Development and characterization of InDel markers for Lupinus luteus L. (Fabaceae) and cross-species amplification in other Lupin species

Claudia E. Osorio ${ }^{\text {a }}$, Joshua A. Udall ${ }^{\text {b }}$, Haroldo Salvo-Garrido ${ }^{\text {a }}$, Iván J. Maureira-Butler ${ }^{\text {a,c, } *}$
${ }^{\text {a }}$ Centro de Genómica Nutricional Agroacuicola, Las Heras 350, Temuco, La Araucanía 4781158, Chile
${ }^{\text {b }}$ Brigham Young University, Plant and Wildlife Science Department, 150 E 1230 North, Provo, UT 84602, USA
${ }^{\text {c }}$ Instituto de Producción y Sanidad Vegetal, Universidad Austral de Chile, Valdivia, Chile

A R T I C L E I N F O

Article history:

Received 21 July 2017
Accepted 13 November 2017
Available online 17 November 2017

Keywords:

Accession
Genetic diversity
Genomic reduction libraries
In silico polymorphic markers
Insertion-deletion marker
Lupinus hispanicus
Lupinus mutabilis
Next generation sequencing
Plant domestication

Abstract

Background: Strong artificial selection and/or natural bottle necks may limit genetic variation in domesticated species. Lupinus luteus, an orphan temperate crop, has suffered diversity reductions during its bitter/sweet alkaloid domestication history, limiting breeding efforts and making molecular marker development a difficult task. The main goal of this research was to generate new polymorphic insertion-deletion (InDel) markers to aid yellow lupin genetics and breeding. By combining genomic reduction libraries and next generation sequencing, several polymorphic InDel markers were developed for L. luteus L. Results: A total of 118 InDel in silico polymorphic markers were identified. Eighteen InDel primer sets were evaluated in a diverse L. luteus core collection, where amplified between 2-3 alleles per locus. Observed heterozygosity (HO; 0.0648 to 0.5564) and polymorphic information content (PIC; 0.06 to 0.48) estimations revealed a moderate level of genetic variation across L. luteus accessions. In addition, ten and nine InDel loci amplified successfully Lupinus hispanicus Boiss \& Reut, and Lupinus mutabilis Sweet, respectively, two L. luteus close relatives. PCA analysis identified two L. luteus clusters, most likely explained by the domestication species history. Conclusion: The development of InDel markers will facilitate the study of genetic diversity across L. luteus populations, as well as among closely related species.

© 2017 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The genus Lupinus comprises more than 200 annual and perennial herbaceous species growing in a wide range of climatic and soil conditions [1]. Lupins have been described as functional food, given the association between their consumption and reduced risk of hypercholesterolaemia, diabetes, and hypertension [2]. Lupinus luteus, an old world cultivated lupin, shows higher protein seed content [3] and twice the amount of seed cysteine and methionine than most lupin species [4]. In addition, evaluations of its functional and physicochemical properties have suggested yellow lupin proteins could improve texture and nutritional quality when incorporated in food products [5].

Although some molecular tools have been developed to aid yellow lupin's genetics $[6,7,8]$, an apparent low level of microsatellite polymorphisms [6,7] have suggested the need of diversifying and

[^0]increasing marker availability for this species. During lupin domestication, a reduced number of naturally occurring mutants were used as progenitors to develop low alkaloid/no pod shattering varieties. This strategy, although successful, reduced the amount of genetic variation contained within lupin breeding populations [9,10]. Reduction of diversity not only limits the generation of better adapted varieties, but also the presence of polymorphic sites in modern breeding lines [11]. Insertions and deletions (InDels) are the second most common type of polymorphisms across species [12], and are distributed throughout the entire genome [12,13]. InDels may result from mechanisms such as transposable elements, slippage in simple sequence replication, and unequal crossover [14]. Due to their high-density occurrence, cost-effectiveness, and ease genotyping, InDels have been increasingly recognized as an important source of molecular markers [12]. InDel markers have been a valuable complement to SNPs and SSRs in Phaseolus vulgaris L. and Glycine max (L) Merr. [15,16], and haplotype differences in presence/absence variation may explain heterosis and the extraordinary phenotypic diversity in maize [17]. In this study, we present a novel set of 18 validated polymorphic L. luteus InDel markers generated by combining
genomic reduction libraries and next generation sequencing. We also evaluated their ability to cross amplify Lupinus hispanicus and Lupinus mutabilis, two close relative lupine species.

2. Materials and methods

DNA from two L. luteus accessions, Core 18 and Core 227 (Table S1), was extracted from young leaves using CTAB buffer [18]. DNAs were further purified and quantified using DNeasy mini spin columns (Qiagen) and a Qubit® 2.0 Fluorometer (Life Technologies), respectively. Genomic reduction was accomplished using a previously described protocol [19]. Briefly, 450 ng of total genomic DNA, of each DNA sample, was separately double-digested using 3 U of the restriction enzymes EcoRI and Bfal (New England Biolabs, Beverly, MA). DNA fragments were then ligated with 5 '-TEG biotinylated/ 3'-phosphorylated EcoRI adapters and 3'-phosphorylated BfaI adapters [20]. Small DNA fragments were excluded from the samples using Chroma Spin-400 columns (ClonTech, Mountain View, CA). DNA fragments containing the biotin labeled EcoRI adapters were isolated using M-280 streptavidin beads (Invitrogen, Carlsbad, CA) and resuspended in $100 \mu \mathrm{~L}$ of TE [20]. A sample specific PCR amplifications was conducted using $1 \mu \mathrm{~L}$ of streptavidin-cleaned DNA fragments and primers containing complementary EcoRI and BfaI adaptor + restriction DNA and unique 5^{\prime} barcode sequences [20]. Amplifications were carried out in $50 \mu \mathrm{~L}$ PCR reactions using 1X Advantage HF 2 PCR Master Mix (ClonTech, Mountain View, CA) and $0.2 \mu \mathrm{M}$ of each primer. Thermocycling profiles and amplified DNA visualization were conducted following standard conditions [19,20]. DNA concentrations for each PCR reaction were measured fluorometrically using a

Quant-iT picogreen dye (Invitrogen, Carlsbad, CA) and pooled in equimolar amounts. DNA from a pooled PCR samples was separated electrophoretically in a 1.5% Metaphor agarose gel (Cambrex BioScience, East Rutherford, NJ), and visualized using ethidium bromide staining. A single 500-650 bp gel slice was removed and DNA fragments extracted using a Qiaquick column (Qiagen, Germantown, MD). A single micro-bead sequencing run was conducted using a Roche-454 GS FLX and Titanium reagents (Branford, CT) at the Brigham Young University DNASC (Provo, UT). DNA reads were trimmed and separated into MID barcode pools representing the two L. luteus genotypes using the process-tagged sequences function in CLCBio Workbench v. 4.0 (Katrinebjerg). InDels were identified by combining both L. luteus sequencing pools into a single de novo assemblage. Contigs were built using the Roche Newbler assembler v. 2.3, with a minimum overlap length and identity of 50 bp and 95%, respectively. The minimum contig length was $\geq 200 \mathrm{bp}$. Custom perl scripts were used to identify putative InDels within contigs when the coverage depth at the InDel was ≥ 10 and the minor allele frequencies were at least 20% of the reads. InDels explaining 1-bp difference and those located within homopolymer repeats were discarded. Flanking primer pairs were designed for InDel containing contigs using Primer3 implemented in Geneious® 6.1.8 [21] with expected amplicon lengths between 150-500 bp and an optimal annealing temperature (Ta) of $60^{\circ} \mathrm{C}$. Oligonucleotides were synthesized by IDT (Integrated DNA Technologies, Inc.).

Eighteen primer pairs flanking InDels of at least 3 bp (Table 1) were randomly selected to genotype 164 L. luteus accessions (Table S1) belonging to a seed core collection previously reported [6,7]. The L. luteus accessions were from several origins (Poland, Russia,

Table 1
Characteristics and genetic properties of 18 newly developed InDel markers for Lupinus luteus L.

Primer	Sequence	Allele size (bp)	$\mathrm{Ta}(\mathrm{C})$	A	PIC	Ho	GenBank
GR1_INDEL02120	F: TCTGGAGGAAATAAAAAACTGTAGG	159-162-163	60	3	0.22	0.2343	KX778774 KX778775 KX778776
	R: GCAACGATAATATCCATAACCGTC						
GR1_INDEL15589	F: GTGTACTAAACTCAAGCCAATWTATGC	140-144	58	2	0.27	0.3287	$\begin{aligned} & \text { KX778777 } \\ & \text { KX778778 } \end{aligned}$
	R: GATAACAAAATTTGTATGGCATTGAC						
GR1_INDEL21885	F: GATTGTCGTGGATCAGAAGC	181-192	57	2	0.09	0.0933	$\begin{aligned} & \text { KX778779 } \\ & \text { KX778780 } \end{aligned}$
	R: ATAAACCAATGAATAAATGTTGAAC						
GR2_INDEL06804	F: TCCAGACAGAATTTTTGTAACTTCAAAGCA	320-323	60	2	0.06	0.0648	$\begin{aligned} & \text { KX778785 } \\ & \text { KX778786 } \end{aligned}$
	R: CCACGAAGGAAGCCACTTGAATCC						
GR2_INDEL08379	F: TGGCATACCTGAAATTATTATCAAGCTTTT	524-537	60	2	0.08	0.0873	$\begin{aligned} & \text { KX778789 } \\ & \text { KX778790 } \end{aligned}$
	R: TGGCCTGACCGAGGCTTGGC						
GR2_INDEL10199	F: TGGCTGGTTTGAAAGTCTATTTAAAGGCAA	428-437	60	2	0.48	0.5564	$\begin{aligned} & \text { KX778793 } \\ & \text { KX778794 } \end{aligned}$
	R CACCTTGAGACTTCCTTGTTCCTTACTTAC						
GR2_INDEL10592	F: TGGGAGCACATTTACGTTTCCA	414-421	60	2	0.05	0.0534	$\begin{aligned} & \text { KX778795 } \\ & \text { KX778796 } \end{aligned}$
	R ACTGTTTTATTCATAGTTGCTTAGAAAGAC						
GR2_INDEL11357	F: GGACAGAGTTATTTGGGTGGATGGGGA	250-262	60	2	0.18	0.2002	$\begin{aligned} & \text { KX778797 } \\ & \text { KX778798 } \end{aligned}$
	R: TGGCATCAAATGGAAGACCATATAGCCCC						
GR2_INDEL13347	F:CATGTCCGAGCCGGGAACATCCA	206-212-222	60	3	0.20	0.2215	KX778801
	R:CGTAAAGGACAAGAGGAAGTTTCCTACTGA						KX778802
							$\begin{aligned} & \text { KX778803 } \\ & \text { KX778804 } \\ & \text { KX778805 } \end{aligned}$
GR2_INDEL14402	F: TCTCATTCTTTGACCAATAAACCAAGACAC	317-333	60	2	0.35	0.4458	
	R:TGGAGTTATCAACAACAAGAATAGACACTC						
GR2_INDEL14515	F:CGTCGAGCCATAAAGCAAACAAGTGA	277-283	60	2	0.26	0.3141	$\begin{aligned} & \text { KX778806 } \\ & \text { KX778807 } \end{aligned}$
	R: TGTCTCATCGGAATTGGACAAGGTATTAAA						
GR2_INDEL15354	F:GCTTCACTTTGACGTCGCCAGGG	206-217	60	2	0.35	0.4589	$\begin{aligned} & \text { KX778810 } \\ & \text { KX778811 } \end{aligned}$
	R:CCTTGAAGTCGTGGTAAACATTCAAGGAGA						
GR2_INDEL03758	F:GCCCCACTGGATCCGAGAAAGACC	297-306	60	2	0.37	0.4854	$\begin{aligned} & \text { KX778783 } \\ & \text { KX778784 } \end{aligned}$
	R:TCCAAGTTGGCTAAAGCCATTGTATCCTTC						
GR2_INDEL07358	F:CCCAACTGCTTTTAACTGATCTTGGCGGG	596-612	60	2	0.37	0.4969	$\begin{aligned} & \text { KX778787 } \\ & \text { KX778788 } \end{aligned}$
	R: TCGGCTCTCCACATTGCAGCCA						
GR2_INDEL01779	F: CCACCCAAGACAGATCCATCATACA	286-309	60	2	0.26	0.3104	$\begin{aligned} & \text { KX778781 } \\ & \text { KX778782 } \end{aligned}$
	R:TGCATCACATGTGCAGCTTGGCT						
GR2_INDEL09538	F: GGCAGGCCACACAAACAGGAGG	261-276	60	2	0.18	0.2002	$\begin{aligned} & \text { KX778791 } \\ & \text { KX778792 } \end{aligned}$
	R:AAGAGGATAGAAGTGTCATTACAAGTTGTC						
GR2_INDEL12780	F: GTCAGACATACTCCAATGAGTTCAGGT	301-289	60	2	0.34	0.4308	KX778799 KX778800
	R:TCTTCTCATTTAATCACATACACCATTTTG						
GR2_INDEL15167	F: TCACATCGCTTACCTCATTGTTCCGGG	292-288	60	2	0.32	0.3866	KX778808 KX778809
	R:CCGTACTGGACGGTCTGAGCAGTCT						

[^1]Germany, Denmark, Ukraine, Hungary, Netherlands, Belarus, Morocco, Portugal, Israel, Argelia, ex Federal Republic of Yugoslavia, Australia, Spain, and Chile), and included wild accessions, old local varieties, and breeding lines.

Marker cross amplification was determined by including six accessions each of L. hispanicus and L. mutabilis (Table S1). DNA extraction and quantification was conducted as mentioned above. Amplification of InDel containing regions was carried out in $20 \mu \mathrm{~L}$ PCR reactions containing 100 ng of genomic DNA, 0.2 mM dNTPs, 2 mM $\mathrm{MgCl} 2,1 \mathrm{X}$ PCR buffer, 2.5% DMSO, 1 U of GoTaq® DNA Polymerase (Promega) and 5 pmol of each reverse and forward SSR primer. Thermal cycling consisted of $95^{\circ} \mathrm{C}$ for 4 min and 35 cycles of 1 min at $95^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $57-60^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$, and a final step of $72^{\circ} \mathrm{C}$ for 5 min . PCR products were separated on 6% denaturing polyacrylamide gels, run in TBE buffer at 60 W for $3-4 \mathrm{~h}$ and visualized using silver stain procedures [6]. PCR fragments with different sizes were scored as different alleles and following a codominant fashion. Standard population genetics metrics were calculated using PopGene version 1.32 and Molkin 3.0v [22]. A principal component analysis (PCA) was conducted on the correlation matrix using the REML estimation method implemented on JMP® Genomics 6.1 (SAS Institute Inc., Cary, NC) and computed from the InDel data matrix.

3. Results and discussion

Advances in crop genomics have allowed the generation of high density markers, not only facilitating genome marker saturation, but also significantly increasing map-based cloning and marker-assisted selection efficiencies [12]. This is particularly critical for minor crops like yellow lupin, where its orphan condition has limited the availability of genomic tools to aid genetic and breeding research efforts [7]. Although SNP markers have been used in most genetic studies, research on genome structural variation have pointed out that SNPs may not fully capture the genomic variation responsible of phenotypic differences across varieties of the same species [17]. By combining genomic reduction libraries and next generation sequencing, we identified a total of 118 in silico polymorphic InDel markers between two L. luteus accessions (Table S2). Eighteen of
these InDels were used to genotype a diverse L. luteus Core Collection (Table 1).

All 18 InDel loci were polymorphic, with allele numbers ranging from 2 to 3 per locus (Table 1). Similar results were observed in maize, where whole genome searches found an average of 2.76 alleles per locus, but with a wider range of alleles, ranging from 2 to 107 for each InDel locus [12]. All L. luteus InDel loci showed allelic frequencies significantly deviated from expected Hardy-Weinberg proportions ($P<0.001$). Observed heterozygosities (Ho) and polymorphic information contents (PIC) ranged from 0.0648 to 0.5564 (average 0.298), and 0.06 to 0.48 (average 0.247), respectively, indicating a moderate to low level of genetic variation. These values, although higher than those obtained for L. luteus microsatellite data [6], still suggest a trend of limited genetic variation for yellow lupin. In contrast, PIC values for InDel loci in maize, estimated using 345 genomes, ranged from 0.50 to 0.80 , with an average PIC of 0.55 [12]. This apparent low level of genetic variation has also been observed in other lupin species, such as Lupinus angustifolius [23] and Lupinus polyphyllus [24].

Results from PCA analysis showed that first and second components accounted for $23.7 \%, 11.3 \%$ of the total variation detected among individuals, respectively (Fig. 1). One main cluster contained $\sim 80 \%$ of L. luteus accessions, in accordance with Ho and PIC low to moderate levels of variation. The rest of the accessions were scattered into a more disperse and low denser cluster with no clear country of origin pattern (Fig. 1; Table S1). The lack of a clear pattern following geographical accession origins (country) could be explained by several reasons. For instance, the number of accessions may not have been large enough to allow a clear pattern to arise, and/or the wide geographic distribution across the Mediterranean region, mainly due to human introductions, could have homogenized any natural genetic distinctiveness of this species [25]. Nevertheless, most wild accessions, such as Core $98,102,104$, and 226 were included in the dispersed cluster, suggesting that the main division observed across L. luteus germplasm could be consequence of the lupin domestication history.

The 18 InDel loci were also tested for cross amplification in two other Lupinus species, L. hispanicus and L. mutabilis. Both lupins showed a similar amplification success of $\sim 50 \%$ (Table 2), although the sister L. hispanicus/L. luteus phylogenetic relationship [1] would have predicted higher numbers for L. hispanicus.

Fig. 1. Genetic relationships among 164 L. luteus individuals, of several origins, based on the first two principal components (PC1, PC2) derived from a multivariate analysis (PCA) of 18 InDel marker data. Accession identification was provided for L. luteus genotypes not belonging to the main observed cluster. C = Core (Table S1).

Table 2
Cross-species amplification of 18 InDel loci in two closely related species of L. luteus L.

Primer	Cross-amplification
GR1_INDEL02120	-
GR1_INDEL15589	-
GR1_INDEL21885	-
GR2_INDEL06804	L. hispanicus; L. mutabilis
GR2_INDEL08379	L. mutabilis
GR2_INDEL10199	-
GR2_INDEL10592	-
GR2_INDEL11357	-
GR2_INDEL13347	L. hispanicus; L. mutabilis
GR2_INDEL14402	L. hispanicus; L. mutabilis
GR2_INDEL14515	L. hispanicus; L. mutabilis
GR2_INDEL15354	L. hispanicus; L. mutabilis
GR2_INDEL03758	L. hispanicus
GR2_INDEL07358	L. hispanicus; L. mutabilis
GR2_INDEL01779	L. hispanicus
GR2_INDEL09538	-
GR2_INDEL12780	L. hispanicus; L. mutabilis
GR2_INDEL15167	L. hispanicus; L. mutabilis

By combining the use of genomic reduction libraries and next-generation sequencing, we were able to develop a set of polymorphic InDel markers, which could prove useful in population genetic and breeding studies. In addition, their success to cross-amplify old and new world lupins, would most likely increase their usefulness as molecular tools across the Lupinus genus.

Conflict of interest

The authors declare that they have no competing interests.

Financial support

This work was supported by the Comisión Nacional de Investigación Científica y Tecnológica Chile (CONICYT-Chile) (FONDECYT Project 1080520) and the Centro de Genómica Nutricional Agroacuicola (CGNA), CONICYT-Regional, GORE La Araucanía, R10C1001, Chile.

Acknowledgments

We thank Gustavo del Canto and Annally N. Rupayan for technical assistance and sample handling.

Supplementary material

https://doi.org/10.1016/j.ejbt.2017.11.002

References

[1] Drummond CS. Diversification of Lupinus (Leguminosae) in the western New World: derived evolution of perennial life history and colonization of montane habitats. Mol Phylogenet Evol 2008;4(2):408-21. https://doi.org/10.1016/j.ympev.2008.03.009.
[2] Villarino CBJ, Jayasena V, Coorey R, et al. Nutritional, health, and technological functionality of Lupin flour addition to bread and other baked products: benefits and challenges. Crit Rev Food Sci Nutr 2016;56(5):835-57.
https://doi.org/10.1080/10408398.2013.814044.
[3] Glencross B, Curnow J, Hawkins W. Assessment of the nutritional variability of lupins as an aquaculture feed ingredient: final report for the grains research committee of WA project. North Beach, W.A: Fisheries Research Division, WA Marine Research Laboratories; 2003; 1-40.
[4] Glencross B, Evans D, Hawkins W, et al. Evaluation of dietary inclusion of yellow lupin (Lupinus luteus) kernel meal on the growth, feed utilisation and tissue histology of rainbow trout (Oncorhynchus mykiss). Aquaculture 2004;235(1-4): 411-22. https://doi.org/10.1016/j.aquaculture.2003.09.022.
[5] Piornos JA, Burgos-Díaz C, Ogura T, et al. Functional and physicochemical properties of a protein isolate from AluProt-CGNA: a novel protein-rich lupin variety (Lupinus luteus). Food Res Int 2015;76(3):719-24.
https://doi.org/10.1016/j.foodres.2015.07.013.
[6] Parra-Gonzalez LB, Straub SC, Doyle JJ, et al. Development of microsatellite markers in Lupinus luteus (Fabaceae) and cross-species amplification in other lupine species. Am J Bot 2010;97(8):e72-4. https://doi.org/10.3732/ajb.1000170.
[7] Parra-Gonzalez LB, Aravena-Abarzua GA, Navarro-Navarro CS, et al. Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 2012;13:425.
https://doi.org/10.1186/1471-2164-13-425.
[8] Ogura T, Ogihara J, Sunairi M, et al. Proteomic characterization of seeds from yellow lupin (Lupinus luteus L.). Proteomics 2014;14(12):1543-6. https://doi.org/10.1002/pmic.201300511.
[9] Berger JD, Buirchell BJ, Luckett DJ, et al. Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 2012;124:637-52. https://doi.org/10.1007/s00122-011-1736-z.
[10] Cowling W, Gladstones J. Lupin breeding in Australia. In: Knight R, editor. Linking research and marketing opportunities for pulses in the 21st century. New York: Springer; 2000. p. 541-7.
[11] Fu YB, Somers DJ. Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci 2009;49(1):161-8. https://doi.org/10.2135/cropsci2008.03.0125.
[12] Liu J, Qu J, Yang C, et al. Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genomics 2015;16:1-9. https://doi.org/10.1186/s12864-015-1797-5.
[13] Mills RE, Luttig CT, Larkins CE, et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 2006;16:1182-90. https://doi.org/10.1101/gr.4565806.
[14] Britten RJ, Rowen L, Williams J, et al. Majority of divergence between closely related DNA samples is due to indels. Proc Natl Acad Sci 2003;100(8):4661-5. https://doi.org/10.1073/pnas. 0330964100.
[15] Moghaddam SM, Song Q, Mamidi S, et al. Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L. Front Plant Sci 2014;5:185. https://doi.org/10.3389/fpls.2014.00185.
[16] Li YH, Liu B, Reif JC, et al. Development of insertion and deletion markers based on biparental resequencing for fine mapping seed weight in soybean. Plant Genome 2014;7(3):1-8. https://doi.org/10.3835/plantgenome2014.04.0014.
[17] Springer NM, Ying K, Fu Y, et al. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 2009;5:e1000734. https://doi.org/10.1371/journal.pgen. 1000734.
[18] Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987;19:11-5.
[19] Maughan PJ, Yourstone SM, Byers RL, et al. Single-nucleotide polymorphism genotyping in mapping populations via genomic reduction and next-generation sequencing: proof of concept. Plant Genome 2010;3(3):166-78. https://doi.org/10.3835/plantgenome2010.07.0016.
[20] Maughan PJ, Yourstone SM, Jellen EN, et al. SNP discovery via genomic reduction, barcoding, and 454-pyrosequencing in amaranth. Plant Genome 2009;2(3): 260-70. https://doi.org/10.3835/plantgenome2009.08.0022.
[21] Kearse M, Moir R, Wilson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28(12):1647-9. https://doi.org/10.1093/bioinformatics/bts199.
[22] Gutiérrez JP, Royo LJ, Álvarez I, et al. MolKin v2.0: a computer program for genetic analysis of populations using molecular coancestry information. J Hered 2005; 96(1):718-21. https://doi.org/10.1093/jhered/esi118.
[23] Annicchiarico P, Carroni AM. Diversity of white and narrow-leafed lupin genotype adaptive response across climatically-contrasting Italian environments and implications for selection. Euphytica 2009;166(1):71-81. https://doi.org/10.1007/s10681-008-9836-9.
[24] Käss E, Wink M. Molecular phylogeny and phylogeography of Lupinus (Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS1 +2 regions of rDNA. Plant Syst Evol 1997;208(3-4):139-67. https://doi.org/10.1007/BF00985439.
[25] Petterson D. Composition and food uses of lupin. In: Gladstones J, Atkins C, Wallingford H, editors. Lupins as crop plants: biology, production, and utilization. UK: CAB International; 1998. p. 353-84.

[^0]: * Corresponding author.

 E-mail address: ivan.maureira@uach.cl (I.J. Maureira-Butler).
 Peer review under responsibility of Pontificia Universidad Católica de Valparaíso.

[^1]: Note: $T a=$ annealing temperature; $\mathrm{A}=$ number of alleles sampled; $\mathrm{Ho}=$ observed heterozygosity; PIC $=$ polymorphic information content.

