
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2016-10-01

Verification of Task Parallel Programs Using
Predictive Analysis
Radha Vi Nakade
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Nakade, Radha Vi, "Verification of Task Parallel Programs Using Predictive Analysis" (2016). All Theses and Dissertations. 6176.
https://scholarsarchive.byu.edu/etd/6176

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F6176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6176?utm_source=scholarsarchive.byu.edu%2Fetd%2F6176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Verification of Task Parallel Programs Using Predictive Analysis

Radha Vi Jay Nakade

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Eric Mercer, Chair
Quinn Snell
Parris Egbert

Department of Computer Science

Brigham Young University

Copyright c� 2016 Radha Vi Jay Nakade

All Rights Reserved

ABSTRACT

Verification of Task Parallel Programs Using Predictive Analysis

Radha Vi Jay Nakade
Department of Computer Science, BYU

Master of Science

Task parallel programming languages provide a way for creating asynchronous tasks that can
run concurrently. The advantage of using task parallelism is that the programmer can write code that
is independent of the underlying hardware. The runtime determines the number of processor cores
that are available and the most efficient way to execute the tasks. When two or more concurrently
executing tasks access a shared memory location and if at least one of the accesses is for writing,
data race is observed in the program. Data races can introduce non-determinism in the program
output making it important to have data race detection tools. To detect data races in task parallel
programs, a new Sound and Complete technique based on computation graphs is presented in this
work. The data race detection algorithm runs in O(N2) time where N is number of nodes in the
graph. A computation graph is a directed acyclic graph that represents the execution of the program.
For detecting data races, the computation graph stores shared heap locations accessed by the tasks.
An algorithm for creating computation graphs augmented with memory locations accessed by the
tasks is also described here. This algorithm runs in O(N) time where N is the number of operations
performed in the tasks. This work also presents an implementation of this technique for the Java
implementation of the Habanero programming model. The results of this data race detector are
compared to Java Pathfinder’s precise race detector extension and permission regions based race
detector extension. The results show a significant reduction in the time required for data race
detection using this technique.

Keywords: verification, task parallel programming, data race detection

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Eric Mercer, for his constant motivation and

his patience. This work wouldn’t have been possible without his help. I would also like to thank

Dr. Jay McCarthy and my committee members for their feedback in the project.

I am grateful to my family for their love and support. And finally, I want to thank my

wonderful husband, Atul, for his support, love and encouragement.

Table of Contents

List of Figures vi

List of Tables vii

1 Introduction 1

2 Data Race Detection 5

3 Computation Graphs 9

3.1 Surface Syntax . 9

3.2 Tree-based Semantics . 11

4 Structured Parallel Languages 22

4.1 Habanero Java . 23

4.2 Properties of structured parallel programs . 25

5 On-the-fly data race detection 28

6 Mutual Exclusion 33

7 Implementation and Results 39

7.1 Implementation . 39

7.2 Results . 40

8 Related Work 45

iv

9 Conclusion and Future Work 48

9.1 Conclusion and future work . 48

References 49

v

List of Figures

2.1 Computation Graph Example. 6

3.1 The surface syntax for task parallel programs. 9

3.2 A simple example of a task parallel program. 11

3.3 The transition rules for the intra-procedural statements. 14

3.4 The transition rules for the inter-procedural statements. 15

3.5 Steps involved in computation graph creation. 16

3.6 Parallel program with different computation graphs under different schedules. . . . 20

3.7 Computation graphs of example in Figure 3.6. 20

4.1 Example of an HJ Program. 23

4.2 HJ program converted to task parallel language. 24

5.1 AWAIT-DONE rule updated for on-the-fly data race detection. 30

5.2 A parallel program with nested regions. 30

5.3 Computation graph of example in Figure 5.2. 31

6.1 The transition rules for isolated statements. 34

6.2 Parallel program with mutual exclusion. 36

6.3 Computation graphs of example in Figure 6.2. 37

7.1 An HJ Program for comparing on-the-fly with normal data race detection using

computation graphs. 44

vi

List of Tables

7.1 Benchmarks of HJ programs: Computation graphs vs Permission Regions vs.

PreciseRaceDetector. 41

7.2 Comparison of results for on-the-fly and normal data race detection using computa-

tion graphs. 43

vii

Chapter 1

Introduction

The increasing use of multi-core processors is motivating the use of parallel programming.

Earlier, the speed of processor cores was expected to increase rapidly with sustained technological

advances and the need for parallel computing was relatively low. Now that processor speeds are no

longer increasing, parallelism is the only way of obtaining higher computing performance.

Writing concurrent programs that are free from bugs, however, is very difficult because when

programs execute different instructions simultaneously, different thread schedules and memory

access patterns are observed that give rise to various issues such as data-races and deadlocks.

Structured parallel languages help users to write parallel programs that are scalable and easy to

maintain [1–3]. This flexibility is achieved by imposing restrictions on the way tasks can be forked

and joined. The parallel constructs create regions where tasks are started and synchronized. This

restriction ensures the parallel programs are deadlock free.

Data races occur in parallel programs when two or more tasks access a shared memory

location such that at least one of the accesses is a write. A race on a shared variable can alter the

value of the variable based on the order in which the variable is accessed by the tasks causing the

output to be non-deterministic. A data race that is not protected (i.e., marked volatile) also leads to

behavior that is not sequentially consistent. It is hard to test all possible outcomes of the program

with a data race because the scheduler most often runs the tasks in the same order thereby producing

the same result everytime. Data races might be benign, but they are generally an indication of a bug.

Hence, it is very important to have effective data race detection tools.

1

A lot of research has gone into the problem of detecting data races in parallel programs. Data

race detection techniques are mainly categorized as static, dynamic and model checking. Static race

detectors analyze the programs statically and report errors without actually executing the programs

[4–10]. Their drawback is that they report data races on variables when in fact there are no data

races; identifying real data races from the large output becomes difficult. Model checking on the

other hand produces precise results but suffers from state space explosion making it impossible to

use in large systems[11–16].

Dynamic data race detectors analyze the program at runtime and so the data races reported

by them are real data races. Dynamic data race detectors however can reason about only a single

run [17–22]. Raman et al. created a dynamic race detector for structured parallel programs that

can locate races in any schedule of the program by running the program only once using limited

access history[23]. The approach necessitated data race detection on every shared memory access

and checking which tasks run in parallel. The approach also did not provide any functionality to

manipulate the scheduler at runtime making it unsound for programs with mutual exclusion. When

accesses to shared variables are protected using mutual exclusion, different program outcomes are

observed. It is necessary to analyze all possible program behaviors to ensure data race freedom.

This paper introduces an improved technique for data race detection that combines dynamic

race detection for structured parallel languages with model checking to overcome the limitations

of both of them. This technique makes use of computation graphs to represent the happens-before

relation of the events of the program in the form of a directed acyclic graph [24]. The nodes

represent the various tasks that are spawned during the program execution and store the references

to shared heap locations that have been accessed by those tasks. To detect data races, the task nodes

that can execute in parallel are identified in the graph and the memory locations stored in these

nodes are compared to detect conflicts. For building such computation graphs, the runtime should

have the ability to call-back when threads are forked or joined, and to record memory accesses on

heap locations that may be shared.

2

The model checking part of the solution comes into play for programs with critical sections.

In programs with critical sections, different computation graph structures can arise based on the

order of execution of the critical sections. The technique presented here creates all such computation

graphs using a scheduler that checks for critical sections and builds schedules to consider all possible

computation graph structures [25]. Hence, this method is sound for all programs with a given input.

Since this technique uses scheduling only on critical sections as opposed to JPF which schedules on

every shared access, the state space of this technique is way smaller compared to JPF.

This paper presents an implementation of this data race detection technique for the Java

implementation of the Habanero programming model. The implementation uses JPF’s virtual

machine for the runtime support and it uses a specialized runtime for the Habanero language that is

targeted specifically for verification[14, 25]. The performance is compared with two other model

checking approaches implemented by JPF: Precise Race Detector and Permission regions [11], [25].

The results show a significant reduction in the state space and time needed for verification.

Thesis Statement: A computation graph is a suitable common representation of the exe-

cution of any task parallel program. The computation graph is sufficient to determine all relevant

schedules over tasks that need to be explored to enumerate all the possible behaviors of the program.

Such an exhaustive enumeration is enough for verifying deterministic behavior in task parallel

programs.

Main Contributions:

1. A data race detection algorithm using computation graphs that runs in O(N2) time where N is

number of nodes in the graph.

2. Semantics for task parallel programs that include steps for creating computation graphs.

3. Dynamic improvement to the data race detection algorithm for structured parallel programs.

4. A scheduling algorithm to create all computation graphs for programs containing mutual

exclusion.

5. An implementation of the data race detection algorithm for Habanero Java.

3

6. An empirical study over a set of benchmarks comparing performance of the data race detection

algorithm to JPF.

4

Chapter 2

Data Race Detection

A computation graph for a task parallel program is a directed acyclic graph that represents

the execution of the program. The graph consists of nodes that denote the various parallel operations.

The nodes also store references to the memory locations accessed by the tasks.

Definition 1. Computation Graph: A Computation Graph G = hN,E, �,!i of a task parallel

program P with input is a directed acyclic graph where

• N is a finite set of nodes

• E ✓ N ⇥N is a set of directed edges.

• � is the function that maps N to the unique identifiers for the shared locations read by the

tasks.

� : (N 7! 2

V
)

• ! is the function that maps N to the unique identifiers for the shared locations written by the

tasks.

! : (N 7! 2

V
)

where V is the set of the unique identifiers for the shared locations.

Figure 2.1 shows a sample computation graph. In this graph, nodes n0, n0
0, n00

0, r1, and r

0
1

belong to task t0. Task t0 spawns two tasks t1 and t2. Node n1 belongs to task t1 and node n2

belongs to task t2. Node r1 and r

0
1 are join nodes for tasks t1 and t2.

5

n1

n0

n0''

r1

n0'

n2

r1'

Figure 2.1: Computation Graph Example.

Algorithm 1 Data Race detection in a computation graph.
1: function DETECTRACE(ComputationGraph G)
2: N := Topologically ordered nodes in G
3: for i in [1, |N |] do
4: n = N [i]

5: for j in [i+1, |N |] do
6: n

0
= N [j]

7: if (n ⌃ n

0
) ^ (n

0 ⌃ n) then
8: bool rw = (�(n) \ !(n0

) 6= ;)
9: bool wr = (!(n) \ �(n0

) 6= ;)
10: bool ww = (!(n) \ !(n0

) 6= ;)
11: if (rw _ wr _ ww) then
12: Report Data Race and Exit
13: end if
14: end if
15: end for
16: end for
17: end function

6

Computation graphs can be used to detect data races in parallel programs. Every node in the

computation graph represents a block of sequential operations. A computation graph is a partially

ordered set of nodes that gives the relationship of the tasks in the program. The transitive closure of

the graph gives the reachability of the nodes. The order between any two nodes n1 and n2 is given

as n1 � n2, meaning that n1 happens before n2. The operations that may execute in parallel are

unordered: n1 ⌃ n2 and n2 ⌃ n1, i. e. n1 does not happen before n2 and n2 does not happen before

n1. Once these unordered nodes are identified, the memory accessed by the operations performed in

these nodes is checked to detect data races.

Algorithm 1 gives the pseudo-code of the algorithm to detect data races in computation

graphs. It takes the computation graph as input and reports a data race if an access violation is

observed in the graph. The algorithm works as follows. The nodes in the computation graph are

added to a topologically sorted set on Line 1. The i

th node in the order is given by N[i]. The nodes

are traversed in order and each node is compared to every node that comes later in the topological

ordering. Line 7 checks if the nodes n and n

0 are unordered. If the nodes are unordered, then the

sets of memory locations accessed by each node are checked for conflict on Line 11. If any of the

sets shares an element, then any one of those elements is a location where a data race occurs in the

program. A data race is reported by the algorithm on Line 12. If the intersecting sets are empty,

then the algorithm proceeds to check the next node until either a data race is reported or all the

nodes have been verified.

Consider again the example in Figure 2.1 with the topological ordering: n0, n0
0, n00

0, n1, r1,

n2, and r

0
1. Node n0 happens before all other nodes so it cannot data race with anything. The next

node in the topological ordering is n0
0. It is not ordered relative to n1 so n

0
0 and n1 are parallel. No

race is reported and the analysis proceeds because there are no conflicting accesses made by these

nodes. All the nodes are checked one by one in a similar way. The nodes n1 and n2 are unordered

since there is no path from n1 to n2 and both are writing to variable r1. Therefore, ww is set to true

and a race is reported for these two nodes on r1.

7

The algorithm runs in quadratic time for the number of nodes in the computation graph.

The topological ordering of nodes can be done in O(N2). When nodes are topologically ordered,

reachability of nodes can be checked in O(N) time. Therefore, the time required to check if two

nodes are executing in parallel is O(N2). The time required to check the intersection of read or write

sets of shared locations is O(m1 +m2) where m1 and m2 are the sizes of the two sets. (m1 +m2)

is much smaller than N. Therefore, the time complexity of Algorithm 1 is O(N2).

Definition 2. Sound: A data race detection algorithm is sound if it does not miss any data race in

a program for a given input.

If the sound algorithm declares a program to be data race free, no race can exist in execution

of the program for the given input on any schedule; although, it may reject programs as having data

races when in fact they do not. It may under-approximate the set of data race free programs.

Definition 3. Complete: A data race detection algorithm is complete if it does not report data races

in programs that are data race free.

A complete algorithm may accept programs as data race free when in fact they have data

races. It may over-approximate the set of data race free programs.

Theorem 1. Algorithm 1 is sound and complete for a given computation graph G.

Proof. The computation graph is a directed acyclic graph. The transitive closure of the graph gives

the reachibility relationship of the tasks. The transitive closure is a strict partial order over the nodes

of the graph. The data race detection algorithm checks if nodes n and n

0 in the graph are unordered

on Line 7. The statements may be executed in parallel by these nodes. The memory accessed by

these tasks is compared and a race is reported if a conflict is detected on Line 12. Therefore, when

algorithm 1 declares a computation graph to be data race free, no race can exist in that graph and

when a race is reported by the algorithm, there definitely exists two tasks that execute in parallel

and have conflicting accesses to a shared variable. Hence, Algorithm 1 is sound and complete for a

given computation graph.

8

Chapter 3

Computation Graphs

Bouajjani and Emmi created a formal model of isolated hierarchical parallel computation

that covers many existing task parallel languages (e.g., Cilk, X10, Chapel, Habanero, etc.) [26].

Real world task parallel models are not isolated so tasks may share memory (intentionally or

otherwise). This paper uses the formalism of Bouajjani and Emmi to define the construction of the

computation graph from program execution but adds global variables. As before, a region groups

tasks by storing task handles, but now each region also holds a variable that can be shared. Tasks

are expanded to include access lists to denote region variables available for reading or writing.

3.1 Surface Syntax

The surface syntax for the language is given in Figure 3.1. A program P is a sequence of procedures.

The procedure name p is taken from a finite set of names Proc. Each procedure has a single

L-type parameter l taken from a finite set of parameter names Vars. The body of the procedure

is inductively defined by s. The semantics is abstracted over concrete values and operations, so

P ::= (proc p (var l : L) s)⇤
s ::= s; s | l := e | l(r) := e

| skip | assume e

| if e then s else s | while e do s

| call l := p e ~r� ~r! | return e

| post r p e ~r ~r� ~r! d

| await r | ewait r

Figure 3.1: The surface syntax for task parallel programs.

9

the possible types of l are not specified nor is the particular expression language, e, but assume it

includes variables references and Boolean values (true and false). The details of either L or e are

never relevant for computation graph construction and are thus omitted. The set of all expressions

is given by Exprs. Values are given by the finite set Vals and include at least Boolean values.

Exprs contain Vals and the choice operator ?.

The statements (s) of the language denote the behavior of the procedure. Most statements,

like the if-statement, ;-statement, and while-statement have their typical meaning. Other statements

require further explanations.

Statements are divided into the concurrent statements (post-statement, await-statement, and

ewait-statement) and sequential statements (everything else). Let Regs be a finite set of region

identifiers. Associated with each region r is a single variable referenced in the surface syntax by

l(r). A task is posted into a region r by indicating the procedure p for the task with an expression

for the local variable value e, three lists of regions from Regs

⇤ (i.e., the Kleene closure on Regs),

and a return value handler d. For the region lists, ~r are regions whose ownership is transferred from

the parent to the new child task (i.e., the child now owns the tasks in those regions), ~r� are regions

in which the new task can read the region variables, and ~r! are regions in which the task can write

region variables. Let Stmts be the set of all statements and let Rets ✓ (Vals! Stmts) be the

set of return value handlers. The handler d associates the return value of the procedure with a user

defined statement.

The await and ewait statements synchronize a task with the sub-ordinate tasks in the

indicated region. Intuitively, when a task calls await on region r, it is blocked until all the tasks it

knows about in r finish execution. Similarly, when a task issues an ewait with region r, it is blocked

until one task it knows about in r completes. A task is termed completed when its statement is a

return-statement.

The assume-statement blocks a task until its expression e evaluates to true. By way of

definition, call, return, post, ewait, and await are inter-procedural statements. All other statements

are intra-procedural.

10

proc main (var n : int)
n := 1;
post r1 p1 n " {r1} {r1} �v.n := n+ v;
post r1 p2 n " {r1} {r1} �v.n := n+ v;
await r1

proc p1 (var n : int)
l(r1) := l{r1}+ n;
return (n + 1)

proc p2 (var n : int)
l(r1) := l{r1}+ n;
return (n + 2)

Figure 3.2: A simple example of a task parallel program.

Figure 3.2 shows a simple example program. The main task posts two new tasks t1 and t2

executing procedures p1 and p2 in region r1. " denotes an empty region sequence. The tasks t1 and

t2 have access to the variable r1. The main task awaits the completion of t1 and t2. The return

value handler of procedure main takes the value returned by the tasks t1 and t2 and updates the

value of n. The computation graph for this program is that in Figure 2.1.

3.2 Tree-based Semantics

The semantics is defined over trees of procedure frames to represent the parallelism in the language

rather than stacks which are inherently sequential. That means that the frame of each posted task

becomes a child to the parent’s frame. The parent-child relationship is transferred appropriately

with task passing or when a parent completes without synchronizing with its children. The evolution

of the program proceeds by a task either taking an intra-procedural step, posting a new child frame,

or removing a frame for a synchronized completed task.

A task t = h`, s, d, ~r�, ~r!, ni is a valuation of the procedure local variable l, along with a

statement s, a return value handler d, a list of regions that it may use for read variables, a list of

regions it may use for write variables, and an associated node in the computation graph for this task.

11

When a procedure p is posted as a task, the statement s is the statement defined for the procedure

p—recall that statements are inductively defined.

A tree configuration, c = ht,mi, is an inductively defined tree with task-labeled vertexes,

t, and region labeled edges given by the region valuation function, m : Regs ! M[Configs],

where Configs is the set of tree configurations and M[Configs] are configuration multi-sets.

For a given vertex c = ht,mi, m(r) returns the collection of sub-trees connected to the t-labeled

root by r-labeled edges.

The semantics relies on manipulating region valuations for task passing between parents

and children. For two region valuations m1 and m2, the notation m1 [m2 is the multi-set union

of each valuation. Further, the notation m |~r is the projection of m to the sequence ~r defined as

m |~r(r0) = m(r

0
) when r

0 is found somewhere in ~r, and m |~r(r0) = ; otherwise.

Let J·Ke be an evaluation function for expressions without any program or region variables

such that J?Ke = Vals, and let `(r) denote the value of the region variable in r. For convenience in

the semantics definition, an evaluation function is defined over a task t that enforces the read rights

assigned to the task:

e(t) = e(h`, s, d, ~r�, ~r!, ni)

= e(`, ~r�)

= e(`, r0, r1, . . .)

= Je[`/l, `(r0)/l(r0), `(r1)/l(r1), . . .]Ke

If e[`/l, `(r0)/l(r0), `(r1)/l(r1), . . .] has any free variables, then by definition,

Je[`/l, `(r0)/l(r0), `(r1)/l(r1), . . .]Ke has no meaning and is undefined (i.e., e(t) = ;). As a final

convenience for dealing with expressions in the semantics when constructing computation graphs,

let the set of regions whose variables appear in e be denoted by ⌘(e).

Contexts are used to further simplify the notation needed to define the semantics. A

configuration context, C, is a tree with a single ⇧-labeled leaf, task-labeled vertexes, and region-

12

labeled edges. The notation C[c] denotes the configuration obtained by substituting a configuration

c for the unique ⇧-labeled leaf of C. The configuration isolates individual task transitions (e.g.,

C[ht,mi] ! C[ht0,mi] denotes an intra-procedural transition on a task). Similarly, a statement

context is given as S = ⇧; s1; . . . ; si and S[s] indicates that ⇧ is replaced by s where s is the

next statement to be executed. A task statement context, T = h`, S, d, ~r�, ~r!, ni is a task with a

statement context in place of a statement, and likewise T [s] indicates that s is the next statement to

be executed in the task. Like configuration contexts, task statement contexts isolate the statement

to be executed (e.g., C[hT [s1],mi] ! C[hT [s2],mi] denotes an intra-procedural transition that

modifies the statement in some way). For convenience, e(t) is naturally extended to use contexts as

indicated by e(T).

As indicated previously, a task t is completed when its next to be executed statement s is

return e. The set of possible return-value handler statements for t is rvh(t) = {d(`) | ` 2 e(T)}
given the task’s context. By defnition, rvh(t) = ; when t is not completed or e(T) is undefined.

The initial condition for a program ◆ = hp, `i is an initial procedure p 2 Procs and an

initial value ` 2 Vals. The initial configuration is created from ◆ as c = hh`, sp, d, ~r�, ~r!, ni,mi,
where sp is the statement for the procedure p, d is the identity function (i.e., �v.v), ~r� list regions

whose variables are read by p, ~r! lists regions whose variables are written by p, n is a fresh node for

the computation graph (i.e., n = fresh()), and 8r 2 Regs,m(r) = ;.
The semantics is now given as a set of transition rules relating tree configurations. The rules

assume the presence of a global computation graph, G = hN,E, �,!i, that is updated as part of

the transition. The initial graph contains a single node N = {n} from the initial configuration, no

edges (E = ;), and no read/write information (�(n) = ; and !(n) = ;).
Figure 3.3 lists the intra-procedural transition rules. The rules omit the configuration context

since intra-procedural statements do not need the region valuation from the context. The rules define

the intra-procedural statements in the usual way. Of note is the update of the computation graph to

record any read region variables from expressions or any write region variables from an assignment.

The notation, � = � [(n 7! ⌘(e)), is understood to update � such that n additionally maps to ⌘(e).

13

ASSIGN LOCAL
`

0 2 e(`, ~r�) � = � [(n 7! ⌘(e))

h`, S[l := e], d, ~r�, ~r!, ni ! h`0, S[skip], d, ~r�, ~r!, ni

ASSIGN REGION
` 2 e(T) r is found in ~r!(T) `(r) = `

� = � [(n 7! ⌘(e)) ! = ! [(n 7! {r})
T [l(r) := e]! T [skip]

SKIP

T [skip; s]! T [s]

ASSUME
true 2 e(T) � = � [(n 7! ⌘(e))

T [assume e]! T [skip]

IF-THEN
true 2 e(T) � = � [(n 7! ⌘(e))

T [if e then s1 else s2]! T [s1]

IF-ELSE
false 2 e(T) � = � [(n 7! ⌘(e))

T [if e then s1 else s2]! T [s2]

DO-LOOP
true 2 e(T) � = � [(n 7! ⌘(e))

T [while e do s]! T [s; while e do s]

DO-BREAK
false 2 e(T) � = � [(n 7! ⌘(e))

T [while e do s]! T [skip]

Figure 3.3: The transition rules for the intra-procedural statements.

14

CALL

C[T [call l := p e ~r� ~r!],m]!
C[T [post rcall p e " ~r� ~r! �v.l := v; ewait rcall],m]

POST
n

0
0 = fresh() n1 = fresh()

N = N [{n0
0, n1} E = E [{hn0, n

0
0i, hn0, n1i}

` 2 e(`

0
, ~r�

0
) � = � [(n0 7! ⌘(e))

m

0
= (m \m|~r) [(r 7! hh`, sp, d, ~r�, ~r!, n1i,m|~ri)

C[h`0, S[post r p e ~r ~r� ~r! d], ~r�
0
, ~r!

0
, d

0
, n0i,m]!

C[h`0, S[skip], ~r� 0, ~r! 0
, d

0
, n

0
0i,m0

]

EWAIT
n

0
= fresh()

N = N [{n0} E = E [{hn, n0i, hn(t2), n0i}
m1 = (r 7! ht2,m2i) [m

0
1 s 2 rvh(t2)

C[h`, S[ewait r], ~r�, ~r!, d, ni,m1]!
C[h`, S[s], ~r�, ~r!, d, n0i,m0

1 [m2]

AWAIT-NEXT
n

0
= fresh()

N = N [{n0} E = E [{hn, n0i, hn(t2), n0i}
m1 = (r 7! ht2,m2i) [m

0
1 s 2 rvh(t2)

C[h`, S[await r], ~r�, ~r!, d, ni,m1]!
C[h`, S[s; await r], ~r�, ~r!, d, n0i,m0

1 [m2]

AWAIT-DONE
m(r) = ;

C[T1[await r],m]! C[T1[skip],m]

Figure 3.4: The transition rules for the inter-procedural statements.

The notation ~r!(T) in the assign-region rule is used to indicate the read-region vector in the task or

task context, T = h`, S, d, ~r�, ~r!, ni. Similar notation is used in other rules to access the tuple.

Figure 3.4 shows semantics for the inter-procedural statements. The call statement is

interpreted as a post followed by ewait on some region rcall. This region rcall is exclusive to the

task calling the procedure and cannot be used to post new tasks into this region. A call statement

does not allow ownership of any tasks to be passed to the newly created task. The region variables

that are available to this task for reading and writing are denoted by ~r� and ~r! respectively.

The POST rule is fired when the task forks to create a new child task that potentially runs

in parallel with the parent task. When a task t1 executes a post statement, two fresh nodes n0
0 and

15

n0

n0' n1

(a)

n0

n0'

n1

(b)

Figure 3.5: Steps involved in computation graph creation.

n1 are added to the graph. Node n

0
0 represents the statements following post and n1 represents

the statements executed by t2. The current node n0 of t1 is connected to n

0
0 and n1 as shown in

Figure 3.5(a). The read set � of node n0 is updated to additionally map to the regions in ⌘(e) (i.e.,

the regions referenced in the expression e). The current node of t1 changes to n

0
0 after the transition.

The region mapping m of task t1 is updated by removing the configurations of regions whose

ownership is passed to the newly created task t2 and adding a new configuration that consists of the

task t2 along with the regions it now owns.

The EWAIT rule blocks the execution of the currently executing task until a task in the

indicated region completes. The choice of completed task, t2, in the region is non-deterministic. A

node n0 is added to the graph to act as a join node. It captures the subsequent statements executed by

task t1 after the ewait statement finishes. The current node n of task t1 and the current node of task

t2, denoted by n(t2) are connected to n

0 as shown in Figure 3.5(b). The configuration (r 7! ht2,m2i)
is removed from the region valuation m of task t1. After the transition, the current node of task t1 is

16

changed to n

0. The task t1 is resumed with a return value handler for the completed task (rvh(t2))

before continuing with its next statement.

The AWAIT-NEXT rule blocks the execution of the currently executing task t1 until all the

tasks whose handles are stored in region r that the task t1 owns are executed to completion. The

rule is implemented recursively by removing one task from the region at a time and then inserting

another await-statement on the same region. Similar to EWAIT, a join node n0 is added to the graph,

the current nodes of t1 and t2 are connected to n

0 as shown in Figure 3.5(b) and the current node of

task t1 is changed to n

0. When task t2 returns a value to t1, t1 executes the statement from the return

value handler rvh(t2). The AWAIT-DONE rule terminates recursion when the region is empty.

The computation graph for the example in Figure 3.2 is presented in Figure 2.1. When the

program starts executing, a node n0 is added to the graph to represent the procedure main. When

the task t1 is posted by the procedure main to execute procedure p1, two new nodes n0
0 and n1 are

added to the graph to represent the statements executed by the procedure main and procedure p1

respectively. Similarly, when task t2 is posted by the procedure main to execute procedure p2, two

new nodes n00
0 and n2 are added to the graph. When the main task calls await on r1, its execution is

suspended until t1 and t2 finish execution. When the await is executed, node r1 and r

0
1 are added to

the graph. The read and write to region variable r1 by the tasks t1 and t2 is updated in nodes n1 and

n2 using the functions � and ! respectively.

The order of synchronization of tasks t1 and t2 affects the value of the variable n in the

main task. The return value handlers of the tasks get executed in different orders under different

schedules. This makes the output of the program non-deterministic. In a schedule where task t1

joins main task before t2, the value of n at the end of program execution is 3 and in a schedule

where task t2 joins main task before t1, the value of n is 2.

Theorem 2. The computation graph represents the correct ordering of events in a program and

stores the accesses to shared variables in the program. The sequential events are ordered while the

concurrent events are unordered.

17

Proof. Proof by definition: There are two types of operations performed in a task parallel program:

inter-procedural and intra-procedural. The inter-procedural statements create different nodes in the

graph and are responsible for maintaining the correct ordering of events in the program. The nodes

in the computation graph contain read/write sets to store the accesses to shared variables by the

tasks. The intra-procedural operations do not affect the structure of the computation graph; however,

they update the read/write sets of the nodes in the computation graph when the tasks access shared

variables. These operations are discussed separately below.

The semantics for inter-procedural statements are given in Figure 3.4. The inter-procedural

statements are post, ewait, await and call. When a post statement is executed, the POST rule is

fired. It creates two new nodes in the computation graph. One node represents the statements

executed by the newly posted task and the other node represents the statements executed by the

calling task immediately following the post statement. These nodes are set as the active nodes for

these tasks. Any access to the shared memory is stored in the read/write sets for the active node.

These two nodes are unordered since the statements are executed concurrently by these tasks.

The ewait is used to synchronize a child task with its parent task. The EWAIT rule creates a

join node in the computation graph. Both the child and the parent task’s active nodes are connected

to the join node. The added edges order this node after the active nodes in the child task and the

parent task. The await statement joins all the children tasks posted in a region to the parent task.

The await statement fires the AWAIT-NEXT rule that joins one child task at a time to the parent task.

Similar to the EWAIT rule, AWAIT-NEXT also creates a join node for every child task. The join node

is set as the active node for the calling task. Any shared memory accesses by the calling task are

registered in the read/write sets of the active node.

Finally, the call is semantic sugar for a post followed by an ewait. As such, even though the

calling task gets a new active node to reflect its concurrent relationship to the newly created task,

the read/write sets in that node are never updated since the calling task executes ewait immediately

after the post, which does not read/write any region variables, and once the ewait completes, the

task gets a new active node ordered after the join from the task created by the call.

18

The intra-procedural statements are assign, skip, assume, if-then-else and do-while. The

semantics for intra-procedural statements is given in Figure 3.3. The semantic rules for intra-

procedural events show that they do not change the structure of the computation graph since none

of the rules create any new nodes or edges in the computation graph.

The SKIP rules does not interact with any shared variables in the program. The if-then-else

and do-while statements fire IF-THEN, IF-ELSE, DO-LOOP and DO-BREAK rules. These rules only

read shared variables. Therefore, only the read sets for the active nodes set by the inter-procedural

statements are updated by the statements. The ASSIGN LOCAL rule only updates the read set of the

active node since this rule does not update any shared variables. Whereas the ASSIGN REGION

rule updates both read/write sets of the active node, since shared program variables are updated by

this rule. As such, by definition, the computation graph exactly reflects the orders defined by the

semantics and only updates read/write sets that are defined by the semantics.

Corollary 1. Applying Algorithm 1 to computation graphs created using the semantics of task

parallel programs is complete for data race detection in the given program input – data race free

programs will never be rejected; but, programs with data race may be accepted because the data

race did not manifest in the computation graph from the executed schedule.

Proof. Proof by example: A task parallel program can have different computation graphs based on

the schedule followed by the tasks during the program execution. If Algorithm 1 does not report a

race for a computation graph obtained from some execution of the program, data races may still be

present under some other program schedule.

Consider the example in Figure 3.6. The task parallel program in the example has a data race

under one program schedule and it is data race free under a different schedule. The computation

graphs for the different schedules are shown in Figure 3.7. If the program follows the first schedule,

(i.e., task t1 joins before t2) task t3 is not spawned and there is no data race in the program. If the

program, however, follows the second schedule(i.e., task t2 joins first), then a new task t3 is created

by task t0 and there is a data race on region variable r1.

19

proc main(var n : int)
n := 1;
post r1 p1 n " {r1} {r1} �v.n := v;
post r1 p2 n " {r1} {r1} �v.n := v;
ewait r1

if (n == 1) then
post r1 p3 n " {r1} {r1} �v.n;
r1 := 1

await r1

proc p1(var n : int)
return 0

proc p2(var n : int)
return 1

proc p3(var n : int)
r1 := 2

Figure 3.6: Parallel program with different computation graphs under different schedules.

n2

n0

n0''

r1

n0' n1

r1'

(a) t1 joins first.

n0

n0''

r1

n0'

n0'''

r1''

r1'''

n3

n1

n2

(b) t2 joins first.

Figure 3.7: Computation graphs of example in Figure 3.6.

20

Theorem 1 shows that Algorithm 1 is sound and complete for a given computation graph.

When Algorithm 1 is applied to task parallel programs with a given input, it may accept programs as

data race free that in reality contain data races. This is evident from example in Figure 3.6. Therefore,

determining data race freedom from a single schedule of a task parallel program using Algorithm 1

is complete for the input program because different schedules create different computation graphs.

21

Chapter 4

Structured Parallel Languages

Non-determinism arises in task parallel programs primarily due to two reasons: data races

and the order in which return value handlers are executed. Return value handlers act on local

variables whereas data races occur in shared variables. Non-deterministic programs create different

computation graphs under different program schedules. When the behavior of the program is

non-deterministic, the result of the data race detection algorithm for a computation graph can be

applied only for that particular program run. The non-determinism in program behavior due to

different order of execution of return value handlers is countered by structured parallel languages

such as Habanero Java and X10 by imposing an order on the task synchronization when the return

value handlers do not commute.

These languages impose the following restrictions to ensure determinism in program behav-

ior in the absence of data races:

• Passing ownership of tasks from a parent to a child task is not allowed.

• Tasks whose return value handlers side effect can be posted in single-task regions only (i.e.,

regions that contain only a single task). A side-effect of a return value handler can be a change

in the state of either the local variable or a region variable.

• All the tasks are joined to the main task at the end of the program execution. This is

ensured by having the initial program configuration as hT[post r0 p0 e " ~r ~r �v.v;

await r0; await r1; . . .],m0i on some procedure p0, ~r is the region sequence containing all

regions and 8r 2 Regs,m0(r) = ;

22

public class Example1{
static int x = 0;
public static void main(String [] args) {

finish {
async { // Task1

x = x + 1;
}
finish {

async { // Task2
x = x + 2;

}
}

}
future f = async { // Task3

return 5;
}
x = f . get () ;

}
}

Figure 4.1: Example of an HJ Program.

4.1 Habanero Java

Habanero Java is a structured parallel programming language that gives importance to the usability

and safety of parallel constructs. It guarantees properties such as determinism and serialization for

subsets of parallel constructs. However, these guarantees hold only in the absence of data races. It

provides various parallel constructs to create structured parallel programs.

Figure 4.1 shows an example of an HJ program. The main task has two nested finish-blocks

with tasks being posted to both these blocks and a future task.

The async construct creates a new asynchronous task that runs in parallel with the parent

task. Task passing is not allowed in HJ, so the sequence of regions whose handles are passed to the

child task is empty ("). The newly created task has read and write access to all the region variables

in the program.

23

proc main (var n : int)
l(r1) := 0;

post r1 p1 0 " ~r ~r �n.n;
post r2 p2 0 " ~r ~r �n.n;
await r2;
await r1;
post r3 p2 0 " ~r ~r �n.r1 := n;
ewait r3;

proc p1 (var n : int)
l(r1) := l(r1) + 1

proc p2 (var n : int)
l(r1) := l(r1) + 2

proc p3 (var n : int)
return 5

Figure 4.2: HJ program converted to task parallel language.

A finish construct is used to collectively synchronize children tasks with their parent task.

The finish s statement causes the parent task to execute s and then wait until all tasks created inside

the finish-block have completed. Each finish construct creates a new region to post tasks. Every

task has a unique immediately-enclosing-finish (IEF) during program execution. That IEF is the

innermost finish construct containing the task. The runtime holds stacks of finish-blocks. Every

stack is associated to a task to track the nesting of finish-blocks in this task. When a task is created,

it is added to the parent task’s active finish-block. In this way, when a parent reaches the end of a

finish construct, it calls await on the region belonging to this finish-block to join on all tasks in the

current finish-block. After joining, the finish-block is popped off the stack.

The future construct lets tasks return values to other tasks: future f = async s creates a

new child task to execute s. The local variable f contains a handle to the newly created task that

can be used to obtain the value returned by s. The blocking operation f.get() retrieves this value

when the child task completes execution.

Figure 4.2 shows the conversion of program from example Figure 4.1 to the generic task

parallel language in this paper. The procedure main posts task from the outer finish block to region

r1 and task from the inner finish block to region r2. Since, the inner finish block completes execution

24

first, await on region r2 is called before r1. The future posts a task to region r3 followed by an ewait

on r3.

Habanero also includes loop parallelism constructs such as forasync and forall which are

syntactic sugar for the presented constructs. An implicit finish is included at the end of forall

iterations whereas forasync iterations do not have an implicit finish.

4.2 Properties of structured parallel programs

Let G(P) return the set of computation graphs from all possible schedules of the program P . And,

let DRF(G) return true if Algorithm 1 reports the graph to be data race free.

Lemma 1. For a graph G 2 G(P),DRF(G)! {8G0 2 G(P),DRF(G

0
)}.

Proof. Suppose there exists {G,G

0} ✓ G such that DRF(G) is true but DRF(G0
) is false. As

such, either G and G

0 have the same structure and differ in the region variables accessed, or they

have different structures all together. To accomplish either situation, there must be a source of

non-determinism either in the program P itself or as a result of the semantic definition for task

parallel programs and how computation graphs are derived from executions. Since the input to the

program is fixed and expression evaluation is deterministic by definition (e.g., the choice operator is

not allowed), the non-determinism needed to create G and G

0 must arise through task interaction.

Tasks interact at creation, completion, and through shared region variables. The interaction

needs to be such that it causes a task in P to follow a different control flow path to access different

region variables or to post and synchronize tasks differently in order to create G and G

0 so that one

has no data race while the other one does. At task creation, the POST rule in Figure 3.4 indicates

that the parent task passes to the child task the value of the child’s local variable, other tasks from

the parent, the read and write region variables, and the return value handler. Each is discussed

separately.

Structured parallel languages do not allow task passing by definition. The definition also

mandates all regions for reading and writing in each task. As such, no different information is

25

exchanged that can lead to G and G

0 by task passing or access lists—synchronization between tasks

(e.g., await and ewait) and available regions to access are identical. That leaves the child’s local

variable and the return value handler to discuss.

Structured parallel languages by definition restrict side-effecting return value handlers (i.e.,

handlers that alter the local variable in the parent task) to appear in the ewait statement only, and it

further restricts that the statement indicate the task for which it is to wait. This restriction effectively

serializes the computation in the return value handlers to always be deterministic (i.e., it follows

the same order to yield the same computation, in the absence of data race, since expressions are

deterministic). Further, since the definition restricts return values handlers for the await statement

to not side-effect, it is not possible to create G and G

0 with return value handlers in the absence of

data race—task completion is ordered by ewait and it does not matter for await.

Turning to the child’s local variable, to create G and G

0, some task in the program P must

see a different value for that local variable which is then used in an expression such that the same

task takes one control path in G and a different control path in G

0. The only way to alter the value

of a local variable is through a conflicting access on some region variable shared between two tasks

(e.g., a data race), but since that does not exist in G, DRF(G) is true, then it cannot exist in G

0 either

because the program P is deterministic by virtue of G being data race free—a contradiction.

Lemma 1 proves the claimed property that structured parallel programs in the absence of

data race are deterministic [3]. And is the first formalization of that property. The other claimed

properties can be derived from Lemma 1 but are not part of this paper.

Corollary 2. For a graph G 2 G(P),¬DRF(G)! {8G0 2 G(P),¬DRF(G0
)}.

Proof. Trivial from Lemma 1.

Theorem 3. Algorithm 1 is sound and complete for structured parallel programs with fixed input.

Proof. From Lemma 1 and Corollary 2, it can be seen that a single computation graph is enough to

verify a structured parallel program under any schedule. Theorem 1 states that Algorithm 1 is sound

26

and complete for a computation graph. Therefore, Algorithm 1 is sound and complete for structured

parallel programs with fixed input.

27

Chapter 5

On-the-fly data race detection

The data race detection technique presented in this work performs the analysis after the

program has finished execution (post-mortem analysis). To improve the efficiency of analysis at run

time, this paper presents a dynamic improvement for structured parallel programs. This technique is

called on-the-fly data race detection.

The data race detection is run on a region as soon as await finishes execution on that region

(i.e., AWAIT-DONE fires). If no race is reported, all the nodes belonging to that region are merged

into an equivalent master node that represents the region. The transformation preserves the partial

order relative to other tasks. The variables accessed by the tasks in the region are added to the

master node.

To implement this technique, the AWAIT-DONE rule has been modified as follows. The join

and meet nodes for set of nodes connected to the current node of task executing AWAIT-DONE are

identified.

Definition 4. Join : In a partially ordered set (N,�), an element n0 is a join of two unordered

elements n1 and n2 if the following conditions hold:

• n0 � n1 and n0 � n2 (i.e., n0 happens before n1 and n2).

• For any element n in N , such that n � n1 and n � n2, we have n � n0.

A join is the least upper bound for a subset of elements in the partially ordered set. Con-

versely, a meet is greatest lower bound for the elements in the partially ordered set. Join and meet

are symmetric duals with respect to order inversion.

28

Definition 5. Meet : In a partially ordered set (N,�), an element n0 is a meet of two unordered

elements n1 and n2 if the following conditions hold:

• n1 � n0 and n2 � n0 (i.e., n0 happens after n1 and n2).

• For any element n in N , such that n1 � n and n2 � n, we have n0 � n.

Definition 6. A lattice is defined as a partially ordered set such that every pair of elements has a

unique join and a unique meet.

Lemma 2. A computation graph of a structured parallel program is a lattice.

Proof. Structured parallel programs have a restriction of joining all unsynchronized tasks to the

main task at the end of program execution. The node that represents the main task when the program

starts execution acts as join node for all the nodes in the graph and the last await node acts as meet

node. For any pair of nodes n1 and n2, either the nodes are ordered or unordered. If the nodes are

ordered, n1 � n2 or vice versa, then there is a unique meet or join depending on the ordering. For

example, if n1 � n2, then n1 is the join and n2 is the meet.

If, however, the nodes are unordered, then it needs to be proven that the meet and join are

unique based on the structure of the graph. Consider the rules that add nodes to the graph. Nodes

are added when POST, AWAIT-NEXT or EWAIT rule fires. A POST rule is fired when a new task is

created. The parent task creates branching in the graph by adding nodes to represent the parent and

child task that executes in parallel. Since every task can only have a single parent, the join node

for the unordered nodes is unique. Tasks synchronize only on completion when AWAIT-NEXT or

EWAIT rule fires. Since structured parallel programs do not allow task passing, tasks are bound to

join to their parent/ancestor task only. Therefore, they cannot be cross-edges in the computation

graph. Hence, a pair of unordered nodes can have only a unique meet. Therefore, a computation

graph of a structured parallel program is a lattice.

The modified AWAIT-DONE rule for on-the-fly data race detection is presented in Figure 5.1.

subGraph takes a set of nodes, finds the meet/join, and then extracts everything, inclusive, as

29

AWAIT-DONE
m(r) = ; G

0
= subGraph(8n0

, hn0
, ni 2 E) DRF (G

0
) = true n1 = fresh()

N = N \N 0 [{n1} E = E \ E 0
�(n1) =

[

n02N 0

�(n

0
) !(n1) =

[

n02N 0

!(n

0
)

C[h`, S[await r], ~r�, ~r!, d, ni,m]! C[h`, S[skip], ~r�, ~r!, d, n1i,m]

Figure 5.1: AWAIT-DONE rule updated for on-the-fly data race detection.

proc main(var n : int)
n := 1;
post r1 p1 n " {r1} {r1} �v.n := n+ v;
await r1

proc p1(var n : int)
post r2 p2 n " {r1} {r1} �v.n := n+ v;
post r2 p3 n " {r1} {r1} �v.n := n+ v;
await r2

proc p2(var n : int)
l(r2) := n

proc p3(var n : int)
l(r2) := n

Figure 5.2: A parallel program with nested regions.

a sub-graph. The sub-graph for the set of nodes connected to n is extracted using subGraph.

This sub-graph is verified using Algorithm 1. If this sub-graph is data race free, the nodes in this

sub-graph are deleted from the computation graph. A new master node n1 is added to the graph in

place of this sub-graph. The region variables accessed by the nodes in the sub-graph are added to

n1.

Figure 5.2 shows an example of a parallel program with nested regions. The main task

spawns a task t1 in region r1. Task t1 spawns two new tasks t2 and t3 in region r2. The await on r2

is executed before await on r1 making the regions nested. All the tasks have read/write access to

region variable r1. As soon as the await on region r2 finishes execution, on-the-fly analysis is run on

this region to check for data races in the nodes belonging to this region. If a race is not reported, a

master node is added to the graph that represents region r2 and the program is executed further. The

30

n0

r1

n0'

n1

n1'

n1''

r2

n2

n3

r2'

(a) Comp graph for parallel program with nested regions

n0

r2-master

r1

n0'

(b) Comp graph with master node

Figure 5.3: Computation graph of example in Figure 5.2.

31

computation graph for this example is shown in Figure 5.3(a). The nodes that are used to find the

meet and join are r2 and n2. The nodes highlighted in blue denote the sub-graph that is replaced

by a master node if the region is data race free. Figure 5.3(b) shows the computation graph with a

master node inserted in place of region r2.

32

Chapter 6

Mutual Exclusion

Data races in parallel programs lead to non-deterministic behavior of programs. Therefore,

data races are termed as errors. When access to a shared variable is protected by a lock, there is a

programmer intended race on the variable. The behavior of the program is non-deterministic if the

programmer does not order the way in which tasks access this shared variable, but, this behavior is

expected by the programmer.

Programs with data races can have different computation graph structures based on the

schedule of tasks in the runtime (i.e., different update orders may result in different control flow

paths). Similarly, when shared memory accesses are protected using locks, different computation

graph structures can be observed based on the order in which the tasks access the protected shared

variable. To ensure that a program in which tasks have mutually exclusive access to some shared

variable does not have any unintended race, all the computation graph structures that can result from

different schedules over the protected shared variable access have to be enumerated and analyzed.

The task parallel language is extended to model mutual exclusion with a new statement:

isolated s. The statement performs s in mutual exclusion of any other isolated statements. The se-

mantics with how the computation graph is impacted is in Figure 6.1. The isolation is accomplished

by creating a new global variable last to track the last node in the computation graph belonging to

an isolated statement, by adding to the task context a counter initialized to zero to count the number

of nested isolated contexts, and with a new keyword for the rewrite rules: isolated-end.

Let canIsolate(C) be a function over configurations to Boolean that returns true for a

configuration tree if all the task counters are 0; otherwise it returns false. If no other isolated

33

ISOLATED
canIsolate(C) = true

n

0
= fresh() N = N [{n0} E = E [{hn, n0i, hlast , n0i}

C[h`0, S[isolated s], ~r�
0
, ~r!

0
, d

0
, n, 0i,m]! C[h`0, S[s; isolated-end], ~r� 0, ~r! 0

, d

0
, n

0
, 1i,m]

ISOLATED-NESTED
iso > 0 iso

0
= iso + 1

C[h`0, S[isolated s], ~r�
0
, ~r!

0
, d

0
, n, isoi,m]! C[h`0, S[s; isolated-end], ~r� 0, ~r! 0

, d

0
, n, iso

0i,m]

ISOLATED-END-NESTED
iso > 1 iso

0
= iso � 1

C[h`0, S[isolated-end], ~r� 0, ~r! 0
, d

0
, n, isoi,m]! C[h`0, S[skip], ~r� 0, ~r! 0

, d

0
, n, iso

0i,m]

ISOLATED-END
n

0
= fresh() last = n N = N [{n0} E = E [{hn, n0i}

C[h`0, S[isolated-end], ~r� 0, ~r! 0
, d

0
, n, 1i,m]! C[h`0, S[skip], ~r� 0, ~r! 0

, d

0
, n

0
, 0i,m]

Figure 6.1: The transition rules for isolated statements.

statements are running, then the ISOLATED rule increments the task counter to indicate isolation and

inserts after the isolated statement s the new isolated-end keyword. The computation graph gets a

new node to track accesses in the isolated statement with an appropriate edge from the previous

node. A sequencing edge from last is also added so the previous isolated statement happens before

this new isolated statement. As a note, last is initialized to an empty node when execution starts.

The ISOLATED-NESTED rule simply increments the counter if the task is already in isolation.

The ISOLATED-END-NESTED rule processes the new isolated-end keyword and decrements

the counter. When the counter reaches the outer-most isolated context, the ISOLATED-END rule

creates a new node in the computation graph to denote the end of isolation, and it updates last to

properly sequence any future isolation.

On-the-fly data race detection is modified for programs with isolated regions. When AWAIT-

DONE fires, the runtime checks if the region contains any task containing isolated statements. If the

region does not have any isolated-nodes, data race detection is run on the region and if the region is

data race free, it is replaced with an equivalent master node. If the region contains isolated-nodes,

34

the program execution proceeds normally (i.e., on-the-fly data race detection is not executed on the

region).

Algorithm 2 Scheduling algorithm for Isolated blocks.
1: function SCHEDULE(t, Regs, Tasks)
2: loop: (Regs, Tasks) := run(t, Regs, Tasks)
3: s := status(t)
4: R := runnable(Tasks)
5: if s = ISOLATED then
6: for all ti 2 R do
7: schedule(ti, Regs, Tasks)
8: end for
9: else

10: ti := random(R)
11: schedule(ti, Regs, Tasks)
12: end if
13: end function

Algorithm 2 presents a scheduling algorithm to explore different computation graph struc-

tures in parallel programs with isolated blocks. This algorithm is adapted from the scheduling

algorithm used for model checking HJ programs using permission regions [25]. The algorithm

considers a simplified state of the program with Regs as the set of region variables that are shared

among the tasks, Tasks is the set of tasks and t is a task. R is the set of runnable tasks.

The algorithm implements sequential semantics where only a single task is running at any

time, and that task runs until it completes or isolates at which time a scheduling choice is made.

Sequential semantics can be used for computation graph creation since Lemma 1 proves that the

creation of computation graph is independent of the schedule that was followed to create the graph

in the absence of data-race. And Corollary 2 shows that if a data-race exists, then it manifests on

every schedule.

Line 2 updates the region variables and pool of tasks by running task t until it exits, or

reaches an isolated-construct. The function status on Line 3 returns the status of the task t. On

Line 4, the function runnable is used to obtain a list of all the tasks that can be run from the pool

of all tasks. If the status of the currently running task t becomes ISOLATED (i.e., the task encounters

an isolated construct), the task is blocked and all the tasks that are runnable are scheduled by

35

proc main(var n : int)
n := 1;
post r1 p1 n " {r1} {r1} �v.n := n+ v;
post r1 p2 n " {r1} {r1} �v.n := n+ v;
await r1

proc p1(var n : int)
isolated l(r1) := n+ 1

proc p2(var n : int)
isolated if (l(r1) = n) then

post r1 p3 n " {r1} {r1} �v.n := n+ v;
else

l(r1) := n� 1

proc p3(var n : int)
l(r1) := n+ 2

Figure 6.2: Parallel program with mutual exclusion.

the runtime. When the task exits, a task is randomly selected from the set of runnable tasks and

scheduled by the runtime.

For the example in Figure 6.2, two different computation graph structures can be formed

based on the order of execution of isolated blocks. The computation graphs are shown in Figure 6.3.

If the scheduler runs the isolated section of task t1 first, the computation graph in Figure 6.3(a) is

formed. Task t1 changes the values of shared variable r1 to 2. Hence, when task t2 executes its

isolated section, the if-condition fails and an additional task is not spawned by t2. If the scheduler

runs task t2 first, the computation graph of Figure 6.3(b) is formed. In this schedule, task t2 executes

its isolated section first. Since the value of variable r1 is 1, the if-condition is met and a new task is

created by t2.

Theorem 4. Algorithm 2 finds all unique computation graphs for structured parallel programs with

isolated sections making it sound and complete with Algorithm 1.

Proof. Theorem 3 states that Algorithm 1 is sound and complete for structured parallel programs

that do not contain isolated sections. If mutual exclusion is present, Algorithm 1 does not remain

sound since different computation graph structures can be formed for such programs. The different

36

n0

n0''

r0'

n0'

n2

iso2

n1

iso1

n1'

n2'r0

(a) t1 runs before t2.

n0

n0''

r0'

n0'

n2

iso1
n1

iso2

n1'

n2'

r0''

r0

n3

(b) t2 runs before t1.

Figure 6.3: Computation graphs of example in Figure 6.2.

37

computation graph structures arise because the critical sections of tasks are executed in different

orders under different program schedules. Algorithm 2 creates thread scheduling choices at the

boundary of a critical section considering all the runnable threads that are present at the execution of

a critical section. Hence, all relevant computation graphs are considered by Algorithm 1. Therefore,

the data race detection using Algorithm 1 becomes sound and complete when it is used along with

Algorithm 2 for structured parallel programs that have mutual exclusion.

38

Chapter 7

Implementation and Results

7.1 Implementation

The data race detection technique described in this paper has been implemented for Habanero Java.

It uses the verification runtime specifically designed to test HJ programs [14]. This runtime makes

use of JPF to schedule and run the programs. The computation graphs are stored in a directed

acyclic graph. The JGraphT library provides an implementation of directed acylic graph [27]. This

library has been used to store the computation graphs. The computation graphs are exported in

the dot file format for convenience and as a way to understand the structure of the program. The

implementation is written in Java. It consists of 5 classes with 1600 lines of code.

JPF is modified by removing its default scheduling factory that inserts choices on all thread

actions and accesses to shared variables. Instead, a new scheduling factory based on Algorithm 2 is

employed for scheduling.

JPF’s VM listeners have been used to keep track of various program events. The methods

objectCreated and objectReleased are used to create nodes in the computation graph.

The objectCreated method is used to track the creation of new async tasks. The POST rule

is used to add nodes to the computation graph when the objectCreated method returns a task

object. Similarly, the objectReleased method is used to track when finish blocks complete

execution. The AWAIT-NEXT rule is used to create a node in the graph where the tasks belonging to

the finish block join.

The executeInstruction method is used to track memory locations that are accessed

by various tasks. The current node of the task calling executeInstruction method is updated

39

with the location accessed by the task during the execution of that instruction. Algorithm 1 is used

to analyze the computation graphs of the program. When an array is accessed by the program, every

element of the array is treated as a single variable for data race detection.

7.2 Results

The results for this technique have been compared to JPF’s precise race detector and gradual

permission regions based race detector on benchmarks that cover a wide range of functionality in

HJ. The results show a significant improvement in the time required for verification. These two

approaches were specifically chosen for comparison since the results generated by these approaches

are sound for a given input just like the technique discussed in this paper.

The precise race detector explores all potential executions in a systematic way. Each

execution is a sequence of transitions. Each transition takes the system from one state to another.

Each transition consists of a sequence of bytecode instructions. JPF groups bytecode instructions

such that an instruction that manipulates a shared variable is the first one of a transition. In every

state that JPF visits, the precise race detector checks all actions that can be performed next. If this

collection of actions contains at least two conflicting accesses of a shared variable, then a race on

the shared variable is reported.

Gradual Permission regions use program annotations to reduce the state space of the program.

Whenever a shared variable is accessed by two or more tasks in the program, the accesses have to

be annotated to inform the data race detector to create different schedules for these accesses. Since

the method requires manual annotation of the programs, it is prone to human errors. If the program

is annotated incorrectly, the results of data race detection analysis do not have any significance.

40

Table 7.1: Benchmarks of HJ programs: Computation graphs vs Permission Regions vs. PreciseRaceDetector.
Computation graphs Permission Regions Precise Race Detector

Test ID SLOC Tasks States Time Error Note States Time Error Note States Time Error Note
Primitive Array 29 3 5 00:00 No Race 5 00:00 No Race 11,852 00:00 No Race

No Race
Primitive Array 39 3 5 00:00 Race 5 00:00 Race 220 00:00 Race

Race
Two Dim Arrays 30 11 15 00:00 No Race 15 00:00 No Race 597 00:00 Race*

ForAll With 38 2 9 00:00 No Race 9 00:00 No Race N/A N/A N/A
Iterable

Integer Counter 54 10 24 00:01 No Race 1013102 05:53 No Race N/A N/A N/A
Isolated

Pipeline With 69 5 34 00:00 No Race 34 00:00 No Race N/A N/A N/A
Futures

Substring Search 83 59 64 00:03 Race 8 00:00 Race N/A N/A N/A
Binary Trees 80 525 630 00:25 No Race 632 00:03 No Race N/A N/A N/A
Prime Num 51 25 776 00:01 No Race 3,542,569 17:37 No Race N/A N/A N/A

Counter
Prime Num 52 25 30 00:02 No Race 18 00:01 No Race N/A N/A N/A

Counter ForAll
Prime Num 44 11 653 00:01 No Race 2,528,064 15:44 No Race N/A N/A N/A

Counter ForAsync
Reciprocal Array 58 2 4 00:08 Race 32 00:06 Race N/A N/A N/A

Sum
Add 67 3 11 00:01 No Race 62,374 00:33 No Race 4930 00:03 Race*

Scalar Multiply 55 3 15 00:01 No Race 55,712 00:30 No Race 826 00:01 Race*
Vector Add 50 3 5 00:00 No Race 17 00:00 No Race 46,394 00:19 No Race

Clumped Access 30 3 5 00:03 No Race 15 00:00 No Race N/A N/A N/A

41

Table 7.1 presents the results of verification of HJ benchmarks using computation graphs

based data race detector described in this work, permission regions based extension of JPF and

precise race detector extension of JPF. The number of states explored by JPF and time required for

verification by each of these methods were compared. The tests were run for a maximum of an

hour before they were terminated manually. For the tests that did not finish execution within the

stipulated time or the ones that ran out of JVM heap memory were considered failed and marked as

N/A in the table. The error note column shows the results of verification. The tests that produced

erroneous results were marked with an asterisk (⇤).
The benchmarks used in this study make use of various constructs of HJ for achieving task

parallelism. They spawn a wide range of tasks with smaller programs having 3-15 tasks going all

the way upto 525 tasks for larger tasks. The experiments were run on a machine with an Intel Core

i5 processor with 2.6GHz speed and 8GB of RAM. The number of cores used by the system is not

relevant since JPF runs only a single thread at a time.

The Precise race detector inserts choices in the scheduler for all thread actions such as thread

creation, synchronizations, locks etc. Therefore, it does not complete execution within the stipulated

time or runs out of memory even on smaller programs because of the state space explosion. It also

reports race for Two Dimensional Arrays, Scalar multiply and Vector Add benchmarks where no

data race actually exists in the program. This is because in precise race detector, the access on an

array object looks like a data race since it is not able to see the difference in the indexes.

The Gradual Permission regions based detector works pretty well compared to precise race

detector. The number of states explored and time required for data race analysis by Permission

regions and computation graphs is almost the same when the tasks don’t access shared variables

outside isolated blocks. When there are accesses to shared variables, the state space of permission

regions grows very fast since the shared variable accesses have to be annotated with regions and

race detector creates scheduling choices at every region boundary. Analyzing a single computation

graph for a program is enough for a program without isolated blocks since by Lemma 1, if a

computation graph of a program is data race free, all computation graphs from all schedules are data

42

Table 7.2: Comparison of results for on-the-fly and normal data race detection using computation
graphs.

Num of Tasks (n) On-the-fly Normal
States Time States Time

5 5 00:01 14 00:01
50 5 00:01 61 00:03

100 5 00:01 112 00:05
500 5 00:01 513 02:25

1000 5 00:01 1013 08:34

race free. Therefore, computation graphs are built using a single program schedule. This difference

can be seen in examples for Add, Scalar multiply and Prime number counter benchmarks. These

benchmarks use shared variables that have to be enclosed within regions which results in a large

state space for permission regions and longer analysis time.

Table 7.2 presents the improvement offered by on-the-fly analysis over normal data race

detection using computation graphs. The example in Figure 7.1 is used to demonstrate the difference

in performance of these techniques under different program sizes.

The example in Figure 7.1 is implemented in HJ. It consists of a finish block with two async

tasks that have a data race on static variable x. This finish block is followed by a forall loop which

is used to control the size of the program. Note that a forall loop has an implicit finish block and

each of the iterations of the loop are executed by creating async tasks inside the finish block.

From the results in table 7.2, it can be observed that the time required to analyze the program

using normal data race detection using computation graphs increases as the size of the program

increases. For the on-the-fly data race detection, the race detection is run on a finish block as soon

as the finish block completes execution. Since a data race is present in the first finish block itself,

the entire program is not executed. Therefore, the time required for analysis is very low.

43

public class Example{
static int x = 0;
public static void main(String [] args) {

finish {
async { // Task1

x = x + 1;
}
async { // Task2

x = x + 2;
}

}
forall (1, n, (index)){

x = x + index;
}

}
}

Figure 7.1: An HJ Program for comparing on-the-fly with normal data race detection using
computation graphs.

44

Chapter 8

Related Work

Different types of data race detection techniques have been developed. The static race

detectors analyze the source code to detect races. The dynamic race detectors use information from

the actual program executions for data race detection. Another technique for data race detection is

model checking. In this method, a model of the system being analyzed is created and whether this

model meets the specifications is exhaustively checked.

Static data race detectors require program instrumentation by the users. They can reason

about all possible program runs. The major drawback of these systems is that they produce a large

number of false-positives. [4–10].

Dynamic race detectors use different techniques to detect data races at runtime. The lock-set

based tools track the set of locks held by each task during execution. These sets are then used to

determine conflicts over shared memory references [18, 28–30].

Dimitrov et al. developed a dynamic commutativity race detector [31]. It uses vector clocks

along with a commutativity specification to generate a structural representation of parallel programs

that is used to locate races. Dynamic race detectors based on hashing assert if different runs of a

parallel program with the same input produce different outputs [32].

Lamport defined the happens-before relation in parallel programs [33]. The happens-before

relation defines a partial order among all the operations in all the threads of a parallel program. The

happen-before relation has been used in various data race detection techniques [17, 19, 20, 34–36].

This approach has also been applied to task parallel languages such as Cilk and X10 [21, 22].

45

Another algorithm based on the happens-before relation, discussed in the introduction, has been

developed for HJ programs [23].

Model checking systematically explores the entire state space of the programs to detect

concurrency issues [11–13]. The major drawback of model checking is the explosion in the state

space as the program size increases. This technique has been extended to verify various task parallel

languages such as HJ, X10 and Chapel[14–16]. As opposed to model checking, predictive analysis

observes only a single program execution and generalizes the verification results to all possible

schedules. This approach has been applied to detecting communication deadlocks in MPI programs

[37].

Various methods have been developed to tackle the state explosion problem of model

checking. Rely-guarantee reasoning verifies threads individually with the help of assertions about

other threads [38, 39]. Thread modular analysis relies on a similar technique. It verifies each thread

individually using an abstraction of steps that may be performed by other threads [40–43].

Hybrid race detection systems have been developed that combine various techniques to

overcome some of the limitations of these methods. Permission regions use static program instru-

mentation combined with dynamic analysis to detect races [44, 45]. Gradual permission regions use

a similar program instrumentation along with model checking [25].

This work makes use of the happens-before relation for dynamic analysis of programs and

uses model checking to ensure all schedules are considered in programs with mutual exclusion. A

lot of different techniques create models of programs from program executions and use the models

for verification. SATCheck observes the program execution to build a concrete behavior model of

program execution and using a SAT solver, it tries to find other interesting behaviors [46]. Coverage

driven testing uses program execution to create a model of the thread interleavings and shared

memory accesses to identify unexplored thread interleavings [47, 48]. Regression testing tools for

concurrent programs use changes in the program model to identify shared memory accesses that

might be affected by the code changes and identifying thread interleavings that must be explored

46

to expose regression bugs [49, 50]. Dynamic symbolic execution is combined with unfolding of

petri-nets to create minimal test-suites for testing multi-threaded programs [51, 52].

47

Chapter 9

Conclusion and Future Work

9.1 Conclusion and future work

This work presents a sound and complete technique for data race detection in task parallel programs

using computation graphs. A dynamic improvement for the data race detection algorithm called

on-the-fly analysis is also described. The computation graph creation is presented with the formal

semantics for task parallel languages. A scheduling algorithm to create all computation graph

structures for programs containing mutual exclusion is also presented. The data race detection

analysis is implemented for Java implementation of Habanero programming model using Java

Pathfinder and evaluated on a host of benchmarks. The results are compared to JPF’s precise race

detector and gradual permission regions based extension. The results show that this technique

reduces the time required for verification significantly. The results for data race detection using

computation graphs are also compared to the on-the-fly analysis to demonstrate the performance

gain it offers.

This work can be extended in the following ways:

• The data race detector based on computation graphs explores just one control flow path that

is taken by the program execution based on the input. The listener can be extended to explore

other control flow paths by using Symbolic Execution.

• The computation graphs can be created statically using program instrumentation and analyzed

to gain performance improvements.

48

References

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, “Cilk:
An efficient multithreaded runtime system,” Journal of parallel and distributed computing,
vol. 37(1), pp. 55–69, 1996.

[2] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun,
and V. Sarkar, “X10: An Object-oriented Approach to Non-uniform Cluster Computing,”
SIGPLAN Notices, vol. 40(10), pp. 519–538, 2005.

[3] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: the new adventures of old X10,”
in Proceedings of the 9th International Conference on Principles and Practice of Programming

in Java, 2011, pp. 51–61.

[4] D. Engler and K. Ashcraft, “RacerX: effective, static detection of race conditions and dead-
locks,” ACM SIGOPS Operating Systems Review, vol. 37(5), pp. 237–252, 2003.

[5] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata, “Extended
Static Checking for Java,” Proceedings of the ACM SIGPLAN conference on Programming

language design and implementation (SIGPLAN Notices), vol. 37(5), pp. 234–245, 2002.

[6] M. Abadi, C. Flanagan, and S. N. Freund, “Types for safe locking: Static race detection for
java,” ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 28(2), pp.
207–255, 2006.

[7] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for java,” SIGPLAN Notices,
vol. 41(6), pp. 308–319, 2006.

[8] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: static race detection on millions of lines
of code,” in Proceedings of the the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on the foundations of software engineering,
2007, pp. 205–214.

[9] J.-D. Choi, A. Loginov, and V. Sarkar, “Static datarace analysis for multithreaded object-
oriented programs,” Technical Report RC22146, IBM Research, Tech. Rep., 2001.

49

[10] M. Vechev, E. Yahav, R. Raman, and V. Sarkar, “Automatic verification of determinism for
structured parallel programs,” in Proceedings of the 17th International Conference on Static

Analysis, 2010, pp. 455–471.

[11] S. Kulikov, N. Shafiei, F. Van Breugel, and W. Visser, “Detecting data races with java
pathfinder,” 2010. [Online]. Available: http://nastaran.ca/files/race.pdf

[12] S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, R. Thakur, and W. Gropp,
“Implementing efficient dynamic formal verification methods for mpi programs,” in Recent

Advances in Parallel Virtual Machine and Message Passing Interface, 2008, pp. 248–256.

[13] P. Godefroid, “Model checking for programming languages using verisoft,” in Proceedings

of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1997, pp. 174–186.

[14] P. Anderson, B. Chase, and E. Mercer, “JPF verification of Habanero Java programs,” ACM

SIGSOFT Software Engineering Notes, vol. 39(1), pp. 1–7, 2014.

[15] M. Gligoric, P. C. Mehlitz, and D. Marinov, “X10X: Model checking a new programming
language with an ‘old’ model checker,” in IEEE Fifth International Conference on Software

Testing, Verification and Validation (ICST), 2012, pp. 11–20.

[16] T. K. Zirkel, S. F. Siegel, and T. McClory, “Automated Verification of Chapel Programs using
Model Checking and Symbolic Execution.” NASA Formal Methods, vol. 7871, pp. 198–212,
2013.

[17] C. Flanagan and S. N. Freund, “FastTrack: efficient and precise dynamic race detection,”
SIGPLAN Notices, vol. 44(6), pp. 121–133, 2009.

[18] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A dynamic data
race detector for multithreaded programs,” ACM Transactions on Computer Systems (TOCS),
vol. 15(4), pp. 391–411, 1997.

[19] J. Mellor-Crummey, “On-the-fly detection of data races for programs with nested fork-join
parallelism,” in Proceedings of the ACM/IEEE Conference on Supercomputing, 1991, pp.
24–33.

[20] D. Schonberg, “On-the-fly detection of Access Anomalies,” SIGPLAN Notices, vol. 24(7), pp.
285–297, 1989.

50

http://nastaran.ca/files/race.pdf

[21] M. Feng, “Efficient detection of determinacy races in Cilk programs,” in In Proceedings of the

Ninth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), 1997, pp.
1–11.

[22] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient data race detection for
async-finish parallelism,” in International Conference on Runtime Verification, 2010, pp.
368–383.

[23] ——, “Scalable and Precise dynamic datarace detection for structured parallelism,” SIGPLAN

Notices, vol. 47(6), pp. 531–542, 2012.

[24] J. B. Dennis, G. R. Gao, and V. Sarkar, “Determinacy and repeatability of parallel program
schemata,” in Data-Flow Execution Models for Extreme Scale Computing, 2012, pp. 1–9.

[25] E. Mercer, P. Anderson, N. Vrvilo, and V. Sarkar, “Model checking task parallel programs
using gradual permissions,” in Proceedings of 30th IEEE/ACM International Conference on

Automated Software Engineering, 2015, pp. 535–540.

[26] A. Bouajjani and M. Emmi, “Analysis of recursively parallel programs,” SIGPLAN Notices,
vol. 47(1), pp. 203–214, 2012.

[27] JGraphT, A Java Library focused on data structures and algorithms. [Online]. Available:
http://jgrapht.org/

[28] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan, “Efficient and
Precise Datarace Detection for Multithreaded Object-oriented Programs,” SIGPLAN Notices,
vol. 37(5), pp. 258–269, 2002.

[29] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: Efficiently computing the happens-before
relation using locksets,” in Formal Approaches to Software Testing and Runtime Verification,
2006, pp. 193–208.

[30] ——, “Goldilocks: A race and transaction-aware java runtime,” SIGPLAN Notices, vol. 42(6),
pp. 245–255, 2007.

[31] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen, “Commutativity race detection,”
SIGPLAN Notices, vol. 49(6), pp. 305–315, 2014.

[32] A. Nistor, D. Marinov, and J. Torrellas, “Instantcheck: Checking the determinism of parallel
programs using on-the-fly incremental hashing,” in Proceedings of the 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, 2010, pp. 251–262.

51

http://jgrapht.org/

[33] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communica-

tions of the ACM, vol. 21(7), pp. 558–565, 1978.

[34] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang, “Static data race detection for concurrent
programs with asynchronous calls,” in Proceedings of the the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on the foundations of

software engineering, 2009, pp. 13–22.

[35] V. Kahlon and C. Wang, “Universal causality graphs: A precise happens-before model for
detecting bugs in concurrent programs,” in Computer Aided Verification, 2010, pp. 434–449.

[36] B. P. Miller and J.-D. Choi, “A Mechanism for Efficient Debugging of Parallel Programs,”
in Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, 1988, pp. 135–144.

[37] V. Forejt, D. Kroening, G. Narayanaswamy, and S. Sharma, “Precise predictive analysis
for discovering communication deadlocks in mpi programs,” in Formal Methods, 2014, pp.
263–278.

[38] Q. Xu, W.-P. de Roever, and J. He, “The rely-guarantee method for verifying shared variable
concurrent programs,” Formal Aspects of Computing, vol. 9(2), pp. 149–174, 1997.

[39] C. Popeea and A. Rybalchenko, “Compositional termination proofs for multi-threaded pro-
grams,” in Tools and Algorithms for the Construction and Analysis of Systems, 2012, pp.
237–251.

[40] C. Flanagan and S. Qadeer, “Thread-modular model checking,” in Model Checking Software,
2003, pp. 213–224.

[41] A. Malkis, A. Podelski, and A. Rybalchenko, “Precise thread-modular verification,” in Static

Analysis, 2007, pp. 218–232.

[42] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer, “Thread-modular abstraction refine-
ment,” in International Conference on Computer Aided Verification, 2003, pp. 262–274.

[43] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv, “Thread-modular shape analysis,” SIGPLAN

Notices, vol. 42(6), pp. 266–277, 2007.

[44] E. Westbrook, J. Zhao, Z. Budimlić, and V. Sarkar, “Practical permissions for race-free
parallelism,” in ECOOP–Object-Oriented Programming, 2012, pp. 614–639.

52

[45] ——, “Permission regions for race-free parallelism,” in Runtime Verification, 2012, pp. 94–
109.

[46] B. Demsky and P. Lam, “Satcheck: SAT-directed stateless model checking for SC and
TSO,” in Proceedings of the ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, 2015, pp. 20–36.

[47] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, “Testing concurrent programs to achieve
high synchronization coverage,” in Proceedings of the International Symposium on Software

Testing and Analysis, 2012, pp. 210–220.

[48] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: a coverage-driven testing tool for
multithreaded programs,” SIGPLAN Notices, vol. 47(10), pp. 485–502, 2012.

[49] V. Terragni, S.-C. Cheung, and C. Zhang, “Recontest: Effective regression testing of concurrent
programs,” IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1,
pp. 246–256, 2015.

[50] T. Yu, W. Srisa-an, and G. Rothermel, “SimRT: an automated framework to support regression
testing for data races,” in Proceedings of the 36th International Conference on Software

Engineering, 2014, pp. 48–59.

[51] H. P. d. Leon, O. Saarikivi, K. Kahkonen, K. Heljanko, and J. Esparza, “Unfolding based
minimal test suites for testing multithreaded programs,” in 15th International Conference on

Application of Concurrency to System Design (ACSD), 2015, pp. 40–49.

[52] K. Kähkönen, O. Saarikivi, and K. Heljanko, “Unfolding based automated testing of multi-
threaded programs,” Automated Software Engineering, vol. 22(4), pp. 475–515, 2015.

53

	Brigham Young University
	BYU ScholarsArchive
	2016-10-01

	Verification of Task Parallel Programs Using Predictive Analysis
	Radha Vi Nakade
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Data Race Detection
	3 Computation Graphs
	3.1 Surface Syntax
	3.2 Tree-based Semantics

	4 Structured Parallel Languages
	4.1 Habanero Java
	4.2 Properties of structured parallel programs

	5 On-the-fly data race detection
	6 Mutual Exclusion
	7 Implementation and Results
	7.1 Implementation
	7.2 Results

	8 Related Work
	9 Conclusion and Future Work
	9.1 Conclusion and future work

	References

