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ABSTRACT

A Common Misconception in Multi-Label Learning

Michael Benjamin Brodie
Department of Computer Science, BYU

Master of Science

The majority of current multi-label classification research focuses on learning depen-
dency structures among output labels. This paper provides a novel theoretical view on the
purported assumption that effective multi-label classification models must exploit output de-
pendencies. We submit that the flurry of recent dependency-exploiting, multi-label algorithms
may stem from the deficiencies in existing datasets, rather than an inherent need to better
model dependencies. We introduce a novel categorization of multi-label metrics, namely,
evenly and unevenly weighted label metrics. We explore specific features that predispose
datasets to improved classification by methods that model label dependence. Additionally, we
provide an empirical analysis of 15 benchmark datasets, 1 real-life dataset, and a variety of
synthetic datasets. We assert that binary relevance (BR) yields similar, if not better, results
than dependency-exploiting models for metrics with evenly weighted label contributions. We
qualify this claim with discussions on specific characteristics of datasets and models that
render negligible the differences between BR and dependency-learning models.

Keywords: Multi-label classification, chain classifier, conditional dependence
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Chapter 1: Introduction

In machine learning tasks, most models map a number of input variables, x̄, to predict a

single output class, y. In binary classification problems, this output takes on two possible

values, 0 or 1. In multi-class problems, however, the output may have numerous possible

values.

Binary : x̄ => y ∈ {0, 1}

Multi− Class : x̄ => y ∈ {y1, y2, ..., yn}

These two types of outputs have corollaries in an increasingly common machine learning

problem, multiple output classification. Rather than map inputs to a single output, multiple

output classification models map inputs to several outputs - each with binary or several

possible classes. The field of multi-label classification encompasses problems with multiple

binary outputs. We describe this formally as

Multi− label : x̄ => ȳ ∈ {0, 1}k

where k is the number of predicted output labels. Researchers have successfully used multi-

label classification models for text-classification and scene labeling [1]. Multi-dimensional

classification models handle those tasks that assign instances to a set of output classes, each

with two or more possible values [29]. In our formal definition,

Multi− dimensional : x̄ => ȳ, yk ∈ {y1, y2, ..., yn}
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each of the k output classes takes n possible values, where n is the number of values associated

with the kth output class.

Researchers often handle multi-dimensional output problems by simply converting

them into multi-label problems [24]. For instance, an output variable, color, with three

possible values {red, blue, yellow} can be converted into three separate binary variables:

hasRed {0, 1}, hasY ellow {0, 1}, and hasBlue {0, 1}. Admittedly, some output variables

are best embodied as multi-dimensional variables. For instance, output variables representing

the month and season are more understandably and efficiently represented as two multi-

dimensional variables, rather than sixteen binary variables. However, we focus specifically

on multi-label classification because the majority of previous research and current datasets

focus on this method. Furthermore, while we can easily convert from multi-dimensional to

multi-label output format, we often cannot perform a reverse conversion as easily.

As noted by [27], most multi-label classification approaches fall into two categories:

Data transformation and algorithm adaptation. Regardless of the category, these methods

generally introduce a new algorithm under the assumption that models will yield better

predictions by exploiting dependencies among outputs. The authors of [2, 3, 5] challenge this

assumption by providing theoretical and empirical evidence that multi-label algorithms often

cannot simultaneously minimize multiple loss functions. They implore future researchers to

create models that exploit a specific type of label dependency, rather than general models

that seek to handle any form of multi-label datasets.

We similarly confront the controversial assumption that models can achieve improved

results by learning and modeling dependencies among outputs. We note that [5] uses the

statistical notation used in [8] for representing multivariate regression. As a result, [5] focuses

its analysis on potential dependencies introduced by the stochastic error term, ε, used in the

multivariate representation. We introduce our own notation, however, which in turn affects

our analysis, conclusions, and recommendations for future work.
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The novel contributions of this paper include a new categorization of multi-label metrics

into evenly and unevenly weighted label metrics. Using this metric distinction, we provide a

theoretical discussion of the purported claim of the importance of exploiting dependencies in

multi-label classification. We also provide an empirical analysis of 15 benchmark datasets,

1 real-life dataset from InsideSales.com, and a variety of synthetic datasets. Finally, we

synthesize the results of our experiments and assert that binary relevance (BR) yields similar,

if not better, results than dependency-exploiting models for metrics with evenly weighted

label contributions. We further note that with an appropriate submodel, relevant features,

and a large number of instances, the differences between BR and dependency-learning models

are negligible.

Of course, we recognize that some tasks require the learning and use of output

dependency information for accurate classification. These tasks include, but are not limited

to, multidimensional planning and scheduling tasks. One particularly promising area of future

research involves classification problems with multiple correct multidimensional outputs.

These types of tasks would require new approaches for learning, predicting, and measuring

performance. We discuss this branch of classification, which we refer to as multidimensional

output dependency (MOD) learning, in Chapter 5 and suggest paths for future work.

The remainder of this paper is outlined as follows. Chapter 2 describes previous

approaches to to multi-label classification. We focus on the ubiquitous claim that effec-

tive models must exploit label dependencies. Chapter 3 discusses the distinction between

conditional and unconditional dependencies in multi-label datasets. We then provide a

novel theoretical analysis of dependencies in multi-label classification. Chapter 4 details an

extensive empirical analysis of a variety of real-world and synthetic datasets and Chapter 5

describes future work.
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Chapter 2: Related work

The binary relevance (BR) model is one of the most basic approaches to handling multi-

label prediction problems [16, 23]. This method independently trains n models to predict n

outputs, which are aggregated to produce a final prediction. Although BR models are quick to

construct and easily parallelizable, many criticize the method because it ignores dependencies

that may exist among outputs. This supposed shortcoming of BR led to the unverified, yet

nearly universally accepted, assumption that the most probable path to improvements in

multi-label classification will involve learning dependency structures among labels.

Along with BR, the label powerset (LP) method [6] serves as common baseline

comparison in multi-label tasks. LP creates compound variables to model all possible

combinations of the output variables. While this method implicitly accounts for label

dependencies and correlations among outputs, the number of possible labels, 2|L|, where |L|

represents the number of labels, increases exponentially with each additional output. Because

of this, LP is infeasible for tasks with a large number of output variables.

Although some methods, such as BR and LP, simply transform the data in order to

handle multi-label tasks, most approaches adapt existing models or introduce new models to

learn dependencies and concurrently predict outputs. One of the most popular approaches to

model dependencies among outputs is the chain classifier (CC) [21]. This model mirrors BR

by using n models for n outputs. Unlike BR, however, a CC cascades previous predictions

along the chain of models. This means that each model in the chain learns dependencies

among the previously predicted outputs.
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The most common chain classifier models, including those found in multi-output

prediction libraries such as MEKA [20] and MULAN [28], rely on a random chain ordering

[7]. A number of papers employ empirical studies to argue that CC improves upon BR

prediction. However, they acknowledge that randomly ordered CCs may or may not correctly

capture dependencies among outputs. In efforts to overcome this limitation, Read et al. [21]

introduced the Ensemble of Chain Classifiers (ECC), which increases prediction accuracies by

employing a voting mechanism among several randomly ordered chain classifiers. Once again,

however, this approach may fail to model the actual dependency structure among output

variables. Furthermore, ECCs require additional resources to handle the computations for

several linked CC models.

Zaragoza et al. [29] developed Bayesian Chain Classifiers (BCC) to more accurately

learn output dependencies. The BCC uses a directed acyclic graph, or Bayesian Network,

to first learn the dependencies among output variables. The BCC then uses that network

to construct an ordering for the chain of models. Because of limits placed on the network

to simplify the overall model, each link in the BCC only incorporates one additional class.

This precludes the model from learning more complex dependency structures. Without the

imposed simplifications, BCC models can learn more complex interactions among variables.

However, the running time quickly becomes impractical since the BCC explores all 2n possible

chain orderings, where n is the number of outputs [2, 22]. Although ensembles of simplified

BCC models can boost performance and avoid exponential running time, they still may not

capture dependencies that involve two or more influencing output variables.

Read et al. [22] introduced a Super-Class (SC) model that clusters similar outputs

to learn output dependencies with increased speed. This model uses simulated annealing to

balance the process of exploiting discovered dependencies and exploring possible dependencies.

In general, the SC approach reduces the enormous dependency search space and finds good

local minima solutions. Much like randomly ordered chain classifiers, however, the SC model
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may fall into a bad local minimum and produce poor prediction results. The approach may

also experience problems similar to the LP method, such as overfitting.

One of the most recent models, the Classifier Trellis (CT) [24], places outputs into a

predefined dependency structure, which the model gradually improves upon while training.

This structure eliminates the need to solve the NP-hard problem of discovering a dependency

network with no prior knowledge. The CT gradually improves upon this predefined network

until reaching a satisfactory structure. Although the CT, on average, performs worse than

an ECC, the predefined structure allows CT to scale to datasets with thousands of output

variables. Nevertheless, because CT uses the pairwise matrix of mutual information to

compute the dependence between random variables, CT cannot model dependencies that

involve more than two variables, which limits the learning power of the model.

In addition to providing new approaches for multi-label classification, the papers for

CC, BCC, SC, and CT reinforced the assumption that future improvements in the field would

discover better representations of label dependencies. This belief resulted in a surge of papers

with new schemes for ordering chain classifiers [7, 10, 12, 14, 15, 25, 29] and formulating new

dependency structures. In harmony with [5], we question the value of creating additional

dependency-based models without first validating the underlying assumption that models

benefit by exploiting label dependencies. In an effort to answer this question, the next section

details a theoretical analysis of the basic premise underlying recent multi-label prediction

approaches.

2.1 Multi-label metrics

Existing research details numerous metrics for comparing and assessing the performance

of new multi-label classifiers. Despite the varied forms of these metrics, they generally fall

into two categories, bipartitions-based and rankings-based [17]. Multi-label ranking tasks

deal with both multi-label classification and label ranking. Due to the added complexity
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introduced by label ranking, we focus our attention on bipartitions-based metrics and leave

rankings-based analysis for future work.

Bipartitions-based metrics often extend familiar binary classification metrics to appro-

priately handle multi-label data. Following the example of [17], we further divide bipartitions-

based metrics into two categories: Label-based and example-based. Label-based metrics

measure the performance of labels individually and report the averaged performance across

all labels. Example-based metrics, on the other hand, assess the difference between the actual

and predicted sets of labels. Table 2.1 contains two label-based and two example-based

metrics that we use for our experiments in Section 4. Below we define each of these four

metrics.

Table 2.1: Bipartitions-based metrics

Example-based Label-based

Hamming loss Micro F1
0/1 loss Macro F1

2.1.1 Hamming loss

One of the most commonly reported multi-label metrics, hamming loss, measures the sym-

metric difference the predicted and actual label sets. We define this as

Hamming Loss = 1− 1

|N ||L|

|N |∑
n=1

|L|∑
i=1

(ŷni ⊕ yni )

where N is the total number of instances, L is the number of labels, and ⊕ returns the logical

equality of ŷni and yni .

2.1.2 0/1 loss

Another much stricter, yet oft-reported measure is 0/1 loss, which corresponds to the exact

match [7], subset accuracy [13], or example accuracy [22] scores in previous literature. This

7



metric reports the percentage of predicted label sets that contain an error. We represent this

as

0/1 Loss = 1− 1

|N |

|N |∑
n=1

1(ŷn = yn)

where 1() returns 1 if the predicted ŷn vector is identical to yn.

2.1.3 F1 score (macro-averaged)

The macro-averaged F1 score is a familiar extension of the F1 score for binary classification.

To compute this metric, however, we average the F1 scores of all label columns in the data.

Similar to traditional F1 scores, the macro-F1 score for each label is simply the harmonic

mean between precision, pi, and recall, ri, for the ith label column:

F1i =
2× pi × ri
pi + ri

We then calculate the macro F1 score by averaging the scores for each label. We denote this

as

Macro F1 =
1

L

|L|∑
i=1

F1i

where L is the total number of label columns.

2.1.4 F1 score (micro-averaged)

In contrast to Macro-F1, Micro-F1 computes statistics globally for all labels and instances.

We express this mathematically as

Micro F1 =

∑|N |
n=1

∑|L|
i=1 ŷ

n
i × yni∑|N |

n=1

∑|L|
i=1 ŷ

n
i +

∑|N |
n=1

∑|L|
i=1 y

n
i

where ŷni and yni are the predicted and actual values, respectively, for label i and instance n.

As aptly noted by [26], label columns with few examples strongly affect macro-F1, whereas

labels with many examples exert greater influence on micro-F1.
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We further distinguish the metrics in Table 2.1 by differentiating between even and

uneven label weighting. We attribute even weighting to those measures that allot equal weight

to each individual label. For example, hamming loss computes an average over both labels

and instances, which gives all label predictions equal weighting in the metric calculation.

Similarly, the micro-averaged F1 score computes precision and recall statistics globally and

equally weights the contributions of labels. At the other end of the spectrum, macro-averaged

F1 score and 0/1 loss unevenly weight individual labels by allowing columns with fewer

positive examples to more strongly influence these performance measures. Table 2.2 updates

Table 2.1 with this added distinction.

Table 2.2: Bipartitions-based metrics differentiated by label weighting

Example-based Label-based

Even-weighting Hamming loss Micro F1
Uneven-weighting 0/1 loss Macro F1
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Chapter 3: Theoretical discussion

An increasing number of papers make efforts to provide a basic theoretical foundation for their

proposed multi-label prediction models. In general, these theoretical discussions distinguish

between two types of dependencies within multi-label data sets: Unconditional and conditional.

Before introducing our own label dependency analysis, we define these terms:

Definition 1. Unconditional Dependence: Labels Y = y1, y2 . . . yk are considered uncon-

ditionally independent if P (Y ) =
∏k

i=1 P (yi). If, however, the output label Y contains yi

and yj such that P (yi, yj) 6= P (yi)P (yj), we say that the labels contain an unconditional

dependency.

Definition 2. Conditional Dependence: Labels Y = y1, y2 . . . yk are conditionally independent

if P (Y |x) =
∏k

i=1 P (yi|x). Mirroring the previous definition, if the output label Y contains

yi and yj such that P (yi, yj|x) 6= P (yi|x)P (yj|x), we say that the labels are conditionally

dependent.

Despite the similarities between these two types of dependencies, the presence of

one form of dependency does not imply the other. In other words, a dataset can have

unconditional dependencies without conditional dependencies, and vice versa. [4] stipulates

that future models should address a specific type of dependence and minimize a clearly

defined loss function. They cast doubt on the effectiveness of blanket models that claim to

yield better results based on a wide variety of metrics. Both [18] and [5], after discussing

conditional and unconditional dependencies, defend BR on the basis that it can perform

well with a suitable base learner. To the best of our knowledge, [5] provides the most

10



thorough analysis of multi-label dependence, which they base on multivariate regression from

[8]. [5] conjectures that the stochastic error terms in their multivariate setup can introduce

conditional dependencies among labels. Their analysis and synthetic experiments suggest

that BR performs best on datasets with none or some unconditional dependencies. We offer

a simple, yet illuminating discussion that builds upon these previous theoretical analyses.

Because our approach differs from former approaches, however, we gain new insights and

resultant recommendations for future work.

For this analysis, we consider a hypothetical dataset, D, which contains inputs X̄

and binary outputs y1 . . . yk. We assume that training and prediction use k models, which

we denote as m1 . . .mk, to predict k outputs. In the case of BR, we construct m1 . . .mk

independently based on X̄. For DE models, we assume that training can occur in parallel

and the input to a particular model may include both X̄ and other outputs. At prediction

time, however, these DE models must execute in the order determined by the dependencies

introduced in training. For instance, if model mj predicts yj and trains with both X̄ and

yi as inputs, the model that predicts yi, which we denote as mi, must first predict yi so the

predicted value can be used as input to mj. This requires at least one output to depend

solely on X̄ as input.

No Free Label Hypothesis. Given an arbitrary multi-label dataset, D, that contains

inputs X̄ and labels y1 . . . yk, we construct DE models m1 . . .mk. At prediction time, all label

predictions for an arbitrary mi ultimately stem from the current input instance, x̄. Therefore,

prediction improvements of DE models for evenly weighted label metrics result from limitations

of submodels, poor qualities of input features, and the number of output labels and training

instances, rather than information learned from output dependencies.

We next provide an informal discussion to detail the implications of this hypothesis.

Consider two models, m1 and m2 that predict outputs y1 and y2, respectively. Let d1,2 denote

the level of dependence between these two outputs, where d1,2 ∈ {High, Low}. We use the

notation mi > mj to signify that mi performs better than mj. Likewise, mi ≤ mj denotes

11



that mi performs as well or worse than mj . If d1,2 is Low, m2 will not benefit from predicting

with y1 as an input, since y1 will merely provide random noise. Similarly, if m2 produces

better results than m1 using just X̄ as input, using the prediction of y1 as another input is

likely to harm rather than help performance. However, if d1,2 is High and m2 ≤ m1, m2 may

gain a performance boost by exploiting information provided by m1. Table 3.1 displays these

various scenarios.

Table 3.1: Benefit of exploiting dependencies based on correlation and model performance

m2

> m1 ≤ m1

d1,2
High No Possibly

Low No No

This suggests that DE models do not necessarily have an advantage over simpler BR

models. Nevertheless, numerous empirical studies provide evidence to the contrary, namely,

that multi-label prediction models perform best by exploiting some form of dependence

among outputs. In efforts to remove the discrepancy between our theoretical analysis and

others’ empirical results, we examine two scenarios in which BR models may fail to match

the performance of DE models.

We first investigate a situation in which input features are not well-suited for predicting

output labels. For instance, consider again the dataset involving X̄ and y1 and y2. Assume

that a BR model cannot perform better than random when mapping X̄ to y1 or y2. Table

3.2 presents two toy datasets that demonstrate this situation. If D does not contain an

unconditional dependency between y1 and y2, the probability of predicting the correct output

vector is P (y1)P (y2) = (0.5)(0.5) = 0.25.

Table 3.2: Example datasets for which DE models could outperform BR

X̄ y1 y2
0 0 0
0 1 1

Model Prediction
BR P (y1)P (y2) = (0.5)(0.5) = 0.25
DE P (y1, y2) = 0.5

X̄ y1 y2
0 0 1
0 1 0

12



If y1 and y2 are fully unconditionally dependent, however, then there exist two functions

f and g such that y1 = f(y2) and y2 = g(y1). This means that the probability of predicting a

correct output vector is P (y1, y2) = 0.5. By learning and exploiting this dependency, a DE

model could show slight improvements over the independence assuming BR model in terms

of 0/1 loss, an unevenly weighted label metric. The empirical results of previous work as

well as our synthetic data experiments in Section 4 support this claim. We readily admit

that DE models can achieve marginal prediction improvements by finding additional ways

to learn unconditional dependencies among labels. Nevertheless, this approach ignores the

larger, underlying problems: The input data is not well fitted to the multi-label prediction

task, and the submodels may be inappropriate for predicting certain outputs. By focusing on

these problems, future models may yield more substantial improvements.
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Chapter 4: Experiments

The flood of new dependency-exploiting, multi-label algorithms may originate from defects in

existing benchmark datasets, rather than weaknesses of existing models. Many recent papers

introduce complex schemes for exploiting multi-label dependencies and compare their new

approaches against a variety of existing models over a range of metrics. These papers almost

invariably report results using a subset of the datasets found in the MEKA [20] or MULAN

[28] frameworks. Although these datasets provide an easy-access resource for multi-label

experiments, we submit that these datasets may not reflect the true nature of multi-label

classification problems.

We propose a number of experiments to examine the presumed benefit of using

a dependency-exploiting model, rather than a simple BR model. This builds upon the

experimental results of [9], which provides experimental evidence that dependency-exploiting

algorithm adaptations do not generally perform better than BR. Instead of comparing BR to

numerous other dependency-based models, we focus our attention on the CC model introduced

by [21]. We use CCs because they can reportedly capture both unconditional and conditional

dependencies. We note that various papers introduce more complicated models [7, 12, 29]

that attempt to overcome the possible disadvantage of CCs randomly selected chain order.

We handle this issue by reporting results of all n! possible chain orders. This necessarily

restricts our analysis to those datasets with 2 ≤ n ≤ 7 labels. However, we further bolster

our claims with additional experiments on large datasets with a subset of chain orders.
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For all experiments in sections 4.1 and 4.2, we use MEKA to perform 10-fold cross-

validation with the default settings for the following 20 different WEKA submodels models

for BR: Logistic, Naïve Bayes, BayesNet, MLP, REPTree, Random Tree, Random Forest,

LMT, J48, Decision Stump, ZeroR, PART, OneR, JRip, Decision Table, SMO, AdaBoost,

LWL, IBk, and Simple Logistic. We report the best, median, and worst scores for hamming

loss, 0/1 loss, and macro and micro F1-scores across the various BR models. We then run all

possible chain order combinations of CCs using the underlying models that produce the best,

median, or worst BR metrics. For each of the CC models, we report the best, median, and

worst scores for its corresponding BR metric. For instance, if the MLP underlying model for

BR achieves the best hamming loss, we report the best, median, and worst hamming losses

for all possible chain orders of a CC with a MLP base model. When multiple underlying

models achieve the same score for BR, we run each of the CC models and average the results.

4.1 Synthetic data

We first generate two 10,000-instance datasets, toy1 and toy2, that model the scenarios shown

in Table 3.2. As expected from the theoretical discussion in Section 3, BR yields a hamming

loss of 0.5 for both datasets. For the toy2 dataset, the majority of BR experiments produced

a 0/1 loss of 1.0, which is consistent with our earlier analysis. A CC, on the other hand,

learns the unconditional dependency between outputs y1 and y2 and reduces the 0/1 loss to

0.5. This harmonizes with our hypothesis that DE models generally outperform BR in terms

of unevenly weighted label metrics, such as 0/1 loss.

We next recreate two 10,000-instance datasets using the method from [2]. This method

creates datasets with independent and conditionally dependent labels using the algorithms

outlined in Figure 4.1. We note that we can convert the supposed conditionally dependent

15



labels, y2 and y3, to independent labels with composite function transformations:

y1 = φ(x)

y2 = φ(−x− 2φ(x) + 1)

y3 = φ(x+ 12φ(x)− 2φ(−x− 2φ(x) + 1)− 11)

where

φ(a) =

 1 if σ(a) > u

0 otherwise

and σ represents the sigmoid squashing function, 1/(1 + exp(−x)), and u ∼ U(0,1). The use

of x vectors of size one and two for the dependent and independent datasets, respectively, may

limit the flexibility of the possible output label decision boundaries. However, we expect that

an underlying model with enough degrees of freedom to approximate the sigmoid function

can also learn these functions. We admit that the element of randomness introduced by the

sampled value u will prevent models from flawlessly estimating the true values of y1, y2, and

y3. Due to this condition, we conjecture that models will not benefit from passing along the

values of predicted labels to subsequent functions. Rather than improving results, models

may propagate prediction errors and worsen the overall model performance.

Algorithm 1: Independent la-
bels
x1, x2 ∼ U(−0.5, 0.5) ;
y1 = φ(x1 + x2);
y2 = φ(−x1 + x2);
y3 = φ(x1 − x2);

Algorithm 2: Conditionally
dependent labels
x1 ∼ U(−0.5, 0.5);
y1 = φ(x1);
y2 = φ(−x1 − 2y1 + 1);
y3 = φ(x1 + 12y1 − 2y2 − 11);

Figure 4.1: Methods of [2] for synthetic data generation

Table 4.1 contains the results for the synthetic data generated with algorithms 1 and 2

from Figure 4.1. We note that the synthetic nature of these datasets precludes us from forming

strong conclusions about the general behavior of multi-label classification. Nevertheless,
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Table 4.1: Results for BR and the best (CB), median (CM), and worst (CW) CC orderings
using the independent (left) and dependent (right) synthetic data generation processes

BR CB CM CW

BEST

Hamming Loss 0.423 0.422 0.423 0.423
0/1 Loss 0.809 0.809 0.810 0.810
F1 Micro 0.583 0.590 0.587 0.579
F1 Macro 0.508 0.589 0.585 0.579

MEDIAN

Hamming Loss 0.430 0.427 0.431 0.433
0/1 Loss 0.814 0.814 0.814 0.816
F1 Micro 0.563 0.565 0.563 0.562
F1 Macro 0.489 0.568 0.560 0.559

WORST

Hamming Loss 0.483 0.480 0.482 0.485
0/1 Loss 0.860 0.858 0.863 0.863
F1 Micro 0.510 0.510 0.510 0.510
F1 Macro 0.414 0.510 0.510 0.510

BR CB CM CW

BEST

Hamming Loss 0.423 0.430 0.431 0.437
0/1 Loss 0.809 0.616 0.633 0.677
F1 Micro 0.583 0.537 0.536 0.430
F1 Macro 0.508 0.532 0.532 0.221

MEDIAN

Hamming Loss 0.430 0.430 0.433 0.437
0/1 Loss 0.814 0.612 0.617 0.633
F1 Micro 0.563 0.536 0.534 0.431
F1 Macro 0.489 0.534 0.529 0.221

WORST

Hamming Loss 0.483 0.430 0.436 0.437
0/1 Loss 0.860 0.613 0.617 0.633
F1 Micro 0.510 0.534 0.489 0.430
F1 Macro 0.414 0.529 0.435 0.221

the results highlight several important points to consider when deciding between a BR and

DE model. For example, the independent label results in Table 4.1 show that BR often

yields lower hamming and 0/1 losses than CC. This likely occurs because CC learns spurious

relationships among the unrelated labels and propagates errors along the chain of models.

Thus, when relationships do not exist among labels, CC may harm rather than aid predictions

for both evenly and unevenly weighted label metrics. Interestingly, the best, median, and

worst CC models improve over BR in terms of F1 macro score on the independent label

dataset. This may occur due to slight correlations amongst labels introduced by sampling.

We expect that the F1 macro performance gap between BR and DE will shrink with larger

datasets that more closely approximate the underlying distribution produced by Algorithm 1.

In the dependent label experiment results shown in Table 4.1, CC yields similar

hamming losses to BR, but decreases 0/1 loss by nearly 20% regardless of chain order. This

demonstrates the power of exploiting unconditional dependencies to optimize an unevenly

weighted label metric in datasets with poor input features. In both tables, CC generally yields

higher F1 macro scores. Similar to the independent label results, CC generally yields higher

F1 macro scores. This occurs because F1 macro allows label columns with fewer positive

examples to more strongly influence the F1 score. CC likely learns correlations between less

frequent labels and produces a slight improvement in per-label precision.
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4.2 Small benchmark datasets

For this section, we used the Emotions, Scene, and Flag datasets from [28], as well as the

Image dataset from [11], using its proposed method to convert from multiple instance multi-

label to traditional multi-label format. We also used a real-life, 3-label dataset with 10,000

instances from InsideSales.com. The results of these experiments show that the majority of

CC models with different chain orderings perform similar to or worse than a base BR model.

Admittedly, Table 4.2 shows that the best CC orderings using the best BR submodel

on average achieve better results for the four metrics. However, these top scores represent a

minute fraction of the n! CC models and may simply result from a favorable but fortuitous

random initialization of the underlying model. We note that the performance of the median

and worst CC orderings using the best BR model performed between 0.28% and 11.2% worse

than BR, with the exception of 0/1 loss for the median CC ordering. We reiterate that CC

can achieve lower 0/1 losses than BR even if submodels perform poorly overall, since CC

models can learn and reproduce unconditional dependencies found among outputs.

Table 4.2: Percentage improvement of the best, median, and worst performing CC chain
orderings over the best, median, and worst performing BR models, averaged across four small
benchmark and InsideSales datasets

Best BR Model Median BR Model Worst BR Model
Best Median Worst Best Median Worst Best Median Worst

Hamming Loss 3.04 -1.644 -11.217 2.735 -2.978 -8.508 4.058 0.88 -1.633
0/1 Loss 5.471 2.147 -3.4 10.574 6.985 3.491 4.614 3.192 2.672
F1 Micro 1.497 -0.28 -2.439 1.831 -0.329 -3.29 17.242 17.066 -27.376
F1 Macro 1.962 -0.325 -2.312 4.238 0.787 -3.382 13.8 13.8 -29.405

Table A.2 shows the average percentage increase or decrease in metric performance

for CC on each of the five small benchmark datasets. These results again demonstrate the

ability of CC to improve unevenly weighted label metric scores while performing poorly

otherwise. For instance, the results for the Flags, Emotions, Image, and Scene datasets show

that CC achieves improved 0/1 losses but significantly worse hamming losses. Furthermore,
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CC produced smaller F1 macro and micro scores than BR, with the exception of the emotions

dataset. We attribute the improved performance of CC on all metrics for the ISDC dataset to

numerous missing values in the training data. Additional experiments are needed to analyze

the effects of missing values on multi-label prediction models. However, these missing values

likely inhibited the training of simpler submodels and lowered the average BR performance.

We note similar learning patterns with other submodels: Across all chain orderings, the Naive

Bayes model performed better using CC than with BR. On the other hand, the Logistic

model performed worse with CC on almost all different chain orderings than when using BR.

Table 4.3: Average percentage improvement of all best, median, and worst results of chain
orderings over underlying Binary Relevance (BR) models

Flags Emotions Image Scene ISDC
Hamming Loss -2.353 -4.593 -2.67 -0.299 1.434
0/1 Loss 5.796 1.722 2.733 5.706 3.901
F1 Micro -0.819 0.439 -4.965 -0.218 11.614
F1 Macro -1.606 1.024 -4.134 -0.141 4.393

4.3 Large benchmark datasets

Due to memory and running time limitations, we modified our experimental setup for the

following MEKA and MULAN large benchmark datasets: Delicious, Mediamill, IMDB, NUS-

Wide-500, NUS-Wide-128, Reuters, Birds, Enron, Yeast, Medical, and Genbase. We note that

we used the full datasets rather than the given train and test set splits. If a single BR model

took longer than a week to complete on a particular dataset, we randomly sampled a 5,000

instance subset. For these reduced datasets, we performed 5-fold cross-validation with 16

underlying models for BR, removing those models from the original 20 which generally took

longer than three days to complete. We then ran five randomly produced chain combinations

of CCs using the underlying models that produced the best BR metrics. When multiple
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underlying models achieved the same score for BR, we ran CC for the model that performed

best across all metrics.

Table 4.4: Counts of percentage improvement of best and average chain orderings using the
best performing underlying Binary Relevance (BR) model

Best Chain Ordering
>10% >5% >1% >0% 0% <0% <-1% <5% <-10%

Hamming Loss 0 0 1 0 5 0 1 1 3
0/1 Loss 1 0 5 4 0 1 0 0 0
F1 Micro 0 0 0 4 0 1 2 0 4
F1 Macro 1 1 4 1 0 2 1 1 0

Average Chain Ordering
>10% >5% >1% >0% 0% <0% <-1% <5% <-10%

Hamming Loss 0 0 0 1 2 1 3 1 3
0/1 Loss 0 0 2 5 0 2 2 0 0
F1 Micro 0 0 0 2 0 2 2 1 4
F1 Macro 1 1 2 1 0 2 3 1 0

As Table 4.4 demonstrates, CC does not provide a decisive improvement over BR.

Out of the 44 runs reported in the table, only one CC trained on the Yeast dataset decreased

hamming loss. We note that the best CCs run on benchmark datasets with more than 7

labels but fewer than 2,500 instances - namely, Yeast, Genbase, Enron, Medical, and Birds -

generally produced slightly improved F1 macro scores and 0/1 losses. However, this benefit is

much less pronounced when averaged across all chain orderings. The worst hamming and F1

micro scores come from the datasets with large numbers of labels or instances. For datasets

with numerous labels, CC likely produces poorer hamming and F1 micro scores because the

model propagates erroneous information along longer dependency chains. When datasets

have many instances and provide stronger features to label signals, BR performance improves

and minimizes the possible benefits of using a dependency model to optimize evenly weighted

label metrics.
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Table 4.5: Average percentage improvement of the best CC chain orderings over the best BR
models

Hamming Loss 0/1 Loss F1 Micro F1 Macro Average
Delicious −10.526 0.101 −13.740 −2.564 −4.330
IMDB −19.444 3.866 −3.196 0.826 −4.487
Mediamill 0.000 0.221 −2.178 −0.552 −0.627
NUS-Wide-500−4.762 3.856 −86.486 −5.983 −23.344
NUS-Wide-128−8.696 0.625 −80.994 11.940 −19.281
Reuters 0.000 1.250 −21.245 4.762 −3.808
Birds 0.000 −0.438 0.914 3.711 1.047
Enron 0.000 1.367 0.899 6.667 2.233
Yeast 1.047 0.380 0.935 −0.662 0.425
Genbase 0.000 13.043 0.202 2.273 3.880
Medical −11.111 1.656 −0.602 1.980 −2.019

As the results in Tables 4.5 and 4.6 demonstrate, BR tends to yield noticeably improved

hamming losses and F1 micro scores. CC, on the other hand, produces less pronounced

improvements in 0/1 losses and F1 macro scores. We echo the findings of previous work

that the choice between DE and BR depends heavily on the desired metric to optimize.

Although we have focused primarily on the observed differences between evenly and unevenly

spaced metrics, the size of the dataset, quality of the features, number of labels, and selected

submodel also seem to affect the choice of whether or not to exploit label dependency

information. Further experiments are needed to isolate and understand the actual effects of

these issues on the relative performance of CC and BR.
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Table 4.6: Average percentage improvement of the average CC chain orderings over the
average BR models

Hamming Loss 0/1 Loss F1 Micro F1 Macro Average
Delicious −10.526 0.060 −14.809 −4.444 −4.970
IMDB −22.222 3.490 −5.205 −0.331 −6.067
Mediamill −1.333 −0.022 −2.396 −3.315 −1.767
NUS-Wide-500−4.762 3.856 −87.081 −5.983 −23.492
NUS-Wide-128−8.696 0.625 −81.228 11.940 −19.340
Reuters 0.000 0.656 −22.060 2.491 −4.728
Birds −2.051 −2.407 −0.512 0.371 −1.150
Enron −0.426 0.592 −1.727 5.689 1.032
Yeast 0.314 0.025 0.685 −1.280 −0.064
Genbase 0.000 −2.609 0.040 1.866 −0.176
Medical −11.111 −0.596 −0.915 −0.198 −3.205

Table 4.7: Percentage improvement from the best and average chain ordering over the
best performing underlying Binary Relevance (BR) model. Results averaged over all large
benchmark datasets

Best Average

Hamming Loss -4.863 -5.528
0/1 Loss 2.357 0.334
F1 Micro -18.681 -19.564
F1 Macro 2.036 0.619
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Chapter 5: Implications and Conclusion

This work highlights several weaknesses of current efforts to improve multi-label classification

models. Unlike previous work, we do not introduce a new model to handle multi-label

prediction tasks. Rather, we have provided an analysis of the defects of existing studies and

introduced a distinction between evenly and unevenly weighted label metrics. We have also

given a theoretical discussion and in-depth empirical analysis of existing datasets, which shows

that CC is not necessarily better than BR. In fact, our experiments demonstrate clearly that

BR often outperforms a randomly ordered CC. We conclude that the choice between BR and

a dependency-exploiting model depends largely on the chosen metric to optimize. In the case

of unevenly weighted label metrics such as 0/1 loss and F1 macro score, dependency-learning

models clearly outperform BR. However, when optimizing evenly weighted label metrics, for

instance, hamming loss and F1 micro score, the benefits of dependency models is negligible.

In addition, our experiments show that with an appropriate submodel, relevant features, and

a large number of instances, BR will yield nearly as good, if not better, results than more

expensive dependency-exploiting models.

These findings indicate paths for improvement across a variety of metrics in multi-label

classification. We submit that future research will benefit by shifting the focus from developing

new, dependency-exploiting models to creating additional benchmark datasets with better

features and more instances. Such an adjustment will allow future studies to more closely

identify the nature of multi-label learning. We likewise emphasize the need for increased

metric and domain-specialization, rather than blanket models that seek to improve across all
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multi-label metrics and datasets. This approach will naturally promote the development of

techniques better suited to individual domains, such as image, audio, or text.

In future work, we will analyze specific submodels to determine those which perform

best with BR for certain metrics. We will also revisit and convert our claims in Chapter 3

into a formalized theorem with an accompanying proof. As a related but new direction, we

will explore the field of multidimensional output dependency (MOD) learning, in which an

input vector can map to multiple correct output vectors. MOD learning partially resembles

existing areas of machine learning, for example, multi-label learning, multi-task learning, or

transfer learning. However, unlike these problems, MOD learning seeks to map each input

vector, x̄, to multiple, highly dependent output vectors. To the best of our knowledge, only

[10, 19] have addressed and experimented with MOD learning. Although their work proves

the existence of MOD problems and demonstrates the benefits of MOD-based approaches,

the majority of their results come from synthetic and private datasets.

In addition to creating and making new MOD datasets publicly available, we will

introduce methods for detecting MOD characteristics in existing datasets. This will provide

the means for future researchers to investigate and find new ways to apply MOD learning.

We also plan to extend or introduce metrics to assess and validate MOD models. We expect

that MOD learning will find valuable application in automated planning, scheduling, robotics,

and classification tasks with multiple correct labelings. For these tasks, we submit that that

successful approaches will both benefit from and require the use of dependency exploiting

models in order to provide satisfactory results.
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Appendix A: Large Dataset Results

Table A.1: Average percentage improvement of the best CC chain orderings over the best BR
models

Hamming Loss 0/1 Loss F1 Micro F1 Macro Average
Delicious −10.526 0.101 −13.740 −2.564 −4.330
IMDB −19.444 3.866 −3.196 0.826 −4.487
Mediamill 0.000 0.221 −2.178 −0.552 −0.627
NUS-Wide-500−4.762 3.856 −86.486 −5.983 −23.344
NUS-Wide-128−8.696 0.625 −80.994 11.940 −19.281
Reuters 0.000 1.250 −21.245 4.762 −3.808
Birds 0.000 −0.438 0.914 3.711 1.047
Enron 0.000 1.367 0.899 6.667 2.233
Yeast 1.047 0.380 0.935 −0.662 0.425
Genbase 0.000 13.043 0.202 2.273 3.880
Medical −11.111 1.656 −0.602 1.980 −2.019
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Table A.2: Average percentage improvement of the average CC chain orderings over the
average BR models

Hamming Loss 0/1 Loss F1 Micro F1 Macro Average
Delicious −10.526 0.060 −14.809 −4.444 −4.970
IMDB −22.222 3.490 −5.205 −0.331 −6.067
Mediamill −1.333 −0.022 −2.396 −3.315 −1.767
NUS-Wide-500−4.762 3.856 −87.081 −5.983 −23.492
NUS-Wide-128−8.696 0.625 −81.228 11.940 −19.340
Reuters 0.000 0.656 −22.060 2.491 −4.728
Birds −2.051 −2.407 −0.512 0.371 −1.150
Enron −0.426 0.592 −1.727 5.689 1.032
Yeast 0.314 0.025 0.685 −1.280 −0.064
Genbase 0.000 −2.609 0.040 1.866 −0.176
Medical −11.111 −0.596 −0.915 −0.198 −3.205
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