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By developing cities and increasing population, smart transportation becomes an essential component of modern 

societies. Extensive research activities using machine learning techniques and several industrial needs have paved 

the way for the emerging field of smart transportation. This paper presents data, methods, and models that are es- 

sential for intelligent planning of transportation. In particular, the current data sources for gathering information 

to control or forecast traffic are described, connected Vehicles (CVs) that bring smart and green transportation to 

modern life is also discussed. Clustering Analysis as an effective unsupervised machine learning method in trip 

distribution and generation and traffic zone division is discussed in the paper. Various machine learning tech- 

niques and models that use time series prediction are introduced in this paper including ARIMA, Kalman filtering, 

Holt winters’Exponential smoothing, Random walk, KNN Algorithm, and Deep Learning. Finally, a discussion on 

the main advantages and drawbacks of these models, as well as the business adoption of the forecasting models 

are presented. 
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. Introduction 

In modern civilization, the increasing population faces mobility, sus-

ainability challenges, and transportation play a crucial part in that it

onnects people, spreads different cultures, and ultimately promotes

volution. As innovations started to burst in the last two centuries, the

ransportation system became more sophisticated. The complex trans-

ortation system brought both advantages and disadvantages: while

ransportation tools have been more affordable, traffic congestions ap-

eared much more often as a consequence. Therefore, systematic and ef-

cient transportation planning and learning are essential to address and

andle the complex transportation system. Spatiotemporal forecasting

s an example of such a complex learning task. This task is mainly chal-

enging due to the complexity of spatial dependencies and temporal de-

endencies. The main target of traffic forecasting is to predict the future

ow using previous traffic speeds as well considering the other parame-

ers such as road conditions. Reoccur incidents such as collisions, or bad

eather can generate models out of the pattern. While the traditional

echniques for the transportation data collection process were through

urveys and census, gathering corresponding data was time-consuming

nd costly. Thus, people are now utilizing and incorporating data from

ifferent sources into the analysis, primarily non-traditional clustering

ata, including GPS and GIS data. Meanwhile, mobilized data through

ersonal devices are also becoming more crucial with the increasing

opularity of cell phones and smart public transportation cards. After
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etting the data, the trip generation has always been used as the first

tep to build up the transportation forecast model. Time series analysis,

hich predicts values based on time, is now the most acknowledged and

racticed prediction methodology. 

Future research in smart transportation planning requires a road map

o answer the following question: which models are used for intelli-

ent forecasting models, which data sources are available, and what

s the available business adoption to the forecasting models. This pa-

er discusses several analytical techniques and models in addressing

ransportation planning issues and the metrics in measuring the qual-

ty and accuracy of these techniques. In this paper, we will cover state-

f-art time series models, including the autoregressive moving average

ARIMA) model, KNN, KD, Holt-Winters’ exponential smoothing model,

andom walk model, and deep learning. Connected Vehicles (CV) is the

ext generation of smart transportation systems; this technology brings

ntelligent and green transportation to modern life. In this paper, con-

ectivity, safety, and traffic management are introduced to pave the way

or discussion on connected vehicles and smart transportation planning.

The organization of the paper is as follows: Section 2 discusses the

ata sources in transportation analysis. Connectivity, safety, and man-

gement in connected vehicles are presented in Section 3 . 

Clustering Analysis and its adoption in transportation planning, in-

luding trip distribution and planning, are discussed in Section 4 . We

hen introduce the machine learning techniques applied in traffic flow

nd time series prediction in Section 5 . Section 6 introduced some Deep
ashef). 
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earning methods used to further enhance the performance of time se-

ies prediction models discussed in Section 5 . The accuracy of time series

rediction models is presented in Section 7 . Business opportunities for

raffic forecasting are discussed in Section 8 . 

. Data sources in smart transportation analysis 

In smart transportation planning, various data sources are used in

eveloping intelligent systems; some of these data sources are charac-

erized by different configurations, properties, and sizes, as shown next.

.1. GPS and GIS data 

GPS and GIS technologies are considered new sources of collecting

ransportation data, especially travel data. GPS data could provide real-

ime spatial and temporal information. It shows the travel behavior, in-

luding distance, travel speed, trip time, and other information in digital

ormats at the same time, which could reduce the burden of reporting

nformation. There are two categories of GPS data, the real-time track-

ng GPS and the logging GPS. The real-time tracking GPS devices record

he running vehicle’s coordinates per second. There are a few draw-

acks to using GPS data. Firstly, statistics are not representing all the

ime because of the unnecessary selection criteria. Uncleared criteria

ould affect the accuracy of the result. Also, this method requires that

ll surveyed subjects must have GPS devices. Therefore, the collected

ata may not be complete and representative. Moreover, the cost of col-

ecting data is quite high because of the complex collection process and

he extra costs of hiring data collectors [1] . 

.2. Traffic flow data source 

Sensors and detectors are installed on sites along the highways to

ollect vehicle volume data. These data include characteristics such as

raffic flow (denoted by volume/hour), lane occupancy, and average

peed of vehicles. The collected data is then analyzed using different

ethods and models to derive data-driven solutions [2] . 

.3. Smart card 

Smart card data are used to analyze personal travel patterns using

pecific transportation tools. The benefit of using smart card data is that

ata can show the travel start time, end time, and travel direction. Based

n the frequency of different destinations, the management team can

redict the traffic flow and create a proper stuff schedule. However,

ince smart card data can only show the traffic data under certain trans-

ortation, the flexibility of data is limited [3] . 

.4. Mobile phone 

Since trips on transit are getting complex, data from in-vehicle seg-

ents could not reflect all the segments within a trip. The usage of mo-

ile phone data can provide an accurate picture of the user’s location.

martphones provide increasingly feasible to collect individual-level lo-

ation data over a long period and with the low respondent burden,

orming personal travel records. Mobile phone data provide a high-

esolution image of the travel path, including in-vehicle or out-vehicle

egments trips [9] . However, there are some drawbacks associated with

he data. The volume of personal location data would be enormous, and

ata cleaning would be a tough job. Moreover, data collection of mo-

ile phone data might be inconsistent if the devices are without power.

harging equipment would be required under the possession of data

ollection. 
.5. Call detail record (CDRs) 

Call detail records (CDRs) are the result of the rapid advancement in

obile technology, are automatically collected by mobile phone carri-

rs for billing. CRDs contain information as timestamped and longitude-

atitude coordinates of anonymized customers. Therefore, the informa-

ion gathered from CRDs is collected more regularly and cost-effectively

han traditional travel surveys, commonly performed once or twice per

ecade. CDRs can effectively capture individual’ trip routes and are com-

atible with the analysis of transportation models [5] . 

. Connected vehicles 

Connected Vehicles (CVs) are known as the next generation of smart

ransportation systems. This Technology will bring intelligent and green

ransportation to modern life and pave the way for various applications

uch as road safety or service-based applications. Moreover, connected

ehicles are emerging as the Internet of Things (IoT) in transportation

nown as the Internet of Vehicles (IoV). Connected vehicle technology

ncreases the efficiency and reliability of autonomous vehicles by im-

roving efficiency and drivers’ comfort while increasing mobility and

afety [15] . 

.1. Connectivity in connected vehicles 

Connected vehicles are wireless connectivity-enabled vehicles that

an communicate with their internal and external environments [15] .

his connectivity is called vehicles-to-x (V2X), which supports the inter-

ction of vehicle, and it is provided on different levels, i.e., vehicle-to-

ensor on-board (V2S), vehicle-to-vehicle (V2V), vehicle-to-road infras-

ructure (V2R), and vehicle-to-Internet (V2I). These levels of connec-

ivity will discuss further in this part. Wireless Technology is the most

nowns infrastructure in CVs besides the other alternatives such as Blue-

ooth, Ultra-Wideband, etc. The wireless is used as a solution to provide

ehicle-to-x connectivity. 

.1.1. Intra-vehicle connectivity 

Nowadays, modern cars are facilitated by various types of sensors for

ifferent purposes. The intra-vehicles wireless sensors are still challeng-

ng due to some facts and characteristics. Sensors need to be connected

o Electrical control units (ECU) that require a cable connection that

eads space in cars and, in some cases, may add considerable weight to

ars. Sensors are stationary, so they need maintenance of aftermarket to

pdate or repair. There are also some concerns related to data security

nd reliability. These sensors provide data transmissions requiring low-

atency and high reliability to satisfy the needs and requirements of the

eal-time control system. 

.1.2. Inter- vehicle connectivity 

The Inter-Vehicle communication (V2V) enables a productive con-

ection between vehicles that can have a key role in increasing road

afety for passengers without the assistance of any built infrastructure

y using a vehicular ad hoc network (VANET). However, the VANET

aces some challenges in the urban area is surrounding obstacles like

uildings that can lead to a broken connection and connection lost. An-

ther VANET problem is the data flow disconnection due to the limited

ange of V2V communication. 

.1.3. V2I and V2R connectivity 

With recent advances in technology, the internet-connectivity be-

omes a significant property of modern vehicles. Internet-connected cars

V2I) enables vehicles to use a various range of online applications and

ervices. V2R is an effective solution to overcome many issues, includ-

ng road safety and traffic congestions. These aims are achieved by con-

ecting the vehicle and ITSs infrastructures, such as a street sign, traffic

ights, and road sensors. 
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.2. Safety in connected vehicles 

The ability that vehicles can communicate with other vehicles (V2V)

nd infrastructure (V2I) provides the opportunity to enhance road

afety. Connected-vehicles technology can influence all aspects of driv-

ng decision-making by enhancing reliable decisions during the opera-

ional time. Autonomous cars are the primary beneficiary of this tech-

ology. Humans have higher reaction time and uncertainty compared to

obots, while robots can consider more variables into account to make

 decision that results in more stable behaviors [17] . The V2V and V2I

ommunications provide information about related to road and vehicle.

river behavior can be influenced based on the information received,

nd this ability allows to enhance the performance of driver assistance

echnologies. Using the on-board sensors, the systems can adjust their

cceleration and space based on the leader or following vehicle behav-

or. The V2I communication provides informative details of changes in

he speed limit, work zone condition, weather condition, roadway con-

ition, geometry. The entire information received by V2V and V2I helps

rivers’ decisions with having an optimal and safe lane-selection, route

hoice, and speed. 

.3. Smart traffic mangament in connected vehicles 

The connected vehicles (CVs) are very promising to alleviate traf-

c congestion via smart traffic management. CVs technology provides

eal-time data about traffic conditions that lead to better traffic manage-

ent by improving data quality [16] . The two types of car-following

tability have been identified related to CVs: local stability and string

tability. Local stability refers to the vehicle’s response to its leader’s

cceleration decisions. String stability is defined for a group of vehi-

les and investigates the behavior of the entire group in response to

ts leader. The main focus of traffic flow management studies is to in-

estigate the string stability of traffic flow. Accordingly, a model rep-

esenting the connected-vehicles environments is Automated Highway

ystems (AHS), where fully autonomous vehicles are operated on a set

f designated lanes to have automation and connectivity. An AHS’s per-

ormance is a function of vehicle movement strategies (control laws) and

ecisions of the Traffic Management Center (TMC). AHS investigates the

oot of traffic congestion and proposes a series of actions to eliminate it,

nd on some levels, it can prevent traffic congestion in advance. Besides

he term traffic management, it can guarantee a collision-free system. 

. Clustering analysis in smart transportation 

Clustering is an unsupervised machine learning technique, has

roven its efficiency is developing intelligent transportation systems.

lustering has been applied in various categories in transportation plan-

ing as trip generation, traffic zone division, and trip distribution, as

iscussed below. 

.1. Trip generation 

The first step of the traditional transportation forecast model is the

rip generation [8] . In this step, the goal is to estimate the number of

rips produced or originated in each traffic analysis zone. However, with

he new dynamics of compiling different data sources within one analy-

is, the traditional approach could no longer accommodate the problem.

lternatively, clustering analysis is used to assess the origin-destination

rips and the traffic zone division. With advancements in mobile tech-

ology and the rising popularity of mobile phone usage, more spatial-

emporal information becomes available. Call detail records (CDR) are

roduced with the use of a mobile phone. Each record contains the

nonymous user ID, timestamp, and geographic information of the

hone user. The data is collected through the phone carrier from its

sers and can be acquired in real-time. However, information needs to

e extracted from the CDR data to satisfy further transportation research
eeds [4] . It uses clustering analysis to convert CDR data into clustered

ocations then make inferences about the origins and destinations. 

.2. Traffic zone division 

Traffic zone division is mainly based on big data from mobile phone

ase stations [11] . Traffic zone division acts as an essential input to ac-

urately calibrate the travel demand, forecasting model. Traffic zoning

implifies complex urban traffic network and serves as a fundamental

f traffic planning. Traditional division methods rely heavily on the so-

ial, economic characteristics of the area and natural and administrative

oundaries. Since the slow update, and difficulty in quantifying these

haracteristics, the traditional method cannot reflect the characteristic

imely and consistently. However, by clustering the CDRs collected, the

raffic zones can be found through a data-driven approach in real-time

10] . This increases the reliability and accuracy of further analysis that

ses the traffic zone division information. The traffic zone inference can

e drawn from combining geographic data and timestamps stored in the

DRs records. This data-driven method alleviates bias from assigning

raffic zone subjectively from social-economic information and based

he assignment on transportation data, making the traffic zone division

ore relevant in the later stage of traffic analysis. 

.3. Trip distribution 

Understanding the origin and destination (O-D) trip helps determine

he magnitude of f total daily travel in a given transportation system.

o estimate average daily origin-destination trips and solve travel flow

roblems, an agglomerative clustering algorithm is used to determine

he clustered locations or destinations that stand for any place where the

bjects spend some time [6] . The agglomerative clustering is the bottom-

p approach of the hierarchical clustering; each observation starts in its

luster. Then two groups of observations that have the smallest distance

re merged. The combining process is repeated until there is only one

luster left in the end. The advantage of the agglomerative clustering

lgorithm is that it allows the classification of clusters in the spatial

cale. 

.4. Similarity measures 

Similarity and dissimilarity measures are core factors of machine

earning techniques. They measure the strength or the divergence of the

ata-points’ relationship. These measures impact the learning process

nd results. For transportation planning methods that employ both su-

ervised and unsupervised analysis, some of the most common similarity

easures including Euclidean distance, Manhattan Distance, Minkowski

istance, Cosine Coefficient, and Jaccard Similarity [4 , 6 , 8 , 10] . 

. Traffic flow prediction: time series forecasting models 

The traffic flow on most expressways exhibits the characteristic

eekly pattern. Peak hours during weekdays often present in the morn-

ngs and evenings. Weekends peak hours usually occur around noon. The

oads are congested during rush hours and less congested during non-

eak hours. This pattern can be captured by time series analysis. Time

eries regression is a regression on time, and it captures factors such

s trends, seasonal variations, cycles, and irregular components. Based

n learning outcomes from the historical traffic condition data analy-

is, time series model predicts the traffic conditions for a future time.

raffic forecasting studies usually falling into two main categories: a

ata-driven approach and a knowledge-driven approach. In transporta-

ion and operational research, knowledge-driven methods usually apply

ueuing theory and simulate user behaviors in traffic in time series.

ome of the popular data-driven methods will be introduced next. 
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Fig. 1. The Kalman forecasting two-step process. 
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.1. ARIMA model 

Auto-Regressive Integrated Moving Average (ARIMA) is a class of

odels that can predict based on historical values. It is known as one

f the most precise methods for predicting traffic flow compared to the

ther available methods. An ARIMA model consists of three parts: au-

oregressive (AR) part, differencing (I) part, and moving average (MA)

art. AR Part in ARIMA is a linear regression model that uses its own

agged values as a predictor, and it works well when the lags are not cor-

elated. Hence, in the ARIMA, the time series should be stationary. As

 result, the most common attitude to removing non-stationarity from

ny time-series data is to differentiate it. The I (for "integrated") indi-

ates that the data values have been substituted with the difference be-

ween current values and the previous values. Sometimes, depending

n the complexity of the series, the differencing may have processed

ore than once. ARIMA models are defined by ARIMA(p,d,q) where pa-

ameters p, d, and q are non-negative integers, p is the order (number

f time lags) of the autoregressive model, d is the degree of differenc-

ng (the number of times the data have had past values subtracted),

nd q is the order of the moving-average model. If a time series, has

easonal patterns, then you need to add seasonal terms and it becomes

ARIMA, short for ‘Seasonal ARIMA’. Seasonal ARIMA models are usu-

lly denoted ARIMA(p,d,q)(P,D,Q)m, where m refers to the number of

eriods in each season, and the uppercase P,D,Q refer to the autoregres-

ive, differencing, and moving average terms for the seasonal part of the

RIMA model. An ARIMA(p,d,q) model is given by: 

 ∶ 𝑦 𝑡 = 

𝑝 ∑
𝑖 =1 

𝛼𝑖 𝑦 𝑡 −1 + 𝑍 𝑡 

 ∶ 𝑦 ′𝑡 = 𝑦 𝑡 − 𝑦 𝑡 −1 

 ∶ 𝑦 𝑡 = 𝑍 𝑡 + 

𝑞 ∑
𝑗=1 

𝛽𝑗 𝑍 𝑡 −1 

(1)

Where y t is time-series observation, 𝑦 𝑡 −1 is the previous observation,

p is the coefficient of the auto regressive process, 𝛽q is the coefficient

f the moving average process and Z t is a white noise sequence. Finally,

he ARIMA prediction equation using the backshift operator is defined

s: 

( 𝐵 ) ( 1 − 𝐵 ) 𝑑 𝑦 𝑡 = 𝜃( 𝐵 ) 𝑍 𝑡 (2)

Where ∅ is the polynomial degree of p and 𝜃 is the polynomial degree

f q . Since the traffic flow reveals a strong seasonal pattern due to peak

nd off-peak traffic conditions, which is usually repeating during a pe-

iod, the seasonal ARIMA (SARIMA) model is a suitable choice to model

raffic flow behavior. The trend is filtered through the differencing part

12] . Then, the model eliminates random shock factors by generating

he moving averages. Suppose the one observation of data involves the

umber of vehicles passed by a detector in a 5-min interval, the moving

verage is generated by calculating the average of four 5-min intervals.

his is based on the assumption that future moving average is equal to

istorical moving averages. If the average number of vehicles observed

n a 5-min interval for the past five days during peak hours is 100, then

t is believed that the number of vehicles that will pass by the detector

ithin a 5-min interval during peak hours is also 100. 

.2. Kalman filtering 

The Kalman filter algorithm is one of the methods that can be used to

redict real-time traffic flow in urban areas. This method can be imple-

ented by both fix-sensors and connected vehicles (CV). Since CVs do

ot need any infrastructure or installation, using the data that is driven

rom connected vehicles is much low-cost than fixed sensors. Besides,

V technology is more precise. However, the idea of connected vehicles

ay take a long time to become available [13] . Despite batch estimation

echniques that need historical measured data in each step to predict the

ext step, the Kalman filter is a recursive estimator. This means that it

nly needs to store the last state to update the prediction. For this rea-

on, it is mentioned as a light method to predict the traffic. To use the
alman filter to estimate the traffic flow, one must specify the following

atrices: 

F t , the state-transition model, which maps previous states into the

next state x 𝑡 +1 . 
H t , the observation model, which maps the true state space into the

observed space 

Q t , the covariance of the process noise; 

R t , the covariance of the observation noise; 

So, the prediction model can be written as: 

 𝑡 +1 = 𝐹 𝑡 𝑥 𝑡 + 𝑤 𝑡 (3)

Where x t is the state variable in step t . Also, the model includes a

oise vector w t which is assumed to be drawn from a zero-mean mul-

ivariate normal distribution,  , with covariance Q t : w 𝑡 ∼  ( 0 , Q 𝑡 ) . At

ime t , an observation z t of the true state x t is made according to: 

 𝑡 = 𝐻 𝑡 𝑥 𝑡 + 𝑣 𝑡 (4)

Where v t is the observation noise, which is assumed to be zero-mean

aussian white noise with covariance R t ∶ v t ∼  ( 0 , R t ) . The Kalman

lter is mentioned as a consistent and suitable method for high volatile

raffic flows, for the reason that in each step of work, the model updates

epeatedly and presents the real-time traffic flow. The Kalman filter can

e applied to multi-input and multi-output. It works in a two-step pro-

ess: "Predict" and "Update". In the predict step, the Kalman filter pro-

uces estimates of the current state variables, and their uncertainties.

nce the outcome of the next measurement is observed, these estimates

re updated using a weighted average, with more weight being given

o estimates with higher certainty. This process is shown in Fig. 1 . This

redicted state estimate is also known as the a priori state estimate.

n the update step, the predicted state is combined with current obser-

ation information to improve the state estimate. If an observation is

navailable for some reason, the update may be. Likewise, if multiple

ndependent observations are available simultaneously, multiple update

teps may be performed (typically with different observation matrices

 t ). 

.3. Holt winters’ exponential smoothing 

Holt-Winters’ trend and seasonal smoothing technique is a general-

zed version of exponential smoothing, and this model deals with varia-

ions in trends and seasonality factors over time. Seasonality is defined

s the tendency of time-series data to present behavior that replicates

tself in each period. L is the season length in periods. The observations

an illustrate a linear climbing trend, which is called exponential growth

r a damped trend. In the case of traffic flow at weekends, the seasonal-

ty is additive. The exponential smoothing is a procedure for repeatedly
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Table 1 

Weights for an observation for a 

value of y = 0.2 at each time in- 

stance of K. 

Observations Weight Value 

Y k 0.2 0.20 

𝑌 𝑘 −1 0.2 0.16 

𝑌 𝑘 −2 0.2 0.13 

𝑌 𝑘 −3 0.2 0.10 

𝑌 𝑘 −4 0.2 0.082 
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n  
pdating a prediction in the light of more recent experience. Exponen-

ial smoothing assigns exponentially decreasing weights as the obser-

ation gets older. In other words, most current observations are given

elatively more weight in prediction than the older observations. For ex-

mple, Table 1 shows the weights for observation for a value of y = 0.2 at

ach time instance. The weights decrease exponentially, and the recent

bservations have a more significant impact on the forecast. Generally,

n metropolis cities, weekday traffic flow patterns differ from the week-

nd traffic flow patterns, and The Holt-Winters exponential smoothing

orks well when the data has both trend and seasonality. Hence, this

odel gives highly competitive forecasts and match considerably well

ith the observed traffic flow data during peak hours. Time-series meth-

ds like ARIMA develop a model where the prediction is a weighted lin-

ar sum of recent past observations. Holt-Winters’ Exponential Smooth-

ng methods are similar in that a prediction is a weighted sum of past

bservations, but to forecast new data assigns weights to previous data.

he new data is predicted based on old information. The weight of older

raffic flow data decreases exponentially because the older data has less

mpact on predicting new data. The most current observation of traffic

ata receives the maximum weight.. 

In Traffic flow prediction, Triple Exponential Smoothing is used for

ata that shows trend and seasonality [14] . To forecast the additive

odel, we need to calculate and update three indicators of level, trend,

nd seasonality as defined below: 

I: smoothing level index, L k 

 k = ∝ ∗ 
y k 

S 𝑘 − 𝐿 
+ ( 1 − ∝ ) ∗ 

(
R 𝑘 −1 + b 𝑘 −1 

)
(5)

II: smoothing trend index, b k 

 k = β ∗ 
(
S k − 𝑆 𝑘 −1 

)
+ ( 1 − β ) ∗ b 𝑘 −1 (6)

III: smoothing the seasonal Index, S k 

 k = γ ∗ 
y k 
R k 

+ ( 1 − γ ) ∗ S 𝑘 − 𝐿 (7)

, 𝛽, 𝛾 are the level, trend and seasonal smoothing parameters respec-

ively. The Seasonality Index (SI) of a period indicates how much this

eriod typically deviates from the annual average. By using these three

ndicators, the multiple-step ahead can be predicted as: 

 𝑘 + 𝑇 = ( R 𝑘 −1 + 𝑇 ∗ b 𝑘 −1 ) ∗ S 𝑘 + 𝑇− 𝐿 (8)

.4. Random walk model 

One of the simplest and most used naïve models in time series mod-

ling is the random walk model. This model assumes that each period

f variable takes a random step away from the previous value, and the

teps are independently and identically distributed in size. This means

he model uses the most recent observations for forecasting the next

evel. Hence, the new data equal to the old observation plus a random

rror (with zero mean and constant variance). 

 t = y t−1 + ε t (9)

Where ɛ t ~ N(0, 𝜎2 ) that generated from the normal distribution

nd y t is observed data in the instance of time t. The Random walk model
s applied to non-stationary traffic flow data. One of the limitations of

he random walk model is that it does not depend on historical data and

t is good for a one-step forward prediction. In this case, the random walk

odel can be used to forecast the next 24 hours’ traffic flow condition

12] . 

.5. KNN algorithm and KD tree 

K-nearest neighbor (KNN) Algorithm as one of the machine learning

ethods has been implemented to tackle urban traffic issues. The KNN

lgorithms hold a collection of training instances. Each instance consists

f a series of features and is associated with a target that is the most sim-

lar, near the target to an instance. The similarity is calculated based on

istance metrics such as Euclidean distance that is indicated as follows:

 ( x , y ) = 

√ √ √ √ 

n ∑
i=1 

(
x i − y i 

)2 
(10) 

The k in the KNN algorithm points to k nearest points to the new

nstance. The target is indicated by finding the closest object to the new

nstance. For time series prediction, each target represents a collection

f values in time series [21] . For example, the collection includes daily

ime-series observations for several months, and the goal is the predic-

ion of future days. Time series can contain a repetitive pattern. The goal

f the KNN algorithm is finding the most similar patterns in that past

nd hoping that the current observation shows similar values. Another

rea of using KNN in smart transportation is the best route to the des-

ination. In this term, euclidean distance is used to find a similar area

hat categorizes the information about the time needed and the radius

f the area that is affected by congestion or car accidents in the traf-

c network. The KNN algorithm is based on coordinates and midpoints

f roads in different cities to select the best road with less traffic for

rivers. Dispersing heavy traffic to light traffic areas is the optimization

rocess to solve the traffic flow problem. The advantage of this algo-

ithm is that the accuracy rate is relatively high. However, one of the

rawbacks of the KNN algorithm is that the calculation requires a long

ime when k is too large; Another drawback is that KNN is sensitive

o irrelevant features and the scale of data. Because of those drawbacks,

NN performance well when in short-term traffic prediction, but it is not

onsistent with using in real-time analysis for the long-term. To monitor

eal-time traffic change for the long-term and get up-to-date information

uickly. KD Tree is introduced to build the data index that expects to

earch space more effectively [7] . K denotes the number of dimensions,

nd the KD tree is the multi-dimensional data structure that divides the

pace into different sections. Then the algorithm calculates the nearest

oint between the given location instead of calculating all points each

urn. In Table 2 , a summarization of the advantages, the disadvantages,

nd applications for ARIMA, Kalman Filtering, Holt Winter’s, Random

alk, and KNN is presented. 

. Deep learning time-series prediction methods 

Time-series traffic flow prediction methods have their own’s diffi-

ulties. Time-Series often contain temporal dependencies that lead to

ow stability, high data requirements, or poor adaptability. In light of

evelopment in deep learning, some hybrid methods have improved the

ime series predictions and alleviate their problems, some of these meth-

ds are defined next. Hybrid deep modeling has been applied in various

pplications including traffic flow prediction [26] and short-term fore-

asting [30] . 

.1. LSTM and ARIMA 

This model takes the features of improved long short-term memory

eural network (LSTM)), which is derived from the Recurrent Neural
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Table 2 

Compariosn between time-series prediction methods. 

Method Advantages Disadvantages Applications 

ARIMA It is more precise than the 

other methods 

It needs huge historical data Traffic Flow [18] , Road traffic prediction [26] , urban roadway 

travel time prediction [27] 

Kalman filtering It is a recursive estimator 

and does not need 

historical measured data 

It is suitable for short-term 

prediction. The accuracy is not so 

satisfying 

Traffic flow prediction [28] , Traffic Stream Density estimation 

[29] , short-term traffic flow prediction [13] . 

Holt Winters’ 

Exponential 

Smoothing 

It works well when the 

data has both trend and 

seasonality 

Finding the seasonality period 

among the data is challenging 

passenger flow predicton [30] , network traffic modeling [31] , 

daily traffic prediction [32] 

Random Walk 

Model 

It depends only on the 

current observation and 

not on the previous values 

It is suitable for short-term 

prediction 

urban traffic simulation and optimizing [33] , Intelligent 

Transportation modeling [34] , mobile ad-hoc networks [35] 

KNN It has a simple 

implementation 

It is suitable when there is 

little or no prior 

knowledge about the 

distribution of the data. 

Poor performance on large 

number of data, 

It is very sensitive to irrelevant or 

redundant features 

Intelligent transportation [22] , Traffic Volume Forecasting [23] , 

travel time prediction [24] , traffic state prediction [25] 
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etworks (RNN) model, and combines it to ARIMA to increase the ac-

uracy of ARIMA model. In LSTM architecture, additional to standard

eedforward connections in RNN, units have feedback connections. A

ommon LSTM unit is composed of a cell, an input gate, an output gate,

nd a forget gate. The cell remembers values over arbitrary time inter-

als, and the three gates regulate the flow of information into and out

f the cell. This model of LSTM provides an ability to learn longterm de-

endency information. To address the over-fitting problem of the natural

etwork, Hinton proposed a solution named dropout [19] that is used to

mprove the accuracy of the network. Self-Adaptive Probabilities LSTM

eural Network (SDLSTM) poses the neural network unit by a certain

robability during the training process and then retain the unit in the

ext training epoch, and repeats this process. In this way, the network

tructure changes in each training process that helps with reducing the

ver-fitting in the training process. According to the empirical result,

he SDLSTM method shows higher accuracy in comparison to LSTM in

he time of heavy traffic [18] . In terms of traffic flow predictions, the

redictions can be improved by combining SDLSTM and ARIMA with

on-equal interval; this means using intervals with a different unit of

ime for each method. Then, combining the result of the singular mod-

le achieves an accurate prediction of traffic flow data. The experimen-

al results demonstrate that the method based on the SDLSTM - ARIMA

odel has higher accuracy than the similar method using only ARIMA

18] . 

.2. STL and CNN 

The main goal of this hybrid technique [20] is merging the data from

wo sources to complement each other, especially in the case of combine

nowledge and data-driven systems in a single framework. Complement-

ng Deep Neural networks (DNN) with expert knowledge can reduce the

ependency on the data [20] . In this technique, first, two sources of data

re fed separately to the STL decomposition module, which decomposes

he input signal into its constituent parts. An STL stands for Seasonal

nd Trend decomposition using Loess that is a statistical method of de-

omposing a Time Series data into three components containing (i) sea-

onality, (ii) trend, and (iii) residual. The second component, the trend,

s separated from the rest signals (seasonality and residual). Hence, the

utput of STL decomposition contains two signals, trend and the rest of

he signal. These signals are then given to their respective CNN (Convo-

utional neural network) estimators as inputs. In this section, the con-

olutional neural network (CNN) was chosen as a Deep Learning model

ecause it is generally easier to optimize [20] . Finally, the overall out-

ut of the model is the sum of the output of the two CNNs, which is

hown in Fig. 2 . 
. Accuracy and validations measures 

Smart transportation modeling systems are relying on information

etrieved from machine learning methods to reach important decisions.

he most known measures for evaluation for supervised and unsuper-

ised prediction methods are MAE (Mean Absolute Error), RMSE (Root

ean Squared Error), Precision, Recall, and F-measure. It is always best

o present the results of multiple goodness of fit measures when eval-

ating models as opposed to those using only single evaluation mea-

ures. The accuracy of the time-series model can be tested with root

ean square error of prediction (RMSE), mean absolute percentage er-
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or (MAE), and standard errors (SE). 

MSE = 

√ ∑n 
i=1 

(
ŷ i − y i 

)2 
n 

(11) 

AE = 

1 
n 

n ∑
i=1 

|||| ŷ i − y i 
ŷ i 

|||| (12) 

E = 

σ√
n 
, σ = 

√ ∑n 
i=1 

(
ŷ i − μy 

)2 
n − 1 

(13)

Where ŷ i is the predicted value and y i is the actual value and 𝜇y is

he mean value. Among these statistics, MAPE statistic is a well suited

easurement tool for traffic data because the traffic flow measurement

erforms variabilities by order of magnitude between the daily peak

ours and trough hours. MAPE statistic is useful and illustrative when

ominal levels of the processed present [12] . The traffic flow data was

bserved at different nominal levels. For example, some of the detectors

nstalled on highways observed an aggregate number of vehicles that

ave passed by in 5 min. The detectors observed the average speed of

he vehicles. The time variable is the only independent variable the time

eries model takes into consideration. It does not capture factors such

s weather conditions, road pavement conditions, lighting along the ex-

ressways, pedestrians, etc. A regression model includes more indepen-

ent variables that can be implemented the capture the effect mentioned

bove. 

. Business opportunities: traffic forecast applications 

Overall, there are abundant business opportunities with the devel-

pment of advanced transportation data analytics Companies capture

pportunities to forecast real-time traffic situations, which could be pro-

ided directly or be utilized as marketing insights after being sorted and

nalyzed with the techniques discussed earlier. One example of came

p with is to deliver the traffic forecast results to individual users. Just

ike the weather forecast, companies can develop an app called Traffic

orecast. Google map, for instance, currently shows the real-time traffic

ows only. If a consumer wants to know the time required to get home

rom work in the next few hours so that the consumer could plan when

o leave, Google map will not have the ability to do so. Google can then

mplement such a model to show accurate predicted time to travel and

he fastest route to take to satisfy consumer demand. Google can also

dd a function called Traffic Forecast, just like a weather forecast ap-

lication, that shows the traffic conditions for the next 24 h in a city.

he analytical traffic planning can also be built within current business

rograms: for example, Uber drivers can follow the instruction of which

oute is the fastest. Also, time series analysis would be beneficial to the

ransportation department of governments, as it provides a traffic fore-

ast with high precisions. In this way, it is easier to plan when to direct

raffic once some congestions or events would cause traffic stagnation.

he analysis could either be written into the current traffic management

ystems or set up separately with no significant burdens. The implemen-

ation of this time series analysis would significantly reduce congestion

ince it provides forecasts on future traffic status and reduces the prob-

bilities of encountering accidents at the same time. 

. Conclusion 

It is now more accessible for the government and individuals to fore-

ee the status of urban transportation status through advances in trans-

ortation planning development. Still, the analytical process and data

xtractions have been challenges with relatively higher precision de-

and. The combination of mobile and smart card data has connected

ach individual’s activities more closely. Which provides the founda-

ion of further data analytics; the use of clustering techniques enabled

igher precision due to the nature of its formation, which automates the
nformation and grouped spontaneously. It is suggested to improve mo-

ile data accuracy, such as adding an extra amount of monitoring spots

s it is one of the most crucial parts of the process. However, current

echnologies need a long time to become available to a high degree.

ased on a comprehensive review of the previous studies, developing

raffic prediction methods is still an open research area. Therefore this

aper has provided a road map for future research in smart transporta-

ion planning, focusing on various data sources, forecasting models and

heir properties and configurations, and future business opportunities

or transportation analytical models. 
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