
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2016-06-01

The Asynchronous t-Step Approximation for
Scheduling Batch Flow Systems
David R. Grimsman
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Grimsman, David R., "The Asynchronous t-Step Approximation for Scheduling Batch Flow Systems" (2016). All Theses and
Dissertations. 5957.
https://scholarsarchive.byu.edu/etd/5957

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5957&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5957&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F5957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5957?utm_source=scholarsarchive.byu.edu%2Fetd%2F5957&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

The Asynchronous t-Step Approximation for

Scheduling Batch Flow Systems

David R. Grimsman

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Sean Warnick, Chair
John Hedengren

Bryan Morse

Department of Computer Science

Brigham Young University

June 2016

Copyright c© 2016 David R. Grimsman

All Rights Reserved

ABSTRACT

The Asynchronous t-Step Approximation for
Scheduling Batch Flow Systems

David R. Grimsman
Department of Computer Science, BYU

Master of Science

Heap models in the max-plus algebra are interesting dynamical systems that can be
used to model a variety of tetris-like systems, such as batch flow shops for manufacturing
models. Each heap in the model can be identified with a single product to manufacture. The
objective is to manufacture a group of products in such an order so as to minimize the total
manufacturing time. Because this scheduling problem reduces to a variation of the Traveling
Salesman Problem (known to be NP-complete), the optimal solution is computationally
infeasible for many real-world systems. Thus, a feasible approximation method is needed.

This work builds on and expands the existing heap model in order to more effectively
solve the scheduling problems. Specifically, this work:

1. Further characterizes the admissible products to these systems.

2. Further characterizes sets of admissible products.

3. Presents a novel algorithm, the asynchronous t-step approximation, to approximate
these systems.

4. Proves error bounds for the system approximation, and show why these error bounds
are better than the existing approximation.

Keywords: Batch flow systems, Scheduling, Max-plus algebra, Dynamic programming, Heap
models

ACKNOWLEDGMENTS

This work reflects the support that I have received as graduate student, first and

foremost from my wife, Kalisha. She has made extraordinary efforts and sacrifices so that I

can have this opportunity to pursue an education. This work is also a tribute to my adviser

and friend, Prof. Sean Warnick, who has been my biggest advocate in the academic world to

help me accomplish my goals. Finally, thank you to my commitee and my colleagues in the

IDeA Labs who have offered criticism and insight to this work.

Table of Contents

1 Introduction 1

1.1 Problem Formulation . 2

2 Related Works 6

3 Background 9

3.1 Max-Plus Algebra . 9

3.2 Non-Rigid Heap Model . 11

3.3 Communication Graphs . 13

3.4 Dynamic Programming and Bellman’s Equation 15

3.5 The Symmetric t-Step Approximation . 17

4 Subsets of Mn 18

4.1 Rigid Matrices and Eigenvalues . 18

4.2 System Equilibria . 20

5 Approximation Method 25

5.1 Systems that Always Depend on x0 . 25

5.2 Symmetric Systems . 26

5.3 Asymmetric Systems . 28

5.4 Approximation Method . 28

5.5 Example . 31

iv

6 Error Bounds 35

6.1 Example . 38

7 Future Work 40

References 42

v

Chapter 1

Introduction

As an introduction to the topic of this work, consider as a prototype application a

chemical manufacturer that makes N chemical mixtures using M machines. Denote the

chemical mixtures as c1, c2, ..., cN and the machines as m1,m2, ...,mM . This work assumes

that each machine will only work at full capacity - an important constraint for many machines

of this nature. In general, each machine will have a different capacity, denoted as v1, v2, ..., vM .

One problem that the manufacturer faces with each machine is how to determine the

batch size based on the recipes for the chemical mixtures. Because each machine must run

at capacity, the batch size is fixed by each recipe. For instance, if v1 = 1 and v2 = 2, then

each chemical must run 2 units through m1 before running through m2. The first unit will

be stored in m2 to wait for the second. Alternatively, if v1 = 2 and v2 = 1, half the unit in

m1 will have to remain there while the other half is processed in m2. Therefore, each batch

recipe will require an exact amount of ci be created at a time - this amount is the batch size

(see Figure 1.1 for an additional example). While determining the batch size is important,

this work assumes that this problem has been solved.

Instead this work focuses on the associated sequencing problem: once the batch recipes

have been created and the batch sizes set, given a quota of batch recipes, determine the

shortest sequence that meets the quota. For instance, consider a quota of 1 batch of c1 and 1

batch of c2. There are 2 possible sequences, and in general, each sequence takes a different

amount of time to complete. The solution to the sequencing problem is finding the sequence

that minimizes the total time.

1

(a) (b) (c)

Figure 1.1: Two batch recipes using the same recipe, but with different machine capacities.
The recipe is shown in (a). If v1 = v2 = v3 = v4, the block representation for the batch recipe
is shown in (b). If v1 = v3 = v4 and v2 = 2v1, the block representation for the batch recipe is
shown in (c). Note that the batch size for (c) will be double that of (b), since more of ci will
need to be processed at one time. The focus of this work will not be determining batch size,
rather, how to sequence the blocks once they’ve been created.

One way to model this situation is by using blocks, shown in Figure 1.1. The horizontal

component of each block represents each machine in the chemical manufacturing plant. The

vertical component is time. Using this model, a sequence of batch recipes is equivalent to

stacking these blocks, as shown in Figure 1.2. These blocks are non-rigid, since they may

“stretch” when waiting for the next machine to complete its processing. This can be considered

idle time for the waiting machine.

1.1 Problem Formulation

Generalizing the chemical manufacturing example, a batch flow shop has M workstations

and N distinct batch recipes. Batch flow shops can be applied to numerous real-world

systems, including construction, computer processing, baking, and assembly lines. This work

is narrowed to batch flow shops with the following restrictions:

2

Figure 1.2: This figure shows an example of how the sequence affects the total time. On the
left, there is one sequence of two blocks, and on the right, the reverse sequence. Notice how
the blocks stretch in order to accommodate times where the mixtures are waiting for the
next machine to be available. This is the consequence of the no-intermediate storage and
full-capacity constraints in the system.

• A workstation is a single machine, in contrast to environments where a workstation can

be multiple machines working in parallel. Initially solving the single machine problem

will allow future work to relax this requirement to solve the more general problem.

• There is no intermediate storage, although machines themselves can act as storage.

There are situations where intermediate storage is impossible, so this simplification

directly maps to some real-world problems. Additionally, a scheduling problem where

intermediate storage is allowed would naturally break into multiple scheduling problems

where it is not allowed. Thus this constraint forces us to solve the more difficult problem

where the machine schedules are coupled.

• Each machine must run at full capacity - also a requirement of many machines, since

running at partial capacity can be harmful to the machine.

• Each batch recipe must access the workstations in the same order. This is by definition

of a flow shop.

3

The purpose of this work is to solve the following problem:

Problem 1. Using the following definitions:

• Items: let n = {n1, ..., nN} be a set of batch recipes.

• Sequencing rule: a sequence s of length K is ni1ni2 . . . niK , where nij ∈ n. A sequence

s is created by running batch recipe ni1, followed by ni2, etc.

• Sequence measurement: the measurement H(s, x0) is the time it takes for the

sequence to complete if x0 is the state of the machines when s begins.

Let a quota q = [q1 q2 . . . qN], where each qi represents the number of ni required in the quota.

Also, let the set Sq = {s | s is a sequence of length ||q||1 and contains qi of item ni}. The

the problem can be formulated to solve for s∗:

s∗ = argmin
s∈Sq

H(s, x0) (1.1)

Notice that when using the block (or heap) model, the following can be redefined to

find an equivalent s∗:

• Items: n is a set of blocks

• Sequencing rule: a sequence s is a heap of blocks created by stacking block ni1 ,

followed by ni2 , etc.

• Sequence measurement: the measurement H(s, x0) measures the height of heap s

with initial condition x0.

It is also shown in Chapter 3 that these items can be redefined again in the max-plus algebra

when considering a different model for the problem.

For an arbitrarily large quota, Problem 1 can be associated with a variation of the

Traveling Salesman Problem, where each city must be visited qi times, and the distance

between cities depends on the previous path. Thus it is NP-Complete and not computationally

4

tractable. Therefore, the method of this work to solve Problem 1 is to approximate the

system and then solve the lower-order approximation.

5

Chapter 2

Related Works

Theory and algorithms to understand and solve general scheduling and sequencing

problems are abundant in the literature (see [1], [26], [22] for example). Because this problem

is known to NP-Complete, tractable algorithms can only guarantee an estimate of the optimal

schedule or sequence [12]. Thus, modeling the specifics of a problem instance can lead to

better estimates. To this end, some researchers have created problem formulations specific to

batch scheduling and sequencing. For instance, [8] considers multi-purpose batch schedules,

where alternative routing is allowed. The authors formulate the problem as a mixed integer

non linear optimization. In another case, [20] considers batches that can be merged or split

as required, where the problem is formulated as a mixed integer linear programming problem.

This work only considers batch flow shops, where all products follow the same sequence

of production. In this space, much work has been done to solve the scheduling problem,

however, the solution depends on the objective. In [27], various objectives are presented,

including minimizing makespan, maximizing throughput, minimizing weighted tardiness, and

minimizing lead time. For instance, consider the objective to minimize weighted tardiness.

With this objective each job has a due date, and the goal is to make sure that every job gets

completed before its due date. Therefore, each job has a different priority and the solution to

the scheduling problem is a schedule that minimizes the tardiness (in a weighted sense) of

each job. An algorithm for computing an estimate for this type of schedule is found in [29].

As shown in Problem 1, the objective for this work is to minimize the makespan, or

total manufacturing time. Traditionally, this has been the objective for batch flow shop

6

scheduling problems, but still the models and methods vary. For instance, [19] considers an

algorithm for a simple two-machine job, later enhanced in [18]. Another simplified model

is the single-machine with setup costs, examined in [31] and [4]. Other research, such as

[25], schedules the jobs according to a heuristic called “slope index”, showing optimality

bounds on this technique. Later work has focused on using variations of branch-and-bound

techniques, each with its own heuristic. For a survey on such heuristics, see [6]. Using the

properties developed in max-plus algebra, this work seeks to create a new heuristic for the

algorithm for the batch flow shop scheduling problem.

One complexity of batch systems is determining the optimal capacity, also called the

lot sizing problem. The literature shows that others have developed methods to estimate

the optimal lot sizing (see [7], [10], [15]). This work assumes that the lot sizing problem has

already been solved. Additionally, this work assumes that the batch sizes have already been

determined using the process in [33]. Therefore, the recipe for each batch recipe is given and

the scheduling problem is reduced to a sequencing problem.

Using the heap model to simulate the dynamics of the batch flow shop was first

developed by Gaubert and Mairesse [13]. This model equates a batch recipe with a rigid

tetris-like block, and thus the objective to minimize the makespan is equated to the objective

to minimize the height of the heap of blocks. Following in this tradition, a model for non-rigid

heaps, as described in Chapter 1, was created in [33]. This work is meant to extend the work

done in [33] using the non-rigid heap model.

In [13], Gaubert and Mairesse also used the max-plus algebra as a tool for problem

formulation and analysis. The max-plus algebra is precisely defined in Chapter 3, but suffice

it to say here that it is a semiring over the real numbers and −∞. The authors show that

each batch recipe is equivalent to a matrix representation, where the multiply operator

simulates stacking. This definition is also used in [33], but the work is limited to a closed set

of matrices representing the non-rigid heaps - the setMn. Thus, this work can leverage much

of the max-plus theory created in the literature. For instance, this work relies heavily on the

7

spectral theory presented in [17] to help analyze the properties of these matrices. Specifically,

Mn is a subset of matrices called irreducible matrices. The work in [17] also contains proofs

using connection graphs, which are also utilized here.

Irreducible matrices have also been well-studied. In [5], the author presents properties

of powers of irreducible matrices. Also in [24] an analysis of sequences of matrices that

exhibit a memory-loss property is presented. This property is fundamental in this work for

an approximation algorithm.

In Chapter 5 a method is presented to approximate the systems described in Chapter

1. Once this approximation is completed, a dynamic programming solver can be used to solve

the simpler system. Dynamic programming is a well-studied topic, with many applications,

including control theory [3], artificial intelligence [30], and operations research [28]. Methods

include Q-learning [32], SARSA, approximate value functions, and step size rules. Most of

these methods, however, assume an infinite horizon, whereas this work is concerned with

finite horizons, represented by the quota. For this subset of dynamic programming problems,

algorithms such as Dykstra’s algorithm [9] or A∗ [16] can provide an exact solution. If the

approximation remains intractable for one of these algorithms, other algorithms have been

developed for further simplification, including IDA∗ [21] and SMA∗[11].

8

Chapter 3

Background

3.1 Max-Plus Algebra

This project leans heavily on analysis in the max-plus algebra, which has the following

conventions:

• a⊕ b = max{a, b}

• a⊗ b = a+ b

• a� b = a− b

• ε = −∞

The max-plus semiring Rmax is the set R ∪ {−∞,∞} equipped with the above

operations. Matrix operations are also defined for max-plus, analogous to normal matrix

algebra. For A,B ∈ Rn×l
max, C ∈ Rl×m

max:

• [A⊕B]ij = aij ⊕ bij

• [B ⊗ C]ik =
l⊕

j=1

[bij ⊗ cjk]

Likewise, if x, y ∈ Rn
max, then y = A⊗ x with the following methodology:

yi =
l⊕

j=1

aij ⊗ xj (3.1)

Here the notation for subscripts on a vector is abused: yi is the ith component of y. The rest

of this work uses xk to indicate the value of vector x at time k unless otherwise noted. Using

9

these definitions, an autonomous linear system for max-plus algebra can be defined. For

x(k) ∈ Rn
max, k ∈ N, where N denotes the non-negative integers, and A ∈ Rn×n

max, the following

recursion-generated sequence

xk+1 = A⊗ xk, (3.2)

is well-defined and characterized by

xk = A⊗k ⊗ x0,

where x0 ∈ Rn
max is the initial condition, and A⊗k denotes the matrix A raised to the kth

power, in the max-plus sense of matrix multiplication.

Definition 1. Let x ∈ Rn
max. The vector C(x) ∈ Rn

max is called the contour vector of x and

is given by C(x) = x�minx, where minx is the minimum element of x.

One important property to note for the systems considered is that the first element in

x is always the minimum value, hence the first element of C(x) is always 0.

Definition 2. Let x, y ∈ Rn
max. Then x and y are said to have the same contour if

C(x) = C(y).

In [24] and [14] a memory-loss property (MLP) is described for arbitrary sequences of

max-plus matrices. The property is restated here as it pertains to this work:

Definition 3. Consider a sequence of p matrices A1, A2, ...Ap ∈ Rn×n
max . The sequence is

defined as having the memory-loss property (MLP) if C(A1⊗A2⊗ ...⊗Ap⊗x0) is independent

of x0.

The asymptotic behavior of sequences of matrices has been studied in several places,

including [23]. Note that when A1 = A2 = ... = An, the sequence characterizes the system

described in (3.2). In this case it is said that the matrix A has the MLP when C(x(k)) is

independent of x0 for sufficiently large p.

10

Figure 3.1: Blocks A, B, and C.

Block Upper Contour Lower Contour Matrix

A u =

 2
3
4

 l =

 e
1
2

 M(A) =

 2 1 e
3 2 1
4 3 2

B u =

 2
3
5

 l =

 e
2
3

 M(B) =

 2 e ε
3 1 e
5 3 2

C u =

 1
2
3

 l =

 e
1
2

 M(C) =

 1 e ε
2 1 e
3 2 1

Table 3.1: Mathematical modeling of a 3-block system. Note that these blocks correspond
to the shapes in Figure 3.1, and the upper contour of stacking shapes, as in Figure 3.2,
corresponds to the result of matrix multiplication of the corresponding matrices operating on
the appropriate initial condition.

3.2 Non-Rigid Heap Model

The stacks of “stretchy” blocks described in Chapter 1 are referred to as non-rigid heaps.

Each block P has a corresponding matrix M that can be created using u and l, the upper

and lower contour vectors of P . The process is found in [33]:

[M(P)]ij =

 ui(P)− lj(P) if ui(P)− lj(P) ≥ 0

ε otherwise.
(3.3)

Here again the vector subscripts in u and l represent elements in the vectors. For

the blocks in Figure 3.1, the corresponding matrices are found in Table 3.1. The key to

11

Figure 3.2: Heap resulting from processing products A,
B, C, A, and C from the example in Figure 3.1. This
shows that blocks can take different shapes depending
on the state of the system, or shape of the contour below
the block.

using max-plus algebra in this context is that stacking blocks is equivalent to multiplying

the corresponding matrices. Thus, the theory from the previous section can be leveraged

to gain insight into these types of systems. As an example, consider an initial condition

x0 =

[
0 0 0

]T
followed by the sequence A, B, C, A, C. The resulting non-rigid heap is

shown in Figure 3.2. Using max-plus multiplication,

xfinal = C ⊗ A⊗ C ⊗B ⊗ A⊗ x0

=

[
9 10 11

]T (3.4)

Each entry in xf corresponds to the height of the resulting heap at each workstation

as illustrated in Figure 3.2. A heap resulting in stacking the same block A repeatedly would

result in the linear system described in (3.2). Also note that the overall height of the heap is

given by the max entry in xf , or ||xf ||∞.

12

Definition 4. [33] A matrix A is in Mn ⊂ Rn×n
max if:

ai+1,j ≥ aij, i ≤ n− 1, j ≤ n, (3.5)

aij ≥ ai,j+1, i ≤ n, j ≤ n− 1, (3.6)

ξ1j(A) ≥ . . . ≥ ξnj(A), j ≤ n, (3.7)

aij > −∞, j ≤ i+ 1, i ≤ n, j ≤ n. (3.8)

The setMn is a subspace and every matrix created using (3.3) is inMn. Additionally,

Mn is closed under the max-plus multiply operation. Thus the focus of this work is limited

to those matrices in Mn, and Problem 1 can be equivalently redefined as follows:

• Items: n is a set of matrices in Mn

• Sequencing rule: a sequence s is a chain of max-plus matrix multiplications beginning

with x0 and then multiplying by ni1 , followed by ni2 , etc.

• Sequencing measurement: the measurement H(s, x0) is ||xK ||∞, where xK is the

resulting vector from the sequence s.

3.3 Communication Graphs

Studying the properties of matrices inMn often requires insight from a corresponding model:

the graph model. Viewing a matrix A ∈Mn as an adjacency matrix for a communication

graph, G(A), additional properties can be inferred. G(A) is created from A with the following

convention: the arc from node i to node j in G(A) has weight aij. If aij = ε, then no arc

exists in G(A) from i to j (see Figure 3.3).

Multiplying two matrices A and B together is equivalent to connecting G(A) and

G(B) together and solving for a maximum path. In order to better understand this process,

this project leverages the following graph properties for matrices in Mn:

13

Figure 3.3: A simple block with its corresponding matrix and graph

1. A circuit in G(A) is a path that begins and ends with the same node. A circuit is

elementary if the nodes in the circuit have only one incoming and one outgoing arc [17].

A critical circuit is one that has maximum average weight per arc for G(A).

2. The critical graph of A, Gc(A) is the subgraph of G(A) comprised only of nodes and

arcs from critical circuits.

3. The cyclicity of G(A) is the greatest common divisor of all the lengths of the elementary

circuits in G(A).

4. G(A) is strongly connected if every node in G(A) communicates with every other node.

5. A is irreducible if there exists a path in G(A) from every node to every other node.

6. A maximal strongly connected subgraph (MSCS) of G(A) is a strongly-connected sub-

graph of G(A) that is not strongly connected to any other subgraph. An MSCS must

have at least 1 arc.

7. An irreducible matrix is primitive if for every MSCS of Gc(A), the lengths of all cycles

are coprime.

14

3.4 Dynamic Programming and Bellman’s Equation

Dynamic programming is a well-studied method that was first introduced by Richard Bellman

in the 1950s in order to solve multistage decision problems [2]. These problems assume the

following elements:

• A state space X that contains every possible state of the system xk for all k

• An input space U that contains every possible input uk for all k

• A random vector of information wk whose value is not known until after uk has been

applied to xk.

• A transition function f(xk, uk, wk) that governs how x evolves

• A cost function c(xk, uk) that gives the cost of taking action uk while in state xk, but

before wk+1 is applied

The goal is to choose uk so as to minimize some objective function. However, one does

not know in advance which uk is best until time period k - in other words, it depends on the

value wk−1, which was randomly given by the system. Thus, it is necessary to use feedback of

the current state in order to guide the choice for uk. The solution to a dynamic programming

problem then comes in the form of an optimal policy π∗, which can be considered a function

or look-up table for how uk should be chosen based on xk.

In his original work, Bellman introduced a function V (x), which represents the best

possible total value achieved when starting at state x. Then V (x0) could be recursively solved

for using the following:

V (x) = min
u∈U

(c(x, u) + E{V (f(x, u, w))}) (3.9)

In other words, V (xk) can be obtained by finding the best uk to minimize the current cost

function plus V (xk+1). But, in order to find V (xk+1), one needs to know V (xk+2) and so

on until the end of the horizon at time K. Once V (xK) is known, V (x0) can be found by

15

Figure 3.4: A decision tree for the blocks in Figure 3.1 for k = 0, 1, 2. The weight on each
edge is the incremental height to add the corresponding block to the top of the heap. For the
heap shown in Figure 3.2, notice adding B on top of A increments the height of the heap by
3 for x0 = 0. Thus the weight of the branch between xA and xAB is 3.

working backwards. This also produces policy π∗, because uk is simply chosen as the one

that gives the best current value plus expected value for the next time step.

Problem 1 can be solved using dynamic programming. In this system, xk is the value

of the upper contour of the heap after k blocks have been stacked, uk is the block stacked at

time k (this also takes into account the quota), f(x, u) is the sequencing operation, c(xk, uk)

is the amount that the height of the stack increments when the block chosen by u is placed

on a stack with upper contour x, and K is the size of the quota. This system is simpler

than the general multistage decision process described above, in that there is no random

information wk, since it is assumed that the job types are fixed. With this assumption, π∗

becomes a sequence u0, ..., uK−1 that can be completely determined in advance.

The biggest drawback of this approach is what Bellman termed the curse of dimen-

sionality, in other words, for large problems, this solution technique is not tractable. In

Problem 1, this curse is found in the number of possible states at each time k. For instance,

consider the blocks in Figure 3.1. For k = 2, all possible states are shown in the decision tree

in Figure 3.4. Note that the number of states is 3k, and each state could potentially depend

16

on x0. Therefore, without mitigation, it would quickly be intractable to consider all possible

paths in the tree.

3.5 The Symmetric t-Step Approximation

The reason for this explosion in the state space is because each xk could depend on x0.

Therefore, it is unclear whether whether all possible xk are the same as xk+1 and whether

any of the edge weights repeat. The symmetric t-step approximation (STA), as presented

in [33], is the current approach for mitigating this complexity. Rather than computing the

weights for all edges back to k = 0, a value t is chosen which represents how far to look back

to estimate what states are possible at k.

For example, consider again the decision tree in Figure 3.4 and assume t = 2 and

x0 =

[
0 0 0

]T
. The value of the state xBBB = C(B⊗3 ⊗ x0) =

[
0 1 3

]T
. However,

if x0 =

[
0 0 4

]T
, then xBBB =

[
0 2 4

]T
. Under the STA, xBBB = xBB = C(B⊗2 ⊗[

ε ε 0

]T
) =

[
0 2 3

]T
, and the actual value of x0 is not considered. A more detailed

discussion of the STA and how it affects decision trees is found in Chapter 5.

17

Chapter 4

Subsets of Mn

In order to create a better approximation than that provided by STA for the state

space of Problem 1, it is helpful to understand some partitions of matrices within the setMn.

This chapter focuses on properties of individual matrices and sequences of a single matrix

repeated. Chapter 5 then focuses on heterogeneous sequences of matrices.

4.1 Rigid Matrices and Eigenvalues

Definition 5. A matrix A ∈ Mn is described as rigid if C(A ⊗ x) does not depend on x,

where x ∈ Rn
max.

In terms of the block model, a rigid block is one that has a fixed upper contour

regardless of the state of the heap it is stacked on. A rigid matrix by definition has the MLP,

but some non-rigid matrices may also have the MLP. Thus only some of the matrices in Mn

are rigid. The next theorem completely characterizes these matrices.

Theorem 6. A ∈Mn is rigid if and only if A is rank 1 in the max-plus sense.

Proof. Suppose A is rank 1. Then dim(R(A)) = 1 and A⊗x = c⊗xA for some xA and scalar

c, and for all x. Since C(c⊗ xA) = C(xA), then A is rigid from Definition 5. Conversely, if A

is rigid, then A⊗ x is independent of x. Call the vector A⊗ x, xA. Then A⊗ x = c⊗ xA for

all x. Thus, A is rank 1.

Theorem 6 yields a quick way to find whether a matrix is rigid: simply test whether it

is rank 1. An example of such a matrix is A in Table 3.1: C(A⊗ x) =

[
0 1 2

]T
for all x.

18

Now Mn is divided into 2 subsets of matrices: rigid and non-rigid. To take a closer look at

the properties of both requires graph theory.

Lemma 7. Every A ∈Mn has cyclicity 1.

Proof. By definition, the cyclicity is the greatest common divisor of the lengths of the

elementary circuits in G(A). Since aii 6= ε for i = 1, 2, ..., n, G(A) has self-loops at every

node. This implies that G(A) has elementary circuits with length one. No matter what other

critical circuits exist in G(A), the greatest common divisor for the lengths of all the circuits

must be 1. Therefore, the cyclicity is 1.

Lemma 8. Every matrix A ∈Mn is irreducible.

Proof. From our set Mn, since ε’s can only exist in the upper right corner strictly above the

first superdiagonal, it follows that every node in G(A) has a path to every other node. Thus,

every matrix A ∈Mn is also irreducible.

This result allows us to take advantage of other results concerning irreducible matrices.

Lemma 9. [17] Let A be an irreducible matrix. Then there exists a positive integer c (the

cyclicity of A), λ ∈ Rmax (unique eigenvalue of A), and a positive integer K such that

∀k ≥ K, A⊗k+c = λc⊗ A⊗k (4.1)

Because every matrix in Mn has cyclicity 1, (4.1) can be modified to the following:

∀k ≥ K, A⊗k+1 = λ⊗ A⊗n (4.2)

This implies that for the linear system described in (3.2), C(xk) converges to a single

vector. In block model terms, a block stacked on itself over and over converges to an upper

contour. More precisely stated, there exists K such that xk+1 = λ⊗ xk for k ≥ K. Note also

that xk is an eigenvector for A, as is c⊗ xk ∀c ∈ R.

19

Figure 4.1: This is the set Mn, partitioned to reflect fundamentally different kinds of blocks.
The right partition is Ū , comprised of non-rigid matrices without the MLP. The left is U ,
with both rigid and non-rigid matrices that have the MLP. An example of each type of block
from Table 3.1 is shown.

Theorem 10. Let A ∈ Mn. Then A has a unique eigenvalue λ equal to its maximum

diagonal entry.

Proof. According to [17], knowing that A is irreducible implies that λ is unique and that

its value is the maximum average circuit weight for G(A). It is also known from [33] that

the average circuit weight for every circuit in G(A) is less than or equal to the maximum

diagonal entry. Therefore, the maximum diagonal entry is the eigenvalue.

4.2 System Equilibria

This section attempts to further classify the matrices in Mn by looking at the eigenvectors

and revisiting the MLP.

Definition 11. For matrix A, dimλ(A) is the dimension of the eigenspace of A in the

max-plus sense. Note that dimλ(A) = 1 if and only if A has the MLP. Also, dimλ(A) = 1 is

equivalent to the statement that the system in (3.2) has a unique equilibrium.

Because rigid matrices have the MLP, it follows that dimλ(A) = 1. However, this

need not be the case for all matrices in Mn - see Figure 4.1. In order to find an easy way to

distinguish matrices that have the MLP, some results from the literature are restated.

20

Lemma 12. [17] Let A ∈Mn Then every vertex in the critical graph of A has a self loop.

This lemma is intuitive given the results and proof of Theorem 10. This also implies

that the vertices in the critical graph correspond to the maximum diagonal entries in A.

For the following lemma, note that in [5], a strongly irreducible matrix A is one where

A⊗k is also irreducible for every value of k. Since A ∈Mn implies A⊗k ∈Mn, every matrix

in Mn is strongly irreducible by Lemma 8.

Lemma 13. [5] For a strongly irreducible A, dimλ(A
⊗k) =

∑
iGCD(ri, k), where

• GCD(x, y) is the greatest common denominator between x and y

• ri is the GCD of the lengths of all critical cycles of A in the ith connected component

of Gc(A).

If A ∈ Mn, then ri = 1 (Lemma 12), GCD(ri, k) = 1, and therefore dimλ(A
⊗k) =∑

iGCD(ri, k) = # maximal strongly connected subgraphs (MSCS’s) in Gc(A).

Theorem 14. Assume a matrix A ∈Mn. The following are equivalent statements:

1. dimλ(A) = 1

2. Gc(A) has a single MSCS

3. A has the MLP.

Proof. The equivalence of 1) and 2) follow from the above discussion. Because the dimλ(A) =

1, C(x(k)) is unique and independent of x0 for sufficiently large k. Therefore, 3) is equivalent.

Thus, in Mn, a simple test for the MLP is whether Gc(A) has multiple MSCS’s.

This also implies that matrices in Mn with the MLP are dense in the space. With small

perturbations to the diagonal entries, a matrix without the MLP can easily be converted to a

matrix with the MLP. In terms of blocks, this corresponds to making small modifications to

the upper and lower vectors.

21

Figure 4.2: Block A is a rigid element of Mn, which means that the resulting upper contour
is invariant to initial conditions (x0 = [0 0 0]T , left, and x0 = [0 0 4]T , right, respectively).
Note that as an element of Mn, block A still stretches without affecting its upper contour
(right figure).

While limiting our system to one block may seem overly restrictive, note that a single

block can represent any number of blocks already sequenced together. Thus, the analysis of

a single matrix also leads to conclusions about periodic sequences.

This section concludes by showing an example matrix for each subset. Again the

blocks in Figure 1 are employed. Block A is a rigid matrix in the partition U (see Figure

4.1). As expected, one can see in Figure 4.2 that the heap immediately converges to an upper

contour, and that upper contour is the same, regardless of the initial condition. Block C

corresponds to a non-rigid matrix in the partition U . In Figure 4.3, the upper contour after

stacking the block once is different depending on the initial condition. However, notice that

the upper contour at convergence is the same either way. Block B corresponds to a matrix in

the partition Ū . Notice in Figure 4.4 regardless of the initial condition, the upper contour

converges after stacking it once. This is not indicative of matrices in Ū in general, but it is

convenient for an example. Notice also that the upper contour is different on the left than on

the right, so the upper contour at convergence is dependent on the initial condition.

The point of this discussion is to show that there exist sequences of matrices of size 1

whose equilibrium does not depend on x0, yet there also exist large finite sequences whose

22

Figure 4.3: Block C is non-rigid and has a unique equilibrium. After stacking it once, the
resulting upper contour is different depending on what the initial condition is. However, after
stacking the block again, the upper contour is the same because it converged to the same
equilibrium value regardless of the initial condition.

Figure 4.4: Block B is non-rigid and has multiple equilibria. Like block C, this block also
converges after being stacked twice. Nevertheless, the resulting upper contour is different
depending on the initial condition.

23

equilibrium does. This chapter characterizes these two groups using spectral and graph

analysis in the max-plus algebra.

24

Chapter 5

Approximation Method

This chapter seeks to characterize sequences of matrices, and then use that characteri-

zation to develop a method for approximating the system described in Problem 1.

5.1 Systems that Always Depend on x0

As described in the previous chapter, there are some groups of matrices that, when multiplied

together in some order, never exhibit the MLP. This means that regardless of how long the

system runs, the possible states at any time k are dependent on the initial condition.

As an example, consider a non-rigid heap system, as in Equation (3.2), with only two

possible block types. The first block is given by block B from Table 3.1, and the second block

is described by the following matrix:

D =

3 e ε

4 1 e

7 4 3

 . (5.1)

Now suppose that the objective is to sequence two B blocks and four D blocks in a heap

with minimal total height.

25

When considering this problem, there are 15 possible sequences to choose from. Out

of these, 10 result in a heap with the property that the upper contour of the heap depends

on the initial condition. For instance, the sequence

D ⊗B ⊗D ⊗B ⊗B ⊗B =

16 13 11

18 15 14

20 17 16

 (5.2)

is non-rigid, since the max plus rank is 2. The initial condition

[
0 0 0

]T
yields a re-

sulting contour

[
0 2 4

]T
while the initial condition

[
0 0 5

]T
yields a resulting contour[

0 3 5

]T
. Thus this path in the system is dependent on x0.

5.2 Symmetric Systems

Some non-rigid heap systems are characterized by a set of blocks that become rigid after a

fixed number of steps no matter how they are combined. These systems exhibit a degree of

deadbeat-like behavior symmetrically. For example, consider a system with the following

three block matrices:

E =

0 0 ε

3 3 1

5 5 3

 , F =

0 0 ε

2 2 e

6 6 4

 , G =

4 1 ε

7 4 2

7 4 2

 (5.3)

Any multiplication of two of these matrices together yields a rigid matrix. Thus, every

sequence in the system has the MLP and all initial conditions are lost after 2 time steps.

This allows an enormous reduction in the possible state values the system can exhibit. If each

choice of matrix led to a unique state, then after k time steps, there would be 3k possible

states. However, knowing that the system can be approximated symmetrically with k = 2

means that there are really only 9 possible states (1 for every potential sequence of 2) at time

26

Figure 5.1: The right edge coming out of each node corresponds to choosing E, the middle
F , and the left G. Note that the possible states of the system at time 2 is the same as those
at time 3 and at time 4. Additionally, the edge weights between all states at time 2 and time
3 are the same as those between 3 and 4

step 2. Additionally, these 9 states are the only ones that are possible for all remaining time

steps.

The decision tree for this system is shown in Figure 5.1. Notice that all states at time

1 are functions of the initial condition, but all states at time 2 are not. Notice also that at

time step 2, the path EE leads to the far right state. Likewise, starting from any other state,

such as the F state in time 1, will end up in the far right state after two subsequent steps

choosing EE. Thus once the topology of the graph is understood for the transition between

time steps 2 and 3, the rest of the graph is known until the quota is complete. Note that rigid

heap systems, or systems with blocks that are all rigid, are just special cases of systems with

symmetric approximation, where the symmetric approximation occurs in only one time step.

27

5.3 Asymmetric Systems

Finally, the most generic non-rigid heap system is one characterized by a set of block matrices

such that some combinations become rigid while others do not. As a result, some paths in

the decision tree take longer to exhibit rigid behavior than others. In this context, consider

again the matrices A and C in Table 3.1, combined with the following matrix:

L =

8 e ε

9 2 e

12 6 4

 (5.4)

Recall that A is rigid, while C and L are not. Some length-2 sequences in the system are

non-rigid, including CC, and some length-3 sequences are non-rigid, including LLL. All

length-4 sequences are rigid. Therefore, a similar shrinking of the possible state space can be

seen, illustrated in Figure 5.2. Note the number of arrows connecting to the far right state,

which is the state after choosing A, and only one arrow to the far left state, corresponding to

the sequence LLLC. Figure 5.2 also shows that all possible states are known at by k = 4.

5.4 Approximation Method

The goal of this section is to present a novel approximation method for a given system

that shrinks the state space while staying as close as possible to the original dynamics. In

[33], recall that the STA is developed and error bounds are shown. Essentially, this method

approximates a system with a symmetric approximation: all paths of length t are assumed

rigid. As t increases, the closer the approximation becomes to the actual system.

Understanding the dynamics of these systems, however, suggests that one can do

better given complexity constraints. An asymmetric t-step approximation (ATA) is proposed

in this section. This approximation leverages the fact that once a sequence is rigid, there is

no need to traverse the decision tree beyond that point when searching for the state value.

28

Figure 5.2: A decision tree showing an asymmetric approximation. The right edge coming
out of each node corresponds to choosing A, the middle C, and the left L. Note that all the
states and edges repeat after k = 4.

29

In Figure 5.2, if there were an A anywhere in a path, one need not look back any farther to

know the current state or weight on an edge.

For non-rigid matrices, the natural next step is to consider how rigid a matrix is.

Sequences of matrices tend toward being rigid, since rank(A⊗B) ≤ min(rank(A), rank(B)).

Therefore, using rank as a metric for rigidness, an algorithm for approximating a system

asymmetrically can be developed. As mentioned, the STA reduces the number of nodes in

the decision tree in a uniform way, allowing a reduction in complexity. The ATA leverages

the rank to better determine which nodes are redundant.

Here the term approximation is used because it could be the case that the system is

fundamentally too complex to solve the sequencing problems given the available resources. In

Section 5.2, the system was able to condense its decision tree while still maintaining the exact

same dynamics. For instance, in Figure 5.1 if there is only space to store 5 nodes instead of

6, an approximation to the system is needed. The method uses a table to store all possible

states in the system that are independent of x0. Once each entry is independent, the system

dynamics are preserved. Otherwise, the set of states is an approximation.

The ATA Algorithm

1. Initialize P to be the set of matrices n from Problem 1. Initialize j = 0 and create 2

tables:

• A state table, initialized with only the state x0

• A weights table, initialized with w(0, p) for each p ∈ P

2. For each new p ∈ P:

• Add the state xp = p⊗ x0 to the states table.

• Add the weight w(p, ni) = ni ⊗ xp to the weights table for all ni ∈ n.

3. Remove each rigid p from P

30

4. Find pmax, the element of P that represents the longest sequence. In case of a tie,

choose one with the highest rank.

5. Remove pmax from P and add ni ⊗ p to P for all ni ∈ n.

6. If there is space remaining in the tables and P is not empty, increment j and go to

Step 2.

7. If P is not empty, for every p ∈ P:

• Update xp = p⊗
[
ε · · · ε 0

]T
.

• Update w(p, ni) as in Step 2 with the new value of xp.

5.5 Example

As an example, consider again the system in Section 5.3 and assume that storage capacity is

19 states (including the corresponding 57 edge weights). Initially, P = {A,C, L}, the state

table contains x0, and the weights table contains w(0, A), w(0, C), and w(0, L). In Step 2

xA, xC , xL, and their associated weights are stored in the tables. The matrix A is removed

from P because it is rigid. Since both C and L are rank 2, choose pmax = C and remove C

from P. The matrices AC, CC, and LC are then added to P and the loop repeats. The set

P after one iteration is {L,AC,CC,LC}.

The algorithm continues until there are 19 states in the state table and 57 weights in

the weight table (see Figure 5.3). At this point, P = {CLC,LLC}, which are both still rank

2. Therefore, by Step 7, xCLC and associated weights are updated. Recall that this is simply

an approximation to the system from Section 5.3, since there are actually 25 unique states.

In Figure 5.2, notice that at time 3 there are only 13 possible states. The ATA described

above would assume that these 13 states are the only possible states at each time k ≥ 3.

Notice that in the above example, ATA stores the same amount of information about

the system as STA for t = 3, but with less space. STA here would have required storage of

40 states. For STA with t = 4, requiring 121 states, ATA can make an equivalent system

31

Figure 5.3: The ATA algorithm performed on the system from Section 5.3 and assuming that
capacity is to store 19 states. The table shows all states and weights that are added to the
table at each iteration of the loop.

32

Figure 5.4: A comparison of the STA and ATA for the system in Section 5.3. The x-axis
represents the value of t for the STA, and the chart shows how many states need to be stored
for each value. This is compared to how many states need to be stored for the ATA to yield
an equivalent approximation.

approximation in this example with only 25 states (see Figure 5.4). This illustrates the fact

that ATA does no worse than STA for any system, given the same resources. This is shown

more formally in Chapter 6.

Recall that Problem 1 is

s∗ = argmin
s∈S

H(s, x0) (5.5)

Since the ATA provides an approximation to the system, the metric H(s, x0) is replaced by

Ĥ(s, x0), which approximates the weight of each branch in the decision tree as described

above. Using this method a new problem can be formulated:

Problem 2. Using the same symbolic definitions as in Problem 1 and Ĥ as described above,

find

ŝ∗ = argmin
s∈S

Ĥ(s, x0) (5.6)

33

Problem 2 can either be solved or approximated using an approximate dynamic

programming approach or a shortest path tool, some of which are described in Chapter 2.

Regardless of the chosen solver, Problem 2 is be less complex than Problem 1. The chosen

solver will need to take into account which paths are invalid based on the quota, and manage

which subset of states is possible at time k.

34

Chapter 6

Error Bounds

This chapter describes the error bounds of the ATA. The claim of this work is that

the ATA is a closer system approximation than the STA and that the error bounds of the

ATA are the same or tighter than those of the STA for given computational constraints. As

mentioned, error bounds for the STA are given in [33]. Since the ATA is similar in nature,

we leverage some of these results and show why the ATA is an improvement.

First begin with a few definitions:

• Let xmin =

[
ε · · · ε 0

]T
• Let t̂STA be the value of t used in the STA

• Let t̂ATA be the maximum sequence length found in the ATA state table

• Let tmax be the maximum sequence length in S that is not rigid

Lemma 15. [33] Suppose A,B ∈Mn, and s1 is the sequence (A,B) and s2 is the sequence

(B). Then

xmin = argmin
x 6=ε

(H(s1, x)−H(s2, x)) (6.1)

Since B could be the combination of any sequence of matrices, Lemma 15 essentially

states that starting with the vector xmin guarantees the minimum change in H for any matrix

A.

Lemma 16. Let s be a sequence (n1, ..., nN), and define:

35

• W(s, i) = H((n1, ..., ni), x0)−H((n1, ..., ni−1), x0) is the cost of choosing ni

• Ŵ
t
(s, i) = H((ni−t−1, ..., ni), xmin)−H((ni−t−1, ..., ni), xmin)

• Ŵ
t
(s, i) = W(s, i) when i ≤ t+ 1

Then W(s, i) ≥ Ŵ
t+1

(s, i) ≥ Ŵ
t
(s, i).

Proof.

Ŵ
t
(s, i) = H((ni−t−1, ..., ni), xmin)−H((ni−t−1, ..., ni−1), xmin)

≤ H((ni−t−1, ..., ni), x)−H((ni−t−1, ..., ni−1), x) ∀x, by Lemma 15

Let x = ni−t−2 ⊗ xmin

= H((ni−t−2, ..., ni), xmin)−H((ni−t−2, ..., ni−1), xmin)

= Ŵ
t+1

(s, i)

The left side of the inequality is true by extension, since N ≥ t+ 1.

Theorem 17. Let ĤSTA, ĤATA be the STA, ATA respectively for H in Problem 1. Then

H(s, x0) ≥ ĤATA(s, x0) ≥ ĤSTA(s, x0)

Proof. Note that from the discussion in Chapter 5, tmax ≥ t̂ATA ≥ t̂STA. By Lemma

16, W(s, i) ≥ Ŵ
tATA

(s, i) ≥ Ŵ
tSTA

(s, i). Since H(s, x0) =
∑

i W(s, i), ĤATA(s, x0) =∑
i Ŵ

tATA
(s, i), and ĤATA(s, x0) =

∑
i Ŵ

tATA
(s, i) the theorem statement holds.

The above theorem states that the ATA yields an Ĥ that is the same distance or

closer to the value of H than that of STA for all admissible sequences. Therefore, the ATA is

considered a closer approximation to the real system.

The next results shows that the error bounds to Problem 2 are smaller when using

the ATA versus the STA. Here error is defined e = H(ŝ∗, x0)−H(s∗, x0). In order to show

this result, the following are also defined:

36

• Let s(t, k) be the subsequence of s of t items starting at time k

• Let γt(s) = maxx{(H(s(t, 0), x) − H(s(t − 1, 0), x) − (H(s(t, 0), xmin) − H(s(t −

1, 0), xmin))}

• Let Γt = maxs∈S(t) γ
t(s), where S(t) is the set of all admissible sequences of length t.

Intuitively, γt(s) shows the worst-case error for a given sequence of length t and Γt

shows the worst-case error for all sequences of length t. If t < t̂max, then γt(s) = 0 for all s,

and thus Γt = 0. This corresponds to the case when the ATA perfectly approximates the

system. Finding Γt is itself a combinatorial optimization problem, but one that is no more

complex than Problem 2.

Lemma 18. [33] For the STA,

1. eSTA ≤ Γt̂STA [||q||1 − (t̂STA + 1)] = emaxSTA

2. Γt ≥ Γt+1 for any t

Essentially, Lemma 18 states that a worst-case error is Γt̂STA repeated for each k > t̂STA. To

analyze the ATA, a similar statement can be made, with a few subtle differences.

Theorem 19. Using the ATA as a system approximation yields the following:

1. eATA ≤ Γt̂ATA(||q||1 − t̂ATA) = emaxATA

2. emaxATA ≤ emaxSTA

Proof. The key to this theorem is to again note that for given computational constraints,

t̂STA ≤ t̂ATA. In other words, with ATA, one is able to approximate more states and edge

weights, a point clearly shown in the previous chapter. Also note that unlike STA, t̂ATA does

not ensure that all sequences of length t̂ATA are correctly estimated, just at least one. Thus

for a worst-case analysis, Γt̂ATA is repeated for every k > t̂ATA − 1. Statement 1 therefore

follows directly from Lemma 18.

In order to prove Statement 2, consider 2 cases:

37

1. t̂STA < t̂ATA In this case, by Lemma 18 Statement 2 it follows that ΓtSTA ≥ Γtmax , and

therefore emaxATA ≤ emaxSTA.

2. t̂STA = t̂ATA. In this case, for the ATA, since there are equivalent computational

constraints, all sequences of length t̂ATA have an entry in the state table. Therefore, we

have a tighter bound: emaxATA = Γt̂ATA [||q||1 − (t̂ATA + 1)]. Using this tighter bound we

see that emaxATA = emaxSTA.

The above theorem shows tighter error bounds for the ATA, but note that it could be

the case that solving Problem 2 using the STA could yield a better sequence in some cases.

This point is illustrated in the example below.

6.1 Example

In order to understand the meaning of the above error bounds and to further illustrate the

difference between STA and ATA, this section presents an example system. Consider four

10 × 10 matrices: O, Q, R, W and quota q =

[
qO qQ qR qW

]T
, where qO = 2, qQ = 4,

qR = 4, and qW = 2. The initial condition is x0 =

[
0 · · · 0 11

]T
In this small system

there are 207, 900 different possible sequences, with 377 ≥ H(s, x0) ≥ 329 for any admissible

sequence s. There are 14 sequences that all yield the minimum score. Figure 6.1 shows each

s, ordered in descending order by H(s, x0).

We first approximate this system using the STA, with 1 ≤ t ≤ 5. Then, for each value

of t, the argmaxs ĤSTA(s) is found and shown in Figure 6.1. For instance, for t = 1, the best

sequence found in the STA is WQRQRQRQRWOO, where H(s, x0) = 358. The STA for

t = 5, which requires 1123 states, is equivalent to the original system, therefore a search of

the STA yields QWOQQWOQRRRR, which has the minimal score.

In comparison, the ATA approximated the system more closely with a fewer number

of states. For instance, the minimum sequence found on the STA with t = 3 has a score of

38

Figure 6.1: The example system

339. The minimum sequence found on the ATA with an equivalent number of states (80) is a

minimum sequence for the original system. In fact, for this example, the ATA equivalent

to the original system only requires 150 states. Notice that STA, t = 1 is the same as an

ATA with 5 states, since both only include x0 and a state for each matrix. Therefore, both

approximations yield the same sequence.

This example also illustrates the subtle point at the end of the previous section:

sometimes a worse system approximation can yield a better result. Consider in Figure 6.1 the

STA, t = 2, and the ATA with 21 states. The ATA more closely approximates the system,

since the state table contains weights for sequences of length 3, whereas the STA is only

considering sequences of length 2. However, since both are approximations, it turns out that

the the minimum sequence found by traversing the STA scores better on the actual system

than that found by traversing the ATA. This statement does not conflict with Theorem

19, since only the error bounds are guaranteed. The metric Ĥ(s, x0) found in the ATA is

closer to H(s, x0) than the metric in the STA for all s. The anomaly arises when s fares

better comparatively against other sequences in the STA than s does in the ATA, and s also

happens to have the minimum metric score.

39

Chapter 7

Future Work

Future work could either generalize the ATA to other types of problems or drill

down into the specifics of Problem 1. In a generalization of the ATA, the concept of being

rigid would need to be explored in other application realms. As explained, many dynamic

programming approximations exist to overcome the curse of dimensionality, including those

that create equivalence classes among the states. The ATA could be explored and defined

outside of max-plus and in relation to these methods.

Drilling down into the specifics of Problem 1, open questions can be addressed. For

example, the ATA algorithm uses the rank operator to determine which sequence to expand

next. However, there could be a better monotonic metric available that determines how

rigid a sequence is. Additionally, if a matrix A is non-rigid, this work assumes that the

output xk could be any vector in the range of A. It could be the case, though, that the set of

possible initial conditions for A will only yield values for xk that is a subset of the range of

A. Theoretically, this could mean that a matrix could be rigid for a given initial condition,

quota, and other matrices of the system.

This work has not considered the specifics of algorithms or tools that will compute a

solution to Problem 2. In showcasing the example from Section 6.1, an exhaustive search was

used in order to focus on the ATA versus the STA. In practice, it will be important to use an

efficient tool or algorithm to conduct such a search, especially for large problems. An open

question is whether there is a tool or algorithm that searches the ATA better than others.

Perhaps a custom method could be created that also tracks the quota.

40

In summary, this work has leveraged max-plus algebra in order to analyze certain

properties of batch flow shops and develop a system approximation for closer solutions to

Problem 1. Specifically, the set Mn has been divided into three subsets: rigid, non-rigid

with the MLP, and non-rigid without the MLP. Rigid matrices are those that have rank

1 - a test which can be performed quickly. Matrices that have the MLP are those which

converge to a rigid matrix. Those that do not have the MLP never converge to a rigid

matrix, thus a homogeneous sequence of such a matrix will never forget its initial condition.

Systems of heterogeneous sequences of matrices were also explored, showing that most systems

exhibit an asymmetric behavior - one that is not addressed by the STA. Thus, a competing

approximation method, the ATA, has been presented. The ATA has been shown to be an

equivalent or better approximation to the STA in all cases.

41

References

[1] Kenneth R Baker and Dan Trietsch. Principles of sequencing and scheduling. John

Wiley & Sons, 2013.

[2] Richard Bellman. The theory of dynamic programming. Technical report, DTIC

Document, 1954.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena

Scientific, 1996.

[4] M. Boccadoro and P. Valigi. A modelling approach for the dynamic scheduling problem

of manufacturing systems with non negligible setup times and finite buffers. In Decision

and Control, 2003. Proceedings. 42nd IEEE Conference on, volume 5, pages 5472–5477

Vol.5, Dec 2003. doi: 10.1109/CDC.2003.1272508.

[5] P. Butkovi and R.A. Cuninghame-Green. On matrix powers in max-algebra. Linear

Algebra and its Applications, 421(23):370 – 381, 2007. ISSN 0024-3795. doi: http://

dx.doi.org/10.1016/j.laa.2006.09.027. URL http://www.sciencedirect.com/science/

article/pii/S0024379506004514. Special Issue in honor of Miroslav Fiedler.

[6] David G Dannenbring. An evaluation of flow shop sequencing heuristics. Management

science, 23(11):1174–1182, 1977.

[7] Xiaotie Deng, Haodi Feng, Guojun Li, and Guizhen Liu. A ptas for minimizing total

completion time of bounded batch scheduling. International Journal of Foundations of

Computer Science, 13(06):817–827, 2002.

[8] YM Dessouky, CA Roberts, MM Dessouky, and G Wilsons. Scheduling multi-purpose

batch plants with junction constraints. International journal of production research, 34

(2):525–541, 1996.

[9] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

42

http://www.sciencedirect.com/science/article/pii/S0024379506004514
http://www.sciencedirect.com/science/article/pii/S0024379506004514

[10] Lionel Dupont and Clarisse Dhaenens-Flipo. Minimizing the makespan on a batch

machine with non-identical job sizes: an exact procedure. Computers & Operations

Research, 29(7):807–819, 2002.

[11] Mikhail Simin-Arjang Fahim and Marco Voltorta. Efficient memory-bounded search

methods.

[12] Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop and

jobshop scheduling. Mathematics of operations research, 1(2):117–129, 1976.

[13] S. Gaubert and J. Mairesse. Modeling and analysis of timed petri nets using heaps

of pieces. Automatic Control, IEEE Transactions on, 44(4):683–697, Apr 1999. ISSN

0018-9286. doi: 10.1109/9.754807.

[14] Stéphane Gaubert and Dohy Hong. Series Expansions of Lyapunov Exponents and

Forgetful Monoids. Technical Report RR-3971, INRIA, July 2000. URL http://hal.

inria.fr/inria-00072677. Projet MCR.

[15] Celia A Glass, Chris N Potts, and Vitaly A Strusevich. Scheduling batches with sequential

job processing for two-machine flow and open shops. INFORMS Journal on Computing,

13(2):120–137, 2001.

[16] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic deter-

mination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions

on, 4(2):100–107, 1968.

[17] Bernd Heidergott and Jacob W. van der Woude. Max Plus at work: modeling and

analysis of synchronized systems: a course on Max-Plus algebra and its applications,

volume 13. Princeton University Press, 2006.

[18] James R Jackson. An extension of johnson’s results on job idt scheduling. Naval Research

Logistics Quarterly, 3(3):201–203, 1956.

[19] Selmer Martin Johnson. Optimal two-and three-stage production schedules with setup

times included. Naval research logistics quarterly, 1(1):61–68, 1954.

[20] E Kondili, CC Pantelides, and RWH Sargent. A general algorithm for short-term

scheduling of batch operationsi. milp formulation. Computers & Chemical Engineering,

17(2):211–227, 1993.

[21] Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree search.

Artificial intelligence, 27(1):97–109, 1985.

43

http://hal.inria.fr/inria-00072677
http://hal.inria.fr/inria-00072677

[22] Eugene L Lawler, Jan Karel Lenstra, Alexander HG Rinnooy Kan, and David B Shmoys.

Sequencing and scheduling: Algorithms and complexity. Handbooks in operations research

and management science, 4:445–522, 1993.

[23] Jean Mairesse and Laurent Vuillon. Asymptotic behavior in a heap model with two

pieces. Theoretical Computer Science, 270(1):525–560, 2002.

[24] Glenn Merlet. Memory loss property for products of random matrices in the max-

plus algebra. Math. Oper. Res., 35(1):160–172, February 2010. ISSN 0364-765X. doi:

10.1287/moor.1090.0434. URL http://dx.doi.org/10.1287/moor.1090.0434.

[25] D.S. Palmer. Sequencing jobs through a multi-stage process in the minimum total time–a

quick method of obtaining a near optimum. OR, pages 101–107, 1965.

[26] R Gary Parker. Deterministic scheduling theory. CRC Press, 1996.

[27] Michael Pinedo. Planning and scheduling in manufacturing and services, volume 24.

Springer, 2005.

[28] Warren B. Powell. Approximate Dynamic Programming. Wiley and Sons, 2011.

[29] Marcos Singer and Michael Pinedo. A computational study of branch and bound

techniques for minimizing the total weighted tardiness in job shops. IIE transactions, 30

(2):109–118, 1998.

[30] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press, 1998.

[31] J.AW. van Eekelen, E. Lefeber, and J.E. Rooda. Feedback control of 2-product server

with setups and bounded buffers. In American Control Conference, 2006, pages 6 pp.–,

June 2006. doi: 10.1109/ACC.2006.1655413.

[32] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):

279–292, 1992.

[33] W. Weyerman, A. Rai, and S. Warnick. Model approximation for batch flow shop

scheduling with fixed batch sizes. Discrete Event Dynamic Systems, April 2014.

44

http://dx.doi.org/10.1287/moor.1090.0434

	Brigham Young University
	BYU ScholarsArchive
	2016-06-01

	The Asynchronous t-Step Approximation for Scheduling Batch Flow Systems
	David R. Grimsman
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	1 Introduction
	1.1 Problem Formulation

	2 Related Works
	3 Background
	3.1 Max-Plus Algebra
	3.2 Non-Rigid Heap Model
	3.3 Communication Graphs
	3.4 Dynamic Programming and Bellman's Equation
	3.5 The Symmetric t-Step Approximation

	4 Subsets of Mn
	4.1 Rigid Matrices and Eigenvalues
	4.2 System Equilibria

	5 Approximation Method
	5.1 Systems that Always Depend on x0
	5.2 Symmetric Systems
	5.3 Asymmetric Systems
	5.4 Approximation Method
	5.5 Example

	6 Error Bounds
	6.1 Example

	7 Future Work
	References

