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ABSTRACT

Algorithms for Learning the Structure of
Monotone and Nonmonotone

Sum-Product Networks

Aaron W. Dennis
Department of Computer Science, BYU

Doctor of Philosophy

The sum-product network (SPN) is a recently-proposed generative, probabilistic model
that is guaranteed to compute any joint or any marginal probability in time linear in the
size of the model. An SPN is represented as a directed, acyclic graph (DAG) of sum and
product nodes, with univariate probability distributions at the leaves. It is important to
learn the structure of this DAG since the set of distributions representable by an SPN is
constrained by it. We present the first batch structure learning algorithm for SPNs and
show its advantage over learning the parameters of an SPN with fixed architecture. We
propose a search algorithm for learning the structure of an SPN and show that its ability
to learn a DAG-structured SPN makes it better for some tasks than algorithms that only
learn tree-structured SPNs. We adapt the structure search algorithm to learn the structure
of an SPN in the online setting and show that two other methods for online SPN structure
learning are slower or learn models with lower likelihood. We also propose to combine SPNs
with an autoencoder to model image data; this application of SPN structure learning shows
that both models benefit from being combined.

We are also the first to propose a distinction between nonmonotone and monotone
SPNs, or SPNs with negative edge-weights and those without, respectively. We prove several
important properties of nonmonotone SPNs, propose algorithms for learning a special class
of nonmonotone SPN called the twin SPNs, and show that allowing negative edge-weights
can help twin SPNs model some distributions more compactly than monotone SPNs.

Keywords: Sum-product networks, structure learning, structure search, online structure
search, nonmonotone sum-product networks
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Chapter 1

Introduction

Probabilistic modeling is used in many fields including engineering, science, economics,

and medicine. Instead of ignoring the inevitable uncertainties that arise in the complex

systems studied in these fields, probabilistic modeling provides a formal mechanism for

explicitly modeling those uncertainties. Generative models and discriminative models are

two general types of probabilistic model that are often used. A generative model represents a

joint distribution over the variables in question, while a discriminative model represents a

conditional distribution. For example, an image classifier may use a discriminative model to

represent the distribution over the possible labels, Y , given the image X, or p(Y |X). On the

other hand, a generative model could be used to represent the distribution over image-label

pairs, or p(X, Y ). Which type of model is used often depends on the application at hand;

the focus here is on generative models.

A probabilistic model is used to answer probabilistic questions, or queries. The process

of answering these queries is called inference. For example, given X = x and/or Y = y we

may want to compute the value that the model assigns to the probabilities p(y|x), p(x|y),

p(x), or p(y). Taking the image-label example, these queries can help answer, respectively,

the following questions: is the label y likely given image x; is the image x likely given label y;

is the image x likely, period; and does the label y occur frequently? A generative model, or

joint distribution, can help answer queries that discriminative models cannot; in principle,

each query above can be answered using just p(X, Y ), but only the first can be answered

using p(Y |X) alone. Other example queries for which p(X, Y ) is sufficient but p(Y |X) is not

1



include: what is the probability of the left half of image x given the right half, and what is

the probability that a particular pixel is black, without taking into account the value of any

other pixel?

Probabilistic graphical models (PGMs), which include both Bayesian networks (BNs)

and Markov networks, can be used to model p(X, Y ) or p(Y |X) [25, 33]. They are widely

used and well-studied. One issue with PGMs in practice, however, is that exact inference

is not guaranteed to be tractable. Whether exact inference can be performed or not is

heavily dependent on the particular model being used; in the intractable cases, approximate

techniques such as MCMC or variational inference are often used.

Sum-product networks (SPNs) offer another method for representing joint and condi-

tional distributions, or p(X, Y ) and p(Y |X). SPNs are directed, acyclic graphs (DAGs) in

which internal nodes are sums or products and in which leaf nodes are univariate distributions

over random variables. Having been studied only more recently, they are of interest in large

part because of the guarantees that can be made regarding the time complexity of inference.

In particular, exact inference is guaranteed to take time linear in the size of the network.

This dissertation expands the usefulness of SPNs by addressing the problem of learning

the structure, or DAG, of an SPN from data. Two novel methods for doing so are introduced

and one of them is further adapted to the online learning setting. We also introduce what

we call nonmonotone SPNs and show how to use them in practice. In the next section we

informally describe the mathematics behind SPNs. Then we present a more detailed overview

of the contributions of this dissertation. Finally, a very brief survey of the literature is laid

out.

1.1 Background

Perhaps the most straightforward way to represent a joint distribution p(X, Y ) is to make

a list of probabilities aligned to a list of the possible assignments to X and Y . This is

only possible to do for discrete variables, but even then it is usually not practical since the
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D,S (0,0) (0,1) (1,0) (1,1)

p(D,S) 0.81 0.09 0.005 0.095

Figure 1.1: A joint distribution over binary variables D (disease) and S (symptom). A more
realistic distribution, accounting for many more diseases and symptoms, could be of aid in
medical diagnosis tasks.

number of possible variable assignments grows exponentially with the number of variables.

Nevertheless, this is essentially the approach taken by the network polynomial [11], a method

of representing a distribution as a polynomial. The coefficients in the network polynomial

form the list of probabilities, and the variables are used to select the appropriate coefficient(s).

Interestingly, Darwiche [11] shows that certain partial derivatives of this polynomial have

probabilistic interpretations.

As an example, consider the simple medical diagnosis model in which two binary

random variables D and S indicate the presence or absence of, respectively, a particular disease

and a particular symptom. Figure 1.1 shows p(D,S) represented as a list of probabilities.

Using the shorthand pij , p(D=i, S=j), the network polynomial for this distribution is

f(λD=0,λD=1, λS=0, λS=1)

= p00λD=0λS=0 + p01λD=0λS=1 + p10λD=1λS=0 + p11λD=1λS=1

= 0.81λD=0λS=0 + 0.09λD=0λS=1 + 0.005λD=1λS=0 + 0.095λD=1λS=1 (1.1)

where the variables λD=0, λD=1, λS=0, and λS=1 are indicator variables. An indicator λX=x

takes the value 1 when the variable X takes the value x, and is 0 otherwise. To compute

p(D=0, S=0) we set λD=0 = 1 and λS=0 = 1; the other indicators are set to 0, giving

f(1, 0, 1, 0) = p00(1)(1) + p01(1)(0) + p10(0)(1) + p11(0)(0)

= p00 = 0.81 = p(D=0, S=0).
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To support computing marginal probabilities we modify the definition of an indicator variable;

λX=x now takes the value 1 when X = x or when we decide to sum out X, and takes the

value 0 otherwise. To compute the marginal p(D = 0), then, λD=0 gets set to 1 and, since we

are summing out S, both λS=0 and λS=1 get set to 1; thus we have

f(1, 0, 1, 1) = p00(1)(1) + p01(1)(1) + p10(0)(1) + p11(0)(1)

= p00 + p01 = 0.9 = p(D=0).

Any joint or marginal probability can be computed by setting the indicators appropriately

and evaluating f .

A network polynomial for a distribution over n binary random variables would have 2n

monomial terms, 2n corresponding coefficients, and 2n indicator variables. If the space and

time requirements for using a network polynomial grow exponentially with n, why use them

at all? The answer is that network polynomials are not used directly. Instead, some network

polynomials can be computed using arithmetic circuits (ACs) that have polynomial size in n.

Network polynomials that only have exponential-sized arithmetic circuits computing them

are not used in practice at all. In a polynomial-sized AC there are still 2n indicator variables,

acting now as input nodes, but there is no longer a O(2n) space requirement.

We now show how the example AC in Figure 1.2b computes the network polynomial

for the medical diagnosis distribution. Ordering the bottom row of product nodes from left

to right, the polynomials they compute are, respectively, p0|0λS=0, p0|1λS=0, p1|0λS=1, and

p1|1λS=1. Ordering the two sum nodes in the middle from left to right, the polynomials

they compute are, respectively, p0|0λS=0 + p1|0λS=1 and p0|1λS=0 + p1|1λS=1. Ordering the

two top product nodes from left to right, the polynomials they compute are, respectively,

p(D=0)λD=0(p0|0λS=0 + p1|0λS=1) and p(D=1)λD=1(p0|1λS=0 + p1|1λS=1). Finally we see that
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D S

p(D,S) = p(D)p(S|D)

D 0 1

p(D) 0.9 0.1

D p(S=0|D) p(S=1|D)

0 0.9 0.1

1 0.05 0.95

(a) Bayesian network.

+

× ×

p(D=0)
λD=0 + + λD=1

p(D=1)

× × × ×

p0|0

λS=0

p0|1 p1|0

λS=1

p1|1

(b) Arithmetic circuit.

Figure 1.2: A Bayesian network and arithmetic circuit, each representing p(D,S), the medical
diagnosis distribution. In the AC we use the shorthand pi|j , p(S=i|D=j).

the root node computes

p(D=0)λD=0(p0|0λS=0 + p1|0λS=1) + p(D=1)λD=1(p0|1λS=0 + p1|1λS=1) =

p(D=0)p0|0λD=0λS=0 + p(D=0)p1|0λD=0λS=1+

p(D=1)p0|1λD=1λS=0 + p(D=1)p1|1λD=1λS=1.

If we replace the probability expressions in this polynomial with the appropriate values from

the tables in Figure 1.2a, we see that the root node computes the network polynomial

f(λD=0,λD=1, λS=0, λS=1)

= 0.81λD=0λS=0 + 0.09λD=0λS=1 + 0.005λD=1λS=0 + 0.095λD=1λS=1 (1.2)

which is identical to the network polynomial in Equation 1.1.

Bayesian networks over discrete variables can be converted into equivalent ACs, which

can then be used as inference engines for the original BNs [7, 8]. Since inference takes time

linear in the size of the AC, the goal is to convert the BN into as small an AC as possible. For

some BNs, such as those that exhibit determinism or context-specific independence in their
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× ×

+ +

λD=0 λD=1 λS=0 λS=1

0.9 0.1

0.9 0.1

0.05

0.95

Figure 1.3: A sum-product network representing p(D,S), the medical diagnosis distribution.

conditional probability tables, conversion to a small AC can be done because ACs can take

advantage of this local structure. On the other hand, standard exact-inference techniques

such as the jointree method [48], which does not take advantage of local structure, can be

slow on these same BNs. Figure 1.2a shows a BN for the medical diagnosis distribution and

Figure 1.2b an equivalent AC.

Sum-product networks are similar to ACs, but there are important differences. Both

are DAGs whose internal nodes are sums and products. In an SPN, leaves can be indicators

just like in ACs, but they can also be any univariate distribution; this allows SPNs to handle

continuous variables. A sum node in an SPN computes a weighted sum of its inputs, instead

of a simple sum as in ACs; weights are indicated by edge labels. Figure 1.3 shows an SPN

that represents the medical-diagnosis distribution. The polynomial computed by its root

node is

f(λD=0,λD=1, λS=0, λS=1)

= 0.9(λD=0(0.9λS=0 + 0.1λS=1)) + 0.1(λD=1(0.05λS=0 + 0.95λS=1))

= 0.81λD=0λS=0 + 0.09λD=0λS=1 + 0.005λD=1λS=0 + 0.095λD=1λS=1 (1.3)

which, again, is identical to Equation 1.1.
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Figure 1.4: An SPN representing a distribution over continuous variable X and discrete
variable Y . Node B computes a mixture model and node C computes an independence
model.

In the literature, SPNs are viewed as standalone probability models instead of as a

method for achieving exact inference in BNs. Thus the SPN literature contains algorithms

for learning the parameters and the structure of an SPN from data; none of this is necessary

when the goal is to create a BN inference engine. Like ACs, an SPN can compute any joint or

marginal probability in time linear in its size. Consider what this means for an SPN modeling

n binary variables. There are 2n subsets of these n variables, and for each subset of size k

there are 2k possible value settings for the k variables. Since each value setting corresponds

to a potential probabilistic query, there are
∑n

k=1 2k
(
n
k

)
queries and a single evaluation of the

SPN can answer any one of them. This takes into account only joint and marginal queries.

Conditional probability queries can also be answered using two evaluations of the SPN. This

is so since conditional probabilities are the ratio of two joint/marginal probabilities. For

example, p(y|x) = p(x, y)/p(x).

Now we offer another view on SPNs which sheds more light on how they work and

how they can be constructed. In short, an SPN is a recursive combination of mixture

models and what we call independence models. A mixture model is the weighted sum, using

non-negative weights, of several distributions, where each one is over the same set of variables.

An independence model is the product of several distributions, where each one is over a
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+

p(X, Y )

p1(X, Y ) p2(X, Y )

w1 w2

×

p(U, V,X, Y )

p3(U, V ) p4(X, Y )

Figure 1.5: On the left distributions p1 and p2 are the components of a mixture model with
mixing coefficients w1 and w2. On the right distributions p3 and p4 are combined in an
independence model. Note that the scopes of p1 and p2 are identical and the scopes of p3

and p4 are disjoint.

disjoint set of variables. Mixtures are computed using sum nodes, independence models

are computed using product nodes, and leaf nodes are univariate distributions; the leaves

form the base case in the recursive combination of models. Figure 1.4 shows an SPN that

represents a distribution over continuous random variable X and discrete random variable Y .

The leaf nodes consist of two normal distributions over X and two categorical distributions

over Y . Denote the distributions represented by the labeled nodes A, B, and C as pA, pB,

and pC , respectively. The distribution pA(X) is a normal over X, pB(X) is a mixture of pA

and the other normal, and pC(X, Y ) is an independence model that combines pB and one of

the categorical distributions over Y .

For some distribution p let sc(p) denote its scope, or the set of random variables

that p models. An SPN is complete if sc(p1) = sc(p2) = · · · = sc(pk) for every mixture of

distributions p1, . . . , pk. An SPN is decomposable if every independence model combining

distributions p1, . . . , pk is such that for all pairs (i, j), i 6= j we have sc(pi) ∩ sc(pj) = ∅. If

an SPN is complete and decomposable then a single pass through its network can compute

any marginal probability in the distribution that it represents [38]. The following examples

demonstrate why this is so. First we mix p1(X, Y ) and p2(X, Y ) and then we combine

p3(U, V ) and p4(X, Y ) using an independence model. See Figure 1.5. In both cases we show

how to compute a marginal probability in the resulting distribution p, assuming that any
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marginal in the distributions p1, . . . , p4 can be computed. For the mixture we have

p(x) =
∑
y

p(x, y)

=
∑
y

(w1p1(x, y) + w2p2(x, y))

= w1

∑
y

p1(x, y) + w2

∑
y

p2(x, y)

= w1p1(x) + w2p2(x)

where w1, w2 are the mixing coefficients and the last equality is true due to our assumption.

For the independence model we have

p(x) =
∑
u

∑
v

∑
y

p(u, v, x, y)

=
∑
u

∑
v

∑
y

p3(u, v)p4(x, y)

=
∑
u

∑
v

p3(u, v)
∑
y

p4(x, y)

= p4(x)

where the last line holds due to our assumption and the fact that
∑

u

∑
v p1(u, v) = 1.

Viewing an SPN as a recursive combination of mixture and independence models, it is only

left to show that marginalization can be done at the base case, the univariate distributions

at the leaf nodes. This can be done, of course, since summing out the variable at a leaf node

is equivalent to setting the leaf node to 1.

1.2 Overview

The set of distributions that can be represented by an SPN is constrained by its architecture,

i.e., the structure of its DAG. For example, the SPN on the left in Figure 1.6 can only
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Figure 1.6: The structure of an SPN constrains the set of distributions representable by that
SPN. The SPN on the left cannot represent all the distributions that the SPN on the right
can represent. Note here that the hollow-circle leaf nodes represent indicator variables.

represent distributions in which X and Y are independent of each other, while the SPN

on the right can represent any distribution over X and Y . The SPN on the right can do

this since it is essentially representing its distribution as a list of probabilities, similar to

Figure 1.1. If we expand this structure to n binary variables, adding a product node for

every possible setting of the variables and mixing these with a single sum node, then the

size of the SPN will grow exponentially. The problem of SPN structure learning is to find

a DAG that is complex and large enough to model the target distribution but not much

larger; this can also help avoid overfitting. The seminal paper [38] introducing SPNs describes

a parameter-learning algorithm, but does not address the structure-learning problem; its

experiments use a fixed-structure SPN.

Chapter 2, which was presented at NIPS 2012, describes the first published SPN

structure-learning algorithm, BuildSPN. The algorithm works by recursively constructing a

tree of “region” and “partition” nodes which is then transformed into an SPN, with region

nodes corresponding to sets of sum nodes and partiton nodes corresponding to sets of product

nodes. The root of the tree is fixed as a region node; then the tree is expanded by recursively

adding children to the current leaves of the tree. The expansion is guided by clustering the

rows and columns of slices of the training data.

A short time later Gens and Domingos [19] developed the current most widely-used

structure learning algorithm, LearnSPN. It resembles BuildSPN in that it constructs a

tree-structured SPN using recursive partitioning of the rows and columns of the dataset.
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However, its column-partitioning strategy uses pair-wise independence tests, an approach

that, from a theoretical perspective, is much better-justified than our column-clustering

approach. Importantly, unlike BuildSPN, LearnSPN also combines the structure-learning

and parameter-learning steps into one.

Chapter 3, which was presented at IJCAI 2015, describes another algorithm, Search-

SPN, for learning the structure of an SPN. It takes advantage of the column-partitioning

strategy from LearnSPN and is also able to learn the structure and parameters simultane-

ously. Unlike LearnSPN, which is limited to learning tree-structured SPNs, SearchSPN

is able to learn DAG-structured SPNs. We show that SearchSPN is competetive with

LearnSPN on a set of twenty real-world datasets and is far superior on a set of synthetic

datasets. Another contribution of this paper is the first proof that the function computed by

an SPN is the sum of all the embedded trees within the SPN. Zhao et al. [59] also arrived at

this same result independently.

In Chapter 4 we describe the OnlineSearchSPN algorithm, an adaptation of

SearchSPN to the online setting. This algorithm can change the SPN structure over time

to adapt to a changing input distribution.

Chapter 5 shows how autoencoders and SPNs can be combined to model image data.

SPNs provide a mechanism that helps the autoencoder generate images. The autoencoder

helps improve the quality of images generated when drawing samples from the distribution

represented by the SPN.

In Chapter 6 we generalize the definition of an SPN to allow negative-valued mixing

coefficients in its mixture models. If an SPN has negative edge-weights we call it a non-

monotone SPN. With negative weights there is the possibility that a nonmonotone SPN may

compute negative values for some input. This assignment of “negative” probability ruins the

probabilistic interpretation of the SPN. So we classify SPNs as being positive if they always

compute non-negative probabilities and as being negative otherwise. We prove that, as long

as a nonmonotone SPN is positive, computing marginals in it works in the same way it does
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in a monotone SPN. We also introduce twin SPNs, a class of nonmonotone SPN that can

easily be guaranteed to be positive. An algorithm for learning the structure and parameters

of a twin SPN, LearnTwin, is also described and tested on synthetic data.

In summary, our major contributions include the first structure-learning algorithm for

SPNs, a structure-learning algorithm that has some of the nice properties of LearnSPN

while not being limited to tree structures, and an online SPN structure-learning algorithm.

We also prove that every SPN is equivalent to a summation of all embedded trees in the SPN,

where typically there are an exponential number of these trees. Lastly, we generalize SPNs to

allow negative edge-weights, show how to compute marginals even in the presence of negative

weights, and introduce a learning algorithm for a practical class of these generalized SPNs.

1.3 Brief History

The following short overview of the SPN literature, while incomplete, touches on many of

the major papers in the field. As shown earlier, the foundational work for SPNs actually

lies in work on the network polynomial and arithmetic circuit representations of Bayesian

networks [11]. Poon and Domingos [38] builds on this work, introducing the SPN as a

standalone model whose structure and parameters can be learned. They also present criteria

which, if met, guarantee that an SPN does compute a network polynomial.

The introduction of SPNs was followed by several structure-learning algorithms.

Most construct the SPN in a top-down fashion, starting at the root and working to the

leaves [14, 19, 44]. We propose a structure-search algorithm [15], Peharz et al. [35] construct

SPNs using a bottom-up approach, Lee et al. [27] propose an online structure-learning

algorithm, and Vergari et al. [55] make improvements on LearnSPN.

Other work has expanded on techniques for learning the parameters of SPNs discrimi-

natively [18], using moment matching [40], and using expectation-maximization [16, 37, 59].

Melibari et al. [32] show how to adapt SPNs to handle temporal data and several more papers
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expand on more theoretical issues [37], including showing the power of deep SPNs [12] and

how SPNs relate to Bayesian networks [58].
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Chapter 2

Learning the Architecture of Sum-Product Networks

Using Clustering on Variables

Published in the proceedings of NIPS 2012

Abstract

The sum-product network (SPN) is a recently-proposed deep model consisting of a network

of sum and product nodes, and has been shown to be competitive with state-of-the-art

deep models on certain difficult tasks such as image completion. Designing an SPN network

architecture that is suitable for the task at hand is an open question. We propose an

algorithm for learning the SPN architecture from data. The idea is to cluster variables (as

opposed to data instances) in order to identify variable subsets that strongly interact with one

another. Nodes in the SPN network are then allocated towards explaining these interactions.

Experimental evidence shows that learning the SPN architecture significantly improves its

performance compared to using a previously-proposed static architecture.
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2.1 Introduction

The number of parameters in a textbook probabilistic graphical model (PGM) is an exponential

function of the number of parents of the nodes in the graph. Latent variables can often be

introduced such that the number of parents is reduced while still allowing the probability

distribution to be represented. Figure 2.1 shows an example of modeling the relationship

between symptoms of a set of diseases. The PGM at the left has no latent variables and

the PGM at the right has an appropriately added “disease” variable. The model is able to

be simplified because the symptoms are statistically independent of one another given the

disease. The middle PGM shows a model in which the latent variable is introduced to no

simplifying effect, demonstrating the need to be intelligent about what latent variables are

added and how they are added.

Deep models can be interpreted as PGMs that introduce multiple layers of latent

variables over a layer of observed variables [22]. The architecture of these latent variables (the

size of the layers, the number of variables, the connections between variables) can dramatically

affect the performance of these models. Selecting a reasonable architecture is often done by

hand.

This paper proposes an algorithm that automatically learns a deep architecture from

data for a sum-product network (SPN), a recently-proposed deep model that takes advantage

of the simplifying effect of latent variables [38]. Learning the appropriate architecture for a

S1

S2 S3

(a)

S1

S2 S3

D

(b)

S1 S2 S3

D

(c)

Figure 2.1: Introducing a latent variable. The PGM in (a) has no latent variables. The PGM
in (b) has a latent variable introduced to no beneficial effect. The PGM in (c) has a latent
variable that simplifies the model.
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traditional deep model can be challenging [1, 57], but the nature of SPNs lend themselves to

a remarkably simple, fast, and effective architecture-learning algorithm.

In proposing SPNs, Poon & Domingos introduce a general scheme for building an

initial SPN architecture; the experiments they run all use one particular instantiation of this

scheme to build an initial “fixed” architecture that is suitable for image data. We will refer

to this architecture as the Poon architecture. Training is done by learning the parameters of

an initial SPN; after training is complete, parts of the SPN may be pruned to produce a final

SPN architecture. In this way both the weights and architecture are learned from data.

We take this a step further by also learning the initial SPN architecture from data.

Our algorithm works by finding subsets of variables (and sets of subsets of variables) that are

highly dependent and then effectively combining these together under a set of latent variables.

This encourages the latent variables to act as mediators between the variables, capturing and

representing the dependencies between them. Our experiments show that learning the initial

SPN architecture in this way improves its performance.

2.2 Sum-Product Networks

Sum-product networks are rooted, directed acyclic graphs (DAGs) of sum, product, and leaf

nodes. Edges connecting sum nodes to their children are weighted using non-negative weights.

The value of a sum node is computed as the dot product of its weights with the values of its

child nodes. The value of a product node is computed by multiplying the values of its child

nodes. A simple SPN is shown in Figure 2.2.

Leaf node values are determined by the input to the SPN. Each input variable has an

associated set of leaf nodes, one for each value the variable can take. For example, a binary

variable would have two associated leaf nodes. The leaf nodes act as indicator functions,

taking the value 1 when the variable takes on the value that the leaf node is responsible for

and 0 otherwise.
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Figure 2.2: A simple SPN over two binary variables A and B. The leaf node λa takes value 1
if A = 0 and 0 otherwise while leaf node λa takes value 1 if A = 1 and 0 otherwise. If the
value of A is not known then both leaf nodes take value 1. Leaf nodes λb and λb behave
similarly. Weights on the edges connecting sum nodes with their children are not shown. The
short-dashed edge causes the SPN to be incomplete. The long-dashed edge causes the SPN
to be inconsistent.

An SPN can be constructed such that it is a representation of some probability

distribution, with the value of its root node and certain partial derivatives with respect to

the root node having probabilistic meaning. In particular, all marginal probabilities and

many conditional probabilities can be computed [11]. Consequently an SPN can perform

exact inference and does so efficiently when the size of the SPN is polynomial in the number

of variables.

If an SPN does represent a probability distribution then we call it a valid SPN; of

course, not all SPNs are valid, nor do they all facilitate efficient, exact inference. However,

Poon & Domingos proved that if the architecture of an SPN follows two simple rules then

it will be valid. (Note that this relationship does not go both ways; an SPN may be valid

and violate one or both of these rules.) This, along with showing that SPNs can represent a

broader class of distributions than other models that allow for efficient and exact inference

are the key contributions made by Poon & Domingos.

To understand these rules it will help to know what the “scope of an SPN node”

means. The scope of an SPN node n is a subset of the input variables. This subset can be
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determined by looking at the leaf nodes of the subgraph rooted at n. All input variables that

have one or more of their associated leaf nodes in this subgraph are included in the scope of

the node. We will denote the scope of n as scope(n).

The first rule is that all children of a sum node must have the same scope. Such

an SPN is called complete. The second rule is that for every pair of children, (ci, cj), of a

product node, there must not be contradictory leaf nodes in the subgraphs rooted at ci and

cj. For example, if the leaf node corresponding to the variable X taking on value x is in

the subgraph rooted at ci, then the leaf nodes corresponding to the variable X taking on

any other value may not appear in the subgraph rooted at cj. An SPN following this rule

is called consistent. The SPN in Figure 2.2 violates completeness (due to the short-dashed

arrow) and it violates consistency (due to the long-dashed arrow).

An SPN may also be decomposable, which is a property similar to, but somewhat

more restrictive than consistency. A decomposable SPN is one in which the scopes of the

children of each product node are disjoint. All of the architectures described in this paper

are decomposable.

Very deep SPNs can be built using these rules as a guide. The number of layers in

an SPN can be on the order of tens of layers, whereas the typical deep model has three

to five layers. Recently it was shown that deep SPNs can compute some functions using

exponentially fewer resources than shallow SPNs would need [12].

The Poon architecture is suited for modeling probability distributions over images,

or other domains with local dependencies among variables. It is constructed as follows. For

every possible axis-aligned rectangular region in the image, the Poon architecture includes

a set of m sum nodes, all of whose scope is the set of variables associated with the pixels

in that region. Each of these (non-single-pixel) regions are conceptually split vertically and

horizontally in all possible ways to form pairs of rectangular subregions. For each pair of

subregions, and for every possible pairing of sum nodes (one taken from each subregion), a

product node is introduced and made the parent of the pair of sum nodes. The product node
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Figure 2.3: The Poon architecture with m = 1 sum nodes per region. Three product nodes
are introduced because the 2× 3-pixel image patch can be split vertically and horizontally in
three different ways. In general the Poon architecture has number-of-splits times m2 product
nodes per region.

is also added as a child to all of the top region’s sum nodes. Figure 2.3 shows a fragment of a

Poon architecture SPN modeling a 2× 3 image patch.

2.3 Cluster Architecture

As mentioned earlier, care needs to be taken when introducing latent variables into a model.

Since the effect of a latent variable is to help explain the interactions between its child

variables [25], it makes little sense to add a latent variable as the parent of two statistically

independent variables.

In the example in Figure 2.4, variables W and X strongly interact and variables Y

and Z do as well. But the relationship between all other pairs of variables is weak. The PGM

in (a), therefore, allows latent variable A to take account of the interaction between W and

X. On the other hand, variable A does little in the PGM in (b) since W and Y are nearly

independent. A similar argument can be made about variable B. Consequently, variable C

in the PGM in (a) can be used to explain the weak interactions between variables, whereas

in the PGM in (b), variable C essentially has the task of explaining the interaction between

all the variables.
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Figure 2.4: Latent variables explain the interaction between child variables, causing the
children to be independent given the latent variable parent. If variable pairs (W,X) and
(Y, Z) strongly interact and other variable pairs do not, then the PGM in (a) is a more
suitable model than the PGM in (b).

In the probabilistic interpretation of an SPN, sum nodes are associated with latent

variables. (The evaluation of a sum node is equivalent to summing out its associated latent

variable.) Each latent variable helps the SPN explain interactions between variables in the

scope of the sum nodes. Just as in the example, then, we would like to place sum nodes over

sets of variables with strong interactions.

The Poon architecture takes this principle into account. Images exhibit strong

interactions between pixels in local spatial neighborhoods. Taking advantage of this prior

knowledge, the Poon architecture chooses to place sum nodes over local spatial neighborhoods

that are rectangular in shape.

There are a few potential problems with this approach, however. One is that the

Poon architecture includes many rectangular regions that are long and skinny. This means

that the pixels at each end of these regions are grouped together even though they probably

have only weak interactions. Some grouping of weakly-interacting pixels is inevitable, but

the Poon architecture probably does this more than is needed. Another problem is that

the Poon architecture has no way of explaining strongly-interacting, non-rectangular local

spatial regions. This is a major problem because such regions are very common in images.

Additionally, if the data does not exhibit strong spatially-local interactions then the Poon

architecture could perform poorly.
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Our proposed architecture (we will call it the cluster architecture) avoids these

problems. Large regions containing non-interacting pixels are avoided. Sum nodes can be

placed over spatially-local, non-rectangular regions; we are not restricted to rectangular

regions, but can explain arbitrarily-shaped blob-like regions. In fact, the regions found by the

cluster architecture are not required to exhibit spatial locality. This makes our architecture

suitable for modeling data that does not exhibit strong spatially-local interactions between

variables.

2.3.1 Building a Cluster Architecture

As was described earlier, a sum node s in an SPN has the task of explaining the interactions

between all the variables in its scope. Let scope(s) = {V1, · · · , Vn}. If n is large, then this

task will likely be very difficult. SPNs have a mechanism for making it easier, however.

Essentially, s delegates part of its responsibilities to another set of sum nodes. This is done

by first forming a partition of scope(s), where {S1, · · · , Sk} is a partition of scope(s) if and

only if
⋃
i Si = scope(s) and ∀i, j(Si ∩ Sj = ∅). Then, for each subset Si in the partition, an

additional sum node si is introduced into the SPN and is given the task of explaining the

interactions between all the variables in Si. The original sum node s is then given a new

child product node p and the product node becomes the parent of each sum node si.

In this example the node s is analogous to the variable C in Figure 2.4 and the nodes

si are analogous to the variables A and B. So this partitioning process allows s to focus

on explaining the interactions between the nodes si and frees it from needing to explain

everything about the interactions between the variables {V1, · · · , Vn}. And, of course, the

partitioning process can be repeated recursively, with any of the nodes si taking the place

of s.

This is the main idea behind the algorithm for building a cluster architecture (see

Algorithm 1 and Algorithm 2). However, due to the architectural flexibility of an SPN,
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Figure 2.5: Subfigure (a) shows a region graph fragment consisting of region nodes R1, R2,
R3, R4, and R5. R1 has two parition nodes (the smaller, filled-in nodes). Subfigure (b) shows
the region graph converted to an SPN. In the SPN each region is allotted two sum nodes. The
product nodes in R1 are surrounded by two rectangles labeled P1 and P2; they correspond to
the partition nodes in the region graph.

discussing this algorithm in terms of sum and product nodes quickly becomes tedious and

confusing. The following definition will help in this regard.

Definition 2.1. A region graph is a rooted DAG consisting of region nodes and partition

nodes. The root node is a region node. Partition nodes are restricted to being the children of

region nodes and vice versa. Region and partition nodes have scopes just like nodes in an

SPN. The scope of a node n in a region graph is denoted scope(n).

Region nodes can be thought of as playing the role of sum nodes (explaining interactions

among variables) and partition nodes can be thought of as playing the role of product nodes

(delegating responsibilities). Using the definition of the region graph may not appear to

have made things any simpler, but its benefits will become more clear when discussing the

conversion of region graphs to SPNs (see Figure 2.5).

At a high level the algorithm for building a cluster architecture is simple: build a

region graph (Algorithm 1 and Algorithm 2), then convert it to an SPN (Algorithm 3). These

steps are described below.
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Algorithm 1 BuildRegionGraph

1: Input: training data D
2: C ′ ← Cluster(D, 1)
3: for k = 2, 3, . . . ,∞ do
4: C ← Cluster(D, k)
5: r ← Quality(C)/Quality(C ′)
6: if r < 1 + δ then
7: break
8: else
9: C ′ ← C

10: end if
11: end for
12: G← CreateRegionGraph()
13: n← AddRegionNodeTo(G)
14: for i = 1, 2, . . . , k do
15: ExpandRegionGraph(G, n,Ci)
16: end for

Algorithm 1 builds a region graph using training data to guide the construction. In lines

2 through 9 the algorithm clusters the training instances into k clusters C = {C1, · · · , Ck}.

Our implementation uses the scikit-learn [34] implementation of k-means to cluster the data

instances, but any clustering method could be used. The value for k is chosen automatically;

larger values of k are tried until increasing the value does not substantially improve a cluster-

quality score. The remainder of the algorithm creates a single-node region graph G and then

adds nodes and edges to G using k calls to Algorithm 2 (ExpandRegionGraph). To encourage

the expansion of G in different ways, a different subset of the training data, Ci, is passed to

ExpandRegionGraph on each call.

At a high level, Algorithm 2 partitions scopes into sub-scopes recursively, adding

region and partition nodes to G along the way. The initial call to ExpandRegionGraph

partitions the scope of the root region node. A corresponding partition node is added as a

child of the root node. Two sub-region nodes (whose scopes form the partition) are then

added as children to the partition node. Algorithm 2 is then called recursively with each of

these sub-region nodes as arguments (unless the scope of the sub-region node is too small).
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Algorithm 2 ExpandRegionGraph

1: Input: region graph G,
2: region node n in G, training data D
3: Sn ← scope(n)
4: {S1, S2} ← PartitionScope(Sn, D)
5: S ← ScopesOfAllRegionNodesIn(G)
6: for all Sr ∈ S s.t. Sr ⊂ Sn do
7: p1 ← |S1 ∩ Sr|/|S1 ∪ Sr|
8: p2 ← |S2 ∩ Sr|/|S2 ∪ Sr|
9: if max{p1, p2} > threshold then

10: S1 ← Sr
11: S2 ← Sn \ Sr
12: break
13: end if
14: end for
15: n1 ← GetOrCreateRegionNode(G, S1)
16: n2 ← GetOrCreateRegionNode(G, S2)
17: if PartitionDoesNotExist(G, n, n1, n2) then
18: p← NewPartitionNode()
19: AddChildToRegionNode(n, p)
20: AddChildToPartitionNode(p, n1)
21: AddChildToPartitionNode(p, n2)
22: end if
23: if S1 /∈ S ∧ |S1| > 1 then
24: ExpandRegionGraph(G, n1)
25: end if
26: if S2 /∈ S ∧ |S2| > 1 then
27: ExpandRegionGraph(G, n2)
28: end if

In line 4 of Algorithm 2 the PartitionScope function in our implementation uses the

k-means algorithm in an unusual way. Instead of partitioning the instances of the training

dataset D into k instance-clusters, it partitions variables into k variable-clusters as follows.

D is encoded as a matrix, each row being a data instance and each column corresponding to

a variable. Then k-means is run on DT , causing it to partition the variables into k clusters.

Actually, the PartitionScope function is only supposed to partition the variables in scope(n),

not all the variables (note its input parameter). So before calling k-means we build a new

24



matrix Dn by removing columns from D, keeping only those columns that correspond to

variables in scope(n). Then k-means is run on DT
n and the resulting variable partition is

returned. The k-means algorithm serves the purpose of detecting subsets of variables that

strongly interact with one another. Other methods (including other clustering algorithms)

could be used in its place.

After the scope Sn of a node n has been partitioned into S1 and S2, Algorithm 2

(lines 5 through 14) looks for region nodes in G whose scope is similar to S1 or S2; if region

node r with scope Sr is such a node, then S1 and S2 are adjusted so that S1 = Sr and

{S1, S2} is still a partition of Sn. Lines 15 through 22 expand the region graph based on

the partition of Sn. If node n does not already have a child partition node representing the

partition {S1, S2} then one is created (p in line 18); p is then connected to child region nodes

n1 and n2, whose scopes are S1 and S2, respectively.

Note that n1 and n2 may be newly-created region nodes or they may be nodes that

were created during a previous call to Algorithm 2. We recursively call ExpandRegionGraph

only on newly-created nodes; the recursive call is also not made if the node is a leaf node

(|Si| = 1) since partitioning a leaf node is not helpful (see lines 23 through 28).

After the k calls to Algorithm 2 have been made, the resulting region graph must

be converted to an SPN. Figure 2.5 shows a small subgraph from a region graph and its

conversion into an SPN; this example demonstrates the basic pattern that can be applied

to all region nodes in G in order to generate an SPN. A more precise description of this

conversion is given in Algorithm 3. In this algorithm the assumption is made (noted in

the comments) that certain sum nodes are inserted before others. This assumption can be

guaranteed if the algorithm performs a postorder traversal of the region nodes in G in the

outermost loop. Also note that the ConnectProductsToSums method connects product nodes

of the current region with sum nodes from its subregions; the children of a product node

consist of a single node drawn from each subregion, and there is a product node for every

possible combination of such sum nodes.
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Algorithm 3 BuildSPN

Input: region graph G, sums per region m
Output: SPN S
R← RegionNodesIn(G)
for all r ∈ R do

if IsRootNode(r) then
N ← AddSumNodesToSPN(S, 1)

else
N ← AddSumNodesToSPN(S, m)

end if
P ← ChildPartitionNodesOf(r)
for all p ∈ P do

C ← ChildrenOf(p)
O ← AddProductNodesToSPN(S, m|C|)
for all n ∈ N do

AddChildrenToSumNode(n, O)
end for
Q← empty list
for all c ∈ C do

//We assume the sum nodes associated
//with c have already been created.
U ← SumNodesAssociatedWith(c)
AppendToList(Q, U)

end for
ConnectProductsToSums(O, Q)

end for
end for
return S

2.4 Experiments and Results

Poon showed that SPNs can outperform deep belief networks (DBNs), deep Boltzman

machines (DBMs), principle component analysis (PCA), and a nearest- neighbors algorithm

(NN) on a difficult image completion task. The task is the following: given the right/top

half of an image, paint in the left/bottom half of it. The completion results of these models

were compared qualitatively by inspection and quantitatively using mean squared error

(MSE). SPNs produced the best results; our experiments show that the cluster architecture

significantly improves SPN performance.
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We matched the experimental set-up reported in [38] in order to isolate the effect of

changing the initial SPN architecture and to make their reported results directly comparable

to several of our results. They add 20 sum nodes for each non-unit and non-root region.

The root region has one sum node and the unit regions have four sum nodes, each of which

function as a Gaussian over pixel values. The Gaussians means are calculated using the

training data for each pixel, with one Gaussian covering each quartile of the pixel-values

histogram. Each training image is normalized such that its mean pixel value is zero with a

standard deviation of one. Hard expectation maximization (EM) is used to train the SPNs;

mini-batches of 50 training instances are used to calculate each weight update. All sum node

weights are initialized to zero; weight values are decreased after each training epoch using an

L0 prior; add-one smoothing on sum node weights is used during network evaluation.

We test the cluster and Poon architectures by learning on the Olivetti dataset [46],

the faces from the Caltech-101 dataset [17], an artificial dataset that we generated, and the

shuffled-Olivetti dataset, which is the Olivetti dataset with the pixels randomly shuffled (all

images are shuffled in the same way). The Caltech-101 faces were preprocessed as described

by Poon & Domingos. The cluster architecture is compared to the Poon architectures using

the negative log-likelihood (LLH) of the training and test sets as well as the MSE of the

image completion results for the left half and bottom half of the images. We train ten cluster

architecture SPNs and ten Poon architecture SPNs. Average results across the ten SPNs

along with the standard deviation are given for each measurement.

On the Olivetti and Caltech-101 Faces datasets the Poon architecture resulted in

better training set LLH, but the cluster architecture generalized better, getting a better

test set LLH (see Table 2.1). The cluster architecture was also clearly better at the image

completion tasks as measured by MSE.

The difference between the two architectures is most pronounced on the artificial

dataset. The images in this dataset are created by pasting randomly-shaded circle- and

diamond-shaped image patches on top of one another (see Figure 2.6), ensuring that various
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Table 2.1: Results of experiments on the Olivetti, Caltech 101 Faces, artificial, and shuffled-
Olivetti datasets comparing the Poon and cluster architectures. Negative log-likelihood (LLH)
of the training set and test set is reported along with the MSE for the image completion
results (both left-half and bottom-half completion results).

Dataset Measurement Poon Cluster

Olivetti

Train LLH 318± 1 433± 17

Test LLH 863± 9 715± 31

MSE (left) 996± 42 814± 35

MSE (bottom) 963± 42 820± 38

Caltech Faces

Train LLH 289± 4 379± 8

Test LLH 674± 15 557± 11

MSE (left) 1968± 89 1746± 87

MSE (bottom) 1925± 82 1561± 44

Artificial

Train LLH 195 169

Test LLH 266± 4 223± 6

MSE (left) 842± 51 558± 27

MSE (bottom) 877± 85 561± 29

Shuffled

Train LLH 793± 3 442± 14

Test LLH 1193± 3 703± 14

MSE (left) 811± 11 402± 16

MSE (bottom) 817± 17 403± 17

pixel patches are statistically independent. The cluster architecture outperforms the Poon

architecture across all measures on this dataset (see Table 2.1); this is due to its ability to

focus resources on non-rectangular regions.

To demonstrate that the cluster architecture does not rely on the presence of spatially-

local, strong interactions between the variables, we repeated the Olivetti experiment with

the pixels in the images having been shuffled. In this experiment (see Table 2.1) the cluster

architecture was, as expected, relatively unaffected by the pixel shuffling. The LLH measures

remained basically unchanged from the Olivetti to the Olivetti-shuffled datasets. (The

MSE results did not stay the same because the image completions happened over different

subsets of the pixels.) On the other hand, the performance of the Poon architecture dropped
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Figure 2.6: A cluster-architecture SPN completed the images in the left column and a
Poon-architecture SPN completed the images in the right column. All images shown are
left-half completions. The top row is the best results as measured by MSE and the bottom
row is the worst results. Note the smooth edges in the cluster completions and the jagged
edges in the Poon completions.

considerably due to the fact that it was no longer able to take advantage of strong correlations

between neighboring pixels.

Figure 2.7 visually demonstrates the difference between the rectangular-regions Poon

architecture and the arbitrarily-shaped-regions cluster architecture. Artifacts of the different

region shapes can be seen in subfigure (a), where some regions are shaded lighter or darker,

revealing region boundaries. Subfigure (b) compares the best of both architectures, showing

image completion results on which both architectures did well, qualitatively speaking. Note

how the Poon architecture produces results that look “blocky”, whereas the cluster architecture

produces results that are smoother-looking.

Algorithm 1 expands a region graph k times (lines 12 and 13). The value of k can

significantly affect test set LLH, as shown in Table 2.2. A value that is too low leads to an

insufficiently powerful model and a value that is too high leads to a model that overfits the

training data and generalizes poorly.
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(a) (b)

Figure 2.7: The completion results in subfigure (a) highlight the difference between the
rectangular-shaped regions of the Poon architecture (top image) and the blob-like regions of
the cluster architecture (bottom image), artifacts of which can be seen in the completions.
Subfigure (b) shows ground truth images, cluster-architecture SPN completions, and Poon-
architecture SPN completions in the left, middle, and right columns respectively. Left-half
completions are in the top row and bottom-half completions are in the bottom row.

A singly-expanded model (k = 1) is optimal for the Olivetti dataset. This may

be due in part to the Olivetti dataset having only one distinct class of images (faces in a

particular pose). Datasets with more image classes may benefit from additional expansions.

To experiment with this hypothesis we create two new datasets: Olivetti45 and Olivetti4590.

Olivetti45 is created by augmenting the Olivetti dataset with Olivetti images that are rotated

by −45 degrees. Olivetti4590 is built similarly but with rotations by −45 degrees and by

−90 degrees. The Olivetti45 dataset, then, has two distinct classes of images: rotated and

non-rotated. Similarly, Olivetti4590 has three distinct image classes. Table 2.2 shows that,

as expected, the optimal value of k for the Olivetti45 and Olivetti4590 datasets is two and

three, respectively.

Note that the Olivetti test set LLH with k = 1 in Table 2.2 is better than the test set

LLH reported in Table 2.1. This shows that the algorithm for automatically selecting k in
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Table 2.2: Test set LLH values for the Olivetti, Olivetti45, and Olivetti4590 datasets for
different values of k. For each dataset the best LLH value is marked in bold.

Dataset k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

Olivetti 650 653 671 685 711 716 717 741

Olivetti45 523 495 508 529 541 528 544 532

Olivetti4590 579 576 550 554 577 595 608 592

Algorithm 1 is not optimal. Another option is to use a hold-out set to select k, although this

method may not not be appropriate for small datasets.

2.5 Conclusion

The algorithm for learning a cluster architecture is simple, fast, and effective. It allows the

SPN to focus its resources on explaining the interactions between arbitrary subsets of input

variables. And, being driven by data, the algorithm guides the allocation of SPN resources

such that it is able to model the data more efficiently. Future work includes experimenting

with alternative clustering algorithms, experimenting with methods for selecting the value

of k, and experimenting with variations of Algorithm 2 such as generalizing it to handle

partitions of size greater than two.
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Chapter 3

Greedy Structure Search for Sum-Product Networks

Published in the proceedings of IJCAI 2015

Abstract

Sum-product networks (SPNs) are rooted, directed acyclic graphs (DAGs) of sum and

product nodes with well-defined probabilistic semantics. Moreover, exact inference in the

distribution represented by an SPN is guaranteed to take linear time in the size of the

DAG. In this paper we introduce an algorithm that learns the structure of an SPN using a

greedy search approach. It incorporates methods used in a previous SPN structure-learning

algorithm, but, unlike the previous algorithm, is not limited to learning tree-structured SPNs.

Several proven ideas from circuit complexity theory along with our experimental results

provide evidence for the advantages of SPNs with less-restrictive, non-tree structures.
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3.1 Introduction

Sum-product networks (SPNs) are a recently-proposed class of probabilistic models in which

exact inference is guaranteed to take linear time in the size of the model. They can efficiently

represent a larger class of distributions than some other models such as mixture models and

thin junction trees [38]. SPN parameters can be learned using expectation-maximization or

gradient descent in both the generative and discriminative settings [18, 38].

Results [18] on twenty real-world datasets compare SPNs to Bayesian networks learned

using the WinMine toolkit [9] and to Markov networks learned using two other methods

[13, 41]. In these experiments SPNs and graphical models fit the data with comparable

likelihood, but the inference accuracy of SPNs is better, as measured using conditional-

likelihood. Also, SPN inference is about two orders of magnitude faster. Similar results [44]

were found when comparing an augmented SPN to mixtures of trees [31] and latent tree

models [10].

SPNs are represented using a directed, acyclic graph (DAG) of sum and product

nodes. Recent approaches to SPN learning focus on the structure of this graph along with its

parameters [14, 19, 35, 44]. These algorithms add nodes in either a top-down or bottom-up

fashion until a complete SPN is constructed. In contrast, the algorithm introduced in this

paper uses a search procedure that incrementally expands a simple, but complete, SPN to

produce a series of increasingly complex SPNs.

SPNs and multilinear arithmetic circuits (MACs), a model from circuit complexity

theory, are closely related. Both are represented by DAGs whose internal nodes are sums

and products and both compute multilinear polynomials in their leaf nodes. Multilinear

arithmetic formulas (MAFs) are MACs whose DAG is a tree. Raz has shown that MACs are,

in a sense, more powerful than MAFs: he proves a certain polynomial to be computable by a

MAC of polynomial-size but only computable by a MAF of super-polynomial-size [42].

In a way this result is irrelevant to SPNs. With SPNs we are concerned with

representing probability distributions, not computing polynomials. In other words, we
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care that an SPN computes a certain function, not that it uses a certain polynomial to do so.

Still we conjecture that DAG-structured SPNs are more powerful than tree-structured SPNs

with respect to their ability to compactly represent probability distributions.

We do not attempt to prove or disprove this conjecture here. Instead we introduce a

greedy structure search algorithm that learns DAG-structured SPNs and compare this with

a structure learning algorithm that learns tree-structured SPNs. Empirical results provide

evidence that DAG-SPNs have advantages over tree-SPNs. We also prove a theorem that

helps clarify and simplify certain SPN concepts and helps us define a useful approximate

likelihood function for SPNs.

3.2 Previous Work

Delalleau & Bengio [12] connect SPNs to work in both circuit complexity and deep learning.

They provide theoretical evidence for the utility of deep learning by proving lower bounds

on the size of shallow (depth two) sum-product networks for two classes of functions F and

G. They show an exponential separation in the size of shallow and deep SPNs; to compute

functions in F a shallow SPN requires at least 2
√
n−1 nodes while a deep SPN requires only

n− 1 nodes.

Darwiche [11] introduced the idea of representing a Bayesian network using polynomials,

called network polynomials, and of computing these polynomials using arithmetic circuits.

He also showed how to perform inference using network polynomials and their corresponding

circuits. This work was foundational to the introduction of SPNs by Poon & Domingos [38].

Lowd & Domingos [29] proposed the first search algorithm for learning the structure

of arithmetic circuits. Since an arithmetic circuit can be converted to an equivalent SPN, this

work can be thought of as the first SPN structure search algorithm. Their algorithm builds

an arithmetic circuit that maintains equivalence with a Bayesian network. A result of this

equivalence constraint is that a single step in the search process can dramatically increase
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the size of the arithmetic circuit. Our search algorithm increases the size of an SPN by a

modest amount at each step.

Several SPN structure learning algorithms have been proposed; these we denote and

reference as follows: DV [14], GD [19], RL [44], and PGP [35]. DV, GD, and RL are top-

down SPN structure learning algorithms that start with a root node and recursively add

children until a full SPN has been built. DV uses an ad-hoc clustering method to build

several SPNs that are then merged together; GD and RL take a more principled approach

that creates product node children using tests of independence and that creates sum node

children by learning naive Bayes models. GD and RL construct trees, with the leaves of

GD being univariate distributions and the leaves of RL being multivariate distributions [30];

the graphs constructed by DV and PGP are not restricted to trees. PGP uses a bottom-up

approach, merging smaller SPNs into larger ones. Another approach learns an SPN structure

by sampling from a prior over tree or DAG structures [28]; no experimental results have been

reported yet for this algorithm.

One of the difficulties in SPN structure learning has been taking advantage of the

architectural flexibility of SPNs. GD and RL use well-justified algorithms but limit themselves

to learning SPN trees—except at the leaf nodes in the case of RL, which can be arithmetic-

circuit representations of Markov networks. One of the aims of this paper is to provide

an algorithm that employs the principled approaches of GD and RL while learning DAG-

structured SPN.

3.3 Sum-Product Networks

Indicators for a random variable Xi are defined as

λXi=j =

1 if Xi = j or Xi is unknown

0 otherwise
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where j is one of the values that Xi can take. An SPN can be represented as a rooted DAG

whose leaf nodes are indicators and whose internal nodes are sums and products. If an

indicator for Xi appears in an SPN then its scope contains Xi. Let X = {X1, . . . , Xm} be

the set of random variables in the scope of an SPN.

Definition 3.1. A sum-product network (SPN) is:

1. an indicator node,

2. a product node whose children are SPNs with disjoint scopes, or

3. a sum node whose children are SPNs with the same scope, and whose edges to these

children have non-negative weights.

We do not use the similar definition from Gens & Domingos [19], even though it

handles continuous variables more naturally, because Definition 3.1 simplifies the discussion

in this paper. We assume without loss of generality that the children of product nodes are

sum nodes and that the children of sums are either products or indicators.

Definition 3.2 (based on Chan & Darwiche [6]). A tree c embedded within an SPN is a

complete sub-circuit if and only if it can be constructed recursively, starting from the root of

c, by including all children of a product node p (and the edges connecting them to p), and

exactly one child of a sum node s (and the edge connecting it to s). Let C be the set of all

complete sub-circuits embedded in an SPN.

An SPN computes a multilinear polynomial in which indicators appear as variables.

For any node n in an SPN let fn be the polynomial computed by it and let ch(n) be its

children. Let wst be the weight on the edge between sum node s and its child t; we assume

that
∑

t∈ch(s) wst = 1. The root node r of an SPN computes polynomial fr as follows. If r

is the indicator node for λXi=j then fr = λXi=j; if r is a product node then fr =
∏

t∈ch(r) ft;

if r is a sum node then fr =
∑

t∈ch(r) wrtft. We say that an SPN computes the polynomial

computed by its root node. The polynomial computed by a complete sub-circuit is defined

similarly. For input x and polynomial fn we let fn(x) be the value of fn at input x. For
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input x and gc, the polynomial computed by complete sub-circuit c, we let c(x) = gc(x) be

the value of gc at input x.

A proof of the following theorem appears in Appendix 3.A

Theorem 3.1. For some SPN let r be its root and let gc be the polynomial computed by

c ∈ C. Then fr =
∑

c∈C gc.

Using Theorem 3.1 we place a simple probabilistic interpretation on the computation

of an SPN. For c ∈ C the polynomial gc =
∏

w∈Wc
w
∏

c(λX), where Wc is the multiset of

weights in c and
∏

c(λX) is the product of indicators in c. We interpret this by letting∏
w∈Wc

w = P (Z= c) and
∏

c(λX) = P (X|Z= c), where Z is a hidden variable whose values

are the circuits in C. Therefore gc = P (X,Z= c) and

fr =
∑
c∈C

gc =
∑
c∈C

P (X,Z= c) = P (X).

Thus an SPN represents a joint distribution over X. From Definition 3.1 we see that each

node n in an SPN is the root of its own SPN. Let Φn be the distribution represented by the

SPN rooted at n.

SPNs compute the marginal probability of any subset of X when the indicators for

variables not in the subset are all set to one. Thus marginal and, consequently, conditional

inference always takes time linear in the size of the SPN [38]. Inferring argmaxX,Z P (X,Z),

called the most probable explanation (MPE), is also done in linear time. After replacing sum

nodes with max nodes, the SPN is evaluated in an upward pass followed by a downward

pass. The downward pass assigns the (or an) MPE circuit to Z and assigns values to any

unobserved variables in X. The circuit is constructed by starting at the root, traversing to

all children of product nodes and at sum nodes traversing to the (or a) child whose weighted

value is a maximum [6, 38]. We let c∗x be an MPE circuit for variable setting X = x.

Poon & Domingos [38] associate with each sum node s a hidden variable Hs whose

values are the children of s. Similar to how we see hidden variable Z as being summed out
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Figure 3.1: The bold lines show a complete sub-circuit. The circuit corresponds to variable
settings H0= 2, H2= 1, H4= 1, H6= 1, H7= 0, H8= 0, H10= 1, X1= 1, X2= 0, X3= 0, and
X4= 1.

of P (X,Z), they view an SPN as summing out H from P (X,H), where H is the set of all

Hs. The benefits of our interpretation are a simpler mathematical formulation and a clearer

relationship to MPE inference. We do make use of the variables in H, however, and relate

them to Z by way of complete sub-circuits as follows. A complete sub-circuit c assigns values

to a subset of H and all of the observed variables. If the edge from s to t ∈ ch(s) is in c then

Hs = t. If the indicator node for λXi=j is in c then Xi = j. Let Hc be the set of variables to

which c assigns values. See Figure 3.1.

3.4 SPN Structure Search

To learn an SPN, our greedy structure search algorithm uses a training set T that contains

i.i.d. samples of the variables in X. For each product node p we use T to create another

dataset Tp. We infer for each training instance x ∈ T the MPE state X=x, Z= c∗x, which

in turn assigns values to the variables in Hc∗x . If p is in c∗x (for some x ∈ T ) then all of its

children are in c∗x as well and c∗x assigns values to all Hs, s ∈ ch(p). Thus MPE inference gives

us a sample of the hidden variables associated with children of p; this sample is added to Tp.
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Figure 3.2: An example of the MixClones algorithm applied to the product node p∗ and a
subset of its children S1 = {si, sj} in the network fragment on the left (k = 2). The algorithm
replaces the bold nodes in the left with the bold nodes in the network fragment on the right.

In brief, a step in the search is as follows. We use the datasets Tp to select a

product node p∗ (Section 3.4.2). We pass Tp∗ to modified versions of the variable- and

instance-partitioning procedures (Section 3.4.2) found in GD [19]. The structure modification

algorithm (Section 3.4.1) then uses the partitioning of Tp∗ to change the SPN structure at p∗.

As described, variable- and instance-partitioning in GD applies at the leaves of half-formed

SPNs. The use of the datasets Tp broadens the applicability of these procedures to the

internal nodes of SPNs.

3.4.1 Search Operator

The structure modification algorithm, or structure operator, we use is called MixClones

and is outlined in Algorithm 4. An example of applying this operator to an SPN is shown in

Figure 3.2. By analyzing the scopes of the newly added nodes, we can see that the operator

transforms one SPN into another SPN. The new SPN has more parameters, making it more

flexible in approximating a target distribution.

Product node p∗, a subset of its children S1, and an integer k are given as input to

MixClones. The set S1 identifies the sub-distribution
∏

s′∈S1
Φs′ , which is assumed to not
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Algorithm 4 MixClones(p∗, S1, k)

Input: product node p∗, S1 ⊆ ch(p∗), k > 1
Output: sum node s
remove the edge between p∗ and each s ∈ S1

s← new sum node
set p∗ as the parent of s
S2, . . . , Sk ← k − 1 clones of S1

for all Si ∈ {S1, . . . , Sk} do
pi ← new product node
set s as the parent of pi
set pi as the parent of each s′ ∈ Si

end for
return s

fit the training data well enough. MixClones replaces it with a more expressive distribution:

a mixture of k clones of the sub-distribution (where the mixing coefficients and parameters

of each sub-distribution are subsequently changed, with the goal of better fitting the training

data).

MixClones builds the mixture of clones as follows. It removes the connections

between p∗ and the nodes in S1. It then creates k − 1 clone sets, S2, . . . , Sk, of the set S1; a

clone set contains, for each s′ ∈ S1, a corresponding sum node with the same set of children

as s′. MixClones creates product node pi for each set Si (including p1 for S1), and adds

pi as the parent of the nodes in Si. The product nodes pi now represent the k clones of the

sub-distribution
∏

s′∈S1
Φs′ . Adding a new sum node s as parent to the nodes pi creates the

mixture of clones: Φs =
∑

iwspi
∏

s′∈Si Φs′ . The mixture is tied back in to the SPN by adding

p∗ as the parent of s. Sum node s is returned.

The weights wspi of s are the mixing coefficients of the mixture model Φs and the

weights of the sum nodes in S1, . . . , Sk are the sub-distribution parameters. Outside of

MixClones these parameters are chosen to (indirectly) increase the training set likelihood.
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Algorithm 5 SearchSPN(N , T )

Input: SPN N , training instances T
while stop criteria not met do

p∗ ← argmin p
∏

w∈Wp
w

use Tp∗ to partition {Hs|s ∈ ch(p∗)} into
approximately independent subsets Vj

for all Sj = {s|Hs ∈ Vj} where |Sj| > 1 do
partition Tp∗ into k groups Ti of similar

instances, ignoring variables not in Vj
s← MixClones(p∗, Sj, k)
update weights of s and its grandchildren

end for
end while

3.4.2 Search Algorithm

This section describes and justifies Algorithm 5 (SearchSPN), our SPN structure search

procedure. At a high level it is simply a repeated application of MixClones followed by

some parameter updating. This requires selecting p∗, S1, and k at each search iteration. We

now explain how these selections are made and how parameter updating is done.

Selecting p∗.

We think of product node p∗ as identifying the weakest point in the SPN structure, where we

say a node is weaker than another node if it contributes less to the likelihood. An approximate

likelihood function L̃ gives us a simple method for measuring weakness. Using Theorem 3.1,

the true likelihood can be written as L(fr|T ) =
∏

x∈T
∑

c∈C c(x). The approximation is

derived from L by replacing the sum with a max operator. Thus

L̃(fr|T ) =
∏
x∈T

c∗x(x), (3.1)

where c∗x is, as defined before, the circuit whose output is maximal for input x.

Remember that c∗x(x) =
∏

w∈Wc∗x
w, where here we assume that when X=x the

indicators in c∗x take the value one. Substituting this expression into Equation 3.1 we see that
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L̃ =
∏

x∈T
∏

w∈Wc∗x
w is a product of weights in the SPN; weights in the product may appear

more than once. We will reorder the product of weights to assign partial responsibility for

the value of L̃ to each product node.

We define the multiset Wr for root node r and, letting P be the set of product nodes,

define the multiset Wp for every p ∈ P . For some x ∈ T , if product node p and weight wst

are both in c∗x, and p is a parent of s, then we add wst to Wp; if wst is in c∗x and s = r then

we add wst to Wr. With these definitions it is possible to rewrite L̃ as

L̃(fr|T ) =

( ∏
w′∈Wr

w′

)∏
p∈P

∏
w∈Wp

w.

Product node p is said to be responsible for multiplying into L̃ the value
∏

w∈Wp
w. Therefore

p∗ = argmin p
∏

w∈Wp
w is the product node that contributes least to a high value of L̃.

Selecting S1 and k.

With p∗ selected, we would like to change the structure of the SPN at p∗ such that the

distribution Φp∗ =
∏

s∈ch(p∗) Φs better fits the training data T . Since it is unclear how to

do this directly, SearchSPN instead solves a simpler, related problem that admits the use

of the variable- and instance-partitioning methods of GD. More specifically, it changes the

structure of the SPN such that the distribution Ψp∗ =
∏

s∈ch(p∗) Ψs better fits the training set

Tp∗ , where Ψs, for each s ∈ ch(p∗), is a categorical distribution over the variable Hs and its

parameters are the weights of s.

If the variables in Vp∗ = {Hs|s ∈ ch(p∗)} are mutually independent then Ψp∗ is an

appropriate model. If, however, dependencies exist amongst the variables in some subset

Vj ⊆ Vp∗ then there will be a loss of likelihood. SearchSPN attempts to detect such subsets

Vj that also have no dependencies with the other variables Vp∗ \Vj . Calling MixClones with

S1 set to {s|Hs ∈ Vj} changes the structure of the SPN to better model the dependencies in
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Vj. We now describe how SearchSPN selects subsets Vj and how it fits the model created

by MixClones to the data Tp∗ .

Variable-partitioning, or selecting subsets Vj, can be done empirically by analyzing

Tp∗ as follows. SearchSPN detects pairwise dependencies among the variables in Vp∗ , builds

a graph representation of these dependencies, and partitions Vp∗ by finding the connected

components in the graph. It uses a normalized mutual information measure (and tunable

threshold τ) to test for pairwise dependencies. MixClones is called once for each non-

singleton subset in the partition of Vp∗ . If the partition only contains singleton subsets then

p∗ is added to a blacklist so that it is not selected again and a new search iteration is started.

After selecting Vj ⊆ Vp∗ , SearchSPN builds a mixture model to explain the depen-

dencies amongst the variables in Vj. It does this by fitting the model to TVj , the portion

of the dataset Tp∗ that involves only variables in Vj. The mixture model is defined as∑k
i=1wi

∏
Hs∈Vj Ψ

(i)
s , where the wi are mixing coefficients and each component

∏
Hs∈Vj Ψ

(i)
s

is a product of categorical distributions Ψ
(i)
s over the variables in Vj. We use K-means

to partition TVj into k datasets T1, . . . , Tk and, assigning Ti to the ith component, set the

mixture model parameters to their maximum likelihood estimate. The parameters of the ith

categorical distribution over Hs, Ψ
(i)
s , are set to maximize its likelihood given the dataset Ti,

where we ignore all variables in Ti except Hs. Mixture coefficient wi is set to |Ti|/|TVj |.

We could use hard EM instead of K-means, but Rooshenas & Lowd report little

difference between the two methods [44]. We run K-means several times, increasing k on each

run, and select the k that leads to the mixture model with highest penalized likelihood. Like

GD we penalize the likelihood by placing an exponential prior on k, P (k) ∝ exp(−γk|Vj|),

where γ is a tunable parameter.

Updating Parameters and Efficiency

SearchSPN calls MixClones with S1 set to {s|Hs ∈ Vj} and this returns a sum node that

we denote sVj . The weights of sVj are set to the mixing coefficients wi and the weights of
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the sum nodes in S1, . . . , Sk (the grandchildren of sVj) are set using the distributions Ψ
(i)
s

as follows. Let Si be the grandchildren of sVj from its ith child. We set the weights of each

s′ ∈ Si to the parameters of Ψ
(i)
s , where s is chosen as follows. If Si = S1 then we set s = s′;

otherwise we set s to be the node in S1 that s′ is a clone of.

A key technical problem in implementing our search algorithm is maintaining the

training sets Tp as the SPN graph structure changes. The obvious method is to re-build these

sets from scratch after each search step, but this requires a full pass through the dataset,

evaluating the SPN for each instance. We avoid this (to almost the same effect) by updating

only those sets directly affected by the search step.

Our structure search algorithm uses data likelihood as its scoring function. We stop

when the likelihood of a validation set reaches a maximum. To reduce the computational

burden we take many steps in the search space before computing the likelihood. If the

likelihood begins to drop we intelligently re-trace our steps to find an SPN with high

likelihood.

3.5 Experiments

We compare SearchSPN and LearnSPN (from GD) on twenty datasets that were recently

used in Rooshenas and Lowd [44] and Gens and Domingos [19]. We also compare the

algorithms on a set of artificially-generated datasets based on the permanent of an n×n matrix.

For each dataset we run a grid search over hyperparameter values γ ∈ {0.1, 0.3, 1.0, 3.0, 10.0}

and τ ∈ {0.003, 0.01, 0.03, 0.1, 0.3}, the cluster penalty and pairwise dependency threshold,

respectively. Chosen models are those with the highest likelihood on a validation set. Table 3.1

and Table 3.2 show the mean test set likelihood over ten runs.

We implement LearnSPN using the same variable- and instance-partitioning code

that we use in SearchSPN. We do this to make the algorithms as similar as possible so that

result differences in our experiments can be attributed as much as possible to the different

classes of SPN structure that the algorithms are able to learn (DAG vs. tree).
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Table 3.1: The left two columns show log-likelihoods on 20 datasets for the DAG-SPN
(learned using SearchSPN) and tree-SPN (learned using LearnSPN from GD) models.
Bold numbers indicate statistically significant results with p = 0.05.

Dataset DAG-SPN Tree-SPN

NLTCS −6.072 −6.058

MSNBC −6.057 −6.044

KDDCup 2k −2.159 −2.160

Plants −13.127 −12.868

Audio −40.128 −40.486

Jester −53.076 −53.595

Netflix −56.807 −57.515

Accidents −29.017 −29.363

Retail −10.971 −10.970

Pumbs-start −28.692 −25.501

DNA −81.760 −81.993

Kosarek −10.999 −10.933

MSWeb −9.972 −10.300

Book −34.911 −36.288

EachMovie −53.279 −54.627

WebKB −157.883 −164.615

Reuters-52 −86.375 −92.796

20 Newsgrp. −153.626 −164.188

BBC −252.129 −261.778

Ad −16.967 −18.613

3.5.1 Permanent Distribution

A result from circuit complexity theory shows that a MAF cannot compute the permanent of

an n × n matrix unless it is super-polynomial in size [43]. We also assume it is a difficult

problem for MACs since computing the permanent is #P-complete [52].

We build MNPerm, a set of artificial datasets based on the permanent. Let aij be

the entries in an n × n matrix. Let Sn be the set of all permutations of {1, . . . , n}. Then

the permanent is defined as
∑

σ∈Sn
∏n

i=1 aiσ(i). Viewing the entries aij as variables we see
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Table 3.2: Log-likelihood of the MNPerm datasets for the DAG-SPN and tree-SPN models.
Bold numbers indicate statistically significant results with p = 0.05. The right column
indicates the ratio of the average size of the two models.

n DAG-SPN Tree-SPN |DAG|/|Tree|

2 −0.192 −0.216 1.14

3 −1.656 −1.646 1.13

4 −3.309 −3.651 1.05

5 −5.030 −6.129 1.23

6 −6.867 −8.834 1.04

7 −8.821 −11.809 1.09

8 −11.650 −15.392 1.07

9 −14.297 −18.811 1.06

that this expression is a multilinear polynomial. It defines an unnormalized probability

distribution over variables X1, . . . , Xn if we view the entries aij as indicator variables, where

aij = λXi=j . Thus each variable Xi is discrete and can take one of n values. This distribution

evaluates to zero unless each variable takes a value that is different from the value taken by

every other variable. The partition function is n!.

For each n ∈ {2, . . . , 9} we construct a fully-connected pairwise Markov network whose

distribution is a softened version of the permanent distribution. We do this by defining the

factor for each pair of variables Xi, Xj to take the value one if Xi = Xj and take the value ten

otherwise. The datasets used to produce the results in Table 3.2 were generated by sampling

from the constructed Markov networks using Gibbs sampling.

3.5.2 Observations

The performance of SearchSPN is better than LearnSPN on thirteen of the twenty datasets

and worse on six of them. A similar outcome is seen when comparing the SearchSPN

results with the results reported in [19], although statistical significance cannot be determined

in this comparison.
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Comparing to the results reported in [44]—again without any significance claim—we

see that SearchSPN only gets a higher likelihood on the Ad dataset. One explanation for

the success of the RL models is that, like SearchSPN models, they are not restricted to

being tree-structured. Leaf nodes in RL models are multivariate Markov networks modeled

using arithmetic circuits that are not restricted to having a tree structure.

SearchSPN arguably has an advantage over RL models in that it seems to produce

smaller networks in shorter training times. We have model-size and training-time data for

RL models [45] on six of the datasets (NLTCS, KDDCup 2k, Book, 20 Newsgrp., and Ad).

The models learned by RL range in size from 385k to 1.2M nodes and the DAG-SPNs ranged

in size from 2k to 114k nodes. Learning times for RL ranged from 19m to 15.7h and the

DAG-SPNs ranged from 3m to 1.4h. For any of these datasets the DAG-SPN has at least 10

times fewer nodes and its learning time is at least 7 times faster. The learning-time results

are less definitive than the model-size results since some or all of the difference reported here

could be due to differences in such factors as the hardware and programming language used

in the experiments, and not due to differences in the algorithms. While further investigation

is warranted, SearchSPN seems to produce compact models quickly.

The results in Table 3.2 for the MNPerm datasets show a clear separation in likelihood

between DAG-SPNs and tree-SPNs as n increases. And the difference does not seem due to a

difference in the size of the learned SPNs since the DAG-structured SPNs are only marginally

larger. These results support the idea that DAG-structured SPNs have a distinct advantage

over tree-structured SPNs.

3.6 Conclusion

SearchSPN is the first algorithm designed for SPNs that takes a search approach to

structure-learning. In contrast with previous work it does not dramatically increase the size

of the SPN at any point in the search and it uses principled methods without restricting the

class of learned structure to trees.
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We have linked SPNs to the MAC and MAF models from circuit complexity theory

and highlighted some interesting connections to that field that suggest tree-structured models

may be less powerful than DAG-structured models. Our experiments indicate that being able

to learn a wider class of SPN structures can be advantageous. Future work includes better

understanding what types of datasets and distributions benefit from a DAG-structured SPN

and what types can be well-modeled with tree-structured SPNs.

3.A Proof of Theorem 3.1

Proof. The proof is by induction from the leaf nodes to the root node; thus if r has children

we assume that for any t ∈ ch(r) ft =
∑

c∈Ct gc. The proof is also broken into the cases from

Definition 3.1. Let Cn be the set of complete sub-circuits in the SPN rooted at node n (thus

C = Cr).

Case 1. Let r be an indicator node for λX=i. Then fr = λX=i. Since C = {c′}, where

c′ consists of the node r, gc′ = λX=i. Thus fr = gc′ =
∑

c∈C gc.

Case 2. Let r be a product node whose children are SPNs with disjoint scopes. Let

ch(r) = {t1, . . . , tm}, C× be the Cartesian product
∏m

i=1Cti , and c× = (c1, . . . , cm) ∈ C×.

The scopes of the children of r are disjoint so any two circuits ci, cj, ci 6= cj from c× have no

common nodes or edges. Thus every c× yields a unique c ∈ C using the following construction.

Add r, add r’s edges, and add the nodes and edges in each ci; then gc =
∏m

i=1 gci . Every

circuit in C can be constructed in this manner. Thus the construction is a one-to-one and

onto mapping from C× to C. By definition fr =
∏m

i=1 fti and by the inductive hypothesis

fr =
∏m

i=1

∑
c′∈Cti

gc′ . Multiplying out the right-hand side yields fr =
∑

c×∈C×
∏m

i=1 gci and

applying the mapping yields fr =
∑

c∈C gc.

Case 3. Assume r is a sum node whose children are SPNs with the same scope. Let

C∪ =
⋃
t∈ch(r) Ct. Every c′ ∈ C∪ yields a unique c ∈ C using the following construction.

Add r, add the edge from r to the root t of c′, and add the nodes and edges in c′; then

gc = wrtgc′ . Every circuit in C can be constructed in this manner. Thus the construction is a
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one-to-one and onto mapping from C∪ to C. By definition fr =
∑

t∈ch(r) wrtft and by the

inductive hypothesis fr =
∑

t∈ch(r) wrt
∑

c′∈Ct gc′ . The double summation ranges over C∪ so

fr =
∑

c′∈C∪ wrtgc′ . Applying the mapping yields fr =
∑

c∈C gc. �

49



Chapter 4

Online Structure Search for Sum-Product Networks

Abstract

A variety of algorithms exist for learning both the structure and parameters of sum-product

networks (SPNs), a class of probabilistic model in which exact inference can be done quickly.

The vast majority of them are batch learners, including a recently proposed algorithm,

SearchSPN. However, SearchSPN has properties that make it particularly suited for

adaptation to the online setting. In this paper we introduce the OnlineSearchSPN

algorithm which does just that. We compare it to two general methods that build online

learners from batch learners; one learns poor models quickly and the other learns good models

slowly. Our experiments show that OnlineSearchSPN achieves the best of both methods.

The test likelihood values of the models it learns are as good as the slow learner, while the

training times needed to learn the models are much closer to the fast learner.
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4.1 Introduction

Sum-product networks (SPNs) are probabilistic models designed to ensure that computing

marginal probabilities takes time linear in the size of the network. The first paper describing

SPNs focused on their theoretical foundations, the computations needed for performing

inference, and algorithms for learning parameter values given a fixed network structure [38].

Many algorithms have been developed since for learning both the structure and the parameters.

The first such algorithm, BuildSPN, combines several tree-strucured SPNs into a single SPN;

it then uses the hard-EM algorithm from the original SPN paper to learn the parameters

in a second step [14]. The most widely-adopted structure learning algorithm, LearnSPN,

builds a single tree-structured SPN; it improves on BuildSPN by using a more principled

tree construction algorithm and by learning the structure and parameters simultaneously [19].

Further work explores several modifications to LearnSPN that aim to improve and simplify

it [55]. Another structure-learning algorithm constructs an SPN from the bottom up [35]

and yet another incorporates Markov networks, encoded as arithmetic circuits, into the SPN

structure [44].

The SearchSPN [15] algorithm works iteratively, adding nodes to a given input SPN

so that the SPN better models the training data. The expanded SPN is then fed back into

this process, which is repeated until a stopping criteria is met. It is not restricted to learning

tree SPNS, which gives it certain advantages over LearnSPN. The AugmentSPN [27]

algorithm also uses an iterative approach, but does so in a way that lets it work in the online

setting; it only learns tree SPNs. The OnlineSearchSPN algorithm, which we introduce

in this paper, adapts SearchSPN to the online setting, giving an online algorithm that is

not restricted to learning tree SPNs.

OnlineSearchSPN is applicable to situations in which a model must adapt to a

changing input distribution. As new and differently-distributed input examples arrive, it

will adjust the SPN to fit the new data. It is also applicable in the offline setting when the

training dataset is large [5]. Since it only ever operates on a small amount of data at any
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given time, it is possible to train an SPN on a dataset that does not fit in memory. Doing so

with most other SPN structure learning algorithms would be prohibitively slow.

4.2 Sum-Product Networks

A sum-product network (SPN) is represented using a rooted, directed acyclic graph (DAG).

Its leaf nodes are univariate distributions and its internal nodes consist of sum nodes and

product nodes. Without loss of generality, we assume that a child of a sum node is a product

node and that a child of a product node is either a sum node or a leaf node. A sum node

computes a convex combination 1 of its inputs and a product node computes the product of

its inputs. Each node n in an SPN is the root of a sub-DAG whose leaf nodes are univariate

distributions over a set of variables. The scope of node n is defined to be that set of variables.

The following recursive definition places conditions on the scopes of nodes; these ensure that

the SPN represents a valid joint probability distribution over its scope [38].

Definition 4.1 (based on [18]). A sum-product network (SPN) is:

1. a tractable 2 univariate distribution,

2. a product of SPNs with disjoint scopes, or

3. a conical combination of SPNs with identical scopes.

The remainder of this section presents results and notation that will help in describing

the SearchSPN and OnlineSearchSPN algorithms. It was recently proven [15, 59] that

an SPN N computes the function

f(x) =
∑
c∈C

gc(x),

where C is the set of all complete sub-circuits in N , gc is the function computed by sub-circuit

c ∈ C, and x is an instantiation of the random vector X = [X1, . . . , Xm]. A complete

1Conical combinations are allowed, but weights are often assumed to be normalized. Moreover, [37] showed
that normalizing the weights in an SPN does not change the distribution it represents.

2Here, tractable means the partition function and mode can be computed in constant time.
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Figure 4.1: Product node p is shown, along with its parents, children, and grandchildren (the
rest of the SPN is not shown). Bold lines indicate part of a complete sub-circuit that assigns
Yp = [1, 1, 2]; wp([1, 1, 2]) = [w11, w21, w32].

sub-circuit c in an SPN is a tree whose root node is the root of the SPN; also, the children of

each product node in c are also in the tree and exactly one child of each sum node in c is

also in the tree [6]. To give an expression for gc(x) we let N define a distribution over X, let

W be the set of edge-weight parameters in N , Wc ⊆ W be the set of edge-weights in c, and

uic be the leaf node in c whose univariate distribution is over Xi. Then

gc(x) =
∏
w∈Wc

w
∏
i∈[m]

uic(xi),

where [m] = {1, . . . ,m}.

Let P be the set of product nodes in SPN N and let ch(n) = {h1, . . . , hr} denote

the set of children of node n. For each product node p ∈ P we define a random vector

Yp = [Y1, . . . , Yr], where r = |ch(p)| and Yi corresponds to hi ∈ ch(p). If p is in complete

sub-circuit c ∈ C, then c assigns values to each variable in Yp as follows. If hi ∈ ch(p) is a

sum node and hj ∈ ch(hi) is in c, then Yi = j; if hi ∈ ch(p) is a leaf node whose univariate

distribution is over Xj , then Yi = xj . We define a closely-related function wp that maps each

value of Yp to a vector [a1, . . . , ar]. If hi ∈ ch(p) is a sum node and hj ∈ ch(hi) is in c, then

ai takes the value of the weight on the edge between hi and hj; if hi is a leaf node whose

univariate distribution is over Xj, then ai = ujc(xj). See Figure 4.1.
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Given a dataset D of i.i.d. samples from a joint distribution over X, we generate

mini-datasets Dp (SearchSPN makes heavy use of these) for every p ∈ P ; each Dp contains

instances of the random vector Yp. This is done by identifying, for each x ∈ D, the (or a)

complete sub-circuit c such that gc(x) is maximal; finding such a sub-circuit can be done

efficiently using a Viterbi-style algorithm on N [6, 38], where sum nodes are replaced by max

nodes3. This circuit c assigns a value to Yp for each product node p in c; that value is added

to Dp. We think of Dp as a matrix whose rows are filled with values of Yp and whose ith

column corresponds to hi ∈ ch(p). Let DP = {Dp|p ∈ P}.

With f the function computed by N , we follow [15] in writing the likelihood L of

dataset D as

L(f |D) =
∏
x∈D

f(x) =
∏
x∈D

∑
c∈C

gc(x)

=
∏
x∈D

∑
c∈C

∏
w∈Wc

w
∏
i∈[m]

uic(xi)

and in defining an approximate likelihood L̃, sometimes called the Viterbi likelihood, as

L̃(f |D) =
∏
x∈D

max
c∈C

∏
w∈Wc

w
∏
i∈[m]

uic(xi).

Notice that the function L̃ is simply a list of values multiplied together. Each instance x ∈ D

is used in finding a maximal complete sub-circuit c ∈ C, whose edge-weights and leaf-node

values are multiplied into the result. Now remember that these maximal complete sub-circuits

are related to the product nodes in N through the mini-datasets Dp. This fact, along with

the functions wp, can be used to rewrite L̃ in terms of product nodes instead of complete

sub-circuits:

L̃(f |D) = α
∏
p∈P

∏
yp∈Dp

∏
w∈wp(yp)

w.

3Note we are not doing MAP/MPE inference and so do not face the issues raised in [36]
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Figure 4.2: MixClones is applied to the network on the left. Given product node p and a
subset of its children A = {si, sj}, the bold nodes and edges at the left are replaced with the
bold nodes and edges at the right.

Here α takes care of a technical detail: if the root node of N is a sum node, then its weights

appear in L̃, but are never part of the vector returned by any wp; α accounts for these missing

values and is one if the root node is not a sum node.

With this new formulation, L̃ is still the product of a long list of values, but now

the values are naturally grouped by product node. The expression
∏

yp∈Dp
∏

w∈wp(yp) w is

taken as the contribution of p to L̃, and a low value indicates that modifying the structure of

the SPN at p is a promising way to increase L̃. It is then hoped that increasing L̃ will also

increase L. SearchSPN uses these ideas to guide its modifications of the input SPN. It

selects the product node

p = argmin
q

∏
yq∈Dq

∏
w∈wq(yq)

w

and modifies the structure near this node; this process is repeated until a stopping criteria is

met.

4.3 SPN Structure Search

This section describes the SearchSPN and OnlineSearchSPN algorithms. To make it

suitable as a sub-routine in OnlineSearchSPN, our SearchSPN is modified from the
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Algorithm 6 MixClones(p, A)

Input: product node p, A ⊆ ch(p)
remove the edge between p and each node in A
s← new sum node
set p as the parent of s
for all i ∈ {1, 2} do

pi ← new product node
set s as the parent of pi
A′ ← clone of A
set pi as the parent of each node in A′

end for
return s

original; our description will be brief with a more in-depth discussion left to the original

paper. We also simplify MixClones, an algorithm used by SearchSPN.

4.3.1 Offline Structure Search

The mechanics of the MixClones algorithm are outlined in Algorithm 6 and demonstrated

in Figure 4.2. Given a product node p and a set A ⊆ ch(p) as input, it increases the modeling

power of the SPN by locally adding nodes around p. The algorithm makes exactly two clones

of the nodes in A instead of an arbitrary number, as is done in the original algorithm which

uses several runs of K-means in an attempt to find the best number. Additional arguments

can be made to justify this choice; we refer the reader to several made by Vergari et al. [55],

who justify a similar change to LearnSPN.

Algorithm 8 (SearchSPN) is given as input an SPN N and datasets DP . The

original algorithm takes D as input; changing to DP makes it easier to use SearchSPN as a

sub-routine in OnlineSearchSPN. Nodes are added to N by repeated calls to MixClones.

The main tasks of SearchSPN are: intelligently select p, the next product node to expand;

partition the children of p; expand N at p using the partition of ch(p); update the parameters

of newly-added sum and leaf nodes; and update the datasets in DP .

3If hl is a sum node, the counts of the values in Dl are computed and normalized to produce a categorical
distribution. If hl is a univariate distribution, its sufficient statistics are computed (e.g., the mean and
variance if hl were a Gaussian node).
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Algorithm 7 Update(s, A, Dp)

DA ← the columns in Dp that correspond to A
{p1, p2} ← ch(s)
Dp1 , Dp2 ← divide the rows of DA into two clusters
a← the cluster assignment vector
replace the DA columns in Dp with a
edge weights of s← (|Dp1|/|DA|, |Dp2|/|DA|)
for all hl ∈ ch(pi), i ∈ {1, 2} do

Dl ← the lth column of Dpi

parameters of hl ← stats(Dl)
3

end for
return Dp1 and Dp2

Dp

. . .

. . .

. . .

. . .

DA a

2
1
1
1

...
1
1
2
1
1

Dp1

Dp2extract
columns

cluster
rows

replace columns

Figure 4.3: Algorithm 7 uses Dp to update the parameters of nodes affected when MixClones
is called with p as an argument. It also changes Dp and creates datasets Dp1 and Dp2 for p1

and p2, the newly-created grandchildren of p.

The preceding tasks are repeated until all product nodes in N have been added to

blacklist L. The stopping criteria in the original algorithm uses the performance of N on a

validation set; using a blacklist makes the algorithm simpler and more efficient. The blacklist

holds product nodes that should not be expanded by MixClones. After SearchSPN

selects a product node p, it adds p to the blacklist if a) there are too few instances in Dp, or

b) all variables in Yp are (approximately) independent. In the former case we have too little

data to justify making a structural change to N . In the latter case we do not expect that

running MixClones will significantly improve the model.

Selecting the next product node p, and partitioning its children, are both done in the

same way as the original SearchSPN. It selects p = argminq
∏

yq∈Dq
∏

w∈wq(yq) w, which is
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Algorithm 8 SearchSPN(N , DP )

Input: SPN N , set of product-node training datasets DP

L← ∅
while L 6= P do

p← argminq∈P\L
∏

yq∈Dq
∏

w∈wq(yq) w

partition ch(p) into independent subsets {Ai|i ∈ [k]}
if k = |ch(p)| or |Dp| is too small then

L← L ∪ {p}
continue

end if
for all i ∈ [k] s.t. |Ai| > 1 do

s← MixClones(p, Ai)
Dp1 , Dp2 ← Update(s, Ai, Dp)
DP ← DP ∪ {Dp1 , Dp2}

end for
end while

the product node most blamed for a low approximate likelihood score L̃. Then children of p

are partitioned by looking for subsets of variables in Yp that are statistically independent;

subsets are found by looking for connected components in a graph whose edges indicate

pairwise independence between variables [15, 19].

The parameters of N are updated using Dp. Various slices of Dp are assigned to

the newly-created children and grandchildren of p. The data in the slices are then used to

compute the parameters. Algorithm 7 and Figure 4.3 describe and illustrate this process. Dp

itself is updated to reflect the changes made by MixClones and a new dataset is created for

each new grandchild of p.

4.3.2 Online Structure Search

Algorithm 9 (OnlineSearchSPN) takes in a seed SPN N and a stream of training batches.

In our experiments we use a simple seed model consisting of a single product node with m

children, each a univariate distribution over one of the variables in X. After each batch

arrives, it is used to update the product node datasets Dp. This is done by finding the (or a)
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Algorithm 9 OnlineSearchSPN(N , B)

Input: SPN N , training-instance batch-stream B
create an empty Dp for each p ∈ P
while more batches are available do

D ← next batch from B

E ←
{

argmaxc∈C gc(x)|x ∈ D
}

for all (c, p) s.t. c ∈ E and p ∈ c do
add4 the value of Yp to Dp

end for
for all (p, hl) s.t. p ∈ P and hl ∈ ch(p) do

D′l ← most recent5 r values in lth column of Dp

parameters of hl ← stats(D′l)
end for
DP ← {Dp|p ∈ P}
SearchSPN(N , DP )

end while

maximal complete subcircuit for each instance in the current batch. The complete subcircuits

are used to assign values to the random vectors Yp, and each instance of Yp is added to Dp.

The most recent values added to the product node datasets are then used to update

the parameters of N . This step allows N to adapt to non-stationary distributions. If, for

example, the stream of batches consists of website traffic, then updating the parameters of N

allows the SPN to model current trends in this traffic and helps it forget some of the older

patterns it learned.

Finally, the structure of N is modified with a call to SearchSPN, the main workhorse

of OnlineSearchSPN. Modifying the structure of N increases the modeling power of N ,

letting it grow more complex and better model complex input distributions. The whole

process is repeated as long as more batches are available.

As mentioned, OnlineSearchSPN updates the parameters of the SPN as new

examples are fed in, letting the SPN model the current input distribution and forget some

of what it learned previously. There is less flexibility when it comes to the structure of the

SPN. Once a particular set of nodes has been added to the SPN, there is no mechanism for

removing them. This problem can partly be solved by adjusting the SPN parameters. For
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instance, we can virtually remove nodes by setting to zero the weight between a sum node

and one of its children; this removes the effects on the sum node of the sub-DAG rooted at

the child, but still leaves the SPN with nodes that serve no beneficial function. A better

solution would implement some kind of pruning step that actually removes nodes; we leave

that to future work.

4.4 Experiments

We experiment with the online learning scenario in which data instances arrive in a stream

of mini-batches. After each mini-batch is seen, the learning algorithm produces a model.

To evaluate the algorithm we measure the time taken to produce the model and compute a

likelihood score for the model. The next mini-batch is used in computing the likelihood score

so that we measure generalization and not fitness to the training instances.

We study the behavior of three online structure-learning algorithms. The first two,

which we identify as Recent and All, simply use an offline algorithm in an online fashion.

Recent takes the current mini-batch and returns the result of running the offline algorithm

on that mini-batch. All combines all mini-batches seen so far into a single batch and

runs the offline algorithm on it. The third algorithm is OnlineSearchSPN; as noted, it

adapts SearchSPN to the online setting. Unlike the first two algorithms, the approach used

in OnlineSearchSPN would not work for adapting most other offline structure-learning

algorithms. SearchSPN is particularly suited to adaptation because it augments an input

SPN; this allows its output to be used as the input to a subsequent call, and can thus be

used to produce a sequence of SPNs. It is less obvious how BuildSPN or LearnSPN, for

example, could be adapted except using an approach similar to Recent or All.

We use SearchSPN as the offline algorithm in Recent and All. As mentioned, any

offline algorithm would do, but using SearchSPN makes Recent and All more similar to

4To deal with very large datasets (e.g., datasets that do not fit in memory), use reservoir sampling to add
instances of Yp to Dp.

5We set r to 1,000.
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Figure 4.4: The test-likelihood plots during training on the Accidents dataset for the Recent,
All, and OnlineSearchSPN algorithms.

OnlineSearchSPN, which must use it, and makes timing comparisons more meaningful

since the three algorithms share code. Our experiments show that Recent and All have

drawbacks compared to OnlineSearchSPN; we note that a different offline algorithm would

not solve these problems.

The first set of experiments we run draws dataset mini-batches from a stationary

distribution. This is not a particularly compelling use-case for an online algorithm since

there is no need to adapt to changes in the input distribution over time. However, it does

let us focus on the quality of the produced models and the time required to produce them,

without needing to wonder how much these metrics are being affected by a changing input

distribution. So we separate this concern and leave it to the second set of experiments, which

looks explicitly at how the algorithms adapt to a change in input distribution. We do this in

a controlled manner by sampling from one stationary distribution and then switching to a

different stationary distribution. The third set of experiments evaluates the algorithms as

they train on a sequential dataset whose distribution is non-stationary.
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Figure 4.5: Both plots show data collected while training on the Accidents dataset. The plot
on the left shows the time taken for training on each mini-batch. The plot at the right shows
the likelihoods from Figure 4.4 as a function of cumulative training time, on a log scale. All
requires roughly 60 seconds to train, OnlineSearchSPN about 6 seconds, and Recent
less than 1 second. OnlineSearchSPN achieves the likelihood of All using a training
time closer to that taken by Recent.

4.4.1 Stationary-Distribution Datasets

In our stationary-distribution experiments we use the twenty datasets from Van Haaren [54],

which have been used in many other SPN structure-learning papers, starting with Gens

& Domingos [19]. Table 4.1 in Appendix 4.A lists basic statistics for these datasets. All

have between 16 and 1, 556 binary variables, with between about 2k and 300k training

instances. We divide these into batches of size 200 and feed them one at a time into Recent,

All, and OnlineSearchSPN. In Figure 4.4 we show results from the Accidents dataset.

Figure 4.8 in Appendix 4.A contains plots for all 20 datasets, most of which are qualitatively

similar: in terms of likelihood, Recent under-performs and the other two algorithms perform

comparably.

The speed of learning for the three algorithms varies quite a bit, as illustrated in the

plots in Figure 4.5. The upper plot shows the time taken for training on each mini-batch.

All requires more time than the other algorithms since it trains on all previously-seen mini-

batches, not just the current mini-batch. Also, its trend line has a larger slope, indicating
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Figure 4.6: Test-likelihood plots during training on the Netflix/Audio dataset. To highlight
how well the algorithms adapt to a changing input distribution, the plot is focused on the
transition from Netflix mini-batches to Audio mini-batches.

that it does scale as well. The lower plot shows the same data from Figure 4.4 but plotted

as a function of cumulative training time instead of number of mini-batches seen. Note the

log scale on the time axis. Here we see that Recent quickly learns poor models and All

learns good models, slowly. OnlineSearchSPN provides a nice alternative that combines

the advantages of both, learning models that are as good as those produced by All, but

taking much less time.

4.4.2 Abrupt-Change Dataset

The next experiment combines the Netflix and Audio datasets (two of the twenty), which is

easy to do since both datasets have 100 binary variables. The Netflix instances are ordered

before the Audio instances so that the mini-batches given to the learning algorithms abruptly

shift their distribution midway through training. Figure 4.6 shows the test likelihood of the

algorithms during the shift. The algorithms adjust to the change, as is evidenced by the

obvious move in likelihood values from around -60 to about -50.

All three algorithms scramble to adjust to the new distribution (Audio), but Recent

clearly adjusts more quickly than the others. In addition to short training times, then,
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Figure 4.7: Test-likelihood plots during training on the Airline dataset for Recent, All,
and OnlineSearchSPN. The algorithms adapt to seasonal- and longer-term-changes in the
training data.

Recent is able to adapt quickly to changes in the input distribution. This is because it

only ever looks at a single mini-batch; after seeing one mini-batch of new data, it produces

a model that is about as good as any it will produce thereafter. These models have lower

likelihood, of course, which remains the disadvantage of Recent.

Both All and OnlineSearchSPN adapt less quickly, but once they do, both

eventually produce models with higher likelihood than Recent. This is not seen in Figure 4.6

because, for clarity, it zooms in on the period of training in which the algorithms are adjusting;

but if the plot were extended to the right, a gap would appear between the likelihood of

Recent and the other two algorithms, similar to the gap seen at the left of the plot during

the period in which the algorithms had only ever seen Netflix training instances.

4.4.3 Non-Stationary Airline Dataset

In the last experiment we took a subset of the data from the 2009 ASA Data Expo [56].

This dataset is 120 million rows by 29 columns and contains information about the arrival

and departure of commercial flights in the US from 1987 to 2008. We pared this data

down, looking at 16 columns and subsets of size 40 of the flights departing each Monday
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at 10am. The columns measured in minutes or miles were removed, resulting in a dataset

of only discrete variables; keeping only the Monday-at-10am rows was an effort to remove

high-frequency variation in the data while keeping the seasonal and year-to-year changes

in the input distribution. The results are shown in Figure 4.7. The likelihood plots take a

noticeable dip about once each year as the models adjust, it appears, to seasonal changes in

air travel patterns. The likelihoods also adjust from decade to decade as the models appear

to adapt to longer-term trends in the data. Instead of converging on a particular value as in

the stationary experiment with the Accidents dataset, the likelihoods change as the learning

algorithms encounter shifts in the input distribution and adapt accordingly.

The All and OnlineSearchSPN algorithms, as in the other experiments, clearly

model the data with higher likelihood than Recent. Unlike in the Netflix/Audio experiment,

Recent does not clearly have the advantage in terms of adapting more quickly to changes

in the data. Apparently the distribution shifts in the Airline dataset are not as large or as

abrupt.

4.5 Conclusion

Various batch-learning algorithms have been proposed to learn the structure and parameters

of SPNs. We take one of these, SearchSPN, and use it to develop an online SPN structure

learner called OnlineSearchSPN. The advantage of this algorithm is its ability to adapt

to a changing input distribution and to handle larger datasets than the batch learners.

Our experiments compare OnlineSearchSPN with two methods, Recent and All,

that adapt SPN batch-learners to the online setting. Results show that OnlineSearchSPN

learns models that are as good as those learned by All, and does so almost as quickly as

Recent.
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4.A Stationary-Distribution Experiments and Statistics
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Figure 4.8: The test-likelihood plots during training on the 20 datasets for the Recent, All,
and OnlineSearchSPN algorithms.
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Dataset # Vars Train Valid Test

NLTCS 16 16181 2157 3236

MSNBC 17 291326 38843 58265

KDDCup 2000 64 180092 19907 34955

Plants 69 17412 2321 3482

Audio 100 15000 2000 3000

Jester 100 9000 1000 4116

Netflix 100 15000 2000 3000

Accidents 111 12758 1700 2551

Retail 135 22041 2938 4408

Pumsb-star 163 12262 1635 2452

DNA 180 1600 400 1186

Kosarek 190 33375 4450 6675

MSWeb 294 29441 32750 5000

Book 500 8700 1159 1739

EachMovie 500 4524 1002 591

WebKB 839 2803 558 838

Reuters-52 889 6532 1028 1540

20 Newsgroup 910 11293 3764 3764

BBC 1058 1670 225 330

Ad 1556 2461 327 491

Table 4.1: Basic statistics for the Van Haaren 20 datasets.
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Chapter 5

Autoencoder-Enhanced Sum-Product Networks

Abstract

Sum-product networks (SPNs) are probabilistic models with many nice properties, chief

among them their guarantee that exact inference can be done in time linear in the size

of the network. We use autoencoders in concert with SPNs to model high-dimensional,

high-arity random vectors (e.g., image data). Experiments show that our proposed model,

the autoencoder-SPN (AESPN), which combines two SPNs and an autoencoder, produces

better samples than an SPN alone. This is true whether we sample all variables, or whether

a set of unknown query variables is sampled, given a set of known evidence variables.
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5.1 Introduction

Sum-product networks (SPNs) are probabilistic models that guarantee exact inference can be

done in time linear in the size of the network [38]. Since their introduction many algorithms

have been introduced to automatically learn the structure and parameters of an SPN from

data, and these algorithms have fared well on many datasets compared to other models that

allow fast, exact inference [14, 15, 19, 35, 44, 55].

The paper introducing SPNs [38] as well as two follow-on structure-learning papers [14,

35] all experiment with the Olivetti face-image dataset. They show impressive results,

especially on the task of image reconstruction where they fill in half of the image given the

values of the pixels in the other half of the image. Poon and Domingos [38] also experimented

with the Caltech-101 dataset, doing the same kinds of image reconstructions. Running the

Caltech-101 experiments using the code they make available1 results in much less impressive

image reconstructions than those from the Olivetti dataset. This is not surprising as the

Olivetti dataset contains centered faces looking directly at the camera; it contains a great

deal of structure and symmetry that the Caltech-101 dataset lacks.

Another interesting aspect of these papers [14, 35, 38] is that they all model pixels

using a mixture of four Gaussians instead of using a categorical variable taking the integer

values in the range [0, 255]. It is not unusual that the pixels are modeled as continuous

variables, but using a mixture with exactly four components in some sense reduces (fuzzily)

the arity of the pixel variables from 256 to 4. We speculate that SPNs may struggle modeling

high-dimensional, high-arity random vectors. In this paper we train an SPN on MNIST, using

categoricals to model the pixels, and the results seem consistent with this speculation in that

the samples from the SPN are fuzzy-looking (see Figure 5.2). We leave the investigation of

our speculation for future work, but are inspired by it to propose the use of autoencoders

to aid SPNs in modeling image data. We use one SPN to model the input variables and a

1http://spn.cs.washington.edu/spn/downloadspn.php
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second SPN to model the hidden representation of the autoencoder. Our experiments show

that both additions help the SPN produce better-looking samples.

More than a decade ago Bengio and Bengio [4] proposed adapting an autoencoder

to become a density estimator by computing an “autoregressive” function. Essentially they

adapt the architecture of the autoencoder so that the ith output node computes a function

of the first i− 1 input nodes. Using a sigmoid activation function on the output nodes lets

them treat the output values as probabilities P (xi|x1, . . . , xi−1); thus multiplying the output

nodes gives a density estimate for the input.

In recent years this thread of research has been taken up again in several studies

[20, 21, 26, 50, 51]. All of these newly-proposed models compute joint probabilities P (x), but

vary with respect to other model properties. Some can draw independent samples from P (X)

and some only draw correlated samples. Some can compute marginal probabilities, some can

sample from the marginal probability distributions in order to, say, do image reconstruction.

The time complexity for these tasks also vary. Our approach is less a descendant of this work

on autoregressive neural networks, and more a cousin. We incorporate an autoencoder so

that it is an important part of a probabilistic model. However, instead of directly adapting

autoencoders to become density estimators, we use SPNs for density estimates and use an

autoencoder to aid the SPNs in producing samples from the joint distribution and samples

from various marginal distributions.

5.2 Sum-Product Networks and Autoencoders

A sum-product network (SPN) is a network of sum and product nodes that represent a joint

probability distribution P over some set of variables X. Mixture models and product-of-

marginals are used to recursively combine distributions over subsets of X in the following

manner. A mixture model i expresses a distribution over A ⊆ X as

Pi(A) =
∑
j

wjPj(A),
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where the wj are mixing coefficients and the Pj are distributions over A. A product-of-

marginals i expresses a distribution over A ⊆ X as

Pi(A) =
∏
B∈S

Pj(B),

where S is a partition 2 of A and the Pj are distributions over the blocks in the partition.

The base case in the recursion occurs when |A| = 1 or |B| = 1; in this case the distributions

Pj are univariate distributions over the single variable in A or B. Sum nodes in an SPN

compute mixtures, product nodes compute product-of-marginals, and leaf nodes are univariate

distributions. Several algorithms construct SPNs using a top-down strategy that starts

with A = X and recursively constructs mixture models and product-of-marginal models;

some [14, 19] continue until |A| = 1, at which point a univarate leaf node is inserted, while

others stop short before |A| = 1 and insert a multivariate distribution such as a Markov

Network [44] or Chow-Liu tree [55] instead. See [19, 38] for more precise definitions of SPNs.

SPNs factor distributions differently than Bayesian networks. Instead of multiplying

conditional distributions to form the joint, SPNs multiply marginal distributions to form

the joint. This change gives an SPN the advantage of having an exact inference algorithm

that is efficient. Any marginal probability can be computed in time linear in the size of the

network. However, this also means that dependencies between variables cannot be modeled

using conditional distributions. The marginal factorizations in an SPN implicitly assume

statistically independent variables. Therefore, all dependency modeling in an SPN is done

using its mixture models.

For many problems SPNs model the distribution quite well. For others, variable

dependencies may be easier to learn or more compact to represent using a method other

than mixture models. This motivates our use of autoencoders to augment SPNs. While

2
⋃

B∈S B = A, ∅ /∈ S, and B ∩ C = ∅ for any two distinct sets B,C ∈ S
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autoencoders do not explicitly model variable dependencies, they are able to capture important

characteristics of a target distribution and encode these as hidden variables.

An autoencoder can be thought of as a pair of functions (fe, fd) such that fe encodes

inputs into an intermediate representation and fd decodes these representations back into the

original input space. The learning objective is to fix these functions such the fd(fe(x)) is very

similar to x for all instances x in the training set. To avoid simply computing the identity

function, regularization terms and other constraints are usually placed on the functions. We

take the common approach of using feed-forward neural networks to compute the encoder

and decoder functions.

Let P ∗ be the distribution from which our training set is drawn and let P be the

distribution represented by an SPN. We use autoencoders to improve the quality of a sample,

x, drawn from an SPN. With x in hand we compute y = fd(fe(x)). Because the autoencoder

is trained on samples from P ∗ and because it cannot compute the identity function, we argue

that an autoencoder tends to map less-likely inputs (with respect to P ∗) to more-likely inputs

; in other words, we expect P ∗(y) > P ∗(x).

This gets to the heart of our paper. The situation in which we imagine ourselves is

that the distribution P represented by an SPN does not quite capture important aspects of

P ∗; there are regions of the input space where P assigns higher probability than P ∗ and vice

versa. We use an autoencoder in hopes of compensating for these poorly-modeled regions.

For example, given a sample x from the SPN such that P (x) > P ∗(x), we modify the sample

by computing y = fd(fe(x)). The idea is to shift probability mass away from x, which has

low probability in P ∗, to y, which has higher probability in P ∗. Note that if the autoencoder

is always used, then all the probability mass is shifted from x to y. So, in effect, we are really

sampling from a distribution specified by the autoencoder. But we cannot simply use the

autoencoder alone, since without the SPN there is no way to sample from it.
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H

X

SH

SX

fe fd

(a)

PX SX → X

P2 SX → fe → fd → X

P3 SX → fe → SH → fd → X

(b)

Figure 5.1: In the AESPN model, autoencoder functions encode visible variables X into
hidden variables H and decode H into X. Two SPNs, SX and SH , model the variables X
and H, respectively. This is shown in 5.1a. To sample from an AESPN we can use three
different strategies, as indicated in 5.1b. We label the distributions associated with these
strategies as PX , P2, and P3. Sampling PX is done using SX , sampling P2 involves encoding
then decoding a sample from SX , and sampling P3 involves using SH to help infer a value for
H before it is decoded.

5.3 The AESPN Model

We call our model the autoencoder sum-product network (AESPN). An AESPN A is a

tuple A = (SX , fe, fd, SH) consisting of two SPNs SX and SH , an encoder function fe, and

a decoder function fd. Figure 5.1 shows how the autoencoder functions and SPNs interact.

SX models the visible variables X and SH models the hidden representation H computed by

the autoencoder. We call the distributions represented by SX and SH , respectively, PX and

PH . The function fe maps instances of X to H and fd maps instances of H to X. We use a

neural network to implement the autoencoder functions and designate one of its layers as

representing H. This layer uses sigmoid activations functions and thus the variables in H are

binary variables taking the value zero or one. For instance X = x we compute H = h by

rounding the vector fe(x).

5.3.1 Sampling in AESPNs

We evaluate an AESPN model by generating full images from it and by performing in-

painting. The first task is accomplished by drawing samples from a joint distribution over all

the variables X. The second task is accomplished by drawing samples from a conditional
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Algorithm 10 Sample1(S, Yq, ye)

Input: SPN S, query variables Yq, and evidence ye
Set variables in Ye according to ye
Set variables in Yq to unknown
Evalute S in a forward pass, caching node values vi
Q← {root of S}
while |Q| > 0 do

n← pop node from Q
if n is a sum node then

wnj ← weight between n and jth child
select jth child randomly with p(j) ∝ wnjvj
Q← Q ∪ {child j}

end if
if n is a product node then

Cn ← children of n
Q← Q ∪ Cn

end if
if n is a univariate distribution node over Yi ∈ Yq then

Yi ← sample the univariate distribution
end if

end while

distribution over query variables Xq given evidence variables Xe, where X = Xq ∪Xe and

Xq ∩Xe = ∅. The observed pixels in the in-painting task are associated with the variables in

Xe, and the areas in which pixel values should be guessed are associated with the variables

in Xq. Also note that sampling from the joint distribution is the same as sampling from

the conditional distribution in which Xq = ∅. The experiments in this paper compare three

methods for using an AESPN to draw samples of Xq given Xe.

The first sampling method draws samples from PX(Xq|xe) in the usual manner using

SX . This is shown in Algorithm 10. In short, a backward pass through S, starting at the

root node, is performed. At each sum node a child is randomly selected and the backward

pass proceeds to that child. At each product node every child is selected in turn and the

backward pass proceeds to that child. Thus a tree is traced out in the SPN S until it ends at

univariate distribution leaf nodes. These distributions are sampled to fill in values for the

variables in Xq.
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Algorithm 11 Sample2(SX, fe, fd, SH, Xq, xe)

Input: SPNs SX , SH , autoencoder functions fe, fd, query variables Xq, and evidence xe
xq ← sample from PX(Xq|xe)
x← xq ∪ xe
h← fe(x)
y ← fd(h)
yq ← values in y for the variables in Xq

return yq

The second method, shown in Algorithm 11, draws a sample xq from PX(Xq|xe) using

Algorithm 10. It then sets H to the value fe(x), where x = xq ∪ xe. Next, it decodes H = h

to produce the sample xq. Given H = h it computes y = fd(h) and then assigns the variables

in Xq to have values consistent with y. In this method the autoencoder can be thought of as

“cleaning” the sample drawn from SX .

The third method similary decodes a value H = h to produce a sample of the variables

in Xq, but it generates the value of H differently. As shown in Algorithm 12, it computes

DH , a set of m assignments3 to H, by doing the same thing as Algorithm 11: sampling Xq

and then computing fe(x). These values are then used to partition H into evidence variables

He and query variables Hq. If Hi ∈ H always takes value hi in DH then Hi = hi is placed in

He; otherwise Hi is placed in Hq. Then, using SH and Algorithm 10, a sample hq is drawn

from PH(Hq|he) and the hidden variable is set to H = hq ∪ he.

To distinguish between these strategies we label the distributions from which the

second and third methods draw their samples P2(Xq|Xe) and P3(Xq|Xe), respectively. Also,

in the special case that Xe = ∅ we do not compute DH when sampling from P3. Instead, we

directly decode a sample drawn from PH since, if no variables in X are known, we assume

that no variables in H will be known either.

3We use m = 100.
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Algorithm 12 Sample3(SX, fe, fd, SH, Xq, xe)

Input: SPNs SX , SH , autoencoder functions fe, fd, query variables Xq, and evidence xe
DH ← ∅
for all i ∈ {1, . . . ,m} do

xq ← sample from PX(Xq|xe)
x← xq ∪ xe
DH ← DH ∪ {fe(x)}

end for
He = {Hi|∀H(j)

i , H
(k)
i ∈ DH , H

(j)
i = H

(k)
i }

Hq = {Hi|∃H(j)
i , H

(k)
i ∈ DH , H

(j)
i 6= H

(k)
i }

hq ← sample from PH(Hq|he)
h← hq ∪ he
y ← fd(h)
yq ← values in y for the variables in Xq

return yq

5.3.2 Distributions

We can write P2(xq|xe) in terms of PX . The first step in Algorithm 11 is to draw a sample x′q

from PX(Xq|xe), which is then used to produce another value yq for Xq. Therefore, letting S

be the set of samples x′q that lead to value yq = xq, we have P2(xq|xe) =
∑

x′q∈S
PX(x′q|xe).

Note that there may be values xq for which S is the empty set, and thus P2(xq|xe) = 0,

even when PX(xq|xe) 6= 0; in fact, in practice this will often be the case, especially when the

number of values that H can take is much less than the number of values X can take.

Analyzing P3(xq|xe) is more difficult, except in the special case where Xe = ∅. We

can write P3(x) by considering all possible values h such that x = fd(h). If T is this set of

values then P3(x) =
∑

h∈T PH(h). As with P2, P3(x) may be zero for many values of x.

5.3.3 Learning

In our experiments we train the AESPN autoencoder on a dataset T using the Adam [24]

optimization algorithm, a fixed number of epochs, and a fixed mini-batch size. The output

layer and the middle layer (the one representing the hidden variables H) use sigmoid activation

functions. The other layers use ReLU activations. For our experiments the exact choice of
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Figure 5.2: The samples at the left are drawn from PX . Those in the middle are drawn from
P2, and those at the right are drawn from P3. “Cleaning” the samples from PX using an
autoencoder improves the samples, but decoding samples drawn from an SPN modeling the
hidden representation of the autoencoder produces even better results.

autoencoder architecture and how it is trained is not so important as long as the resulting

autoencoder does its job reasonably well. We train the SPN SX on a dataset T and train SPN

SH on dataset T ′, where T ′ = {fe(x)|x ∈ T} is the dataset T encoded by the autoencoder.

To train the SPNs SX and SH we use the LearnSPN algorithm [19]. LearnSPN is a template

algorithm: parts of the algorithm can be swapped out using various methods. In comparison to

the original implementation of LearnSPN, we use K-means with K = 2 instead of incremental

expectation maximization and we test variable dependence using a threshold on the correlation

coefficient instead of using a G-test score. These changes speed up the learning process; and

although we do not take advantage of this, swapping the G-test score for the correlation

coefficient also makes it possible to use LearnSPN on real-valued variables.

5.4 Experiments

We compare the three methods of sampling from an AESPN. First we compare the samples

generated when Xe = ∅. Then we compare the sampling methods in the task of image

reconstruction, or in-painting, where Xe 6= ∅. Our experiments show that sampling from P3 is

better than sampling from P2, and both are better than sampling from PX . The autoencoder

functions and SH both seem to help produce a better model than the SPN alone.
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Figure 5.3: The top row is the first 26 examples in the test set. A 10× 10 patch of pixels
was covered and samples were drawn from conditional distributions to fill in the patch.
The patches in the second row were filled using PX(Xq|Xe). In-painting in the third row
used P2(Xq|Xe), and in-painting in the fourth row used P3(Xq|Xe). Using the autoencoder
improves on using SX only, and using both the autoencoder as well as SH produces even
better results.

The quality of a probabilistic model is typically measured using its likelihood given a

test set. However, measuring the likelihood of P2 or P3 is problematic since we do not have

an efficient way of computing P2(x) or P3(x). Also, the likelihoods could very well be zero

since P2 and P3 typically assign zero probability to many instances of X. We argue that

measuring likelihood is not altogether appropriate here anyway, since the autoencoder and

SPN SH in an AESPN are not meant to be a probabilistic models in the traditional sense.

Instead they serve mainly as methods to improve the samples of the SPN SX .

Therefore we adopt a different measure for analyzing the samples drawn from PX ,

P2, and P3. In the case that Xe = ∅ we attempt to gauge how similar the samples are to

the sampes in the test set. To do this we simply find the nearest test set neighbor for each

sample, compute the Euclidean distance between the two, and average across all samples.

While this measure is not ideal, it does give us a quantitative comparison of PX , P2, and P3.

We also compare these sampling strategies qualitatively by visual inspection.

Figure 5.2 shows samples generated from an AESPN trained on MNIST. Given 1000

samples and using the test set, the Euclidean measures for the samples from SX , P2, and P3

are, respectively, 1702, 1230, and 1212. The P3 samples at the right are both qualitatively

and quantitatively better than those from P2, which are qualitatively and quantitatively

better than those from SX .
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Figure 5.4: The samples at the left are drawn from PX . Those in the middle are drawn from
P2, and those at the right are drawn from P3.

Our MNIST in-painting experiments remove random 10×10 patches of pixels from the

center 20× 20 patch of pixels. Samples drawn from the conditionals PX(Xq|Xe), P2(Xq|Xe),

and P3(Xq|Xe) are used to fill in the 10× 10 patches. For the in-painting experiments, the

Euclidean distance between the filled-in image and the original image is used instead of the

distance to the nearest-neighbor in the test set.

Figure 5.3 shows results from the in-painting experiments. The Euclidean measures

for the samples drawn from the conditionals PX(Xq|Xe), P2(Xq|Xe), and P3(Xq|Xe) are,

respectively, 1235, 1011, and 950. Again, the P3 samples at the right are both qualitatively

and quantitatively better than those from P2, which are qualitatively and quantitatively

better than those from SX .

We also ran the sampling experiments on the CIFAR-10 dataset. Example results are

in Figure 5.4. While the image samples do not form intelligible pictures, there is a marked

shift in coherence between the samples drawn from P3 compared to the other sampling

methods. The Euclidean measure against the test set for the samples from PX , P2, and P3

are, respectively, 2896, 1778, and 2885. In this instance our intuitive sense for which results

are better does not align with our chosen objective criteria, pointing perhaps to the need for

a better way of measuring samples than Euclidean distance.
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Table 5.1: Shown are the Euclidean distance measures for the sample sets generated in our
experiments.

MNIST CIFAR-10

Sampling In-painting Sampling

PX 1702 1235 2896

P2 1230 1101 1778

P3 1212 950 2885

5.5 Conclusion

In this paper we propose the AESPN model, which uses autoencoders to improve the samples

generated by SPNs. Two sampling methods are detailed and experimented with. Both

methods allow full samples X = x to be drawn or conditional samples of Xq to be drawn

given values for Xe. The latter method facilitates the use of AESPNs for image reconstruction

tasks.

Our experiments show that adding an SPN that models the hidden representation of

the autoencoder helps improve the samples beyond what the autoencoder alone can do. This

improvement occurs both when taking full samples and when taking conditional samples. We

note that this technique itself may be interesting in autoencoder research. Adding a model

over H that can be sampled from adds the ability to “sample” from an autoencoder and

provides a method for visually inspecting the “distribution” modeled by the autoencoder.

We leave the exploration of this idea to future work. Other possible future work includes

experiments that further our understanding of the high-arity problem. With improved

understanding would hopefully come ideas for improving SPNs in this regard.
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Chapter 6

Nonmonotone Sum-Product Networks

Abstract

Sum-product networks (SPNs) are probabilistic models with many interesting properties, chief

among them their guarantees regarding efficient, exact inference. In this paper we generalize

the definition of an SPN to allow for negative weight-parameters, explore the consequences

of this generalization, and verify its utility experimentally. We prove that efficient, exact

inference is still possible even in the presence of negative weights. The move from theory to

practice is made by showing that for a sub-class of negative-weight SPNs it is easy to check

that they never assign negative values to the probability of an event. A novel algorithm for

learning the parameters of these SPNs is also introduced. Experimental results exercise this

algorithm and demonstrate the utility of negative weights in SPNs.
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Figure 6.1: A small SPN with two mixture models (sum nodes), two independence models
(product nodes), and four base distributions (two normals and two categoricals). Mixing
coefficients are shown as edge-weights in the SPN.

6.1 Introduction

A mixture model p combines probability models qi, each over some set of variables A, using a

weighted average so that p(A) =
∑

iwiqi(A), where the wi are non-negative mixing coefficients.

Now let the disjoint sets Ai be a partition of A; further, for each Ai let qi be a probability

model over Ai. Then we call a model p an independence model if it combines the models

qi using multiplication so that p(A) =
∏

i qi(Ai). A sum-product network (SPN) uses these

two methods of combining probability models but does so in a recursive manner over various

subsets of a set of variables A. An SPN is represented as a directed, acyclic graph of nodes;

a sum node appears for each mixture model, a product node for each independence model,

and a leaf node for each base distribution [19, 38]. Figure 6.1 shows a simple SPN with two

mixture models, two independence models, and four base distributions. Leaf node A, a base

normal distribution over continuous variable X, is part of the mixture model computed by

sum node B. Product node C is an independence model combining a categorical distribution

over discrete variable Y and the mixture model at B. Note that nodes can be re-used; for

example, node A is a component of the mixture model at B and the independence model at

D.

A remarkable property of SPNs is that, as long as the components in a mixture each

cover the same set of variables and the components in an independence model each cover
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Figure 6.2: Two mixtures of the normal distributions with means µ1 = µ2 = 0 and standard
deviations σ1 = 1, σ2 = 0.9. At left the mixing coefficients are (1,−0.75) and at right the
mixing coefficients are (1,−0.87).

disjoint sets of variables, computing the value of any marginal probability can be done in

time linear in the size of the network [38]. The ability to efficiently perform exact inference

is one reason SPNs have been the subject of much recent research. Several methods have

been developed for learning their parameters from data, as well as the structure of their

networks [14–16, 18, 19, 27, 28, 32, 35, 38, 40, 44, 55, 59]. Other more theoretical work has

also explored the modeling power of SPNs [12], their relationship to traditional graphical

models [58], and other interesting properties [37].

This paper introduces for the first time a definition of SPNs that relaxes one of its

key properties, the non-negativity of mixing coefficients in its mixture models. Our definition

allows negative mixture-coefficients. While uncommon, negative weights in mixture models

have been used before [39]. Figure 6.2 shows a simple example of two normal distributions

mixed using negative mixing coefficients.

Theoretical results from circuit complexity theory [49] show that negative weights in

arithmetic circuits can be very powerful. Jerrum and Snir [23] prove that any monotone

circuit1 computing the permanent has size 2Ω(n). Two other results show an exponential

separation between monotone and nonmonotone circuits. Valiant [53] proves that a single

subtraction node is enough to allow a polynomial-sized arithmetic circuit to compute a

particular function, and proves that any monotone circuit computing the same function must

be exponential in size. Sengupta [47] proves a similar result by showing that any monotone

circuit computing the determinant is exponential in size and by noting that the determinant

1Roughly-speaking, a monotone circuit is one without negative weights, or coefficients.
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can be computed by polynomial-sized nonmonotone circuits. These results indicate that

there may be significant benefit from allowing negative weights in SPNs, just as there are

significant benefits in arithmetic circuits.

6.2 Definitions

For simplicity we consider the Boolean random vector X = (X1, X2, . . . , Xn), but our results

can be extended to other discrete and continuous variables. A value of Xi is written xi and

a value of X as x. Each Xi takes values in {0, 1} and X takes values in X = {0, 1}n. To

handle variable marginalization and/or incomplete knowledge of the values of the variables

in X, we introduce the evidence set E = {0, 1, ∗}n; for e ∈ E , ei = xi indicates that Xi = xi,

while ei = ∗ indicates that the value of Xi is unknown or that Xi is being marginalized. A

vector x is consistent with e ∈ E , written x ∼ e, iff ∀i(ei = xi or ei = ∗); for example, (0, 0)

and (0, 1) are both consistent with (0, ∗) but not consistent with (1, ∗). An indicator variable

(IV) is defined for each (Xi, xi) pair as follows:

λXi=xi =


1 if Xi = xi or Xi is unknown/marginalized

0 otherwise.

The possible settings of the IVs are in a one-to-one correspondence with the vectors in E .

This is so because an IV λXi=xi takes its value based on whether Xi = 0, Xi = 1 or Xi is

unknown or being marginalized; these three conditions correspond to ei = 0, ei = 1, and

ei = ∗, respectively.

Definition 6.1. A sum-product network (SPN) is a rooted, directed acyclic graph whose

root node is:

1. an indicator node associated with some λXi=xi

2. a product node whose children are SPNs with disjoint scopes 2, or

2The scope of an SPN is the set of variables whose IVs are associated with the leaf nodes of the SPN.
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3. a sum node whose children are SPNs with identical scopes.

The value of an indicator node is the value of its indicator variable. The value of product

node i is
∏

j∈ch(i) vj, where ch(i) is the set of children of node i and vj is the value of node j.

The value of sum node i is
∑

j∈ch(i)wijvj, where wij ∈ R is the edge-weight between nodes

i, j.

Definitions of an SPN vary slightly in the literature [19, 38], but all require wij ∈ R+.

The definition above allows negative edge-weights. We distinguish between SPNs that use

this extra flexibility and those that do not as follows.

Definition 6.2. A monotone sum-product network is an SPN in which all edge-weights wij

are greater than or equal to zero.

Definition 6.3. A nonmonotone sum-product network is an SPN in which one or more

edge-weights wij are negative.

An SPN S computes a function fS whose domain is E : the value of fS(e) is the value

of the root node of S after setting the indicator nodes in accordance with e and evaluating

the other nodes, from the leaves to the root, with children evaluated before parents. In a

nonmonotone SPN it is possible that fS(e) < 0 for some e ∈ E , which would be problematic

since an SPN is supposed to represent a (possibly-unnormalized) probability distribution.

We deal with this issue later but in preparation introduce the following two definitions.

Definition 6.4. A positive sum-product network is an SPN S such that ∀e ∈ E , fS(e) ≥ 0.

Definition 6.5. A negative sum-product network is an SPN S such that ∃e ∈ E , fS(e) < 0.

With our distinction between monotone/nonmonotone and positive/negative SPNs,

we have four classes of SPN; however, note that monotone, negative SPNs are not possible.

6.3 Positive SPNs are Valid

Every positive SPN S represents a possibly-unnormalized probability distribution ΦS . To

simplify our discussion we drop the phrase “possibly-unnormalized” when writing about
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ΦS ; for example, we use marginal probability even though possibly-unnormalized marginal

probability would be more accurate. [38] prove that every monotone SPN S can efficiently

compute any marginal probability in ΦS . We will extend this result by proving that the same

holds for positive SPNs, whether monotone or nonmonotone.

For positive SPN S the distribution ΦS is defined in terms of fS as ΦS(x) , fS(x).

We do not define ΦS for negative SPNs since ΦS , being a distribution, is a mapping to non-

negative values. The joint and marginal probabilities in ΦS are in one-to-one correspondence

with the vectors e ∈ E . If e ∈ X then it corresponds to a joint probability; otherwise it

corresponds to a marginal probability. For example, e = (0, ∗, . . . , ∗) corresponds to the

marginal probability that X1 = 0. For each e ∈ E , its associated probability is ΦS(e) ,∑
x∼e ΦS(x) =

∑
x∼e fS(x); the summation sums out all variables marked by an asterisk in

e. The special case e = (∗, . . . , ∗), where all variables are summed out, is written as ΦS(∗).

Poon and Domingos [38] define an SPN to be valid iff fS(e) = ΦS(e) for all e ∈ E

and then prove that all monotone SPNs are valid. Equivalently, an SPN is valid iff fS(e) =∑
x∼e fS(x). Thus a valid SPN can compute any joint or marginal probability with a single

forward pass through the network. Before proving that all positive SPNs are valid, we first

establish Lemma 6.1; this Lemma and its proof are inspired by the proof of Lemma 5 in [53].

The proof is by construction. Given an SPN S, monotone SPNs S+ and S− are constructed

such that fS = fS+ − fS− . Figure 6.3 illustrates the operations used in building S+ and S−.

Lemma 6.1. For any SPN S there exists monotone SPNs S+,S− such that fS = fS+ − fS− .

Proof. Let S be an SPN. Remove all product nodes that only have a single child. Replace

all remaining product nodes in S with a chain of product nodes such that each has exactly

two children. If u is a product node with k children v1, · · · , vk, replace it with k − 1 product

nodes u2, . . . , uk, with the children of u2 being {v1, v2} and the children of uj, j > 2, being

{uj−1, vj}. The function computed by S has not changed.

We now build SPN S ′. For each node u in S introduce nodes u+ and u− in S ′. We

construct S ′ such that fu = fu+ − fu− for all nodes u in S. If u is an indicator node in S,
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Figure 6.3: The transformations used in Lemma 6.1 converting an SPN S into monotone
SPNs S+ and S−. The top row shows indicator, sum, and product nodes from S and the
bottom row shows how they are transformed. Each node u in S has corresponding nodes u+

and u− in S+,S−. Letting fu, fu+ , and fu− denote the functions computed by the nodes u,
u+, and u−, respectively, the transformation is done such that fu = fu+ − fu− .

let u+ be an identical indicator node in S ′ and let u− be a sum node whose single child is

u+ and whose edge weight is 0. If u is a sum node or product node then u+ and u− will be

sum nodes. Create edges in S ′ as follows. Let (u, v) be an edge between sum node u and

v ∈ ch(u), with w the edge weight. If w ≥ 0 then add edges (u+, v+) and (u−, v−), each with

edge weight |w|. If w < 0 then add edges (u+, v−) and (u−, v+), each with edge weight |w|.

For each product node u in S we create the following nodes and edges in S ′. Let v1 and v2

be the children of u. Add two product nodes as children to u+, with edge weights both 1,

with the children of the first product node being {v+
1 , v

+
2 } and the children of the second

product node being {v−1 , v−2 }. Add two product nodes as children to u−, with edge weights

both 1, with the children of the first product node being {v+
1 , v

−
2 } and the children of the

second product node being {v−1 , v+
2 }.

Now let u be the root node of S. Then S+ is the SPN rooted at u+ and S− is the

SPN rooted at u−. Both S+ and S− are monotone since all edge weights in them are 0, 1, or

the absolute value of an edge weight in S. And by construction fS = fS+ − fS− . �
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The number of nodes v′ and edges e′ of the SPN S ′ constructed in Lemma 6.1 are

both bounded by a polynomial in the number of nodes v and edges e in the original SPN S.

After ensuring that product nodes have exactly two children, the resulting SPN has fewer

than ve nodes and fewer than 2e edges. The indicator transformations add n nodes and n

edges. The sum-node transformations at most double the number of nodes and edges. The

product-node transformations add at most six nodes for every product node and ten edges

for every two edges. See Figure 6.3. In total the SPN S ′ has v′ = O(ve) nodes and e′ = O(e)

edges, a polynomial increase in size.

Theorem 6.1. Every positive SPN is valid.

Proof. Let S be a positive SPN. In the case that S is also monotone we appeal to Theorem 1

from [38] to show that it is valid. Now assume S is nonmonotone. Using Lemma 6.1 we can

construct monotone SPNs fS+ and fS− such that fS = fS+ − fS− . Both S+ and S− are valid

since each is monotone; thus fS+(e) = ΦS+(e) and fS−(e) = ΦS−(e) for all e ∈ E . Now let e

be an arbitrary vector from E ; then

fS(e) = fS+(e)− fS−(e) = ΦS+(e)− ΦS−(e)

=
∑
x∼e

ΦS+(x)−
∑
x∼e

ΦS−(x) =
∑
x∼e

(fS+(x)− fS−(x))

=
∑
x∼e

fS(x) =
∑
x∼e

ΦS(x) = ΦS(e).

�

6.4 Twin SPNs

Theorem 6.1 shows that positive SPNs are valid. The question remains whether or not a

particular SPN is positive. If inspection of the edge-weights in the SPN finds they are all

non-negative then, by definition, the SPN is monotone and thus positive. The difficult case

is to determine if a nonmonotone SPN is positive. Is it positive even with the presence of
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negative weights? Obviously, a brute force algorithm can answer this question. Simply check

that fS(x) ≥ 0 for all inputs x ∈ X . However, this quickly becomes intractable since the size

of X is exponential in the number of variables. While we do not know a fast algorithm for

determining positivity in the general case, it can be guaranteed quickly in the special case of

twin SPNs. Before proving this result we give the definition of a twin SPN and make some

observations about it.

Definition 6.6. A twin SPN is an SPN S that meets the following three criteria:

1. fS = fS+ − αfS− , where S+,S− are both monotone and 0 ≤ α ≤ 1.

2. S+ and S− have identical architectures.

3. w+
ij ≥ w−ij holds for each pair (w+

ij , w
−
ij) in S, where w+

ij and w−ij are corresponding

edge-weights in S+ and S−, respectively.

The first and second criteria are not restrictive. All SPNs can be converted to meet

the first criterion, as shown in Lemma 6.1, with only a polynomial increase in size. The

second criterion can also be met as follows. Let fS = fS+ −αfS− , where S+ and S− are both

monotone, but not identical. Now fS = (fS+ + 0fS−)− α(0fS+ + fS−) = fA − αfB, where A

and B are monotone SPNs with identical architecture. The root of A is a sum node whose

children are the root of S+ and the root of a duplicate of S−, with the edge weight to S+

being 1 and the other edge weight 0. Similarly, the root of B is a sum node whose children

are the root of S− and the root of a duplicate of S+, with the edge weight to S− being 1 and

the other edge weight 0. Thus this criteria can be met at the cost of doubling the size of the

SPN.

The name twin SPN is in reference to the identical architectures of S+ and S−. Unlike

general positive SPNs, it is straightforward to check whether an SPN is twin or not and can

be done in time linear in the size of S. We next prove that twin SPNs are positive; applying

Theorem 6.1 then leads to the corollary that twin SPNs are valid.
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Theorem 6.2. Every twin SPN is positive.

Proof. Let S be a twin SPN; therefore it computes fS = fS+ − αfS− , where S+ and S− are

monotone SPNs with identical architectures. Consider each node q+ in S+, its corresponding

node q− in S−, and the twin SPN fq = fq+ − α′fq− , where fq+ and fq− are the functions

computed by the SPNs rooted at q+ and q−, respectively, and 0 ≤ α′ ≤ 1. Proceeding by

induction on the nodes of S+, we show that fq+(e) ≥ fq−(e) for all e ∈ E ; reaching the step

in which q+ is the root of S+ completes the proof by showing that fS+(e) ≥ fS−(e) for all

e ∈ E .

If q+ is an indicator node, then fq+ = fq− and the claim is obviously true. Now we

can assume the claim is true for all children of q+. Because S+ and S− are monotone we

have that 1) for any node q in S+ or S−, fq(e) ≥ 0 and 2) for any weight w in S+ or S−,

w ≥ 0. If q+ is a product node then fq+(e) =
∏

c+∈ch(q+) fc+(e) ≥
∏

c−∈ch(q−) fc−(e) = fq−(e).

The inequality holds since, for any child c+ ∈ ch(q+) and its corresponding node c− in S−,

fc+(e), fc−(e) ≥ 0 and by the inductive hypothesis fc+(e) ≥ fc−(e). If q+ is a sum node then

fq+(e) =
∑

c+∈ch(q+) wc+fc+(e) ≥
∑

c−∈ch(q−) wc−fc−(e) = fq−(e). The inequality holds since,

for any child c+ ∈ ch(q+) and its corresponding node c− in S−, fc+(e), fc−(e), wc+ , wc− ≥ 0,

by the inductive hypothesis fc+(e) ≥ fc−(e), and wc+ ≥ wc− by the definition of a twin

SPN. �

Usually we also want to guarantee that fS 6= 0. This can be done by requiring

fS+(∗) > 0 and α < 1.

The definition of an SPN can be generalized by letting leaf nodes be any univariate

probability distribution, not just indicator nodes. In this case twin SPNs are still positive as

long as, for each pair of corresponding leaf nodes u+ and u− in S+ and S−, respectively, we

have u+(x) ≥ u−(x) for all possible inputs x. Of course, if u+ and u− are normalized, then

setting u+ = u− is the only way to satisfy this condition. But if they are not normalized then

other possibilities arise. For example, the condition is satisfied if u+ is the continuous uniform

distribution over [0, 5] and u− is uniform over [1, 2], with the constraint that
∫∞
−∞ u

−dx ≤ 1/5.
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6.4.1 Sampling Twin SPNs

Let monotone SPN S represent a distribution over the variables in X. Let X denote these

variables, Y and Z be disjoint sets forming a partition of X, and Y ,Z be vectors containing

the variables in Y, Z, respectively. Using S we can draw samples from any conditional

distribution p(Y |Z=z). In the case that Z = ∅ the samples comes from the joint distribution

over X. Sampling is done as follows. First, e ∈ E is chosen such that ei = ∗ if Xi ∈ Y and

ei = xi if Xi ∈ Z. Then fS(e) is computed using a forward pass through the SPN and the

value of each node i in S is cached as vi. Next, a backward pass through the network is

done, starting at the root node and tracing out a tree embedded in S; not every node in S is

necessarily visited, as will be seen. If the current node i—which, again, is initially set to be

the root node—is a sum node then one child j is selected, with the probability of selecting it

proportional to wijvj; the sampling procedure is then called recursively with this child set as

the current node. If the current node is a product node then the sampling procedure is called

recursively, once for each of its children. If the current node is a univariate distribution over

Xi then a sample is drawn from it; if the node is an indicator then the sample is set to the

value indicated by the indicator. After the recursive calls finish, one and only one sample

will have been drawn for each variable Xi ∈ X. The samples drawn for the variables in Y

make up a sample from p(Y |Z=z).

Unfortunately this sampling procedure does not work for nonmonotone SPNs since

choosing a sum-node child j with probability proportional to wijvj does not make sense when

wijvj < 0. However, we can still sample from twin SPNs using rejection sampling, with the

distribution represented by S+ used as the proposal distribution. Here we describe sampling

from the joint, but sampling from P (Y |Z=z) is also possible. First, a sample x is drawn from

S+ using the sampling procedure described in the preceding paragraph. Then we compute

q+ = fS+(x) and draw a sample y from the uniform distribution over the interval [0, q+]. In

the last step we compute q = fS(x) ≤ q+ and keep the sample x if y ≤ q; otherwise the

rejection sampling procedure is repeated until a sample is found. Actually, care must be
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Algorithm 13 TwinGD(S, D)
Input: twin SPN S, data D, learning rate η
Initialize Θ, the parameters of S
while L(S|D) improves do

Θ← Θ + η ∂
∂Θ

logL(S|D)
Adjust Θ so that S is still twin (w+

ij ≥ w−ij)
end while

taken to avoid accepting a sample in the corner case in which q = 0 and y = 0, since q = 0

implies that the probability of x under the distribution represented by S is zero.

6.4.2 Learning Twin SPNs

Given a dataset D we would like to learn a twin SPN S that maximizes the likelihood

L(S|D) =
∏
x∈D

p(x) =
1

fS(∗)
∏
x∈D

fS(x).

Given the structure of a twin SPN we can learn its parameters using a modified gradient

descent on the negative of the log-likelihood function. Algorithm 13 outlines this process.

The main difference from plain gradient descent is that the parameters of S may need to

be adjusted after each gradient step to ensure that w+
ij ≥ w−ij for all edge-weight pairs in

S+,S−. For example, we may set w−ij = w+
ij if w+

ij < w−ij . While this works in principle, our

experience suggests that TwinGD is prone to finding poor local optima, at least for some

datasets. We found that an intelligent parameter-initialization strategy can help overcome

this problem. The basic idea is to train S+, use it to train S−, and then fine-tune S. This

algorithm, LearnTwin, is outlined in Algorithm 14.

LearnTwin receives as input monotone SPN S+ which has already been trained on D.

In our experiments with synthetic data we use a pre-determined architecture for S+ and then

learn its parameters with TwinGD, but the output of any of the many structure-learning

algorithms in the literature can be used to train S+ instead. We assume D is drawn i.i.d.

from some distribution p∗ and the distribution represented by S+, which we call p+, is an
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Algorithm 14 LearnTwin(D, S+)

Input: dataset D, monotone SPN S+ trained on D
Let function m(x, A) = min{‖x− y‖2|y ∈ A}
t← max{m(x,D \ {x})|x ∈ D}
D+ ← |D| samples from S+

D− ← {x ∈ D+|m(x,D) > t}
S− ← copy of S+

Learn parameters of S−, aiming to maximize L(S−,D−)
Add a sum node as the root of S such that fS = fS+ − αfS− .
Adjust parameters of S so that it is twin
TwinGD(S,D)
return S

approximation to it. The first goal of LearnTwin is to learn the parameters of S− in such a

way that p = p∗, where p is the distribution of the final twin SPN S. Loosely speaking then,

we want S− to decrease the value of p+ whenever p+(x) > p∗(x), and do nothing otherwise.

In other words, if p+(x) > p∗(x) then we want fS−(x) = p+(x)− p∗(x), and otherwise we

want fS−(x) = 0. Of course this is rarely possible to do perfectly in practice3, for at least

two reasons. The first is that we almost never have access to p∗. The second is that, even if

we did have access to p∗, the SPN S− must meet the constraints in the definition of a twin

SPN since that is what we are trying to construct. So instead, LearnTwin uses heuristics

to approximate the ideal approach.

To train S−, LearnTwin constructs a dataset D− which it uses in an SPN parameter-

learning algorithm. In our experiments we use plain gradient descent, but hard or soft EM

could be used instead [16, 18]. Creating D− is done by filtering samples drawn from p+. Given

a sample x from p+, we add the sample to D− whenever we guess that p+(x) > p∗(x). The

guess is based on whether or not the distance from x to its nearest neighbor in D is greater

than a computed threshold t. The threshold t is computed by looking at the nearest-neighbor

distances for each instance in D; t is set to the maximum such nearest-neighbor distance.

The assumption is that if the sample x is far away from any instance in D, and in fact is

farther away than the distance between any two pairs of instances in D, then it does not

3In fact, the only case in which it is possible may be when p+ = p∗.
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belong in D, or at least p∗(x) is low. We also assume that p+(x) is relatively high since

sampling, by definition, tends to draw samples from the modes of p+. Of course we can find

situations, such as when p+ is uniform, in which these assumptions do not necessarily hold,

but for many problems they will be reasonable.

The SPN S− is initially created as a copy of S+ to satisfy the second condition of

twin SPNs and then its parameters are learned using D−. These SPNs are combined into

twin SPN S such that fS = fS+ − αfS− , by creating a sum node with edge-weights (1,−α)

whose children are the root nodes of S+,S−. The last two steps in LearnTwin set the

parameters of S to satisfy the third condition of twin SPNs and fine-tune the parameters

using TwinGD.

6.5 Continuous Variables

The definition of an SPN can be generalized by allowing univariate-distribution nodes at the

leaves instead of just indicator nodes. Discrete distributions such as the categorical or the

Poisson and continuous distributions such as the normal or the uniform can also appear at

leaf nodes. The definitions and results from Sections 6.2, 6.3, and 6.4 can also be extended

to the case in which univariate distributions are allowed at leaf nodes.

When using continuous variables we add to the third criteria of a twin SPN as

follows. For any univariate u+
i in S+ and its corresponding univariate u−i in S− we require

that u+
i (e) ≥ u−i (e) for all e ∈ E . If both u+

i and u−i are normalized, then the only

way to meet this condition is to set u+
i = u−i . We can allow leaf nodes more flexibility

by introducing a scalar factor αi ∈ [0, 1] that functions similarly to α in the expression

fS+ − αfS− . Say u+
i (e) = g(e; θ+

i ), where g is some univariate distribution function. Then

we set u−i (e) = αig(e; θ−i ), picking αi such that u+
i (e) ≥ u−i (e) for all e ∈ E .

If αi = 0 then the condition will always hold but also means that u−i does not

contribute to the model. We would like to know how large a value αi can take before the

condition no longer holds. The following subsections present such bounds for a few different
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univariate distributions. The bounds will be functions of the distribution parameters θ+
i and

θ−i .

6.5.1 Scalar Bound for the Normal Distribution

Let θ+
i = (µ1, σ1) and θ−i = (µ2, σ2) be the means and standard deviations of two normal

probability density functions (PDFs) g1 and g2, respectively. With h = g1 − αig2, and letting

r(x) = g1(x)/g2(x), it can be seen that if αi ≤ minx r(x), then h(x) ≥ 0 for all x ∈ R. Since

r(x) =
σ2

σ1

e
− (x−µ1)

2

2σ21
+

(x−µ2)
2

2σ22 ,

observe that if g1, g2 share parameter values then r(x) = 1. Now assuming that the parameters

are not identical we analyze the three cases σ1 < σ2, σ1 = σ2, and σ1 > σ2. If σ1 < σ2 then

lim|x|→∞ r(x) = 0. Assuming σ1 = σ2, we can see that 1) if µ1 < µ2 then limx→∞ r(x) = 0,

and similarly 2) if µ1 > µ2 then limx→−∞ r(x) = 0. If σ1 > σ2 then r(x) has a non-zero

minimum and lim|x|→∞ r(x) diverges to infinity. The minimum in this case can be found by

solving ∂r(x)
∂x

= 0 and plugging the solution into r(x). Now

∂r(x)

∂x
=

(
−x− µ1

σ2
1

+
x− µ2

σ2
2

)
σ2

σ1

e
− (x−µ1)

2

2σ21
+

(x−µ2)
2

2σ22 ,

and the solution to ∂r(x)
∂x

= 0 is x∗ =
σ2
1µ2−σ2

2µ1
σ2
1−σ2

2
. Thus if g1 = g2 then min r(x) = 1; if σ1 < σ2,

or σ1 = σ2 but µ1 6= µ2, then min r(x) = 0; and if σ1 > σ2 then min r(x) = r(x∗). These

results are summarized in Table 6.1.

6.5.2 Scalar Bounds for the Uniform and Π-Sigmoid Distributions

Let θ+
i = (a1, b1) and θ−i = (a2, b2) be the lower- and upper-bounds of two continuous

uniform probability density functions g1 and g2, respectively. It is easy to see that h(x) =
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Table 6.1: To ensure that h(x) = g1(x)− αig2(x) ≥ 0 for all x ∈ R, the bounds on αi listed
below must be met.

Parameters Bound on αi
µ1 = µ2, σ1 = σ2 0 ≤ αi ≤ 1

µ1 6= µ2, σ1 = σ2 αi = 0

σ1 < σ2 αi = 0

σ1 > σ2 0 ≤ αi ≤ r(x∗), x∗ =
σ2
1µ2−σ2

2µ1
σ2
1−σ2

2

g1(x)− αig2(x) ≥ 0 for all x ∈ R as long as

αi ≤


b2−a2
b1−a1 if a1 ≤ a2 < b2 ≤ b1

0 otherwise.

The LearnTwin algorithm uses gradient descent to learn the parameters of a twin

SPN. Since the uniform density function is not differentiable, LearnTwin would not be

able to learn the parameters of any leaf nodes having uniform distributions. This motivates

our use of the Π-sigmoid distribution [2] as a differentiable approximation to the uniform.

Its density is computed by subtracting two sigmoid functions that have been shifted with

respect to each other:

g(x; a, b, λ) =
σλ(x− a)− σλ(x− b)

b− a
, b > a,

where σλ(x) = 1/(1 + e−λx), λ > 0. Along with being differentiable, g also has support over

all the reals.

Let θ+
i = (a1, b1, λ1) and θ−i = (a2, b2, λ2) be the parameters of two Π-sigmoid distribu-

tions g1 and g2, respectively. Again we want αi such that h(x) = g1(x)− αig2(x) ≥ 0 for all

x ∈ R. If we restrict the parameters such that λ1 = λ2 and a1 ≤ a2 < b2 ≤ b1, then h(x) ≥ 0

for all x if αi ≤ (b2 − a2)/(b1 − a1), which is the same bound used when the gj functions are
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uniforms. The bound can be justified by writing αi as

αi ≤
g1(x)

g2(x)
=

(
b2 − a2

b1 − a1

)(
σλ1(x− a1)− σλ1(x− b1)

σλ2(x− a2)− σλ2(x− b2)

)
=

(
b2 − a2

b1 − a1

)
∆1

∆2

and then showing that ∆1

∆2
≥ 1. First, because λ1 = λ2 we know that σλ1(x) = σλ2(x).

Because σλ(·) is monotonically increasing, if x < y then σλ(x) < σλ(y). These facts, along

with the condition that a1 ≤ a2 < b2 ≤ b1, lead to the result that σλ1(x− a1) ≥ σλ2(x− a2) >

σλ2(x− b2) ≥ σλ1(x− b1). This ordering ensures that ∆1 ≥ ∆2 and so ∆1

∆2
≥ 1.

Note that unlike for the normal-distribution and uniform-distribution cases, our bound

on αi is not as loose as possible, and it also relies on λ1 being equal to λ2. In practice we

simply enforce λ1 = λ2 and keep within the extra-tight bound on αi, but finding a looser

bound that takes into account differing values for λ1 and λ2 could be valuable future work.

6.6 Experiments

We now turn to an empirical investigation of twin SPNs and focus in particular on under-

standing the advantages and disadvantages that twin SPNs have compared with monotone

SPNs. In other words, we ask what might be gained from allowing SPNs to have negative

weights. Our experiments will use real-world datasets as well as datasets sampled from a

class of synthetic distributions we call box distributions.

6.6.1 Box Distribution

A box distribution B(w) places probability density in Rn as follows:

f(x;w) =


1

1−wn ∃i(0 ≤ xi ≤ 1−w
2

or 1+w
2
≤ xi ≤ 1)

0 otherwise

where its single parameter w lies in the interval (0, 1). Density is spread out uniformly

over the outside “faces” of the unit hypercube to a depth (1 − w)/2, where each face is
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Figure 6.4: The box distributions on the left and middle are in n = 1 and n = 2 dimensions,
respectively. The non-zero density on the left is 1

1−w and the non-zero density on the right,

indicated by the shaded region, is 1
1−w2 . At right is a simple k = 2 empty-mixture model

SPN architecture over n = 2 variables Y1 and Y2. The term empty-mixture is used because
the distribution represented by each product node is equivalent to one represented by an
empty BN, or one with no edges, and the sum node is a mixture of them.

an (n−1)-dimensional hypercube. Another way to say this: within the unit hypercube

there is a centered n-dimensional hypercube with edges of length w in which the probability

density is 0; elsewhere in the unit hypercube the desnity is spread uniformly. In three

dimensions we can imagine a cube-shaped cardboard box for which w is the perpendicular

distance between the inside faces of two opposing sides; in the box distribution the probability

density is spread evenly throughout the cardboard shell. Thus we can also write f(x;w) =

u(x; 0,1)−u(x; 1−w1
2
, 1+w1

2
), where u(x;a, b) is the n-dimensional uniform probability density

function with lower and upper bounds in each dimension specified by the vectors a and b.

See Figure 6.4.

If we choose the parameter of B(w) to be w = (1 − v)1/n, then for any number of

dimensions n the volume of the shell of non-zero density is a constant v and the density of

the shell is a constant v−1, which means that the ground-truth average log-likelihood for any

number of dimensions n is − log(v). In our experiments we choose values for v, n and then

set w using the expression above. SPNs are trained on samples drawn from the resulting

box distribution, and we compute the average log-likelihood of the samples under the SPNs,

comparing the models against each other and against the ground-truth.
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6.6.2 Box Distribution Experiments

The goal of the box distribution experiments is not to see how close we can get to the

ground-truth likelihood. Rather we show that nonmonotone SPNs can model this data better

than monotone SPNs with identical architecture. We then allow the monotone SPNs to

increase in size and observe how much larger they get before reaching the performance of the

nonmonotone SPNs.

The formulation of B(w) as one n-dimensional uniform distribution subtracted from

another motivates the use of some simple, fixed SPN architectures. The root of each is

a sum node with k children, each one a product node. Each product node has exactly n

children, each a Π-sigmoid distribution over one of the input variables. See the right-hand

side of Figure 6.4. We call this model an empty-mixture becuase it corresponds to a mixture

model with k components, each component being an empty Bayesian network (a BN with

zero edges). The value of k uniquely identifies the SPN architecture of an empty-mixture

model. The nonmonotone twin SPNs that we train will have k = 2 components, but the

weights on the edges from the sum node to the left and right children will be fixed to 1 and

−1, respectively. We compare these twin SPNs with monotone SPNs that also have k = 2

components, but whose sum-node edge-weights are not fixed.

Before presenting the empirical results we analyze the problem at hand. If we were to

hand-engineer the architecture of a nonmonotone SPN to model a box distribution, it is hard

to imagine how we could find something smaller than the k = 2 architecture, which consists

of 2n+ 3 nodes. These nodes are sufficient to exactly model B(w).

On the other hand, the k = 2 architecture does not give monotone SPNs enough

modeling power to exactly represent B(w), at least not for n > 1. How many more nodes,

or what different architecture might be required for a monotone SPN to do so? It turns

out that the k = 2n architecture, which uses 2n2 + 2n + 1 nodes, is enough. To see why

this is so observe that there are 2n (n−1)-dimensional hypercubes formed by the edges in

the n-dimensional hypercube [3]. These (n−1)-dimensional hypercubes correspond to the
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Figure 6.5: Both plots show the log-likelihood of the best SPN models found after doing a
grid search. As seen at the left, the nonmonotone SPN performs better than the monotone
SPN with identical architecture, for all except the n = 1 box-distribution dataset. At right
we see the effect of allowing the monotone SPN more nodes.

“sides” of the density shell in the box distribution. And since each side of the shell has depth,

we can break the box distribution into parts, one part for each side, each of which is an

n-dimensional hyperrectangle. Imagine cutting the three-dimensional cardboard box apart

into its six side pieces, each of which is a three-dimensional hyperrectangle. Each part can be

exactly represented using one component from an empty-mixture model, and thus a k = 2n

architecture is enough to exactly represent the full box distribution.

Note that we have ignored the details of how exactly to break apart the sides where,

since each side has depth, they overlap. We also note here that if we continue to hand-engineer

the monotone SPN architecture, clever re-use of univariate distributions may allow us to

compress the k = 2n architecture into an architecture with something like 5n+ 1 nodes.

Figure 6.5 shows results from the box-distribution experiments. Both plots show the

log-likelihood of the best SPN models found while doing a grid search4. In the plot on the

left we compare the performance of a monotone and a nonmonotone SPN with identical

architectures. The nonmonotone SPN outperforms the monotone SPN for all datasets except

4The hyperparameters in the grid search: λ ∈ {100, 300, 1000}, η ∈ {.01, .003, .001, .0003, .0001, .00003},
δ ∈ {10−2, 10−3, 10−4, 10−5, 10−6}, b ∈ {1, 10, 100, 1000}, e ∈ {1, 10, 100, 200}, where we fix the slope
parameter in Π-sigmoid distributions to λ, and in TwinGD η is the learning rate, δ the log-likelihood
improvement threshold, b the mini-batch size, and e the maximum number of epochs.
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that derived from the n = 1 box-distribution dataset. The plot on the right demonstrates

the effect of allowing the monotone SPN more nodes. After n = 2, the k = 4 monotone SPN

starts to underperform the nonmonotone SPN. After n = 4, the k = 8 monotone SPN begins

to underperform. We would expect this pattern to continue but, interestingly, no monotone

SPN is able to match the nonmonotone SPN for n = 8 and n = 16. Again, in principle

the nonmonotone SPN is able to reach the ground-truth log-likelihood for every n, and the

monotone SPN is able to reach it whenever k ≥ 2n. While for n > 1 the learning algorithms

fail to find the ideal solutions in both cases, it is interesting that the failure is greater in the

monotone case for n ≥ 8. This can partly be explained by the fact that the nonmonotone

SPN has fewer nodes and fewer parameters—making the task of learning them easier—than

the k = 2n monotone SPN that could in theory match its performance.

6.7 Conclusion

In this paper we provide, for the first time, a definition of a sum-product network that allows

for negative edge-weights. When using this generalized definition it is helpful to make the

distinction between what we call monotone SPNs, which only have positive edge-weights,

and nonmonotone SPNs, which have at least one negative edge-weight. A distinction is also

made between positive SPNs, which only compute positive values, and negative SPNs, which

compute a negative value for some input. We also define twin SPNs, a particular class of

nonmonotone SPN.

We prove some important results for nonmonotone, positive, and twin SPNs. We prove

that any SPN can be converted into a nonmonotone SPN with a single negative edge-weight.

Then we generalize a result from Poon and Domingos [38] that showed monotone SPNs to

be valid, or in other words, that monotone SPNs can compute any marginal probability

quickly. We prove the same result for positive SPNs, a strict superset of monotone SPNs.

This implies that some SPNs with negative edge-weights are positive and thus valid. Because

negative SPNs cannot be used as probabilistic models, it is important to distinguish between
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nonmonotone SPNs that are positive and those that are negative. We address this problem

in the particular case of twin SPNs, proving that all twin SPNs are positive. This makes

them useful in practice since it is easy to check whether an SPN is twin or not.

Another contribution we make is the proposed use of gradient descent for learning

the parameters of a twin SPN as well as the introduction of the LearnTwin algorithm.

LearnTwin can be thought of as a strategy for initializing the parameters of a twin SPN

prior to using gradient descent. Our experience indicates this strategy may help gradient

descent avoid shallow local optima.

The utility of negative edge-weights in general, and twin SPNs in particular, is shown

in our experimental results with data drawn from box distributions of varying dimensionality.

These results compare the log-likelihood of two SPNs that have the same architecture. The

only difference is that one is a twin SPN that can use negative edge-weights while the other

is restricted to using positive edge-weights. As the number of variables n increases we see

the log-likelihood of these two models diverge, demonstrating the advantage of negative

edge-weights. We also experiment with increasing the size of the architecture of the monotone

SPN, giving it an advantage. For smaller values of n this helps the monotone SPN be

competitive, but for larger values of n the smaller twin SPN achieves higher log-likelihood.

There are many avenues for future research on nonmonotone SPNs. Expectation-

maximization and signomial programming [16, 59] have both been used to learn the parameters

of monotone SPNs. Can they be adapted to the nonmonotone case? A structure learning

algorithm for twin SPNs could also be very useful. Currently the structure of S+ is learned

and then passed to LearnTwin, which constructs a twin SPN by combining S+ with a copy,

S−. It may be better to learn the structure of S+ and S− in a single step that is designed to

take advantage of twin SPNs and negative weights. Or more incrementally, improvements

to LearnTwin, such as exploring other strategies for generating the dataset D−, could be

experimented with.
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On the theoretical side, connections with results from circuit-complexity could be

investigated. For instance, the size of some arithmetic circuits can be exponentially reduced

when using negative weights. Can a similar benefit be shown in the more specific case of

SPNs? The relationship between nonmonotone SPNs and twin SPNs could also be examined

more closely. For example, perhaps it is always possible to convert a positive, nonmonotone

SPN into a twin SPN with only a polynomial increase in size. In that case there would be no

great disadvantage to restricting ourselves to twin SPNs. On the other hand, if performing

such a conversion is not always possible, then what do we lose by only using twin SPNs?
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Chapter 7

Conclusion

This dissertation builds on the work of Poon and Domingos [38], which introduced the

sum-product network model. It in turn built on the work of Darwiche [11], which introduced

the concept of the network polynomial and its representation as an arithmetic circuit. Our

contribution to the field includes three algorithms for learning the structure of an SPN, one of

which, BuildSPN, was the first SPN structure learning algorithm ever proposed. Another,

SearchSPN, adapts ideas from the LearnSPN algorithm [19] and uses a search approach to

learn the SPN structure. The third, OnlineSearchSPN, is an adaptation of SearchSPN

to the online learning setting. We also contribute by showing how SPNs can work with an

autoencoder to model image data. Our last contribution extends the definition of SPNs to

allow negative edge-weights. We explore some of the implications of this definition, prove

some theoretical results, and provide algorithms for learning. We detail more specifically

these accomplishments as follows.

• We define a region graph in Definition 2.1 and propose a method for building one from

data. In some important ways this method foreshadows the approach LearnSPN

takes in constructing a tree-structured SPN. Both recursively partition the rows and

columns of the training dataset to guide the construction of a tree-structured object, a

region graph in the case of our method and an SPN in the case of LearnSPN. We

also propose a method for converting a region graph into a DAG-structured SPN.

• The preceding bullet point outlines the main parts of our BuildSPN algorithm, the

first published SPN structure learning algorithm.
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• Our experiments with BuildSPN show the advantage of learning the structure of an

SPN instead of using a pre-specified, fixed SPN architecture.

• We prove in Theorem 3.1 that the function, f , computed by an SPN is equal to the

sum of all the functions computed by the complete sub-circuits (see Definition 3.2)

embedded in the SPN.

• Theorem 3.1 lets us express the likelihood function, and an approximation of it, in

such a way that we can justifiably calculate the amount each product node in an SPN

contributes to a low likelihood value. This is crucial in the SearchSPN algorithm (see

Algorithm 5) because it guides the selection of a product node at each step; and the

structure of the SPN near the selected product node is what then gets changed in that

step of the search procedure.

• The SearchSPN algorithm changes the structure of an SPN using the MixClones

operator (see Figure 3.2 and Algorithm 4). This operator is also a unique contribution

of this dissertation. The location at which it is applied is described in the previous

bullet point. Other features of its application are guided by partitioning the rows

and columns of subsets of the training data; the partitioning strategy we use is partly

inspired by the approach taken in LearnSPN.

• We propose the permanent distribution and an approximation to it in Section 3.5.1,

which we sample to produce the MNPerm datasets. Our experiments with these datasets

show that SearchSPN finds SPNs that are about the same size as those found by

LearnSPN but whose likelihood is much better. We hypothesize that the difference

is due to the ability of SearchSPN to find DAG-structured SPNs and the fact that

LearnSPN is restricted to learning tree-structured SPNs.

• In Algorithm 8 we propose OnlineSearchSPN, an adaptation of the SearchSPN

algorithm to the online setting.
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• We experimentally compare OnlineSearchSPN with two methods for adapting offline

structure learning algorithms to work as online algorithms. One of these methods is

slow but produces good models and the other is fast but produces poor models. In our

results we see that OnlineSearchSPN is not much slower than the fast algorithm

but produces models that are about as good as the slow algorithm. These results are

presented in Section 4.4.

• We propose the auotencoder-SPN (AESPN) model. It pairs an autoencoder with two

SPNs, one to model the input data and another to model the hidden representation, or

the encoded data. Three methods for drawing samples from this model are described

and experimentally compared on both an image generation task as well as an image

in-painting task. The results show that an autoencoder can help SPNs produce better

samples; the autoencoder also benefits by gaining the ability to generate images.

• In Definition 6.1 we generalize the definition of an SPN to allow negative edge-weights.

We also define monotone, nonmonotone, positive, and negative SPNs in Definitions 6.2,

6.3, 6.4, and 6.5.

• We prove that all positive SPNs, whether monotone or nonmonotone, are valid. In

other words, efficient, exact marginalization can be performed in any positive SPN.

This generalizes the previously-known result that all monotone SPNs are valid.

• We define a class of nonmonotone SPNs called twin SPNs and prove that every twin

SPN is positive. It is easy to check whether an SPN is twin or not, making this class of

nonmonotone SPNs especially useful in practice.

• Gradient descent is proposed as a method for learning the parameters of a twin SPN.

LearnTwin, outlined in Algorithm 14, is given as an improved method for learning

twin SPNs.
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• We experimentally compare nonmonotone SPNs with monotone SPNs and show them to

perform better when learning to model data drawn from box distributions, a distribution

we introduce for this purpose.

7.1 Future Work

An SPN combines probability distributions using mixture models and independence models,

or sum nodes and product nodes. If the scopes of the distributions in the mixture models are

the same, if the scopes of the distributions in the independence models are disjoint, and if any

marginal can be computed quickly in the constituent distributions, then any marginal can be

computed quickly in the SPN. Are mixture and independence models the only two ways of

combining probability distributions such that efficient, exact marginalization is preserved?

Proving this true would help us understand the limits of SPNs, and finding alternate methods

of combining distributions could expand the modeling power of SPNs.

We have presented several SPN structure learning algorithms, but there is room to

improve all of them. One possible improvement to both SearchSPN and OnlineSearch-

SPN would be to incorporate an SPN structure operator that removes nodes. Currently both

algorithms use the MixClones operator which only ever expands the SPN architecture. A

node-removal operator could help undo poorly-taken steps made during the structure search

and perhaps increase the number of possible structures that are reachable by the search.

Another idea is to combine a top-down and bottom-up structure learning algorithm. There

has only been one structure learning algorithm that learns by building an SPN from the

leaves to the root. Presumably this approach has a different bias than learning an SPN from

the root to the leaves, and combining the two could be beneficial.

The LearnTwin algorithm provides a method for learning nonmonotone SPNs.

However, the structure of S+ is learned without regard to the fact that it is eventually paired

with S−. A structure learning algorithm that directly learns the structure of a twin SPN

could be an improvement over LearnTwin. Twin SPNs are only a subset of the positive,
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nonmonotone SPNs. Developing learning algorithms for this larger set of SPNs could make

nonmonotone SPNs even more useful. On the other hand, if every positive, nonmonotone

SPN can be converted to a twin SPN with only a small increase in size then proving it true

would also be a useful result.
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[5] Léon Bottou and Yann LeCun. Large scale online learning. In Advances in Neural

Information Processing Systems 16, pages 217–224. MIT Press, 2003.

[6] Hei Chan and Adnan Darwiche. On the robustness of most probable explanations. In

Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence,

pages 63–71. AUAI Press, 2006.

[7] Mark Chavira and Adnan Darwiche. Compiling Bayesian networks with local structure.

In Proceedings of the 19th International Joint Conference on Artificial Intelligence, pages

1306–1312, 2005.

[8] Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Compiling relational Bayesian net-

works for exact inference. In Proceedings of the 2nd European Workshop on Probabilistic

Graphical Models, pages 49–56, 2004.

[9] David Maxwell Chickering. The WinMine toolkit. Technical Report MSR-TR-2002-103,

Microsoft, Redmond, WA, 2002.

109



[10] Myung Jin Choi, Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky.

Learning latent tree graphical models. Journal of Machine Learning Research, 12:

1771–1812, May 2011.

[11] Adnan Darwiche. A differential approach to inference in Bayesian networks. Journal of

the ACM, 50:280–305, May 2003.

[12] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. In

Advances in Neural Information Processing Systems 24, pages 666–674. Curran Associates,

2011.

[13] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of

random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):

380–393, April 1997.

[14] Aaron Dennis and Dan Ventura. Learning the architecture of sum-product networks

using clustering on variables. In Advances in Neural Information Processing Systems 25,

pages 2042–2050. Curran Associates, 2012.

[15] Aaron Dennis and Dan Ventura. Greedy structure search for sum-product networks. In

Proceedings of the 24th International Joint Conference on Artificial Intelligence, pages

932–938. AAAI Press, 2015.
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