimize the performance of an MLP or SVM model.

We were also interested in the correlation between the average time needed to meet

the default upper bound performance and the percent improvement for each of the algorithms.

There was almost zero correlation between the two values for all three algorithms: MLP

had a Pearson correlation coefficient of -0.08, SVM had a Pearson correlation coefficient of

-0.02, and Decision Tree had a correlation coefficient of -0.06. Therefore, the length of time

it takes to surpass default hyper-parameter performance is not an indicator of the percent

improvement expected. This could be due to the fact that some problems are inherently more

difficult than others so even after spending significant amounts of time searching for better

hyper-parameters, improvements are still small. On the other hand, it could be that the

models yielded by different hyper-parameters could widely differ for some data sets. Searching

over a wide range of models could lead to significant improvements over a small amount of

time.
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(a) MLP actual versus predicted MAUC improve-
ment

(b) MLP error distribution

(c) SVM actual versus predicted MAUC improve-
ment

(d) SVM error distribution

(e) Decision Tree actual versus predicted MAUC
improvement

(f) Decision Tree error distribution

Figure 4.4: Meta-learner performance results for predicting MAUC improvement after hyper-
parameter optimization.
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Figure 4.5: Time to meet default upper bound
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Chapter 5

Conclusion

Initially we set out to test the hypothesis that hyper-parameter optimization does

not yield improved models for a significant amount of datasets, since in [14] they found that

about 20% of the time hyper-parameter optimization resulted in no improvement over default

hyper-parameters. Based on our experiments that is not the case. In almost every instance

there was improvement over default hyper-parameters after hyper-parameter optimization

except in the cases where default hyper-parameters yielded a perfect result.

Our experimental setup was in many ways different from the setup in [14]. The

changes we made from [14] were made so that our results were relevant and useful to machine

learning practitioners. We used a different optimization method, a genetic algorithm instead

of PSO, we did minimal preprocessing to the datasets whereas in [14] all of the datasets were

binarized if they were not already, we used a different performance metric, MAUC instead of

AUC, to accommodate those data sets that were multi-label, and we optimized over a larger

set of hyper-parameters for each algorithm.

Any of those differences alone or in combination with each other could explain our

different results. A significant factor in the differences in results could have been our effort

to leave the data sets untouched. Multi-label problems are inherently more challenging

than binary-label problems which could have led to us finding significant benefits from

hyper-parameter optimization. Also we considered more hyper-parameters for optimization,

which may have led to more possible improvement from hyper-parameter optimization due to

having more degrees of freedom in our models.
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We also found that especially for Decision Tree and MLP algorithms we can predict

how much improvement we can expect from hyper-parameter optimization. If the hyper-

parameters for the optimization method such as time to optimize, optimization approach, or

learning algorithm hyper-parameters are changed, then the model trained for this paper may

not be useful. However, it is possible to predict how much improvement can be expected from

hyper-parameter optimization with the meta-features used here. This is especially useful to

practitioners who would like to get a sense for whether it is worth it to them to invest time

in hyper-parameter optimization.

In looking at the amount of time it takes to beat default hyper-parameter results,

we found that Decision Tree meets the benchmark quickly, but that SVM and MLP can

take significantly longer. SVM has a wider range of time between the average minimum

time and the average maximum time to meet default hyper-parameters than MLP, but MLP

has a higher average time to meet default hyper-parameter performance. It is difficult to

predict the amount of time to meet the default hyper-parameter performance benchmark,

however, the classifiers that determined if the default hyper-parameter benchmark could be

met within a certain amount of time were much more successful. These models produced

by the classifiers would be useful to practitioners assuming they specify the amount of time

they have for optimization. They would then be able to determine if it is likely that the

optimization algorithm could find hyper-parameters better than the default hyper-parameters

in the specified amount of time.

Future research could include repeating this experiment with more learning algorithms

to see if the patterns continue. We chose to use some of the most popular algorithms

here, but it would be interesting to see how other learning algorithms generally respond to

hyper-parameter optimization.
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hyper-parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,

and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24,

pages 2546–2554. Curran Associates, Inc., 2011.

[3] Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta. Met-

alearning: Applications to data mining. Springer Science & Business Media, 2008.

[4] Thomas G Dietterich and Eun Bae Kong. Machine learning bias, statistical bias, and

statistical variance of decision tree algorithms. Technical report, Technical report,

Department of Computer Science, Oregon State University, 1995.

[5] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek,

Holger Hoos, and Kevin Leyton-Brown. Towards an empirical foundation for assessing

bayesian optimization of hyperparameters. In Proceedings of the NIPS workshop on

Bayesian Optimization in Theory and Practice, pages 1–5, 2013.

[6] David J Hand and Robert J Till. A simple generalisation of the area under the roc curve

for multiple class classification problems. Machine learning, 45(2):171–186, 2001.

[7] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In Proceedings of the International

Conference on Learning and Intelligent Optimization, pages 507–523. Springer, 2011.
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Appendices

A Datasets

acute-inflammations ada prior adult

amazon-commerce-reviews analcatdata creditscore annealing

AP Breast Colon AP Breast Kidney AP Breast Lung

AP Breast Omentum AP Breast Ovary AP Breast Prostate

AP Breast Uterus AP Colon Kidney AP Colon Lung

AP Colon Omentum AP Colon Ovary AP Colon Prostate

AP Colon Uterus AP Endometrium Breast AP Endometrium Colon

AP Endometrium Kidney AP Endometrium Lung AP Endometrium Omentum

AP Endometrium Ovary AP Endometrium Prostate AP Endometrium Uterus

AP Lung Kidney AP Lung Uterus AP Omentum Kidney

AP Omentum Lung AP Omentum Ovary AP Omentum Prostate

AP Omentum Uterus AP Ovary Kidney AP Ovary Lung

AP Ovary Uterus AP Prostate Kidney AP Prostate Lung

AP Prostate Ovary AP Prostate Uterus AP Uterus Kidney

ar4 ar6 arcene

arrhythmia audiology australian

auto autoUniv-au1-1000 autoUniv-au4-2500

autoUniv-au6-1000 autoUniv-au6-400 autoUniv-au6-750

autoUniv-au7-1100 autoUniv-au7-500 autoUniv-au7-700

backache balance-scale banana

banknote-authentication baseball biomed

blogger blood-transfusion breast-cancer-w-diag

breast-cancer-w-orig breast-cancer-w-prog breast-cancer

breast-tissue bridges car

cast-metal1 chess-kr-vs-kp click-prediction-small

climate-model-simulation-crashes cnae-9 colleges aaup

congressional-voting-records connect-4 connectionist-bench-sonar

connectionist-bench-vowel contraceptive-method-choice covtype

credit-approval credit-g cylinder-bands

dermatology diabetes diggle table a2

dresses-sales echocardiogram ecoli

eeg-eye-state eucalyptus fertility

first-order-theorem-proving gas-drift glass-identification

grub-damage haberman-survival hayes-roth

heart-disease-cleveland heart-disease-hungarian heart-disease-switzerland

heart-disease-va heart-long-beach hepatitis

hill-valley horse-colic image-segmentation

internet-ads ionosphere iris

irish kc2 kropt

letter-recognition liver disorders lsvt

lymphography magic-gamma-telescope magic-telescope

mammographic mass mammography mc1
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mc2 meta-data molecular-biology-splice-junction

molecular-biology promoters monks-problems-1 monks-problems-2

monks-problems-3 mushroom mw1

nomao nursery oil spill

one-hundread-plants-margin one-hundread-plants-shape one-hundread-plants-texture

optical-recognition OVA Breast OVA Colon

OVA Endometrium OVA Kidney OVA Lung

OVA Omentum OVA Ovary OVA Prostate

OVA Uterus ozone-level-8hr page-blocks

parkinsons pc1 pc2

pc3 pc4 pen-basedi-recognition

phoneme pie-chart1 pie-chart2

pie-chart3 pie-chart4 pima-indians-diabetes

pizza-cutter1 pizza-cutter3 planning-relax

poker-hand popular-kids primary-tumor

profootball qsar-biodeg qualitative-bankruptcy

rmftsa sleepdata robot-failures-lp4 robot-failures-lp5

sa-heart satimage schizo

seeds segment-challenge segment

seismic-bumps semeion servo

skin-segmentation sonar soybean-large

spambase spect-heart statlog-german-credit

statlog-heart statlog-landsat statlog-shuttle

statlog-vehicle steel-plates-fault tamilnadu-electricity

teaching-assistant-eval thoracic-surgery thyroid-disease-allhypo

thyroid-disease-sick tic-tac-toe unbalanced

user-knowledge vertebra-column volcanoes-a1

volcanoes-a2 volcanoes-a3 volcanoes-a4

volcanoes-b1 volcanoes-b2 volcanoes-b3

volcanoes-b4 volcanoes-c1 volcanoes-d1

volcanoes-d2 volcanoes-d3 volcanoes-d4

vote vowel walking-activity

wall-robot-navigation waveform-5000 wilt

wine yeast zoo
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B Meta-features

No. Meta-feature Description

1 classes Number of classes

2 attributes Number of attributes

3 numeric Number of numeric attributes

4 nominal Number of nominal attributes

5 samples Number of samples

6 dimensionality attributes / samples

7 numeric rate Proportion of numeric attributes

8 nominal rate Proportion of nominal attributes

9 symbols min Minimum number of nominal attribute values

10 symbols max Maximum number of nominal attribute values

11 symbols mean Mean number of nominal attribute values

12 symbols sd Standard deviation of the number of nominal at-

tribute values

13 symbols sum Total number of nominal attribute values

14 class prob min Percentage of elements in the minority class

15 class prob max Percentage of elements in the majority class

16 class prob mean Average number of elements by class

17 class prob sd Standard deviation of elements by class

18 skewness Lack of symmetry over numeric attributes

19 skewness prep Lack of symmetry over normalized numeric at-

tributes

20 kurtosis A measure of the peakedness of the dataset over

numeric attributes

21 kurtosis prep A measure of the peakedness of the dataset over

normalized numeric attributes

22 abs cor Average absolute correlation between attributes

23 cancor 1 Canonical correlation between labels and attributes

24 fract 1 1-D variance fraction coefficient

25 class entropy Class entropy

26 normalized class entropy Normalized class entropy

27 attribute entropy Attribute entropy

28 normalized attribute entropy Normalized attribute entropy
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No. Meta-feature Description

29 joint entropy Joint entropy of class and attribute

30 mutual information Mutual information of class and attribute

31 equivalent attributes Equivalent number of attributes

32 noise signal ratio Noise-signal ratio (amount of irrelevant information

in a dataset)

33 nodes Number of nodes in an induced Decision Tree

34 leaves Number of leaves in an induced Decision Tree

35 nodes per attribute Ratio of the number of tree nodes to the number

of attributes in an induced Decision Tree

36 nodes per instance Ratio of the number of tree nodes to the number

of instances in an induced Decision Tree

37 leaf corrobation Average strength of support of each tree leaf

38 level min Minimum number of nodes at one level in an in-

duced Decision Tree

39 level max Maximum number of nodes at one level in an in-

duced Decision Tree

40 level mean Average number of nodes on a level in an induced

Decision Tree

41 level sd Standard deviation of the number of nodes on a

level in an induced Decision Tree

42 branch min Length of the shortest branch in an induced Deci-

sion Tree

43 branch max Length of the longest branch in an induced Decision

Tree

44 branch mean Average branch length in an induced Decision Tree

45 branch sd Standard deviation over branch lengths in an in-

duced Decision Tree

46 attribute min Minimum number of occurrences of an attribute in

an induced Decision Tree

47 attribute max Maximum number of occurrences of an attribute

in an induced Decision Tree

48 attribute mean Average number of occurrences of an attribute in

an induced Decision Tree
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No. Meta-feature Description

49 attribute sd Standard deviation over number of occurrences of

an attribute in an induced Decision Tree

50 naive bayes Accuracy of the Nave Bayes algorithm

51 lda Accuracy of LDA

52 stump min Minimum stump accuracy

53 stump max Maximum stump accuracy

54 stump mean Average stump accuracy

55 stump sd Standard deviation over stump accuracies

56 stump min gain Minimum gain ratio over stumps

57 stump random Random stump sample

58 nn 1 Accuracy of 1-nn

59 nn sd Standard deviation over knn’s

60 tree time Time to build Decision Tree

61 naive bayes time Time to run Nave Bayes

62 lda time Time to run LDA

63 stump time Time to run stump

64 nn time Time to run k-nearest neighbor

65 simple time Time to calculate metafeatures 1-17

66 statistical time Time to calculate metafeatures 18-24

67 inftheo time Time to calculate metafeatures 25-32

68 total time Time to calculate metafeatures 1-64
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