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ABSTRACT 
 

The Evolutionary Significance of Body Size in Burying Beetles 
 

Ashlee Nichole Momcilovich 
Department of Biology, BYU 

Doctor of Philosophy 
 

Body size is one of the most commonly studied traits of an organism, which is largely 
due to its direct correlation with fitness, life history strategy, and physiology of the organism. 
Patterns of body size distribution are also often studied. The distribution of body size within 
species is looked at for suggestions of differential mating strategies or niche variation among 
ontogenetic development. Patterns are also examined among species to determine the effects of 
competition, environmental factors, and phylogenetic inertia. Finally, the distribution of body 
size across the geographic range of a species or group of closely related is looked at for 
indications of the effects of climate and resource availability on body size at different latitudes 
and altitudes. In this collection of research, I address the evolution and importance of body size 
in burying beetles (genus Nicrophorus). Body size is important to several aspects of burying 
beetle natural history, including competitive ability, fitness, parental care, climate tolerance, and 
locomotor activity. In Chapter 1, I use a large data set of body size measurements for seventy of 
the seventy-three Nicrophorus species to make inferences about the distribution of body size 
within the genus, across its geographic range, and the importance of body size in speciation. I 
found that the range of body sizes is not normally distributed, with an overrepresentation of 
small-sized species. I also found that expansion of the burying beetle range has been restricted by 
their inability to tolerate warm, dry climates, and therefore the majority of burying beetle 
diversity occurs in the temperature mid-latitudes of the northern hemisphere. Body size also 
seems to be important in speciation, as almost all sister taxa are significantly different in body 
size. In Chapter 2 I use common garden experiments to assess the importance of body size for 
males and females in competition, reproductive output, and starvation resistance. Body size is 
equally important for both sexes in starvation resistance, but it is more important for males in 
competitions for carcasses and for females in reproductive output. In Chapter 3 I test for fitness 
consequences of multigenerational effects of body size in offspring. I found that the larger 
offspring that are produced by larger mothers and on larger carcasses had higher fitness than 
small offspring. In Chapter 4 I test for the possibility of brood parasitism in two species of 
burying beetles, N. guttula and N. marginatus, which co-occur over part of their geographic 
ranges. I found that both species are able to detect and remove parasitic larvae. Finally, in 
Chapter 5 I compiled parent and offspring body sizes from seven species of burying beetles and 
use them to compare the heritability of body size among species using comparative techniques 
and a meta-analysis. I found that body size heritability is different between species, but is low for 
the genus as a whole. Together, these projects provide valuable information on the evolutionary 
significance of body size in Nicrophorus, and indicate compelling questions for future research 
into the evolution of body size in burying beetles. 
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Abstract 

 Scientists are generally interested in body size because of its close relationship with a 

number of factors including fitness, life history strategy, and competitive ability. Body size is 

particularly important for burying beetles (genus Nicrophorus) as it can affect their ability to win 

access to resources and resource partitioning among species, as well as their reproductive output, 

thermal tolerance, survival, and their offspring’s need for parental care. There is a large amount 

of variation in burying beetle body size, both between and among species, but we do not 

currently understand what drives these differences and how body size is distributed within the 

genus and across its geographic range. In this study, we used a large data set of body size 

measurements for species in the Nicrophorus genus to describe patterns of body size for the 

genus. We found that the body size distribution for burying beetles is skewed to the right, that 

body size is dispersed across the phylogeny for this species, that species richness and body size 

scale with resource availability, and that body size is important for speciation in this group. Thus, 

burying beetle body size and its distribution seems to be strongly affected by environmental 

conditions and resource availability. 
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Introduction 

 Body size is arguably one of the most important attributes of an organism from both an 

evolutionary and ecological perspective. Size has a predominant influence on an individual’s 

physiological, life history, and fitness traits (Peters 1983; Reiss 1989; Roff 1992). Body size is 

also important in species interactions and community structure (Schoener 1974; Werner & 

Gillian 1984) as well as speciation (Nagel & Schluter 1998; Schluter 2001; Miraldo & Hanski 

2014).   

Several hypotheses have been proposed to explain how body sizes are distributed within 

taxonomic groups and across the geographic ranges of those groups. Hutchinson and MacArthur 

(1959) first noted that the frequency distribution of body sizes among species is highly right 

skewed, or that there are more small species than there are large species. They hypothesized that 

this occurs because smaller species are more specialized and therefore subdivide their 

environments and resources more narrowly than larger species. Other proposed explanations for 

the overrepresentation of small-sized taxa included a decrease in the number of niches with 

increasing body size (May 1978), a higher rate of speciation at small body sizes (Stanley 1973), 

and an energetically optimal small body size (Brown et al. 1996). Right-skewed size 

distributions have been demonstrated in a variety of taxa (e.g. Gardezi & da Silva 1999; Gaston 

& Blakcburn 2000; Kozlowski & Gawelczyk 2002; Meiri 2008; Albert & Johnson 2012; 

Burbrink & Myers 2014; Gaston & Chown 2013; Feldman et al. 2015), and exceptions to the 

pattern are generally considered unusual.    

Hutchinson also suggested that there is a relationship between body size and species 

interactions and niche partitioning. He proposed that for similar species to coexist in the same 

level of a food web, the ratio of the small to the large should be between 1.1 and 1.4, with the 
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mean being 1.3 (Hutchinson 1959). Although the validity of fixed body size ratios that allow 

coexistence has been questioned (Simberloff & Boeklin 1981), evidence from allopatric sister 

species indicates that species that are morphologically very similar cannot coexist because of 

significant niche overlap (Zink 2014).  

 The distribution of a trait, such as body size, among closely related taxa can also be 

assessed in a phylogenetic context. Trait variation between species reflects ecological influences, 

while similarities between species imply a phylogenetic signal (Blomberg et al. 2003). 

Therefore, if there is a high amount of variation in body size between closely related species, 

then environmental conditions have a strong influence on this trait as opposed to evolutionary 

history.  

 Several interspecific geographical patterns of body size have also been noted, and predict 

differences in mean body size with latitude, altitude, and environmental variation (reviewed in 

Gaston et al. 2008). Bergmann’s rule predicts an increase in body size with increasing latitude 

(Bergmann 1847). Environmental variation may also affect body size through differences in 

competition, predation pressures, food availability, and temperature (Blanckenhorn 2000; Chown 

& Gaston 2010; McNab 2010), thus creating a complex set of variable that can influence body 

size.   

Burying beetles (genus Nicrophorus) are well known in the field of evolutionary biology 

for their unique natural history, and are often used as a model system for investigations of 

parental care behaviors. All members of this genus use small vertebrate carcasses for feeding and 

reproduction (Scott 1998). The extent of parental care depends on the species and ranges from 

facultative to obligate biparental care (Capodeanu-Nägler et al. 2016; Jarrett et al. 2017). 

Parental care behaviors involve removing fur or feathers from the carcass, rolling it into a ball, 
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and burying it underground (Fetherston et al. 1990), followed by guarding the brood and 

regurgitating partially digested carrion to larvae after they hatch (Fetherston et al. 1990). One 

factor that is particularly important for burying beetle natural histories is body size, which affects 

burying beetles through physiological pathways such as thermoregulation (Merrick & Smith 

2004), overwinter survival (Smith 2002), and starvation resistance (Trumbo & Xhihani 2015; 

Smith & Belk 2018, Dissertation Chapter 2), fitness-related traits such as competitive ability 

(Bartlett & Ashworth 1988; Otronen 1988; Müller et al. 1990; Safryn & Scott 2000; Hopwood et 

al. 2013; Lee et al. 2014; Smith & Belk 2018, Dissertation Chapter 2), parental care behaviors 

(Steiger 2013; Smith et al. 2014; Pilakouta et al. 2015; Capodeanu-Nägler et al. 2016; Jarret et 

al. 2017), and reproductive output (Rauter et al. 2010; Hopwood et al. 2016; Smith & Belk 2018, 

Dissertation Chapter 2), and species interactions through resource partitioning (Wilson et al. 

1984; Trumbo 1990; Scott 1998; Ikeda et al. 2006).  

All burying beetle species are strikingly similar in their natural history, but there is a high 

level of variation in body size among species. There are 71 recognized Nicrophorus species 

(Sikes & Venables 2013; Sikes et al. 2016), most of which occur in the northern hemisphere 

(Sikes & Venables 2013) in a variety of habitat types (Peck & Anderson 1985; Peck & Kaulbars 

1987; Scott 1998; Sikes & Peck 2000; Dekeirsschieter et al. 2011). The species in the 

Nicrophorus genus range in size from a mean pronotal width of 4.2mm in N. montivagus to 

11.2mm in N. concolor (Sikes 2003; Sikes et al. 2006). Individual size is transmitted across 

generations through plastic effects generated by carcass size (Scott & Traniello 1990; Smith & 

Belk in review, Dissertation Chapter 2), maternal size (Steiger 2013; Smith & Belk 2018, 

Dissertation Chapter 2), maternal age (Lock et al. 2007), parental care strategy (Paquet et al. 

2017), and environmental conditions such as temperature and altitude (Smith et al. 2000) and 
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population density (Creighton 2005). These plastic effects that affect offspring body size lead to 

differential lifetime fitness (Damron et al. in prep, Dissertation Chapter 3). Some species and 

populations of burying beetles exhibit low levels of heritability for body size, but no heritability 

of body size seems to be the case in most species (Smith et al. in prep, Dissertation Chapter 5). 

Thus, there are several pathways through which body size can affect life history strategy, fitness, 

species interactions, and speciation in burying beetles.  

 Although significant advancement has been made in determining how body size affects 

burying beetles at the microevolutionary scale, less attention has been paid to the 

macroevolutionary patterns of body size variation among Nicrophorus species and how body 

size is distributed across the geographic range of the genus. In this study we examine test four 

predictions regarding body size in the Nicrophorus genus: 1) The body size distribution for the 

genus is normally distributed, 2) Body size is dispersed rather than clustered in the Nicrophorus 

phylogeny, indicating a strong environmental influence on this trait, 3) Body size distributions 

are consistent with resource availability because burying beetles use rare and ephemeral 

resources for reproduction, and 4) Sympatric sister species are less similar in body size than 

allopatric or parapatric sister species due to competition and resource partitioning.  

 

Methods 

 We test for the large-scale body size patterns predicted above for the Nicrophorus genus 

by assessing: 1) the distribution of mean body size within the genus, 2) the distribution of mean 

body size across the phylogeny, 3) the distribution of body sizes across the geographic range for 

the genus, and 4) the difference in body size between parapatric, sympatric, and allopatric sister 

species.  
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Body Size Range among Species 

To explore the distribution of body size among species of the genus Nicrophorus, we 

used a data set compiled by D.S. Sikes that included 11,946 pronotum width measurements from 

museum specimens for 70 Nicrophorus species (See Sikes et al. 2016 for list of museums from 

which specimens were borrowed). Pronotal width is a standard measure of body size in beetles as 

it scales with body size in general, and it is important in determining the winners of competitions 

between burying beetles and resource partitioning in this group (Safryn & Scott 2000). We 

calculated the mean pronotum width for each species, and then we calculated the log of the mean 

pronotum width for each species. We used those values to create histograms, which we evaluated 

for normality and discontinuities. We then performed an Agostino test in the package ‘moments’ 

(Komsta & Novomestky 2015) in Program R (R Core Team 2013) to determine the normality of 

the distribution of body sizes in this genus.  

To determine how body size is distributed across the Nicrophorus phylogeny, we created 

a phylogenetic heat map using the mean pronotum widths that were determined for each species. 

The chronogram from Sikes and Venables (2013) was imported and manipulated using the R 

package PHYLOCH (Heibl, 2008). Ancestral reconstructions of the continuous character trait 

pronotum width were estimated at the internal nodes by using a Maximum Likelihood (ML) 

function, fastANC in the R package phytools (Revell 2012) with the interpolation of the states 

along each edge using equation [2] of Felsenstein (1985). The reconstructions were then plotted 

using the contMap (Revell 2013) function in the R package phytools (Revell 2012).  
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Geographic Patterns 

 To determine how body size is distributed across the geographic range of Nicrophorus, 

we used the mean body sizes that were calculated for each species above. We used the cut 

function in Program R (R Core Team 2013) to divide the data into three categories. The data 

were divided as small = 4.14mm – 6.42mm, medium = 6.43mm – 8.7mm, and large = 8.8mm – 

11.0mm. We then used locality records for each species recorded by DS Sikes and mapped the 

distribution of each size group in QGIS.    

 

Patterns of Body Size Evolution 

 To determine whether there is a correlation between speciation and differences in body 

size, we used t-tests to compare the mean size of allopatric, parapatric, and sympatric sister 

species. Sister species were determined by examining the phylogenetic tree in Sikes and 

Venables (2013). We determined whether each pair of sister species occurred in sympatry, 

parapatry, or allopatry using locality data and information in published literature. To determine 

whether allopatric, sympatric, and parapatric sister species have significantly different body 

sizes, we calculated the mean difference in pronotum width and the factor difference between 

each sister species pair. We analyzed the data using ANOVAs, with the type of isolation (i.e. 

sympatry, allopatry, or parapatry) as the predictor variable and the mean difference or factor 

difference in pronotum width as the response variable. We also performed Tukey tests for 

comparisons between the three groups if the results of the ANOVA were significant. All 

statistical analyses were performed in Program R (R Core Team 2013).   
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Results 

Body Size Range Among Species 

 The most apparent characteristic of the Nicrophorus species size distribution is that no 

species have a mean pronotum width between 8.0mm – 9.0mm, creating a gap in the distribution 

(Figure 1.1A). The break in the distribution occurs between what is categorized as medium and 

large in our Geographic Pattern analysis. Also, the distribution of the log mean body sizes for the 

species in the genus Nicrophorus is significantly right-skewed (two-sided Agostino test: skew = 

1.1132, z = 2.0906, p-value = 0.0366) (Figure 1.1B).  

 The pronotum width heat map on the phylogenetic tree for the Nicrophorus genus shows 

that compared to the ancestral size, the mean pronotum width has increased and decreased 

several times in the evolutionary history of this group (Figure 1.2). Large body size has evolved 

three separate times, and large and small body sizes are not concentrated in any one part of the 

phylogeny.    

 

Geographic Patterns 

 Our categorization placed 5 species (7% of the total number of species) in the large size 

category, 16 species in the medium size category (23% of the total number of species), and 49 

species in the small size category (70% of the total number of species) (see Table 1.4 for a list of 

species in each category).    

Visual analysis of the size distribution map (Figure 1.3) and the species richness map 

indicates four patterns of body size distribution across the geographic range of burying beetles. 

(1) The largest diversity in body sizes and the highest species richness occurs in the mid-
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latitudes. (2) Medium and large species mainly occur in the mid-latitudes, but small species are 

more likely to occur further north and south. (3) Large species of burying beetles occur across 

Europe and Asia, but not west of the Rocky Mountains in the United States. (4) The large 

Nicrophorus species occur in areas with high burying beetle biodiversity.  

 

Patterns of Body Size Evolution  

 All sympatric sister species (Table 1.1) and parapatric sister species (Table 1.2) have 

significantly different mean pronotum widths. However, the mean pronotum widths of two 

allopatric sister species (29% of the group) are not significantly different from each other (Table 

1.3). Out of the total seventeen Nicrophorus sister species pairs, 89% showed significant 

differences in body size between the pair (Tables 1.1-1.3).  

Sympatric sister species differ from each other by a mean factor of 1.30 (range = 1.08 – 

1.64) (Table 1.1). Parapatric sister species differ from each other by a mean factor of 1.10 (range 

= 1.05 – 1.18) (Table 1.2). Allopatric sister species differ from each other by a mean factor of 

1.11 (range = 1.02 – 1.25) (Table 1.3).  

There were moderately significant differences among the factor differences between 

sympatric, allopatric, and parapatric sister species (one-way ANOVA results: df = 2, F = 3.43, p 

= 0.0578. Results of a Tukey Test indicated that only the factor differences of sympatric and 

allopatric sister species were moderately different from each other (p = 0.0827), but the factor 

differences between sympatric and parapatric (p = 0.1354) and between allopatric and parapatric 

(p = 0.9965) sister species were not significantly different. Factor differences are on average 

15% higher in sympatric compared to allopatric sister species.  
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There were no significant differences among the mean differences in body size between 

sympatric, parapatric, and allopatric sister species (one-way ANOVA results: df = 2, F-Value = 

2.18, p-Value = 0.1452).  

 

Discussion 

 The three ways that we assessed body size distribution in burying beetles produced 

interesting results, which indicate that the evolution of body size distributions in burying beetles 

is influenced by several factors. In particular, competition and resource partitioning and 

environmental conditions seem to have the greatest influence body size within the genus and 

within the geographic distribution of Nicrophorus. We discuss these influences in detail below.  

 

Body Size Range Among Species  

The mean pronotum width distribution for the Nicrophorus genus shows that there is a 

break between medium and large-sized species, but the distribution is continuous between small 

to medium-sized species (Figure 1.1A). The five species of burying beetles that we categorized 

as “large” also occur in the areas with the highest densities of burying beetles (Figure 1.3). The 

most well-studied large burying beetle species is N. americanus, which is the largest 

Nicrophorus species in North America (Schnell et al. 2008). This species competes intensely 

with N. orbicollis for carcasses because of a significant overlap in the geographic range, habitat 

preference, diel periodicity, and breeding season of the two species (Szalanski et al. 2000; Sikes 

& Raithel 2002), and this competition may have driven the evolution of large body size in N. 

americanus. Nicrophorus americanus breeds on carcasses that range from 30-500g, while N. 
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orbicollis breeds on carcasses that range from 7-150g (Trumbo & Bloch 2000). In competitions 

for carcasses, the largest competitors of each sex generally win access to the resource (Kozol et 

al. 1988; Bartlett & Ashworth 1988; Otronen 1988; Müller et al. 1990; Safryn & Scott 2000; 

Hopwood et al. 2013; Lee et al. 2014; Smith & Belk 2018, Dissertation Chapter 2), so 

competitions with other burying beetle species and resource partitioning could have driven the 

evolution of large body size in burying beetles. Although less is known about the natural history 

of the other large burying beetle species, reports of burying beetle community structures in 

Japan, where N. concolor occurs (i.e. Ikeda et al. 2006; Sugiura et al. 2013) and western Europe, 

where N. germanicus occurs (i.e. Aleksandrowicz & Komosiński 2005) indicate that intense 

competitions for carcasses probably also occur in the other areas where large burying beetle 

species are found.    

Large body size has evolved three separate times in burying beetles (Figure 1.2). With the 

exception of N. germanicus and N. morio, which are sister species, none of the other large 

burying beetle species are closely related (Figure 1.2). If, as proposed above, large body size 

evolves in response to competitive pressures, then the same competitive pressures likely drove 

the evolution of large body size in all five large burying beetle species. In support of this theory, 

none of the large Nicrophorus species co-occur. Nicrophorus germanicus and N. morio are 

parapatric in the middle of their ranges (Růžička et al. 2002; Sikes et al. 2002), but do not 

directly compete because they prefer different habitat types (Scott 1998; Růžička et al. 2002; 

Dekeirsschieter et al. 2011). Therefore, competition for carcasses may drive the evolution of 

large body size, but prevent the evolution of more than one large burying beetle species in any 

one region.  
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One of the most prevalent characteristics of many body size distributions is a 

disproportionate representation of small-sized taxa (Gaston & Blakcburn 2000; Kozlowski & 

Gawelczyk 2002). Although this pattern is well documented in vertebrates (reviewed in 

Kozlowski & Gawelczyk 2002), less evidence has been found in invertebrates (Rainford et al. 

2016). However, our results indicate that body size is significantly skewed to the right in the 

Nicrophorus genus both with raw values and when they are analyzed on the log scale (Figures 

1.1A and 1.1B). Several hypotheses have been presented to explain right-skewed data (reviewed 

in Kozlowski & Gawelczyk 2002). One possible explanation for long-tailed body size 

distributions is a higher rate of speciation in small species, but a higher rate of extinction in large 

species (Gould 1988). This seems possible for burying beetles because the most recent speciation 

events have resulted in small species (Figure 1.2), and the largest species are at risk of extinction 

(Anderson 1982). Another possible explanation is that burying beetle body sizes are related to 

the size distribution of small vertebrates. Burying beetles partition carcasses according to body 

size, with smaller species utilizing smaller carcasses and larger species utilizing larger carcasses 

(Wilson et al. 1984; Trumbo 1990; Scott 1998; Ikeda et al. 2006). Mammal body size 

distributions also show an overrepresentation of small species (Blackburn & Gaston 1994), so 

smaller body size in burying beetles might be correlated with the availability of resources.  

 

Geographic Patterns 

Nicrophorus species occur predominantly in the temperate northern hemisphere, with 

only a few species spreading into South America and the Malay Archipelago (Figure 1.2). The 

genus is hypothesized to have originated in Asia (Hatch 1927; Peck & Anderson 1985; Sikes & 

Venables 2013), and then colonized the New World four separate times (Sikes & Venables 
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2013). Climatic sensitivity in burying beetles may constrain their ability to spread into areas 

outside of the northern hemisphere.      

Species richness generally increases with decreasing latitude (Rozenzweig 1995; Gaston 

1996a; Brown & Lomolino 1998). However, patterns of biodiversity in insects do not always 

follow this trend (Gaston 1996b; Kouki 1999; Skillen et al. 2000). One possible explanation for 

contradictions to the general pattern is known as the mid-domain effect, which predicts that 

species richness will be higher in the middle of a geographical domain. This occurs because 

species’ ranges have boundaries caused by temperature, land formations, bodies of water, etc., 

and there is an increase in overlap in their ranges toward the center of the domain, causing 

greater species diversity in that area (Colwell & Lees 2000). This explanation seems to be likely 

for burying beetles because their environmental tolerance is narrow (Merrick & Smith 2004). 

Activity levels generally occur at moderate temperatures (Merrick & Smith 2004; Jacques et al. 

2009; Laidlaw 2015), which may be due to an inability to function at low temperatures and risk 

of desiccation at high temperatures (Bedick et al. 2006) and a higher cost of reproduction at 

higher temperatures where bacteria and fungus are able to colonize and grow more rapidly 

(Jacques et al. 2009). In support of this hypothesis, Nicrophorus species in tropical areas are 

generally found at higher elevations (Sikes & Venables 2013) and do not occur in deserts (Sikes 

2008). Therefore, the distribution of burying beetles is likely constrained by colder temperatures 

to the north and humid temperatures and competition with bacteria and fungi to the south.  

The distribution of burying beetles also likely corresponds to areas where there are more 

resources (i.e. vertebrate carcasses) to inter for food and reproduction. In Europe, the mean body 

size of mammals is smallest in the west (Rodríguez et al. 2006), and in North America the mean 

body size of mammals is smallest in the east (Rodríguez et al. 2008). Burying beetle species 
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richness is also highest in Western Europe and Eastern North America (Figure 1.3), so the 

available resources may also explain the distribution of species. Additionally, the amount of 

resources available might explain the distribution of large burying beetle species. The “resource 

rule” predicts that larger species will occur in areas where there are more resources (McNab 

2010). The largest species of burying beetles in North America and Europe occur in the areas 

where the mean size of small mammals most closely matches the size that burying beetles can 

use for reproduction, which may be because of the availability of small mammals.      

Environmental conditions might also explain the distribution of large burying beetle 

species, which occur across Europe and Asia, but not west of the Rocky Mountains in the United 

States. Nicrophorus americanus is known to prefer deep soil of either grasslands or developed 

forests (Lomolino & Creighton 1996; Bedick et al. 1999), and thus the relatively shallow, rocky 

soils in the western United States may not be their preferred habitat type. Also, the lack of soil 

moisture might not allow large species such as N. americanus to survive west of the Rocky 

Mountains (Bedick et al. 2006), as large burying beetles seem to desiccate more quickly than 

small species. These same niche requirements might also explain why large burying beetle 

species only occur in the middle of the geographic range of burying beetles, and why burying 

beetles do not follow Bergmann’s rule.  

 

Patterns of Body Size Evolution 

Competition is an important driver of speciation (Schluter 2000a,b; Moen & Wiens 

2009), and has been linked to speciation in other invertebrates such as dung beetles and 

amphipods (Miraldo & Hanski 2014; Jeffrey et al. 2017). Additionally, Wilson (1975) indicated 

that body size was a major factor in niche differentiation among closely related species. Burying 
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beetles engage in intense inter- and intraspecific competition for access to carcasses, and the 

largest individuals generally win access to the resource (Bartlett & Ashworth 1988; Otronen 

1988; Müller et al. 1990; Safryn & Scott 2000; Hopwood et al. 2013; Lee et al. 2014). 

Therefore, competition should influence diversification in this group through resource 

partitioning according to body size. We tested for differences in size between sister species in 

two ways: 1) by determining whether mean pronotum widths of sister species were equivalent 

with Hutchinson ratios and 2) by testing whether the size differences between sister species were 

different between sympatric, parapatric, and allopatric sister species. The mean pronotum widths 

of all sister species were significantly different from each other, except the difference between 

two allopatric pairs (Tables 1.1-1.3). According to Hutchinson ratios, co-occurring species 

should be different by a factor of 1.1 – 1.4 (Hutchinson 1959). On average, the factor difference 

in mean pronotum width for sympatric, parapatric, and allopatric sister species were consistent 

with Hutchinson ratios (Hutchinson 1959; Tables 1.1-1.3), indicating that body size is an 

important factor in speciation in burying beetles.   

We also found that body size differences were greater in sympatric sister species than in 

allopatric sister species. Traits such as body size have been proposed as the possible drivers of 

diversification because changes in these traits may have a significant impact on ecological 

opportunity and allow shifts in niche availability (Losos 2010), and the rate of body size 

evolution is correlated with diversification on a macroevolutionary scale (Ricklefs 2004; 

Rabosky et al. 2013). Rapid shifts in size have been noted alongside increased rates of 

diversification in several adaptive radiations (Schluter 1993, Harmon et al. 2010). Douglas 

(1987) showed that greater dissimilarities in body size within a clade resulted in lower 

competition coefficients, which may also reduce the level of competition among burying beetle 
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species. Sympatric sister species are in direct competition with each other, so they likely need to 

have greater differences in body size to be able to continue to co-occur.   

It should be noted that all of the extant burying beetle species are not included in the 

current phylogeny by Sikes and Venables (2013). Therefore, some of the sister species that are 

included in our analysis might not actually be sister species. For example, in the current 

phylogeny, N. vespilloides and N. defodiens are sister species (Sikes & Venables 2013; Table 

1.1; Figure 1.2), but recent molecular data has identified N. hebes as a valid species and the 

actual sister species to N. vespilloides (Sikes et al. 2016). Therefore, as more species are added to 

the phylogeny for this genus, some of the sister species reported here will be identified as 

incorrect. However, the pattern of significant differences between sizes of sister species will 

likely remain as body size is an important part of burying beetle community structure (Wilson et 

al. 1984; Trumbo 1990; Scott 1998; Ikeda et al. 2006), and possibly of speciation within the 

group.    

 

Conclusions  

 In burying beetles, body size seems to be strongly related to environmental factors. The 

results of our analyses of body size in Nicrophorus genus indicate that mean body size is likely 

affected by the amount and size of resources available and the amount of competition for 

resources. The greatest burying beetle species richness occurs in areas where small vertebrates 

are most likely to be dense, and the number of species competing for access to carcasses seems 

to driven the evolution of large body size in this genus. Body size is also important in speciation, 

as most sister species are significantly different in body size, regardless of whether they occur in 

sympatry, parapatry, or allopatry. Future work addressing the relatedness of co-occurring species 
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and resource partitioning would provide interesting additional insight into the role of body size in 

speciation and burying beetle community assembly.     
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Table 1.1 ANOVA (Analysis of Variance) results for the t-tests on the mean pronotal widths for each pair of sympatric sister 

species. The factor difference between the mean pronotal widths for each pair is also included. 

Sympatric Sister Species 
Sources df t-Value p-Value Factor 

Difference 
N. smefarka and N. przewalski Růžička et al. 2002;  

Sikes et al. 2002 
39 13.88 <.0001 1.64 

N. americanus and N. orbicollis Anderson 1981; 
Peck & Kaulbars 1987; 

Kozol et al. 1988; 
Lomolino & Creighton 1996; 

Bedick et al. 1999; 
Trumbo & Bloch 2000; 
Walker & Hoback 2007 

502 33.83 <.0001 1.64 

N. vespillo and N. nigricornis  Růžička et al. 2002; 
Dekeirsschieter et al. 2011;  

Ghahari & Háva 2015 

712 5.68 <.0001 1.09 

N. maculifrons and N. montivagus Ikeda et al. 2006; 
Sikes et al. 2006 

443 23.53 <.0001 1.35 

N. vespilloides and N. defodiens Peck & Kaulbars 1987; 
Beninger & Peck 1992; 

Trumbo & Thomas 1998; 
Trumbo & Bloch 2000 

794 6.09 <.0001 1.08 

N. obscurus and N. guttula Peck & Kaulbars 1987; 
Walker & Hoback 2007 

187 7.81 <.0001 1.25 

N. apo and N. nepalensis Růžička et al. 2002; 
Sikes et al. 2006 

611 3.98 <.0001 1.08 

N. hybridus and N. tomentosus Peck & Kaulbars 1987;  
Sikes et al. 2008 

298 15.31 <.0001 1.28 
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Table 1.2. ANOVA (Analysis of Variance) results for the t-tests on the mean pronotal widths for each pair of parapatric sister 

species. The factor difference between the mean pronotal widths for each pair is also included.  

 

 

 

 

 

 

 

 

Parapatric Sister Species Sources df t-Value p-Value Factor 
Difference 

N. germanicus and N. morio Růžička et al. 2002;  
Sikes et al. 2002; 

Dekeirsschieter et al. 2011 

631 7.87 <.0001 1.09 

N. mexicanus and N. nigrita Peck & Anderson 1985; 
Peck & Kaulbars 1987; 

Marquez et al. 2015 

321 3.71 0.0002 1.05 

N. didymus and N. scrutator Peck & Anderson 1985; 
Sikes & Chaboo 2015 

168 8.31 <.0001 1.18 

N. olidus and N. quadrimaculatus Peck & Anderson 1985; 
Marquez et al. 2015 

120 2.77 0.0066 1.07 
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Table 1.3 ANOVA (Analysis of Variance) results for the t-tests on the mean pronotal widths for each pair of allopatric sister 

species. The factor difference between the mean pronotal widths for each pair is also included. 

 
 
 
 
 

 

 

 

 
 
 
 
 
 
 

Allopatric Sister Species 
Sources df t-Value p-Value Factor 

Difference 
N. dauricus and N. antennatus Tezcan & Háva 2001;  

Guéorguiev & Růžička 2002; 
Růžička et al. 2002 

579 4.38 <.0001 1.04 

N. quadripunctatus and N. melissae Sikes et al. 2006; 
Růžička et al. 2011 

457 1.25 0.2107 1.02 

N. insularis and N. kieticus Peck 2001; 
Sikes et al. 2006; 

Sikes & Mousseau 2013 

158 2.99 0.0032 1.05 

N. oberthuri and N. lunatus Růžička et al. 2002;  
Sikes et al. 2002  

118 8.35 <.0001 1.25 

N. pustulatus and N. hispaniola Peck & Kaulbars 1987;  
Sikes & Peck 2000  

90 1.89 0.0622 1.09 

N. encaustus and N. investigator Peck & Kaulbars 1987;  
Sikes et al. 2008; 

Růžička et al. 2011 

955 3.99 <.0001 1.16 

N. argutor and N. sepultor Růžička et al. 2002;  
Sikes et al. 2008; 

Dekeirsschieter et al. 2011 

661 11.38 <.0001 1.13 
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Table 1.4 Mean pronotal width, range of pronotal widths in the sample, number of 

specimens measured, and size category (small, medium, or large) for all 70 burying beetle 

species measured for this study 

Species 
Mean Pronotum 

Width (mm) 
Range (mm) Sample 

Size 
Size 

Category 
N. concolor 10.97 7.95 – 13.64 332 Large 
N. americanus 10.56 8.02 – 12.51 50 Large 
N. satanus 10.46 8.49 – 12.11 37 Large 
N. germanicus 9.83 5.99 – 13.19 366 Large 
N. morio 9.03 5.94 – 11.34 266 Large 
N. carolinus 7.88 5.23 – 10.47 136 Medium 
N. japonicus 7.24 5.09 – 10.05 183 Medium 
N. obscurus 7.23 4.38 – 9.52 29 Medium 
N. distinctus 7.14 5.17 – 8.77 38 Medium 
N. przewalskii 7.13 6.01 – 7.90 13 Medium 
N. validus 7.06 5.75 – 8.64 9 Medium 
N. scrutator 7.06 4.96 – 9.22 61 Medium 
N. humator 7.00 4.01 – 9.32 673 Medium 
N. pustulatus 6.88 4.63 – 8.83 81 Medium 
N. lunatus 6.81 4.78 – 8.71 84 Medium 
N. hybridus 6.77 4.80 – 8.95 58 Medium 
N. argutor 6.73 4.29 – 8.97 381 Medium 
N. marginatus 6.59 4.29 – 9.11 216 Medium 
N. ussuriensis 6.56 5.61 – 7.30 8 Medium 
N. lethaeus 6.47 6.31 – 6.79 3 Medium 
N. orbicollis 6.43 4.49 – 8.68 454 Medium 
N. hispaniola 6.34 5.50 – 7.55 11 Small 
N. nigrita 6.33 3.88 – 7.69 181 Small 
N. nigricornis 6.30 4.31 – 8.02 82 Small 
N. vestigator 6.23 3.26 – 8.38 294 Small 
N. dauricus 6.09 4.08 – 7.87 285 Small 
N. mexicanus 6.01 3.86 – 7.96 142 Small 
N. reticulatus 6.00 4.87 – 6.60 4 Small 
N. mongolicus 5.97 4.22 – 7.23 109 Small 
N. sepultor 5.96 3.98 – 7.78 282 Small 
N. semenowi 5.96 4.96 – 6.88 29 Small 
N. didymus 5.96 4.00 – 7.48 109 Small 
N. podagricus 5.92 4.35 – 7.35 112 Small 
N. tenuipes 5.91 3.64 – 7.21  201 Small 
N. investigator 5.87 3.85 – 7.89 946 Small 
N. sayi 5.84 4.02 – 7.70 24 Small 
N. antennatus 5.82 3.84 – 7.58 296 Small 
N. guttula 5.76 3.35 – 8.17 160 Small 
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N. vespillo 5.74 3.41 – 7.96 632 Small 
N. basalis 5.72 3.78 – 7.41 166 Small 
N. sepulchralis 5.70 4.22 – 7.17 73 Small 
N. efferens 5.70 5.02 – 6.42 6 Small 
N. Charon 5.65 4.70 – 7.00 18 Small 
N. maculifrons 5.64 4.00 – 7.39 312 Small 
N. heurni 5.58 4.24 – 6.87 143 Small 
N. trumboi 5.58 4.56 – 6.35 17 Small 
N. interruptus 5.53 2.93 – 7.59 651 Small 
N. herscheli 5.48 4.66 – 6.54 9 Small 
N. oberthuri 5.46 4.47 – 7.02 36 Small 
N. chilensis 5.44 4.22 – 6.30 14 Small 
N. defodiens 5.39 3.74 – 7.05 83 Small 
N. insularis 5.38 4.23 – 6.45 91 Small 
N. hebes 5.35 3.50 – 6.77 420 Small 
N. tomentosus 5.27 3.61 – 6.93 242 Small 
N. nepalensis 5.27 3.59 – 7.07 555 Small 
N. insignis 5.25 4.31 – 6.42 18 Small 
N. sausai 5.20 - 1 Small 
N. quadraticollis 5.19 4.06 – 6.57 23 Small 
N. melissae 5.18 3.66 – 6.26 47 Small 
N. schawalleri 5.16 4.15 – 6.49 77 Small 
N. kieticus 5.09 3.40 – 6.43 69 Small 
N. quadripunctatus 5.06 3.40 – 6.77 412 Small 
N. quadrimaculatus 5.06 4.41 – 5.64 20 Small 
N. encaustus 5.05 4.36 – 5.93 11 Small 
N. vespilloides 4.97 3.09 – 6.38 713 Small 
N. apo 4.90 3.57 – 6.35 58 Small 
N. reichardti 4.74 3.91 – 5.61 9 Small 
N. olidus 4.71 3.38 – 6.18 102 Small 
N. smefarka 4.34 2.80 – 5.50 28 Small 
N. montivagus 4.15 2.96 – 5.21 133 Small 
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Figure 1.1 (A) Mean Nicrophorus species pronotal width (mm) distribution. (B) Log mean 

Nicrophorus species pronotal width distribution. 
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Figure 1.2 Mean species pronotal width mapped onto the existing molecular phylogeny by 

Sikes & Venables (2013).  
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Figure 1.3 Geographical distribution of small (red, 4.14mm – 6.42mm pronotum width), medium (green, 6.43mm – 8.7mm 

pronotum width), and large (blue, 8.8mm – 11.0mm prontum width) Nicrophorus species. 
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Abstract 

Body size generally has an important relationship with fitness, where larger body size leads to an 

increase in fitness through competition, reproductive output, and survivorship. However, the 

traits through which body size increases fitness often differ between the sexes. We tested for the 

effects of body size on fitness in both sexes using three separate experiments on competitive 

ability, reproductive output, and starvation resistance in the burying beetle Nicrophorus 

marginatus. Results varied between sexes as follows. 1) Larger body size increased competitive 

ability differentially between sexes. 2) Female body size, but not male body size, significantly 

affected reproductive output. Small females produced larger broods of smaller offspring, while 

large females produced smaller broods of larger offspring. 3) Large body size was positively 

associated with starvation resistance, but there was no differential response by sex. This study 

indicates that there is a complex relationship between body size, sex, and fitness, and that 

multiple fitness parameters need to be tested in both sexes to understand the evolution and 

importance of body size in a species.  

 

 

 

 

 

 

Keywords: body size, burying beetle, competition, evolution, Nicrophorus marginatus, 

reproductive output, starvation resistance  
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Introduction 

Body size of organisms is one of the most widely studied physical traits because of its 

influence on many behavioral, physiological, and life history traits (Roff, 1992). However, the 

diversity of pathways through which body size can affect fitness has been of particular interest. 

Fitness tends to increase with body size through sexual selection, an increase in reproductive 

success, increased viability, predator avoidance, and starvation resistance (Clutton-Brock, 1988; 

Blanckenhorn, 2000). Most studies have only addressed one pathway through which body size 

affects fitness (but see Amarillo-Suárez, Stillwell, & Fox, 2011 and Hsu & Soong, 2017 for 

exceptions), but single pathway studies cannot address the likely multivariate effect of body size 

on fitness.  

Although there is a well-documented relationship between large body size and fitness, the 

degree and direction of this relationship often differs between males and females (Fairbairn et 

al., 2007). Body size generally affects male fitness through male-male competition and sexual 

selection because females are usually the limiting sex, and therefore males must compete for 

access to females (Emlen & Oring, 1977; Clutton-Brock, 1983). However, reproductive output is 

more likely to vary with female body size through increased fecundity with larger body size 

(Emlen & Oring, 1977). Tests of sex-specific differences in survival have been mixed (e.g. 

Badyeav et al., 2002; Råberg, Stjernman, & Nilsson, 2005; Husby et al., 2006; Altwegg, Schaub, 

& Roulin, 2007; Cleasby et al., 2010). Comprehensive tests on the importance of body size for 

multiple factors in both sexes are needed to understand the complex interactions that lead to the 

evolution of body size in males and females (Blanckenhorn, 2005).   

 In this study, we use the burying beetle Nicrophorus marginatus to test for the effect of 

body size on fitness in both sexes. Body size is closely linked to fitness through several aspects 
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of burying beetle natural history including: 1) Flight to locate carcasses for reproduction – larger 

beetles are able to fly at a broader range of temperatures (Merrick & Smith, 2004). 2) 

Competitions for carcasses for reproduction – larger beetles are more likely to win competitions 

for carcasses in both intra- and interspecific contests (Otronen, 1988; Eggert & Sakaluk, 2000).  

3) Parental care - after winning access to a carcass, body size can affect the duration and extent 

of parental care (Smith, Belk, & Creighton, 2014; Steiger, 2013; Pilakouta et al., 2015). 4) 

Reproductive output – body size has been linked to variation in brood size in both sexes 

(Hopwood et al., 2016; Rauter et al., 2010). 5) Survival - body size has been shown to affect 

overwinter survival and starvation resistance (Smith, 2002; Trumbo & Xhihani, 2015). Thus, 

there are several different ways that body size can affect fitness in burying beetles, but some of 

these factors might act differently in males and females.  

  The goal of this study was to determine whether body size is equally important for 

multiple aspects of fitness in both sexes in N. marginatus. Body size is likely to affect both males 

and females through competitions for carcasses, reproductive output, and starvation resistance in 

this species.  We tested for these effects through three separate experiments that used 1) 

competitive trials between beetles of varying sizes, 2) tests of reproductive output of large and 

small beetles on large and small carcasses, and 3) tests of time to death under starvation 

conditions for a range of body sizes. For each of these traits, the sexes could be affected equally, 

differently, or not at all. We predicted that body size would be equally important for males and 

females for all three of these traits due to their similar natural histories and their engagement in 

biparental care. However, our results show a range of responses to these factors, indicating a 

complex relationship between body size and fitness between sexes in this species.  
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Methods 

Source of Burying Beetles 

Adult N. marginatus used to generate the laboratory population were captured at the Utah 

Wetland Preserve near Goshen, Utah in August 2014, July 2015, and July 2016 using pitfall traps 

baited with aged chicken. Wild-caught pairs were placed on 40g mouse carcasses and allowed to 

breed to generate the laboratory population.  We created 41, 55, and 33 independent genetic lines 

from wild-caught pairs in 2014, 2015, and 2016, respectively. The date of eclosion was 

designated as the first day of adult life for all laboratory-bred beetles. Individuals were placed in 

small plastic containers (15.6 x 11.6 x 6.7 cm), fed ad libitum raw chicken liver twice weekly, 

and maintained on a 14:10 h light:dark cycle at 21°C until they were used in experiments.  

 

Experimental Design 

Competition Experiment 

 The purpose of this experiment was to determine the effect of body size (for both sexes) 

on the outcome of competitions for carcasses. We began each trial by randomly choosing two 

beetles of the same sex that were not genetically related. We then determined the difference in 

their body sizes by measuring their pronotum widths (replicated three times) using digital 

calipers. (We used pronotum width rather than mass because it is a better predictor of the 

outcome of fights in Nicrophorus [Safryn & Scott, 2000]) Each pair was then assigned to a size 

difference category as follows: 1 = 0mm – 0.1mm difference; 2 = 0.11mm – 0.2mm difference; 3 

= 0.21mm – 0.3mm difference; 4 = 0.31mm – 0.4mm difference; and 5 = 0.41mm – 0.5mm 

difference. We randomly chose one beetle from the competing pair to be marked with a small dot 
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of white paper corrector fluid on one of its elytron for identification. (Marking a beetle did not 

negatively affect the outcome of the competition. In males, the marked beetle won 56% of 

competitions, and in females the marked beetle won 47% of competitions.) The pair was then 

placed in a large plastic container (88.5 x 42 x 15.5 cm) with a mouse carcass weighing 27g-33g. 

The two beetles were initially placed in opposite corners of the container. We then observed the 

pair for thirty minutes and noted any interactions between the beetles to determine whether the 

more aggressive beetle was the ultimate winner of the contest. The more aggressive beetle only 

won access to the carcass about 50% of the time, so we did not analyze the aggressive 

interactions further. After thirty minutes of observation, the lid was placed on the container and 

the pair was left overnight. The following day, we checked the container and determined the 

winner of the competition as the individual in possession of the carcass. We completed 100 

competition trials for each sex, 20 in each of the 5 size categories for both sexes, which gave us a 

total of 200 trials. In two trials, one in size category 1 and one in size category 4, both females 

were found on the carcass after 24 hours, so those trials were excluded from the analyses.      

 

Reproduction Experiment 

 The purpose of this experiment was to determine how body size and carcass size affect 

reproductive output.  We measured three response variables: final brood size, mean individual 

offspring mass, and total brood mass. We addressed this question by allowing large and small 

beetles to reproduce on large or small carcasses. We used the pronotum widths of beetles 

collected in the field in 2014 to determine mean size for each sex, and sizes that were between 1 

and 2 standard deviations above and below the mean were considered large and small, 

respectively. The mean pronotum width of females was 6.67mm, with a standard deviation of 
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0.78mm (N = 50). The mean pronotum width of males was 6.87mm, with a standard deviation of 

0.72mm (N = 50). Therefore, the size range of large and small female beetles used in this 

experiment was 7.44mm – 8.22mm and 5.11mm – 5.89mm, respectively. The size range of large 

and small male beetles was 7.60mm – 8.32mm and 5.42mm – 6.15mm, respectively. This 

experiment represented a fully crossed factorial design.  There were four size treatments - large 

male with large female, large male with small female, small male with large female, and small 

male with small female.  Each size treatment was crossed with both small (20g) and large (40g) 

carcasses, for a total of eight treatment combinations. Twelve replicates were completed for each 

of the eight treatments.  One replicate (large male, small female, 20g carcass) yielded no 

offspring, so it was excluded from the statistical analyses.     

We began each trial by choosing a genetically unrelated pair of beetles that fit into one of 

the size treatments. We recorded the initial mass and pronotum width of each beetle. The pair 

was placed in a small brood container (16.5 x 15 x 9cm) filled with 6cm of moist soil and given 

either a 20g (± 1.0g) or a 40g (± 2.0g) mouse carcass. The containers were kept in an 

environmental chamber at 21°C on a 14:10 h light:dark cycle. The brood containers were 

checked daily, and after larvae arrived on the carcass, the lid of the small brood container was 

removed and the container was placed in an abandonment chamber (37.5x25.5x14.5cm; see 

Smith et al., 2014 for details). We used the abandonment chambers to create a more natural 

experimental design that allowed the parents to remain with the brood or abandon it as they 

normally would, but we did not analyze any of the parental abandonment data. 

 Abandonment chambers were checked daily and the number of larvae was recorded every 

day, but we only used the number of eclosed offspring in our analysis. We counted the larvae by 

carefully removing each larva from the carcass with forceps. The larvae were returned to the 
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carcass immediately after they were counted. The cups in each corner of the abandonment 

chambers were also checked daily to see if an adult had abandoned the brood. If a parent was 

found in a cup, its mass and the date were recorded, and it was placed back in the small container 

with the brood. If a parent abandoned the brood for a second time, it was removed. When the 

larvae dispersed into the soil, the remaining parent(s) were removed and weighed. The larvae 

from each brood reached eclosion 4-5 weeks after dispersal. Number of newly-eclosed adult 

offspring was used to determine total number of offspring. Each newly-eclosed adult offspring 

was weighed, and we used these data to calculate the mean individual offspring mass and total 

offspring mass produced.  

 

Starvation Resistance Experiment 

 The purpose of this experiment was to determine the effect of body size on starvation 

resistance. We began this experiment by placing 20 sexually mature N. marginatus pairs on 40g 

(± 2.0g) carcasses and allowing them to reproduce. When larvae dispersed, each individual 

larva’s mass was recorded and three larvae from each brood (the heaviest, the lightest, and one 

from the middle of the range) were placed individually in small containers with moist soil. The 

larvae were allowed to complete development, and their mass, sex, pronotum width, and date of 

eclosion were recorded. The eclosed offspring were not given any food, and were checked daily 

to determine when they died. Four beetles, one small, one medium, and two large, did not 

develop and died in the pupal stage, which gave us a total of 56 replicates (24 females and 32 

males) for this experiment.     
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Statistical Analyses 

Competition Experiment 

To test for the probability of winning a carcass, we used a generalized linear model with 

a logit link function and assumed a binomial distribution of the response variable (Proc 

GENMOD in SAS; SAS 9.3 SAS Institute, Cary, North Carolina, USA).  The data did not 

exhibit overdispersion (Harrison, 2015).  We modeled the probability that the smaller beetle 

would win a competitive interaction. The response variable was either success (coded as 1) or 

failure (coded as 0) of the smaller beetle to win the competitive bout. Predictor variables were 

size difference (5 levels) and sex (2 levels), and we included the interaction between size and 

sex. The model also included pronotum width of the smaller beetle as a covariate to determine if 

absolute size influenced the competitive outcome.   

 

Reproduction Experiment 

 To determine effects of body size on reproductive output, we used three response 

variables: final brood size (the number of eclosed adult offspring), total offspring mass, and 

individual offspring mass. In the competition experiment and in the starvation resistance 

experiment we used pronotum width as our measure of body size. In this experiment, we used 

pronotum width as our measure of body size for the parents, but we used mass of offspring as 

our measure of the response. We felt mass of offspring better reflected the energetic investment 

in offspring, and there is a strong correlation between body mass and pronotum width (R2 = 

0.92), so they are interchangeable as response variables for this analysis. For brood size we used 

a generalized linear model with a log link function and assumed a Poisson distribution of the 
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response variable (the data did not exhibit overdispersion; Harrison, 2014; Proc GENMOD in 

SAS; SAS 9.3 SAS Institute, Cary, North Carolina, USA). For total offspring mass and mean 

offspring size, we used a general linear model to determine the effect of parental size and carcass 

size on reproductive output (Proc GLM in SAS; SAS 9.3 SAS Institute, Cary, North Carolina, 

USA).  For analysis of each response variable we used the same set of predictor variables: 

female parent body size (2 levels), male parent body size (2 levels), and carcass size (2 levels). 

The model also included all two-way and three-way interactions. We evaluated total offspring 

mass and individual offspring mass for normality of residuals and equal variances across 

treatment combinations by inspecting the distribution of residuals and studentized residuals 

versus predicted values. Untransformed data met these assumptions for these two response 

variables.  For brood size, the log-link function satisfied the assumptions of normality of 

residuals and equal variances across treatment combinations. For each of the response variables, 

we tested the full model that included all interactions. Interactions were not significant for any of 

the three models.  We removed all interaction terms and compared the AIC score from the model 

with only main effects to the full model.  The reduced model exhibited better fit in all three 

cases, so we report results from the reduced model.  

 

Starvation Resistance Experiment 

 We used a generalized linear model and assumed a Poisson distribution of the response 

variable (the data exhibited no overdispersion; Harrison, 2014).  The response variable was 

number of days to starvation, and the predictor variables were pronotum width, sex, and their 

interaction. We also included the parental pair number as a random effect to control for family 

effects. We used the glmer function and the blmeco package (Korner-Nievergelt et al., 2015) in 
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Program R 3.3.3 (R Core Team, 2013) for this analysis.  

 

Results 

Competition Experiment  

Sex and the size difference between beetles significantly affected the probability of the 

smaller beetle winning a competitive interaction, but the pronotum width of the smaller 

competitor and the interaction between sex and size difference did not have significant effects on 

the outcome of competitions (Table 2.1). In males, the probability of the smaller beetle winning 

the competition decreased from 39% (not statistically different from 50%) in the smallest size 

difference category to 0% in the largest size difference category (Fig. 2.1). However in females, 

the probability of the smaller beetle winning the competition decreased from 42% (not 

statistically different from 50%) in the smallest size difference category to only 20% in the 

largest size difference category (Fig. 2.1). Overall, smaller males are 17% less likely to win in 

competitions than are smaller females across the entire range of size differences tested.   

 

Reproduction Experiment 

 Parents produced significantly more offspring on 40g carcasses than on 20g carcasses and 

female size had a moderately significant effect on final brood size, but male size did not 

significantly affect final brood size (Table 2.2).  Females produced about 42% more offspring 

(about 5 individuals) on 40g carcasses compared to 20g carcasses. Small females produced about 

14% more offspring (2 individuals) in a brood than large females across both carcass sizes (Fig. 

2.2A). 
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   There were significant differences in mean individual offspring mass between carcass 

sizes, and the mass of the female parent had a significant effect, but male size did not (Table 

2.2). Parents produced individual offspring that were about 19% heavier on 40g carcasses 

compared to 20g carcasses. Large females produced individual offspring that were about 8% 

heavier than those produced by small females (Fig. 2.2B).     

There were significant differences in total offspring mass of a brood between carcass 

sizes, but male size, and female size did not have a significant effect (Table 2.2). Parents 

produced broods that were about 43% heavier on 40g carcasses compared to 20g carcasses (Fig. 

2.2C).    

 

Starvation Resistance Experiment  

 There were significant differences in starvation resistance according to pronotum width, 

but sex and the interaction between pronotum width and sex were not significant (Table 2.3). On 

average, the largest beetles of both sexes lived about 13 days without food, while the smallest 

beetles of both sexes lived about 2 days without food (Fig. 2.3).  

  

Discussion  

The results of the experiments in this study indicate that the pathways through which 

body size affects fitness differs between the sexes. In N. marginatus, large body size is important 

for fitness through competitions for carcasses in both sexes, but body size seems to be more 

important for males than for females. In contrast, female body size is related to the individual 

mass of offspring and number of offspring produced, whereas male body size is not related to 
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reproductive output. Finally, large body size affects starvation resistance in both sexes. These 

results are consistent with previous research that has shown that male body size is important in 

intrasexual competitions (Emlen & Oring, 1977; Clutton-Brock, 1983), but female body size 

affects reproductive output (Emlen & Oring, 1977). The unique natural history of burying beetles 

likely influences the similarities and differences through which body size affects fitness in each 

sex, which we discuss below.  

Larger individuals of both sexes have more success at winning access to carcasses (Fig. 

2.1). However in competitions between males, the larger individual is more likely to win 

compared to competitions between females. Therefore, body size seems to be more important for 

competitions in males than in females. This is consistent with the results of Scott & Traniello 

(1990), which showed that male N. orbicollis that successfully won a carcass were larger than 

the rest of the population, but there was no difference in body size of females that won a carcass 

compared to those that did not. Body size may be more important for males than for females in 

competing for carcasses because in burying beetles, females mate multiply (Eggert, 1992) and 

use sperm from previous matings to fertilize some of their eggs (Müller & Eggert, 1989), which 

results in approximately 15% of the offspring being sired by non-resident males (Müller et al., 

2007). Therefore, winning competitive interactions may be more important for males because 

they can achieve a much greater fitness if they are the dominant male on the carcass. 

Competitions may be less important for female fitness because they are able to produce offspring 

alone on a carcass with stored sperm, by finding a male on a carcass and producing offspring 

biparentally (Eggert & Müller, 1997), or by parasitizing another female’s brood (Trumbo, 1994).  

Nicrophorus marginatus is a facultatively biparental species, and therefore we would 

expect that the body size of both parents would affect offspring size. However, we found that 
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female, but not male, body size had a significant effect on this trait. The lack of an effect of male 

body size on both the number of offspring produced and the size of offspring might be due to 

their relatively minor role in parental care. Research on other burying beetle species has shown 

that females are more involved in direct care of offspring (Smiseth et al., 2005; Parker et al., 

2015), and suggests that males remain with the brood to provide care if the female dies before 

the larvae are independent (Parker et al., 2015). In support of this, handicapping and mate 

removal experiments have shown that males increase their effort when their partner is 

handicapped or removed, but females generally do not respond (Rauter & Moore, 2004; Smiseth 

et al., 2005; Suzuki & Nagano, 2009; Creighton et al., 2015). Additionally, males are less 

effective parents when they care for offspring uniparentally (Smith et al., 2015). Therefore, male 

body size might not affect reproductive output because males are less actively involved in caring 

for offspring than females.  

Both large and small females had larger broods on 40g carcasses compared to 20g 

carcasses, but large females produced significantly larger and slightly fewer offspring in their 

broods. Large female insects commonly produce larger eggs that then hatch into larger offspring 

(e.g. Steiger, 2013; Kojima 2015). Stegier (2013) found that N. vespilloides offspring tend to be 

similar in size to their mothers through transgenerational effects, which could also affect 

offspring size in N. marginatus. However, the largest effect on offspring size is carcass size, so it 

is possible that larger offspring are simply the result of more food resources from the carcass. 

However, it is unclear from our results whether the increase in offspring size is due to 

transgenerational effects of maternal size, additional resources from the larger carcass, or an 

interaction between those two factors.  
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Although we found that both large and small female N. marginatus produce more and 

larger offspring on larger carcasses, Hopwood et al. (2016) found that in N. vespilloides, large 

beetles had a reproductive advantage over small beetles on large carcasses, but small beetles had 

a reproductive advantage over large beetles on small carcasses. The opposing results of the two 

studies may be due to differences in the body sizes of these species compared to their 

competitors. In comparison with other burying beetle species that share the same habitat, N. 

vespilloides are small and N. marginatus are large (Scott, 1998). Different species of burying 

beetles are assumed to be able to coexist through resource partitioning according to body size 

(Scott, 1998; Ikeda et al., 2006), but there is overlap in the sizes of carcasses that different 

species will use (Scott, 1998; Myers, 2014). Because large beetles typically win in competitions 

for carcasses (Otronen, 1988; Safryn & Scott, 2000; Lee et al., 2014), they could exclude small 

beetles from the upper end of their carcass range, making small beetles more specialized in their 

carcass size use. Therefore, a broad range of carcass sizes may be in the natural history profile of 

N. marginatus, but not N. vespilloides, which in turn could cause the differences in the 

reproductive output between these two species seen on large and small carcasses.  

In this study, larger beetles of both sexes lived longer after eclosion without food than 

small beetles.  This is consistent with the results of a similar experiment done on N. orbicollis 

(Trumbo & Xhihani, 2015). Larger beetles may be able to survive without food because they 

have higher fat reserves. In other species of insects, fat content is positively correlated with body 

size (e.g. Strohm, 2000; O’Neill, Delphia, & O’Neill, 2014), which may allow large individuals 

to survive without food longer than small individuals. Although burying beetles can feed on a 

number of different types of carrion, carcasses are nutrient rich but ephemeral resources (Eggert 

& Müller, 1997), so the frequency at which burying beetles might encounter them is likely to be 
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unpredictable. Directly after eclosion larger beetles are able to withstand starvation for longer 

periods of time before finding a carcass, which makes them more likely to survive when 

environmental conditions are unfavorable.     

For both males and females the advantage of body size in competitions, reproductive 

output, and starvation resistance might be context-dependent (Eggert & Müller, 1997) because 

population sizes and carcass availabilities are likely to fluctuate both within and between seasons 

(Scott, 1998; Smith et al., 2000). Insect population sizes tend to fluctuate with their available 

resources (Dempster & Pollard, 1981), and burying beetles are no exception. Population 

densities of N. investigator fluctuate yearly (Smith et al., 2000), and changes correspond with 

small rodent biomass in the previous year (Smith & Merrick, 2001). A broad range of body sizes 

exists in natural populations of burying beetles (e.g. Creighton 2005), and the context-dependent 

importance of body size could maintain these body size ranges. In dense populations, N. 

vespilloides that won access to carcasses were larger on average than individuals that were 

captured in pitfall traps (Otronen, 1988), but in low-density populations of N. orbicollis, there 

were no differences in body size between breeding and non-breeding beetles (Trumbo, 1990). 

Additionally, N. orbicollis parents adjust brood size according to population density, and raise 

fewer, larger offspring when competition is high (Creighton, 2005). However, when population 

density is low, parents produce more small offspring (Creighton, 2005), which is assumed to be 

because body size is less important when competition for carcasses is low. Larger offspring 

produced by larger females might only have an advantage when competition for carcasses is 

high.  

The results of these experiments show a range of responses for the effect of body size on 

fitness. Body size is more important for males in competitions for carcasses, more important for 
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females in reproductive output, and equally important for males and females in starvation 

resistance. Therefore, looking at the importance of body size in only one sex or in relation to 

only one fitness parameter might not be sufficient to understand the complex interactions that 

lead to the evolution of this trait.  
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Table 2.1 Competition experiment analysis of Variance (ANOVA) table for the effects of 

size difference, sex, the interaction between sex and size difference, and the pronotum 

width of the smaller competitor on the outcome of a competitive interaction. Significant 

values are shown in bold. 

Response Variable 
Source Num df/ 

Den df 
Chi-Square p-Value 

Small beetle wins (1),  
or loses (2) 

size difference 4/177 4.38 0.002 

 sex 1/177 8.96 0.003 
 sex*size difference 4/177 1.26 0.29 
 small beetle pronotum width 1/177 0.53 0.47 
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Table 2.2 Reproduction experiment analysis table for final brood size, total offspring mass, 

and mean offspring mass. Significant values are shown in bold. 

Response Variable 
Source Num df/ 

Den df 
F Value p-Value 

Final Brood Size carcass size 1/91 21.41 <.0001 
 male size 1/91 0.33 0.56 
 female size 1/91 3.52 0.06 
Mean Offspring Mass (g) carcass size 1/91 29.86 <.0001 
 male size 1/91 0.95 0.33 
 female size 1/91 4.14 0.045 
Total Offspring Mass (g) carcass size 1/91 58.24 <.0001 
 male size 1/91 0.02 0.89 
 female size 1/91 1.5 0.22 
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Table 2.3 Starvation resistance analysis of Variance (ANOVA) table for days to death. 

Significant values are shown in bold. 

Response 
Variable 

Source Num df/ 
Den df 

z Value p-Value 

Days to Death pronotum width 1/50 1.29 <0.0001 
 sex 1/50 5.06 0.1967 
 pronotumwidth*sex 2/50 1.37 0.1700 
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Figure 2.1 LSMeans (+/- 95% confidence interval) for the probability of the smaller beetle 

winning a competition according to size difference category and sex.
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Figure 2.2 Mean (+/- 95% confidence interval) final brood size (A), individual offspring 

mass (B), and total brood mass (C) size produced by small and large females on both 

carcass sizes.
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Figure 2.3 Age at death in days according to pronotum width for both sexes. 
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Abstract 

 Multigenerational effects are changes in the behavior or physiology of offspring that are 

the result of parental state or environmental conditions. These effects are widespread in nature, 

and are often studied because of their important effects on offspring traits. Although 

multigenerational effects are commonly reported, few researchers have addressed whether they 

affect offspring fitness, or if they just result in benign variation in the next generation. In this 

study, we used the burying beetle Nicrophorus marginatus to test for differential offspring 

fitness as a result of multigenerational effects on offspring size. In a previous experiment, we 

showed that parental size and carcass size affect offspring body size, with larger females 

producing larger offspring and larger offspring being produced on larger carcasses. In this study, 

we measured the lifetime fitness of those offspring to determine whether the larger offspring also 

had increased lifetime fitness, as measured by their total number of offspring produced. We 

found that larger offspring produced in the previous experiment had an increased lifetime fitness 

compared to small offspring. Therefore, the multigenerational effects of body size in burying 

beetles cause differential offspring fitness.    
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Introduction  

Multigenerational effects are components of the offspring phenotype that are the result of 

the parental phenotype and the parental environment as opposed to direct genetic effects 

(Rutledge et al. 1972; Kirkpatrick & Lande 1989; Rossiter 1996; Marshall & Uller 2007). These 

effects are widespread in nature and have been extensively studied in invertebrates (Bernardo 

1996; Rossiter 1996; Mousseau & Fox 1998). Multigenerational effects have been reported in 

response to such factors as nutrients, egg size, the presence of predators, maternal age, maternal 

body size, and disease resistance (Fox et al. 1997; Mousseau & Fox 1998; Boots & Roberts 

2012; Steiger 2013; Qazi et al. 2017). The phenotypic changes that occur in offspring as a result 

of multigenerational effects include, but are not limited to, changes in body size, age at maturity, 

developmental rate, dispersal, survival, lifespan, and diapause (Vinogradova & Reznik 2002; 

Prasad et al. 2003; Opit & Throne 2007; Singh 2009; Smallegange 2011; Ducatez et al. 2012; 

Mestre & Bonte 2012; Vargas et al. 2012).   

One of the most frequently reported multigenerational effects is variation in body size. 

Body size is well studied because of its strong, positive relationship with fitness (Clutton-Brock 

1988; Reiss 1989), and because an individual’s size is typically easy to measure. Parental body 

size has been shown to cause multigenerational effects in offspring where larger females lay 

larger eggs (Berger 1989; Kim 1997; Fox & Savalli 1998; Wainhouse et al. 2001; Fischer et al. 

2002; Vargas et al. 2013; Steiger 2013; Kojima 2015), which then hatch into larger offspring. 

Natal environment can also cause multigenerational effects of body size. On poor quality food 

resources, females tend to lay fewer, but larger eggs (Scott & Traniello 1990; Fox et al. 1997). 

There is also a positive correlation between resource availability and offspring size (Bartlett & 

Ashworth 1988). In crowded environments with more competition for resources, females tend to 
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lay fewer, larger eggs, which theoretically gives offspring a size advantage when competing for 

resources (Kawecki 1995; Visser 1996; Creighton 2005). Although there is ample evidence for 

multigenerational effects that affect offspring body size, it is unclear whether those effects 

translate into increases in offspring fitness.  

The overall fitness of an individual can be measured as the total number of offspring 

produced over a lifetime (McGregor et al. 1981; MacColl & Hatchwell 2004). Estimating fitness 

in natural populations is difficult (Lewontin 1974; Allendorf & Leary 1986; Endler 1986; Wang 

et al. 2002), and many researchers use discrete traits such as body size, ejaculate size, and egg 

load as predictors of lifetime fitness (Bartlett & Ashworth 1988; Jervis & Ferns 2004; South & 

Lewis 2011; Kant et al. 2012). However, the link between these parameters and lifetime fitness 

is generally assumed but not empirically tested (ie, Langley et al. 1978; Gustafsson et al. 2005; 

Paquet & Smiseth 2017). Recent research has shown that increased offspring body size due to 

multigenerational effects does not necessarily lead to increase in fitness of offspring (Coakley et 

al. 2017), suggesting that the relationship between multigenerational effects and resulting fitness 

should be examined empirically.  

Burying beetles (genus Nicrophorus) are ideal model organisms for studies of 

multigenerational effects of body size. These species use small vertebrate carcasses for food and 

reproduction, and the carcass serves as the sole food resource for both parents and offspring 

during reproduction (Scott & Traniello 1990). The parents provide their offspring extensive 

parental care in the form of regurgitating predigested carrion and defending the larvae from 

intruders (Fetherston et al. 1990; Rauter & Moore 1999). Adult body size is determined by the 

amount of carrion that an individual consumes as a larva, and parents cull the brood through 

filial cannibalism so that the brood size matches the size of the carcass (Scott & Traniello 1990; 
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Trumbo 2006), resulting in a positive correlation between offspring number and carcass size 

(Scott & Traniello 1990; Creighton 2005). Parents also cull the brood according to their 

competitive environment so that they raise fewer, larger offspring when competition for 

carcasses is high, and more, smaller offspring when competition is low (Creighton 2005). Body 

size is important for competitive interactions because inter- and intraspecific competitions for 

carcasses can be intense (Otronen 1988; Scott 1990, 1994; Eggert & Sakaluk 2000), and body 

size generally determines the winners of competitions for both males and females (Bartlett & 

Ashworth 1988; Otronen 1988; Müller et al. 1990; Safryn & Scott 2000; Hopwood et al. 2013; 

Lee et al. 2014; Smith & Belk 2018; Dissertation Chapter 2). 

Previous studies in burying beetles have demonstrated multigenerational effects such as 

larger offspring being produced on larger carcasses (Scott & Traniello 1990; Smith & Belk 2018; 

Dissertation Chapter 2), larger mothers laying larger eggs, which hatch into larger offspring 

(Steiger 2013), young mothers producing smaller offspring (Lock et al. 2007), and mothers 

producing smaller offspring when the male parent is present (Paquet & Smiseth 2017). Body size 

and carcass size therefore seem to be the main modes through which multigenerational effects 

are transmitted. Larger females are more likely to win access to carcasses, and they are therefore 

more likely to win access to large, high quality carcasses. Large body size therefore allows 

females to attain more resources for their offspring. The amount of resources that a female 

burying beetle provides her offspring increases the size of her offspring (Scott & Traniello 1990; 

Smith & Belk 2018; Dissertation Chapter 2), so multigenerational effects on offspring size can 

be transmitted through both maternal size and carcass size.   

In this study we tested whether multigenerational effects of parental size and natal 

carcass size that increase offspring size also cause an increase in lifetime offspring fitness in the 
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burying beetle Nicrophorus marginatus. We found that the multigenerational effects of parental 

body size and natal carcass size on offspring body size do cause differential fitness in offspring, 

as indicated by the total number of offspring that they produced over their lifetime.  

 

Methods 

Experimental Design 

 The purpose of this experiment was to determine whether the multigenerational effects of 

parent body size on offspring body size found by Smith and Belk (In Review; Dissertation 

Chapter 2) affect offspring fitness. We used the offspring of the pairs from the previous 

experiment to address this question (see Smith & Belk In Review for a detailed description of the 

experimental design used for the parental generation). The parental reproductive treatments in 

Smith and Belk (In Review; Dissertation Chapter 2) were designed as fully crossed treatments 

combinations where pairs of large or small males and females were allowed to reproduce once 

on either a 20g or 40g carcass for a total of eight treatment combinations. For the current 

experiment, two female offspring were randomly chosen from each brood from the parental 

experiment, and were randomly assigned to reproduce on either 20g or 40g carcasses. Therefore, 

in this experiment there were 16 treatments – female offspring from each of the 8 parental 

treatments reproduced on one of two carcass sizes. We completed six replicates for each 

treatment. However, we were not able to use the data from five of the replicates (two on 20g 

carcasses and three on 40g carcasses) because the females in those replicates were mistakenly 

frozen and killed instead of the males before their natural deaths. Therefore, we did not have 

complete lifetime data for those females. This left us with a total of 91 replicates for this 

experiment.    
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We began each trial by choosing a genetically unrelated male for each female and 

measuring both beetles’ pronotum width. The pair was placed in a brood container (14 x 13 x 

17cm) filled with 10cm of moist soil and given either a 20g (± 1.0g) or a 40g (± 2.0g) mouse 

carcass, depending on the treatment.  The containers were kept in an environmental chamber at 

21°C on a 14:10 h light:dark cycle and were checked daily.  The male was removed within 24 

hours of larvae arriving on the carcass, and the female parent was left to raise the brood alone.  

When the larvae dispersed into the soil, the female was removed and weighed, then was set up to 

breed with a new male two days later. Each female reproduced in this way for the duration of her 

lifetime. The larvae from each brood reached eclosion 5-6 weeks after dispersal. Number of 

newly-eclosed adult offspring produced throughout each female’s life was used as our measure 

of fitness and to test whether the multigenerational effects of parental body size on offspring 

body size found by Smith and Belk (In Review; Dissertation Chapter 2) translate into differential 

offspring fitness.  

 

Statistical Analyses 

 We used lifetime number of offspring to determine whether multigenerational effects of 

parental body size and natal carcass size affect offspring fitness. There was one main effect in 

this analysis, reproductive carcass mass (2 levels), and one covariate, the female’s pronotum 

width.  We included brood ID as a random effect to account for non-independence of nest mates 

in the second generation.  We also included the interaction between pronotum width and carcass 

mass. We used a generalized linear model with a log link function and assumed a Poisson 

distribution of the response variable for these analyses (Proc GLIMMIX in SAS )(SAS 9.3 SAS 

Institute, Cary, North Carolina, USA). 
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Results 

 Lifetime number of offspring differs significantly by reproductive carcass mass and 

female pronotum width, and the interaction between pronotum width and carcass mass is also 

significant (Table 3.1). Large females produced 35% more offspring than small females on 20g 

carcasses, and 6% more offspring than small females on 40g carcasses (Figure 3.1). Small 

females produced 34% more offspring on 40g carcasses than on 20g carcasses, but there was no 

difference in the number of offspring produced by large females on the two carcass sizes (Figure 

3.1).  

 

Discussion 

In this study, we found that the multigenerational effects on body size that parental size 

and carcass size have on N. marginatus offspring size (Smith & Belk 2018; Dissertation Chapter 

2) cause differential offspring fitness. Large females produced more offspring on small carcasses 

than did small females over their lifetimes, but small and large females had equal fitness on large 

carcasses (Figure 3.1). Multigenerational effects of resource quality and parental size on 

offspring size are common in invertebrates (e.g Boersma et al. 2000; Ekbom and Popov 2004; 

Amarillo-Suárez & Fox 2006; Kosal & Niedzlek-Feaver 2007; Steiger 2013). However, most 

studies do not test for changes in offspring fitness that result from multigenerational effects on 

offspring size (but see Yanagi & Miyatake 2002 and Pieters & Liess 2006 for exceptions). Our 

results show that in N. marginatus, multigenerational effects on offspring body size influence the 

progeny’s lifetime fitness on different carcass sizes.       
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Small females may have lower lifetime fitness on small carcasses due to an increased cost 

of reproduction compared to large females. Reproduction is costly for burying beetles (Creighton 

et al. 2009), and it is possible that the energetic expenditure required for carcass maintenance 

and larval provisioning is more costly for small individuals. Nicrophorus marginatus parents 

produce fewer offspring on small carcasses (Smith & Belk 2018; Dissertation Chapter 2), so if 

they have fewer reproductive attempts due to higher reproductive costs, this could lead to lower 

fitness on small carcasses. However, this hypothesis is currently untested.   

In the previous experiment (Smith & Belk 2018; Dissertation Chapter 2), body size did 

not have a significant effect on brood size, but in the current experiment, we found that body size 

had a significant effect on lifetime number of offspring produced (Table 3.1). This implies that a 

single reproductive bout may not be indicative of potential lifetime fitness. Similar discrepancies 

between tests of the costs and benefits of biparental care that use data from a single reproductive 

bout compared to lifetime reproduction in N. orbicollis have also been found (i.e. Benowitz & 

Moore 2016 and Smith et al. 2017). Thus, the influence of female body size on fitness may not 

be apparent until the costs of reproduction have accumulated over a lifetime.   

 The results of this experiment indicate that the multigenerational effect that influences 

offspring body size in N. marginatus cause differential lifetime fitness in offspring. Based on the 

results of our study, it seems likely that multigenerational effects that affect offspring size (Scott 

& Traniello 1990; Lock et al. 2007; Steiger 2013; Paquet & Smiseth 2017) would also cause 

differential changes in offspring fitness. These multigenerational effects are also likely to occur 

in natural populations of burying beetles through the likelihood of a large female winning access 

to a large carcass and thus producing larger offspring.   
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Table 3.1 Analysis of variance (ANOVA) table for lifetime number of offspring. Significant 

effects are bolded. 

Response Variable Source Num df/ 
Den df 

F-Value p-Value 

Lifetime Number of Offspring Pronotum Width 1/40 8.48 0.0058 
 Carcass Mass 1/40 10.06 0.0029 
 Pronotum Width* 

Carcass Mass 
1/40 7.14 0.0109 
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Figure 3.1 Mean (± 95% CI) Lifetime number of offspring produced by small and large 

females on 20g and 40g carcasses. 
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Abstract 

 We tested whether brood parasitism could be successful between two co-occurring 

species of burying beetles, Nicrophorus guttula and Nicrophorus marginatus, and whether these 

species exhibit an adaptive response to brood parasitism by detecting and removing parasites. 

We cross-fostered larvae between broods of the two species and created mixed-species broods to 

simulate the addition of brood parasites.  Brood parasites survived in both species’ broods. 

Nicrophorus marginatus culled 86% of brood parasites compared to 56% of their own larvae; 

and N. guttula culled 50% of brood parasites compared to 22% of their own larvae. Additionally, 

N. guttula brood parasites were significantly smaller than N. guttula that were raised by N. 

guttula parents, but N. marginatus brood parasites were significantly larger than N. marginatus 

that were raised by N. marginatus parents. This paper provides the first evidence that burying 

beetles can discriminate between their own larvae and other species’ larvae. We suggest that 

brood parasitism may be the selective force responsible for this ability.    

 

 

 

 

 

 

 

 

Keywords: burying beetle, Nicrophorus marginatus, Nicrophorus guttula, interspecific brood 

parasitism   
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Introduction 

Brood parasites directly affect the fitness of the host, typically by killing or competing 

with the host’s offspring thus directing resources away from reproductive success of the host 

González-Megías & Sánchez-Piñero 2003; Perry et al. 2003; Reader 2003; Garófalo et al. 2011; 

Manna & Hauber 2016). In response, hosts evolve mechanisms to avoid or ameliorate effects of 

brood parasites, and parasites evolve mechanisms to avoid detection (Kilner & Langmore 2011; 

Lorenzi et al. 2017). The result can be a co-evolutionary arms race between parasite and host 

where both species exhibit finely tuned reproductive behaviors (e.g. Marchetti 2000; Langmore 

et al. 2003; Soler 2009; Tizo-Pedroso & Del-Claro 2013; Mokkonen & Lindstedt 2016). Any 

species that provides protection or care to its young is susceptible to brood parasitism, but 

conditions that drive the evolution of brood parasitism seem to be narrow (Petrie & Møller 1991; 

Krüger & Davies 2002; Feeney et al. 2014; Zink & Lyon 2016). Brood parasitism may be a 

‘making-the-best-of-a-bad-job’ strategy that females use when they do not have a nest site of 

their own or when the costs of rearing their own offspring are higher than the available resources 

(Petrie & Møller 1991; Goodell 2003; Reader 2003). For example, solitary bees are more likely 

to suffer from brood parasitism by cleptoparasitic wasps when resource levels are low (Goodell 

2003). Additionally, brood parasitism may occur as a conditional tactic for when the availability 

of potential hosts is high, such as in treehoppers (Zink 2003). 

 Burying beetles (genus Nicrophorus) are potentially a model system for the study of the 

conditions that drive the evolution of brood parasitism. These species reproduce on small 

vertebrate carcasses, which serve as the sole source of food for both parents and offspring for the 

duration of the reproductive bout, during which parents provide facultative biparental care (Scott 

1998) and cull the brood through filial cannibalism (Bartlett 1987; Scott & Traniello 1990; 
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Trumbo 2006) to produce a positive correlation between carcass size and offspring number 

(Bartlett 1987; Scott & Traniello 1990; Creighton 2005; Creighton et al. 2009). In most areas, 

several burying beetle species co-occur (Peck & Kaulbars 1987; Scott 1998), increasing 

competition for resources and interactions between individuals. Resource partitioning according 

to body size (Wilson et al. 1984; Trumbo 1990; Scott 1998; Ikeda et al. 2006) and seasonal and 

temporal variation in reproductive activity (Wilson et al. 1984; Scott 1998) may allow multiple 

species of burying beetles to coexist in the same areas. 

Burying beetles are thought to be easy targets for both intraspecific and interspecific 

brood parasites. In these species, all larvae look similar, except for a size difference as larvae 

reach their third instar (Anderson 1982). Previous studies have shown that subordinate N. 

vespilloides females parasitize dominant females’ broods of the same species (Müller et al. 

1990), and females will accept the parasitic offspring as their own as long as the larvae do not 

hatch more than 8 hours before their own larvae should hatch (Müller & Eggert 1990; Eggert & 

Müller 2000; Eggert & Müller 2011). Interspecific brood parasitism has also been documented in 

burying beetles. Nicrophorus pustulatus can successfully parasitize N. orbicollis broods in the 

lab (Trumbo 1994), and the closely-related Ptomascopus morio is a brood parasite of N. concolor 

(Trumbo et al. 2001). Although these studies suggest that brood parasitism can occur between 

burying beetle species, they do not address the degree of success of brood parasites. Both 

previous studies on interspecific brood parasitism in burying beetles allowed females to 

parasitize host broods instead of the researchers switching in a certain number of larvae, so it is 

unclear how many parasites survived from hatching to adult. In this study we used two species of 

burying beetles, N. guttula and N. marginatus, to quantitatively measure the success of brood 

parasites. 
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Nicrophorus guttula and N. marginatus are closely related species of burying beetles 

(Sikes & Venables 2013), and both species are found in grassland habitats (Peck & Anderson 

1985; Peck & Kaulbars 1987) in western North America. These species coexist in fields and 

meadows in central Utah, USA, presumably due to resource partitioning according to body size, 

temporal activity, or seasonal activity (reviewed in Scott 1998). However, wild populations of 

these two species have similar body sizes (body length of N. marginatus = 15 – 22 mm; body 

length of N. guttula = 14 – 20mm) (Peck & Anderson 1985), and in the laboratory, both species 

are able to reproduce on carcasses that range in size from 5g – 50g, although there is less success 

at the low end of this range for N. marginatus and the high end of this range for N. guttula 

(Myers 2014). They are also active at the same times of year (Walker & Hoback 2007; Hooper & 

Larson 2013) and day (Peck & Kaulbars 1987). Therefore, it is likely that these species are in 

direct competition for carcasses in the wild. Size is an important factor in determining access to 

carcasses (Bartlett & Ashworth 1988; Otronen 1988; Müller et al. 1990; Safryn & Scott 2000; 

Hopwood et al. 2013; Lee et al. 2014), but the similarity in body size between these two species 

suggests that one species is not always dominant over the other. These observations led us to 

hypothesize that there may be reciprocal interspecific brood parasitism between N. guttula and 

N. marginatus when resources for reproduction are limited. 

In this study, we used cross fostering between N. marginatus and N. guttula broods to 

determine whether brood parasitism could be successful between these species, and whether they 

exhibit an adaptive response to brood parasitism by detecting and removing parasites. If brood 

parasites of either species survive in host broods that would suggest that brood parasitism is a 

viable mechanism to ameliorate effects of competition for carcasses. If brood parasites are 

detected and removed during the culling phase at a higher rate than each species’ own offspring, 
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that would suggest that there has been an evolutionary history of brood parasitism between these 

species, and an adaptive response has evolved. Specifically, the purpose of this study was to 

determine (1) whether brood parasites are successful in other species’ broods as measured by 

survival and size of parasites, and (2) whether parents have evolved a mechanism to detect and 

remove brood parasites from their broods as measured by differential culling rates of parasites. 

 

Methods 

Source of Burying Beetles 

 To generate the beetles needed for the experiments, we captured adult N. marginatus and 

N. guttula at the Utah Wetland Preserve near Goshen, Utah in July 2015 using pitfall traps baited 

with raw chicken. We placed wild-caught pairs on 30g mouse carcasses and allowed them to 

breed to generate the laboratory population. We recorded the date of eclosion for all first-

generation laboratory-bred beetles, and designated this as the first day of life. We placed newly 

eclosed individuals in small plastic containers (15.6 x 11.6 x 6.7 cm), fed them ad libitum raw 

chicken liver twice weekly, and maintained them on a 14:10 h light:dark cycle in a temperature-

controlled environmental chamber at 21°C until they reached sexual maturity. 

 

Experimental Procedure 

 We began each trial by randomly choosing an unrelated virgin male and female beetle of 

the same species. The pair was placed in a plastic container (14 x 13 x 17cm) filled with 10cm of 

moist soil and given a 30g (± 1.0g) mouse carcass. The containers were kept in an environmental 

chamber at 21°C on a 14:10 h light:dark cycle. We checked for larvae daily, and after larvae 
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arrived on the carcass, we counted the number of first instar larvae on both the first and second 

days after larvae had arrived on the carcass to account for any asynchronous hatching. 

 If there were more than seven larvae in the brood, we used the brood in the experiment. 

We switched seven first instar larvae from each brood with seven first instar larvae from a 

different brood. Intraspecific switches were used as the control treatment, and interspecific 

switches were used as the experimental treatment. We randomly paired broods for switches, and 

we recorded the ID number of the broods that were used in each switch. We checked the broods 

daily for dispersed offspring. When all larvae dispersed into the soil, the parents were removed. 

Starting at four weeks after dispersal, we checked the broods daily until all of the offspring 

eclosed. The larvae from each brood reached eclosion 4-5 weeks after dispersal. Number of 

newly-eclosed adult offspring was used to determine the final brood size. Each newly-eclosed 

adult offspring was weighed, which was used to calculate the total offspring mass. We also 

determined the species of each eclosed offspring using the identification key created by Sikes 

and Peck (2000). In the experimental treatments, the number of offspring in the brood that were 

from the other species was used to determine the number of successful parasites in the brood. 

Hereafter, we refer to offspring of the same species as the parents as “conspecific” and offspring 

that are from the other species as “parasitic”. We completed 22 control trials of N. guttula larvae 

switched into N. guttula broods, 21 control trials of N. marginatus larvae switched into N. 

marginatus broods, 21 experimental trials of N. guttula larvae switched into N. marginatus 

broods, and 21 experimental trials of N. marginatus larvae switched into N. guttula broods. 
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Statistical Analyses 

 To determine whether brood parasites were successful in N. guttula or N. marginatus 

broods, we analyzed number of successful parasites, and mean individual offspring mass.  For 

the number of successful parasites we included one fixed factor - parent species (2 levels). Final 

brood size was included as a covariate, and the interaction between parent species and final 

brood size was also included (Proc GENMOD in SAS; SAS 9.3 SAS Institute, Cary, North 

Carolina, USA).  The procedure assumes a poisson distribution and incorporates a log link 

function.  The log link function is similar to a log-transform, and it leads to a more normal 

distribution of the residuals as determined by inspection of the residual plots.  The analysis of 

mean individual offspring mass had two fixed effects - parent species (2 levels) and treatment (3 

levels; individuals in non-parasitized broods, nest mates of parasites, and parasites). We also 

included final brood size as a covariate and the interaction between parent species and treatment 

(Proc Mixed in SAS; SAS 9.3 SAS Institute, Cary, North Carolina, USA). 

 To determine whether parents of either species are able to differentially remove brood 

parasites we used two analyses.  First, we tested to see if proportion of offspring culled differed 

between species and between parasitized and non-parasitized broods.  Second, we tested the 

proportion of parasites culled compared to the proportion of conspecific brood culled between 

species and between parasitized and non-parasitized treatments.  For both tests we used a logistic 

regression framework where the response variable was the number of culled individuals relative 

to the number in the initial brood.  For the first test (i.e., proportion of offspring culled), there 

were two fixed factors - parent species (2 levels) and treatment (2 levels; parasitized and non-

parasitized). The interaction between parent species and treatment was also included (Proc 

GENMOD in SAS; SAS 9.3 SAS Institute, Cary, North Carolina, USA). For the second test we 
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compared the proportion of parasites culled in the parasitized broods to the proportion of 

offspring culled in the non-parasitized broods.  The response variable was the proportion culled 

of either parasites or conspecific brood.  There were two fixed factors - parent species (2 levels) 

and treatment (2 levels; parasitized and non-parasitized). The interaction between parent species 

and treatment was also included (Proc GENMOD in SAS; SAS 9.3 SAS Institute, Cary, North 

Carolina, USA). 

 

Results 

There are significant differences in the number of successful parasites in the final brood 

between the two species and final brood size has a significant effect (Table 4.1). There were 

about 2.5 more successful brood parasites in N. guttula broods than in N. marginatus broods, 

which means that 71% more brood parasites were successful in N. guttula broods (Fig. 4.1). 

Large final broods had more brood parasites than small final broods. 

There are significant differences in mean individual offspring mass between species and 

between treatments, and the interaction between parent species and treatment was significant. 

Mean individual offspring mass was also significantly affected by final brood size (Table 4.2). 

Nicrophorus guttula offspring that were parasites in N. marginatus broods were significantly 

smaller than N. guttula in broods that were not parasitized (Fig. 4.2). In contrast, N. marginatus 

offspring that were parasites in N. guttula broods were significantly larger than N. marginatus 

offspring that were in broods that were, and were not, parasitized (Fig. 4.2) 

Proportion of offspring culled differed by species but not by treatment, and the species by 

treatment interaction was not significant (Table 4.1).  Nicrophorus guttula culled about 30% of 
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offspring in both parasitized and non-parasitized broods; whereas, N. marginatus culled 47% of 

offspring in both parasitized and non-parasitized broods (Fig. 4.3). 

Proportion of parasites culled compared to proportion of conspecific larvae culled 

differed by species and treatment, and the species by treatment interaction was marginally 

significant (Table 4.1).  Nicrophorus guttula culled 46% of parasites compared to 30% of 

conspecific larvae; whereas, N. marginatus culled 86% of parasites compared to 44% of 

conspecific larvae.  The marginally significant interaction effect arises because of the difference 

in culling rate of parasites relative to conspecific larvae between species: N. guttula cull 16% 

more parasites than conspecific larvae, and N. marginatus cull 42% more parasites than 

conspecific larvae (Fig. 4.4). 

  

Discussion 

Both N. guttula and N. marginatus were able to rear their own offspring under laboratory 

conditions, so it seems likely that brood parasitism is facultative, not obligate, when it occurs in 

these species. One suggested driver for brood parasitic behavior is a lack of nest sites or high 

costs of rearing offspring (reviewed in Petrie & Møller 1991; Reader 2003). Carrion is an 

ephemeral resource, and competition between burying beetles for access to it can be intense 

(Otronen 1988; Scott 1990; Eggert & Sakaluk 2000). Body size determines the winners of 

competitions for carcasses (Bartlett & Ashworth 1988; Otronen 1988; Müller et al. 1990; Safryn 

& Scott 2000; Hopwood et al. 2013; Lee et al. 2014), so smaller individuals should be excluded 

from being dominant on carcasses, and should develop alternative reproductive strategies, such 

as brood parasitic behaviors. Therefore, we propose that facultative brood parasitism has evolved 

in burying beetles as an alternative reproductive tactic for when competition for resources is 



98 
 

high. This alternative reproductive strategy could explain how multiple species are able to co-

occur, even with significant niche overlap. 

Our results suggest that N. guttula and N. marginatus are able to discriminate between 

their own larvae and larvae of another co-occurring species, which is contrary to the results of 

previous studies on brood parasitism in burying beetles. In laboratory experiments, it was 

previously shown that N. orbicollis were not able to discern between entire broods of their own 

offspring and entire broods of N. defodiens larvae when they were switched between the species 

(Trumbo et al. 2001). Additionally, N. pustulatus could successfully parasitize N. orbicollis 

broods about 31% of the time after losing a competition for a carcass (Trumbo 1994). Our 

experiment differs from that of Trumbo (1994) because we switched larvae between broods 

instead of allowing females to lay their eggs near the carcass and parasitizing them on their own.  

The previous experiment’s design did not allow for a comparison between the number of brood 

parasites that were successful and the number of parasitic eggs that were laid. Nicrophorus 

pustulatus typically have very large broods (Trumbo 1992), so it is possible that a higher number 

of parasitic eggs were laid in each brood and the host N. orbicollis parents were able to cull 

some, but not all of the parasitic larvae. In the current experiment, parents did not cull all of the 

parasitic larvae. We currently do not know the mechanism that allows parents to detect brood 

parasites, and it might increase the chance of a brood parasite being removed from a brood 

instead of being an exact process. 

It is possible that in our experiment parents only culled offspring because they were 

switched in from another brood. However, this seems unlikely. Nicrophorus vespilloides females 

use a time-dependent cue to determine which larvae to cannibalize, and if larvae from a 

subordinate female arrive on the carcass during the same time period as the dominant female’s 
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larvae, she will accept those offspring and raise them (Eggert & Müller 2011). All of our 

parasitic larvae were switched into their host broods during the hatching period of the host’s 

larvae, so there was no difference in timing that the female could have used to detect the parasitic 

offspring. Parents of broods in which conspecific larvae were added culled significantly fewer 

offspring than parents with mixed-species broods (Table 4.3), so just switching larvae from 

another brood doesn’t seem to cause parents to cull larvae. 

Nicrophorus marginatus brood parasites were significantly larger than offspring that 

were raised by N. marginatus parents (Fig. 4.2). The differences in body size of brood parasites 

relative to offspring that were raised by their own species might be due to differences in begging 

behavior between the two species’ larvae. Other studies have shown that the larvae of some 

species of burying beetles such as N. vespilloides and N. pustulatus do not require regurgitation 

from parents for survival; whereas N. orbicollis larvae need parental care for growth and survival 

(Trumbo 1991; Trumbo 1992; Eggert et al. 1998; Rauter & Moore 2002; Smiseth et al. 2003; 

Capodeanu-Nägler et al. 2016; Jarret et al. 2017). Nicrophorus guttula may not need as much 

parental care as N. marginatus, and therefore may not beg for food as often. However, when N. 

marginatus were parasites in N. guttula broods, they may have begged significantly more than 

their nest mates and therefore received more regurgitations from their host parents. An 

alternative explanation for our results is that the parasitic offspring starved to death rather than 

being cannibalized by the host parents. This seems unlikely for N. marginatus because brood 

parasites of this species were significantly larger than offspring reared by their own species (Fig. 

4.2). Conversely, parasitic N. guttula were significantly smaller than N. guttula in non-

parasitized broods (Fig. 4.2), which might make their N. marginatus hosts perceive them as low 

quality. Filial cannibalism of low-quality offspring has been suggested as an adaptive parental 
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care strategy (Klug & Bonsall 2007), so N. marginatus parents could use offspring size as a cue 

for which offspring to remove from their broods. However, this hypothesis requires additional 

testing. 

 The two species of burying beetles that we used to test for brood parasitism in this study, 

N. guttula and N. marginatus, are similar in size (Peck & Anderson 1985) and co-occur with 

several other species of burying beetles throughout their ranges (Walker & Hoback 2007). 

Therefore, they have probably been subjected to selective pressures for the development of a 

mechanism to detect brood parasitism. Larger burying beetles typically win access to resources 

(Bartlett & Ashworth 1988; Otronen 1988; Müller et al. 1990; Safryn & Scott 2000; Hopwood et 

al. 2013; Lee et al. 2014), so large species should be targeted for brood parasitism more often 

than small species. It would be interesting to conduct a similar experiment using small and large 

co-occurring species of burying beetles, for example N. defodiens and N. orbicollis, to determine 

whether a mechanism for detecting interspecific brood parasitism exists in all species, or only 

those that are likely targets for brood parasites. It may be important to use species that naturally 

co-occur because a recent study using N. vespilloides and N. orbicollis, which are allopatric, 

showed that N. orbicollis could not distinguish between their own offspring and entire broods of 

N. vespilloides (Benowitz et al. 2015). 

 To our knowledge, this is the first evidence that burying beetles are able to discriminate 

between their own larvae and parasitic larvae of other species. The detection and removal of 

brood parasites indicates that brood parasitism between species is likely to occur under natural 

conditions for both N. guttula and N. marginatus, and previous studies have also indicated that 

brood parasitism is likely to occur in wild populations of burying beetles (Müller et al. 1990; 

Trumbo 1994; Trumbo et al. 2001; Suzuki & Nagano 2006). However, additional experiments 
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are required to determine the extent of brood parasitism in the wild and the mechanism through 

which hosts are able to detect brood parasites, as well as the ecological factors that drive this 

behavior. 
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Table 4.1 Analysis of variance (ANOVA) table for number of successful parasites, 

proportion of offspring culled, and proportion of parasites compared to the number of 

conspecific larvae culled. Significant values are bolded. 

Response Variable Source Num df/ 
Den df 

Chi-Square 
Value 

p-Value 

Number of Successful Parasites Parent Species 1/42 5.11 0.0238 
 Final Brood Size 1/42 4.91 0.0267 
Proportion of Offspring Culled Species 1/85 65.63 <.0001 
 Treatment 1/85 1.32 0.2509 
 Species*Treatment 1/85 0.81 0.3682 
Proportion of Parasites vs. 
Conspecific Larvae Culled 

 
Species 

 
1/85 

 
81.09 

 
<.0001 

 Treatment 1/85 68.04 <.0001 
 Species*Treatment 1/85 3.55 0.0595 
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Table 4.2 Analysis of Variance (ANOVA) table for the effects of the parent species, 

treatment, final brood size, and the interaction between parent species and treatment on 

the mean offspring mass of individual offspring.  Significant values are bolded. 

Source Num df/ Den df F-Value p-Value 
Parent Species 1/27 209.33 <.0001 
Treatment 2/27 12.46 0.0001 
Final Brood Size 1/27 37.46 <.0001 
Parent Species* Treatment 2/27 27.60 <.0001 
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Table 4.3 Mean values (±SE) for number of 1st instar larvae, number of conspecific larvae 

culled, number of parasitic larvae culled, final brood size, and number of successful 

parasites in N. guttula and N. marginatus broods that were parasitized by conspecifics. 

 Mean # of 
1st Instar 
Larvae 

Mean # of 
Conspecific 

Larvae 
Culled 

Mean # of 
Parasitic 
Larvae 
Culled 

Mean Final 
Brood Size 

Mean # of 
Successful 
Parasites 

N. guttula Broods      
Parasitized by Conspecifics 19.1 (±0.93) 5.7 (±0.80) - 16.1 (±0.96) - 
Parasitized by Heterospecifics 22.6 (±1.04) 4.6 (±0.68) 3.2 (±0.37) 16.3 (±0.90) 3.5 (±0.43) 

N. marginatus Broods      
Parasitized by Conspecifics 30.0 (±1.19) 12.8 (±1.54) - 13.3 (±0.79) - 
Parasitized by Heterospecifics 27.3 (±1.14) 7.8 (±1.56) 6.0 (±0.30) 11.8 (±0.73) 1.0 (±0.22) 
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Figure 4.1 LSMeans (± 95% confidence intervals) for the number of successful parasites in 

N. guttula and N. marginatus broods. 
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Figure 4.2 LSMeans (± 95% confidence intervals) for the mean mass of adult N. guttula 

and N. marginatus offspring that were in non-parasitized broods, that were nest mates of 

parasites, and that were parasites. 
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Figure 4.3 LSMeans (± 95% confidence intervals) for the mean proportion of offspring 

culled in N. guttula and N. marginatus broods. 
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Figure 4.4 LSMeans (± 95% confidence intervals) for the mean proportion of conspecific 

and parasitic larvae culled in N. guttula and N. marginatus broods.



116 
 

Chapter 5  

Heritability of Body Size in Burying Beetles 

 

Ashlee N. Smith1*, J. Curtis Creighton2, Sandra Steiger3, Alexandra Capodeanu-Nägler3, Per T. 

Smiseth4, Peter J. Meyers1, R. Cary Tuckfield5, and Mark C. Belk1 

 

1Biology Department, Brigham Young University, Provo, UT, USA 

2Department of Biological Sciences, Purdue University Northwest, Hammond, IN, USA 

3Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, 

Germany 

4Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK 

5Savannah River Ecology Laboratory, Aiken, SC, USA 

*Corresponding author: Smith, A.N. (ashleens@byu.edu) 

  

mailto:ashleens@byu.edu


117 
 

Abstract 

Narrow-sense heritability (h2) provides an estimate of the amount of phenotypic variation that is 

a result of direct genetic effects. The coefficient of genetic variation (CVA) provides an estimate 

of the amount of genetic variation that exists in a population. Together, these two values allow 

inferences to be made about the evolvability of a trait. In this study, we calculated h2 and CVA for 

17 population samples from 7 species of burying beetles, Nicrophorus americanus, N. defodiens, 

N. guttula, N. marginatus, N. orbicollis, N. pustulatus, and N. vespilloides. Some of our samples 

were from different populations for the same species, and some were from different years within 

the same population for a species. The different samples allowed us to make comparisons 

between species, and between populations of a species. We also performed a meta-analysis to 

determine whether there are consistent levels of heritability within the genus. We found that both 

h2 and CVA differed between species as well as between populations of a species. Our meta-

analysis indicated that the overall heritability of body size is low (h2 = 0.14), and may not be 

different from zero. However, there were significant differences between species, and body size 

heritability is higher in some species than in others. Our CVA estimates indicated that the amount 

of genetic variation in each species is also very low (mean CVA = 6.25). Taken together, these 

estimates indicate that the environment has a large effect on body size in this genus, and suggest 

that there has been strong past selection on this trait in the Nicrophorus genus. This brings into 

question how the large range of body sizes seen in this genus could have come about, as well as 

how body size is involved in speciation.  

 

 

Keywords: Nicrophorus, body size, heritability, coefficient of genetic variation, meta-analysis  
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Introduction 

Heritability determines how a population will respond to selection pressures in the 

present, but the degree of heritability for a population is shaped by past selection (Falconer & 

Mackay 1996). For a trait to be heritable, some additive genetic variance must be present in the 

population (Falconer & Mackay 1996). Narrow-sense heritability (h2) is an estimate of the 

proportion of total phenotypic variation due to the additive effects of genes and is defined as 

    ℎ2 =  𝑉𝑉𝐴𝐴
𝑉𝑉𝑃𝑃

 

where VA is the additive genetic component of variation and VP is the total phenotypic variation 

(Falconer & Mackay 1996). Generally, the heritability of traits that affect fitness, such as life 

history traits, tend to be lower than morphological traits (Mousseau & Roff 1987; Price & 

Schluter 1991), which is attributed to reduced genetic variation in these traits caused by 

directional selection (Fisher 1958; Mousseau & Roff 1987).  

 The evolvability of a trait, or its ability to respond to selection pressures, depends on the 

amount of additive genetic variation that exists for that trait (Houle 1992). The coefficient of 

genetic variation, or CVA, is a measure of genetic variation, and is therefore a measure of 

evolvability (Garcia-Gonzalez et al. 2012). CVA can be calculated as 

     𝐶𝐶𝐶𝐶𝐴𝐴  =  �𝑉𝑉𝐴𝐴
𝑋𝑋�

 

where the square root of the additive genetic variance is divided by the phenotypic mean of the 

trait. Heritability (h2) estimates the proportion of phenotypic variation that is attributed to genetic 

factors. However, it does not provide an estimate of the amount of genetic variation that exists 

for the trait being measured (Iraqi et al. 2014). CVA is a useful measure of additive genetic 

variation because it is standardized by the trait mean, and thus independent of other sources of 
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variance. For these reasons, it is also useful for comparison across species and studies (Garcia-

Gonzalez et al. 2012).  

Adult body size is a complex morphological trait with influences from both genetic 

(Mousseau & Roff 1989; Simmons & Ward 1991; Ryder & Siva-Jothy 2001; Pappers et al. 

2002; Seko et al. 2006) and environmental factors (Nijhout 2003). The heritability of body size 

is often studied because of its indirect effect on fitness, which generally increases with body size 

in both sexes (Clutton-Brock 1988; Reiss 1989). In females, there is generally a positive 

correlation between body size and fecundity (Honěk 1993; Blanckenhorn 2000), and in males 

body size is important for both inter- and intrasexual selection (reviewed in Andersson 1994; 

Kingsolver & Huey 2008). Body size heritability has been shown to differ between populations 

of the same species (e.g. Coyne & Beecham 1987; Mousseau & Roff 1989; Bitner-Mathé & 

Klaczko 1999; Loh & Bitner-Mathé 2005), but comparisons among closely related species are 

lacking.  

In this study, we tested for heritability and genetic variation of body size across seven 

species of burying beetles (genus Nicrophorus) to compare heritability estimates and the amount 

of genetic variation for body size both within and among species of the genus. Burying beetles 

provide extensive parental care to their offspring. All species in the Nicrophorus genus use small 

vertebrate carcasses for food and reproduction (Scott & Traniello 1990), which is a highly 

contested and ephemeral resource (Eggert & Müller 1997). Body size is strongly related to 

fitness in burying beetles through thermoregulatory capabilities (Merrick & Smith 2004), 

overwinter survival (Smith 2002), starvation resistance (Trumbo & Xhihani 2015; Smith & Belk 

2018; Dissertation Chapter 2), competitive ability (Bartlett & Ashworth 1988; Otronen 1988; 

Müller et al. 1990; Safryn & Scott 2000; Hopwood et al. 2013; Lee et al. 2014; Smith & Belk 
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2018; Dissertation Chapter 2), parental care behaviors (Steiger 2013; Smith et al. 2014; 

Pilakouta et al. 2015; Capodeanu-Nägler et al. 2016; Jarret et al. 2017), reproductive output 

(Rauter et al. 2010; Hopwood et al. 2016; Smith & Belk 2018; Dissertation Chapter 2), and 

species interactions through resource partitioning (Wilson et al. 1984; Trumbo 1990; Scott 1998; 

Ikeda et al. 2006). There is also significant variation in body size both within and among burying 

beetle species (Sikes 2003; Smith et al. in prep), and body size seems to be an important factor in 

speciation for the Nicrophorus genus (Smith et al. in prep). Because body size has had an 

important role in burying beetle evolutionary history, we wanted to determine the heritability of 

this trait and thus its potential role in speciation and community structure. We calculated the 

narrow-sense heritability (h2) and the coefficient of genetic variation (CVA) for body size for 

seventeen samples from seven species of burying beetles (N. americanus, N. defodiens, N. 

guttula, N. marginatus, N. orbicollis, N. pustulatus, and N. vespilloides). We also conducted a 

meta-analysis on the h2 estimates from each sample to estimate the heritability of body size 

within the Nicrophorus genus.  

 

Methods 

Experimental Design 

 Each author collected burying beetles and performed experiments individually (see Table 

1 for location and year for each sample), and most of these samples were part of larger 

experiments (e.g. Meyers 2014; Smith et al. 2015; Capodeanu-Nägler et al. 2016; Smith et al. 

2017; Smith & Belk 2018). In each experiment, we measured the pronotum width of each parent 

before reproduction, and used the mean of their pronotum widths as our mid parent size 

measurement. After the offspring eclosed, we measured the pronotum width for each member of 
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the brood and used the mean pronotum width of all of the offspring as our mid offspring size 

measurement.  

For two of our sample populations, one from N. guttula and one from N. marginatus 

(collected from 2011-2012 by PJM), we did not have data on eclosed offspring pronotum widths, 

but we did have data on larval mass at dispersal. There is a strong positive correlation between 

larval mass and pronotum width after eclosion (Lock et al. 2004; Trumbo & Xhihani 2015), so 

for the 2011-2012 samples of N. guttula and N. marginatus, we converted the larval masses to 

pronotum widths using the results of a linear regression of larval mass on adult pronotum width 

with data from ANS. The slope of the regression was significantly different from zero (df = 53, 

Estimate = 5.15, SE = 0.21, t = 25.03, p < 0.0001), indicating that there is a strong, positive 

relationship between larval mass and adult pronotum width (Adjusted R2 = 0.92). Converting the 

larval masses to adult pronotum widths was necessary to test these two samples on the same 

scale as the other sample populations.  

 

Statistical Analyses 

We used a parent-offspring regression (Falconer & Mackay 1996) to determine the 

heritability of body size for each of our sample populations. We used mid parent size as the 

independent variable and mid offspring size as the dependent variable. We also included carcass 

mass (when different carcass sizes were used in the experiment) in the model to account for 

potential environmental impacts on offspring body size. We used the protocol outlined by Lynch 

and Walsh (1998) to calculate the coefficient of genetic variance for each sample. We then used 

an ANOVA to compare the h2 and CVA estimates between species. We used Program R 3.4.1 (R 

Core Team 2013) for these analyses. 
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We also applied a meta-analysis to our h2 estimates as a measure of heritability across the 

genus. We used a weighted means method (see Becker & Wu 2007).  The weighted average of 

the parent-offspring regression slopes was calculated using the inverse of the corresponding 

slope variances as weights, which are a function of sample size.  We also used a method (Meier 

1953) for calculating the variance of the weighted mean to obtain a 95% confidence interval (CI) 

for heritability within the genus.  A second meta-analysis used only a subset (7) of the sample 

populations that had sample sizes greater than or equal to 50.  The majority of the complement, 

or samples with less than 50 replicates, had standard errors that were larger by a factor of 3 to 4, 

and in one case by nearly an order of magnitude. These analyses were performed in Microsoft 

Excel.  

 

Results  

The h2 estimates of body size ranged from -0.31 in a N. guttula sample to 0.38 in a N. 

orbicollis sample (Table 5.1). Heritability was significantly greater than zero in four of our 

seventeen tests, spread across four different species (N. guttula, N. marginatus, N. orbicollis, and 

N. vespilloides) (Table 5.1). Carcass mass had a significant effect on mid offspring size in 55% 

of the samples where it was included (Table 5.1). Heritability was relatively consistent between 

the two samples from N. vespilloides (range = 0.10), but varied more among the samples from N. 

guttula (range = 0.41), N. marginatus (range = 0.20), and N. orbicollis (range = 0.32). 

The h2 estimates differed significantly by species (F = 4.642, p = 0.0188). Our body size 

heritability estimates were about 140% higher in N. orbicollis and N. vespilloides than in N. 

defodiens, and about 69% higher in N. vespilloides than in N. guttula.  
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The CVA estimates for our samples ranged from 2.31 in the N. defodiens sample to 9.62 

in a N. marginatus sample (Table 5.1). The mean CVA estimate across all 17 of our samples was 

6.25, indicating that the amount of genetic variation across all of our sample estimates is 

consistently low.  

 The CVA estimates differed significantly by species (F = 4.96, p = 0.0153). Our body size 

CVA estimates were about 70% higher in N. marginatus than in N. defodiens, and about 55% 

higher than in N. vespilloides.  

In the overall meta-analysis, the weighted mean slope (h2) was 0.0212 (SE = 0.0376, 95% 

CI = -0.0557 – 0.0982. This suggests that the heritability for the genus is not significantly 

different from zero since the CI does not overlap zero. The second meta-analysis using large 

sample size populations shows a weighted mean slope of 0.1352 (SE = 0.1002, 95% CI = -

0.1099 – 0.3804). The confidence interval for this subset also overlaps zero, suggesting that 

heritability for the genus is not significantly different from zero.  

 

Discussion 

 We used data from seven species of burying beetles to test whether the heritability of 

body size is generalized across species and populations. Our sample included species with a wide 

range of body sizes (Sikes 2003), as well as species that are found across a broad geographic 

range (Table 5.1). We found evidence for body size heritability in at least one population sample 

of N. guttula, N. marginatus, N. orbicollis, and N. vespilloides, but not in N. americanus, N. 

defodiens, or N. pustulatus (Table 5.1). However, sample size likely contributed to the lack of a 

significant effect in several of our population samples. In species where we had multiple 

population samples, all samples had similar heritability estimates, but the samples with the 
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lowest sample sizes also had the highest standard errors. This indicates that some sample sizes 

were not large enough to detect a significant genetic effect. We only had one population sample 

for N. americanus, N. defodiens, and N. pustulatus, and those had low sample sizes, so it is 

difficult to determine from our data whether or not there is a significant direct genetic effect of 

parent size on offspring size in those species. However, our estimate of heritability for N. 

pustulatus is similar to that obtained by Rauter & Moore (2002), so it is likely that the 

heritability estimate we obtained for this species is valid.  

 Our meta-analysis of h2 estimates indicates that little, if any, of the variation in body size 

for the Nicrophorus genus is attributable to additive genetic effects and our estimates of genetic 

variation within each sample are also low. These two factors should only occur together if total 

phenotypic variation is high and the amount of variation is mostly due to environmental factors. 

Natural populations of burying beetles often show high levels of variation in body size, and even 

individual broods have a wide range of offspring sizes within them (Smith, unpublished data). 

Additionally, offspring size is heavily dependent on resource size, with larger offspring generally 

produced on larger carcasses (Smith & Belk 2018; Dissertation Chapter 2). Two previous studies 

on heritability in burying beetles, one on N. pustulatus (Rauter & Moore 2002) and the other on 

N. vespilloides (Jarrett et al. 2017), also found that the heritability of body size was not 

significantly different from zero. Thus, burying beetle body size seems to be mostly influenced 

by environmental factors rather than genetic variation.       

 It is also possible that the low heritability estimates that we obtained for body size across 

the Nicrophorus genus are the result of strong past selective pressures that reduced the genetic 

variability of this trait. Traits that are closely related to fitness, such as life history traits, are 

expected to have lower heritability than morphological and behavioral traits (Mousseau & Roff 



125 
 

1987; Price & Schluter 1991; Visscher et al. 2008) because strong directional selection should 

reduce genetic variation in these traits (Fisher 1958; Mousseau & Roff 1987). As discussed 

above, body size has an important role in several aspects of burying beetle natural history (i.e. 

physiology, fitness components, and community structure), and therefore might be under 

stronger selection than typical morphological traits, thus reducing the amount of additive genetic 

variation for this trait.   

Environmental variation that resulted from different methodologies used by each 

researcher who participated in this study may have caused some of the variation in our h2 

estimates between samples. The heritability of a trait is the proportion of the total phenotypic 

variance that can be attributed to additive genetic variance (Falconer & Mackay 1996). The 

magnitude of heritability partly depends on the contribution of nongenetic factors to the total 

variation, so traits that are influenced heavily by environmental factors will have low 

heritabilities (Barton & Turelli 1989; Price & Schluter 1991). Burying beetle body size is 

particularly sensitive to environmental variation. Biparental parents produce smaller broods than 

uniparental parents (Scott 1989; Smith et al. 2017), offspring mass is significantly higher when 

offspring receive parental care than when they do not (Eggert et al. 1998), and parents produce 

smaller broods at higher temperatures (Laidlaw 2015). Parents also adjust brood size according 

to the size of the carcass that they are given (Scott & Traniello 1990; Trumbo 2006), and reduce 

brood size to increase the size of individual offspring when competition is high (Creighton 

2005). In the present study, we found that carcass size contributed significantly to environmental 

variation (Table 5.1). The duration and type of parental care (i.e. biparental or uniparental) in 

each sample probably also contributed to environmental variation, and therefore our heritability 

estimates.  
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Our results indicate that there are differences in body size heritability between 

populations of the same species, which is consistent with a recent comparative genetic study on 

N. vespilloides that showed that there is significant genetic structuring among populations 

(Pascoal & Kilner 2017). Our body size heritability estimates for N. orbicollis were from three 

separate population samples (collected in Wisconsin, Illinois, and Oklahoma) and for N. 

vespilloides were from two separate population samples (collected in Germany and the United 

Kingdom). Burying beetle community structure, and therefore the level of competition, differs 

across the range of these species, which could impact the importance of body size. For example, 

at the northern part of its range (Ontario, Canada), N. orbicollis co-occurs with five other burying 

beetle species (Robertson 1992), whereas in the middle of its range (Nebraska, USA) it co-occurs 

with seven other burying beetle species (Walker & Hoback 2007). Of the species that occur in 

Ontario, N. orbicollis is the largest burying beetle species, but in Nebraska N. orbicollis co-

occurs with the larger N. americanus, so the importance of body size probably varies depending 

on competitive environment. Our results also showed population differences in genetic variation. 

In flour beetles, genetic variation increases variation of niche breadth (Agashe & Bolnick 2010), 

so competition could also affect the amount of genetic variation in each population. Our N. 

orbicollis sample from Oklahoma (collected by JCC) co-occurred with N. americanus, so the 

low h2 estimate and low CVA for that population could be due to competition with a larger 

species that limits the resources that can be used by the smaller N. orbicollis. Heritability of body 

size and the amount of genetic variation could be dependent on the community structure that 

burying beetles encounter in different parts of their geographic ranges, and therefore dependent 

on the recent evolutionary history of each population.      
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The lowest body size heritability estimates were found in N. americanus, N. guttula, and 

N. marginatus. Each of these three species is found in diverse habitat types (Shubeck 1983; Peck 

& Anderson 1985; Peck & Kaulbars 1987; Lomolino et al. 1995; Trumbo & Bloch 2000; Sikes 

& Raithel 2002; Walker & Hoback 2007; Hooper & Larson 2012), which may contribute to their 

low body size heritability estimates. Heritability is expected to be lower in variable environments 

(Simons & Roff 1994), so the habitat generalist strategy used by N. americanus, N. guttula, and 

N. marginatus might cause the low heritability of body size in these species because a single 

strategy might not be optimal under all conditions. Heritability may be lower in species that 

encounter variable conditions because the environmental variance component of heritability is 

higher under those conditions (Visscher et al. 2008). Although all of our tests of heritability were 

conducted under laboratory conditions, they should still be representative of heritability under 

natural conditions. Previous studies have shown that there is no difference between heritability 

measured under field and laboratory conditions (e.g. Weigensberg & Roff 1996; Blanckenhorn 

2002), so our results are likely to be representative of heritability in natural populations.  

 Although the overall heritability of body size seems to be low for the Nicrophorus genus, 

N. vespilloides had a higher body size heritability than the other species that we tested. Recently, 

Hopwood et al. (2016) found that in N. vespilloides reproductive output varied with carcass size 

and parent body size. Large females produced larger broods on large carcasses than did small 

females, but small females produced larger broods on small carcasses than large females 

(Hopwood et al. 2016). However, in N. marginatus there is no association between reproductive 

output, body size, and carcass size (Smith & Belk 2018; Dissertation Chapter 2). Therefore, it is 

possible that there is a genetic component to carcass-related fitness that causes a genotype by 

environment interaction in N. vespilloides that does not exist in other species of burying beetles. 
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Both of the body size heritability estimates reported in the present study for N. vespilloides are 

significantly higher than that reported by Jarrett et al. (2017) for the same species, which may 

also be a result of differences in the environment and community structure between the samples.  

 The results of this comparison of body size heritability and genetic variation estimates in 

burying beetles indicate that these estimates vary among species and populations of the same 

species. It also suggests that heritability estimates cannot be generalized as the heritability of 

body size is higher in some species than in others, and that differences in the recent evolutionary 

history of each population likely have an important impact on their heritabilities. The overall 

heritability for the Nicrophorus genus and the amount of genetic variation in each population is 

low, indicating that most of the variation in body size is attributable to environmental factors, 

and that past selective pressures could have reduced the genetic variation for this trait. The size 

of the species in question also does not seem to affect the heritability of body size, as there were 

no significant differences between the heritability of size or the amount of genetic variation of 

small species such as N. vespilloides and N. defodiens and the largest species in our study, N. 

americanus. We have shown interesting patterns in the heritability of body size between 

populations and species that provide a framework for future comparative studies on the basis of 

these differences with regard to each species’ unique natural history and the distinct selective 

pressures of each population. This study also indicates that heritability estimates should not be 

generalized across closely related species or even across populations of the same species, but 

additional heritability estimates for each species and population are needed to fully assess the 

heritability of body size in burying beetles. Our results also bring into question how such a large 

range of body sizes has evolved in this genus, as well as the role of body size in speciation.  
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Table 5.1 Heritability (h2) (± SE), ANOVA, and coefficient of genetic variation (CVA) results for all species. Significant values 

are bolded. Sample source indicates which author collected the data and where the beetles were collected. 1 = Cherokee 

County, OK, USA, 2 = Goshen, UT, USA, 3 = Benjamin, UT, USA, 4 = Big Falls, WI, USA, 5 = Lexington, IL, USA, 6 = Ulm, 

Germany, 7 = Edinburgh, UK.  

Species 
Sample Source Year h2 Independent Variable df t-value p-value CVA 

N. americanus JCC1 2016 0.06 (±0.19) Mid Parent Pronotum 2/22 0.35 0.7328 6.57 

    Carcass Mass 2/22 2.23 0.0366  
N. defodiens JCC4 2017 -0.25 (±0.14) Mid Parent Pronotum 1/10 1.78 0.1055 2.31 
N. guttula ANS & MCB2 2016 0.02 (±0.15) Mid Parent Pronotum 1/22 0.15 0.8842 5.25 
 ANS & MCB2 2015 -0.31 (±0.19) Mid Parent Pronotum 1/31 1.62 0.1150 6.72 
 PJM & MCB2 2011-2012 0.10 (±0.05) Mid Parent Pronotum 2/240 2.13 0.0343 6.38 
    Carcass Mass 2/240 10.21 <.0001  
N. marginatus ANS & MCB2 2017 0.11 (±0.11) Mid Parent Pronotum 2/57 1.05 0.2975 9.62 
    Carcass Mass 2/57 3.70 0.0005  
 ANS & MCB2 2016 0.003 (±0.15) Mid Parent Pronotum 1/46 0.03 0.9791 6.31 
 ANS & MCB2 2015 -0.06 (±0.26) Mid Parent Pronotum 2/28 0.25 0.8084 8.72 
 ANS & MCB2 2014 0.14 (±0.06) Mid Parent Pronotum 2/92 2.24 0.0274 6.73 
    Carcass Mass 2/92 3.38 0.0011  
 ANS & MCB3 2013 0.10 (±0.07) Mid Parent Pronotum 1/193 1.42 0.1588 6.53 
 PJM & MCB2 2011-2012 0.05 (±0.05) Mid Parent Pronotum 2/340 0.94 0.3480 8.40 
    Carcass Mass 2/340 16.44 <.0001  
N. orbicollis ACN & SS5 2014 0.38 (±0.39) Mid Parent Pronotum 2/13 0.99 0.3431 8.82 
    Carcass Mass 2/13 0.72 0.4870  
 ANS & JCC3 2009-2011 0.17 (±0.07) Mid Parent Pronotum 2/176 2.26 0.0251 7.56 
    Carcass Mass 2/176 3.51 0.0006  
 JCC1 1992 0.06 (±0.13) Mid Parent Pronotum 2/17 0.44 0.6681 4.73 
    Carcass Mass 2/17 0.26 0.7974  
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N. pustulatus ACN & SS5 2014 -0.15 (±0.13) Mid Parent Pronotum 2/15 1.13 0.2753 4.21 
    Carcass Mass 2/15 0.06 0.9532  
N. vespilloides ACN & SS6 2014 0.36 (±0.18) Mid Parent Pronotum 2/15 1.96 0.0694 2.91 
    Carcass Mass 2/15 0.04 0.9668  
 PTS7 2012 0.26 (±0.09) Mid Parent Pronotum 2/90 2.91 0.0046 4.06 
    Carcass Mass 2/90 0.10 0.1643  
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