
Brigham Young University
BYU ScholarsArchive

Theses and Dissertations

2019-07-01

Adversarial Deep Neural Networks Effectively
Remove Nonlinear Batch Effects from Gene-
Expression Data
Jonathan Bryan Dayton
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Dayton, Jonathan Bryan, "Adversarial Deep Neural Networks Effectively Remove Nonlinear Batch Effects from Gene-Expression
Data" (2019). Theses and Dissertations. 7521.
https://scholarsarchive.byu.edu/etd/7521

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F7521&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F7521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/?utm_source=scholarsarchive.byu.edu%2Fetd%2F7521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/7521?utm_source=scholarsarchive.byu.edu%2Fetd%2F7521&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Adversarial Deep Neural Networks Effectively Remove Nonlinear Batch Effects

from Gene-Expression Data

Jonathan Bryan Dayton

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Stephen R. Piccolo, Chair
Mark Clement
David Wingate

Department of Biology

Brigham Young University

Copyright c© 2019 Jonathan Bryan Dayton

All Rights Reserved

ABSTRACT

Adversarial Deep Neural Networks Effectively Remove Nonlinear Batch Effects
from Gene-Expression Data

Jonathan Bryan Dayton
Department of Biology, BYU

Master of Science

Gene-expression profiling enables researchers to quantify transcription levels in cells, thus
providing insight into functional mechanisms of diseases and other biological processes.
However, because of the high dimensionality of these data and the sensitivity of measuring
equipment, expression data often contains unwanted confounding effects that can skew analysis
[1]. For example, collecting data in multiple runs causes nontrivial differences in the data (known
as batch effects), known covariates that are not of interest to the study may have strong effects,
and there may be large systemic effects when integrating multiple expression datasets.
Additionally, many of these confounding effects represent higher-order interactions that may not
be removable using existing techniques that identify linear patterns. We created Confounded to
remove these effects from expression data. Confounded is an adversarial variational autoencoder
that removes confounding effects while minimizing the amount of change to the input data. We
tested the model on artificially constructed data and commonly used gene expression datasets and
compared against other common batch adjustment algorithms. We also applied the model to
remove cancer-type-specific signal from a pan-cancer expression dataset. Our software is
publicly available at https://github.com/jdayton3/Confounded.

Keywords: batch effects, batch correction, gene expression, transcriptomics, deep learning,
adversarial neural network, variational autoencoder

ACKNOWLEDGMENTS

Thanks to Dr. Stephen Piccolo, whose mentorship over the past four years has shaped my

education much more than the classes I took. Thanks to Dr. Mark Clement and Dr. David

Wingate for participating in my graduate committee and providing helpful feedback throughout

my degree. Thanks to my office- and lab-mates, who let me bounce ideas off of them. Thanks to

the BYU Department of Biology for funding my education, and specifically to Dr. Byron Adams

for making the graduate experience more enjoyable, and to Gentri Glaittli for helping me to

navigate the university requirements. Thanks to my grandmother, Jennette Hawkes, whose

financial help came at a critical time in my education. Thanks to my parents, Minnie and Bryan

Dayton, for teaching me the value of an education, and to my sisters Merinda, Louisa, Eliza, and

Anna for their support. Thanks to Dr. Paul Horton, whose thorough peer review provided me

with the idea for this project. Thanks to the researchers who generated the data for this project

and who made it available.

Most of all, thanks to my wife, Zanna, for her love and support over the course of my graduate

education.

TABLE OF CONTENTS

Title Page . i

Abstract . ii

Acknowledgments . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

1 Background . 1

2 Methods . 4

2.1 Network Structure . 4

2.1.1 Autoencoder . 4

2.1.2 Discriminator . 4

2.1.3 Loss functions . 5

2.1.4 Training . 5

2.2 Datasets . 6

2.2.1 MNIST . 6

2.2.2 Bladderbatch . 7

2.2.3 GSE37199 . 7

2.2.4 TCGA Pan-cancer Data . 8

2.3 Comparison to other methods . 8

2.4 Statistics and Metrics . 9

2.4.1 Mean squared error . 9

2.4.2 Maximum mean discrepancy . 9

2.4.3 Classification accuracy . 9

3 Results . 10

3.1 Confounded removes nonlinear confounding effects that other adjusters miss 10

iv

3.2 Class-related signal is still detectable after adjustment by Confounded 12

4 Discussion . 12

References . 16

v

LIST OF TABLES

Table 1 Dataset information . 22

Table 2 Mean squared error (MSE) . 23

Table 3 Maximum mean discrepancy (MMD) . 24

Table 4 Batch classification accuracy . 25

Table 5 True class classification accuracy . 26

vi

LIST OF FIGURES

Figure 1 Batch adjustment justification and steps . 27

Figure 2 Network architecture of Confounded . 28

Figure 3 Autoencoder and discriminator loss . 29

Figure 4 Principal components analysis (PCA) . 30

Figure 5 T-distributed Stochastic Neighbor Embedding (t-SNE) 31

Figure 6 Mean squared error (MSE) . 32

Figure 7 Maximum mean discrepancy (MMD) . 33

Figure 8 Batch classification accuracy . 34

Figure 9 True class classification accuracy . 35

Figure 10 MNIST handwritten digits . 36

vii

1 Background

Gene expression data can be applied in many ways to advance our understanding of medicine

and biology. For example, expression data has been applied to discover conserved genetic

modules [2], to better understand the mechanisms of cardiovascular disease [3], to more

accurately predict the clinical outcome in cancer patients [4], and to discover effective drugs for

treating specific diseases [5]. Expression datasets are quite “wide,” often containing tens of

thousands of columns representing each gene in the human transcriptome. Because of the

sensitive nature of these data (i.e. gene product levels in organisms may respond drastically to

small environmental changes) and of the equipment used to quantify expression levels,

expression data often contains unwanted confounding effects that can skew analysis. Three

examples of this include (a) batch effects, (b) known covariates, and (c) dataset-level effects.

(a) Batch effects occur when expression data are generated in multiple runs or multiple batches,

and slight systemic differences occur during the different runs, such as different technicians

operating the machine or slight temperature differences in the room. Batch effects are understood

to have a nontrivial impact on high-throughput expression data [6]. In one study, researchers

found that, contrary to previous knowledge, expression values from mice and humans clustered

more closely by species than by tissue type [7]; however, referees showed in a rebuttal that when

accounting for batch effects, these data actually clustered more closely by tissue type, as initially

expected [8]. (b) Systemic bias can be even more pronounced when there are known

covariates—for example, using data collected from different cancer types when cancer type is not

of interest to the study [9]. (c) Finally, though batch effects within a dataset collected all by one

lab at one time may be somewhat decreased experimentally by careful replication of experimental

conditions, this is no longer possible when integrating different datasets; however, much better

statistical significance can be achieved when analyzing larger datasets, so data integration is a key

goal for transcriptomic analysis [10]. Each of these problems—batch effects, known covariates,

and dataset integration—represents a case where data measurements are effected by some hidden

variables and must be removed for effective analysis (see Figure 1).

1

Several methods exist for removing batch effects from gene expression datasets. Two

commonly used methods are ComBat [11] and SVA [12]. ComBat uses an empirical Bayes

method to estimate batch effect parameters and then uses linear regression to remove the effects,

and SVA uses singular value decomposition to model batch effects which can then be accounted

for in statistical analyses. Since both of these methods use linear methods to model confounding

effects, they are not designed to account for nonlinear effects, such as the cascading changes in

gene pathways in response to environmental stressors [13] (e.g. gene X transcripts increase and

gene Y transcripts decrease in response to rising temperature, and since both are now past a

certain threshold, gene Z transcripts also increase, and so on). As machine learning becomes

more common in biological research, these nonlinear confounding effects become more

troublesome since many machine learning algorithms can successfully identify complex

interactions between variables. For example, advances in neural networks have introduced new

ways to account for higher-order, nonlinear relationships in data [14]. These networks have

proven effective in removing irrelevant, domain-specific signal in credit rating, online reviews,

and image recognition tasks [15]. Several recent studies [16, 17, 18] have applied neural

networks to batch effects; however, several limitations complicate their usability on many

real-world datasets: they require that the input data only contains two batches, that the batches

are sufficiently large (we received errors when testing with a subset of MNIST where n=100), and

that the batches are balanced. These requirements rarely hold in existing datasets; for example,

the bladderbatch dataset used in the R sva package [19, 20] has 5 batches, only 57 samples, and

between 4 and 19 samples per batch. Additionally, the metrics these recent studies have used to

validate results don’t quantitatively test whether complex interactions still remain in the data.

Artificial neural networks are a machine learning tool inspired by the way human brains

function; input values pass through layers of linear and nonlinear functions, the final output

values are measured against objectives, and the layers of functions are adjusted to bring the

outputs closer to the objectives. This process is repeated until the outputs are sufficiently close to

2

their targets [21]. Research has shown that neural networks are effective in working with gene

expression data; for example, neural networks have been applied to detect cancer and identify

critical cancer genes [22], to infer gene-expression values from just the values of a few “landmark

genes” [23], to extract biologically relevant latent spaces in RNA-Seq data [24], to reduce the

dimensions of single-cell RNA-Seq data [25], to identify drug-repurposing targets using

transcriptomic data [26], and to generate realistic synthetic biomedical data for other scientific

studies [27]. Autoencoders are a type of neural network that encode and then reconstruct their

input, and their traditional objective function is to construct the output to be as similar to the

input as possible [28]. Neural networks have historically decreased in effectiveness when

working with data from multiple research domains [29], in part because they may learn based on

dataset-specific confounding effects (e.g. which researcher collected the data) instead of learning

based on practically meaningful causal effects (e.g. which gene is consistently upregulated in a

disease) [30]. Recently, researchers have experimented with discouraging neural networks from

learning based on domain-specific information. They have accomplished this by splitting a

network into two “adversarial” sub-networks with two competing objective functions: 1. to learn

as much as possible about the input data and 2. to forget any patterns related to unimportant

information [29, 31]. In this way, the input data is preserved as well as possible while removing

unimportant information from the data. Louizos, et al. [15] used this type of adversarial dual

objective function with a variational autoencoder and successfully removed domain-based

variability in credit score, financial savings, and hospital admittance datasets.

In this study, we present Confounded, an adversarial autoencoder that identifies and removes

confounding effects. We test the hypothesis that using an adversarial neural network can correct

for confounding effects more completely than previous tools do. We also explore the extent to

which confounders still remain in different datasets after adjustment with various algorithms, and

we present a framework to assess the extent to which confounding effects remain after adjustment

using various classification algorithms.

3

2 Methods

All our code has been made publicly available at

https://github.com/jdayton3/Confounded, and all our data are available as described

below.

2.1 Network Structure

We used an adversarial autoencoder network to model and remove the confounding effects. We

structured this network in two parts: a variational autoencoder [15] to replicate the input

(expression) data and a discriminator (also known as a classifier) to detect remaining

confounding effects in the autoencoder’s output. By penalizing the autoencoder for the

discriminator’s success, the autoencoder subnetwork learned over the course of training to output

the expression data with confounding effects minimized. We implemented the neural network in

TensorFlow 1.11.0 [?] with Python 3.6 [32]. All layers in the network were fully connected and

all activation functions were Rectified Linear Units (ReLUs) [33] except the final layers in the

autoencoder and the discriminator, which used the sigmoid function.

2.1.1 Autoencoder

We implemented the variational autoencoder [15] described by Géron [34, Chapter 15]. This

network has 2 hidden encoding layers and 2 decoding layers, each of size 500. The code size is

20. Each hidden layer is activated with the Exponential Linear Unit (ELU) function [35]. It is

trained with the Adam optimizer [36] on reconstruction loss (sigmoid cross entropy) combined

with latent loss (Kullback-Leibler, or KL, divergence [37]).

2.1.2 Discriminator

We trained the discriminator to determine the original batch of the autoencoder’s output. The

discriminator subnetwork consists of an input layer; four fully connected hidden layers of sizes

4

1024, 512, 512, and 128, respectively; and an output layer sized based on the number of batches.

In order to combat overfitting and improve training, we also added 50%-probability dropout [38]

(which prevents overfitting by dropping a random subset of layer inputs in each training iteration)

and batch normalization [39] (which helps training by smoothing out the optimization landscape

[40]) to each layer of the discriminator. These additions seemed to reduce overfitting in the

discriminator.

2.1.3 Loss functions

We trained the network using three loss functions. First, we calculated the autoencoder’s loss

(LA) by summing the reconstruction loss (sigmoid cross entropy between the autoencoder’s input

and output) and the latent loss (KL divergence [37] of the code layer). Second, we calculated the

discriminator’s loss (LD) as sigmoid cross entropy between its output and a one-hot encoding of

the samples’ batch labels. Finally, we also trained the autoencoder layers on a combination of the

two previous losses,

Ldual = LA−λ(LD) (1)

The λ value represents a tradeoff parameter for tuning the network’s tendency for more faithfully

replicating the input or for more completely removing confounding effects. A higher λ value

indicates that the network should remove confounding effects more aggressively, whereas a lower

value indicates that the network should instead favor faithfully reconstructing the input data. We

did not optimize LA directly; instead we trained the autoencoder by optimizing Ldual .

2.1.4 Training

In all cases, we trained the network using the Adam Optimizer [36] with a training rate of

0.0001 for 10,000 iterations on mini-batches of size 100. In each iteration, we optimized on both

LD and Ldual . When optimizing LD (i.e. training the discriminator), we froze the autoencoder’s

weights, and vice versa. We trained the network on a 2017 Dell XPS 15 9560 with an 8-core Intel

5

i7-7700HQ CPU and 16 GB of RAM. For each dataset, training typically took roughly 30

minutes to complete, including the time taken to load the input into memory and to save the

output to disk.

2.2 Datasets

In order to test both theoretical and practical differences between Confounded and previous

methods, we compared them for a variety of datasets of varying sizes and type of data measured.

2.2.1 MNIST

The MNIST digits dataset [41] is a database of images of handwritten digits that are

size-normalized and centered. It contains 60,000 training images and 10,000 test images. We

used MNIST so we could visually assess how well the true signal (in this case, the shape and

digit of each handwritten digit image) was preserved after batch adjustment. In order to use this

dataset, we flattened each 28 by 28 image into a 1D vector of size 784 and put each in a CSV file

along with the accompanying digit information. We limited our dataset to only the 10,000 test

images. Although convolutional layers are typically used when working with image data, we only

used fully connected layers even for this image dataset. In this way, we show that the autoencoder

is still able to find and represent spatial relationships without explicitly defining spatial

relationships in the model while testing the same network we use on expression data, where no

spatial relationships are inherent.

Because there is no batch information in the MNIST digits dataset, we had to simulate

nonlinear confonding effects. To do so, we wrote a Python script to take the MNIST data in,

apply a nonlinear effect, and output the adjusted data. We applied nonlinear effects by iteratively

realizing vectors of normally distributed values, multiplying and adding these vectors to the

“expression” vectors, and applying nonlinearity to the adjusted vector. We split the image data

into two batches while keeping the batches balanced (5,000 images for each batch) and including

6

the same number of each digit in each batch. We applied the same random vectors to each image

in a batch. Finally, we added random noise to each image in order to prevent images in a batch

from being overly similar to each other.

2.2.2 Bladderbatch

The bladderbatch dataset is a microarray transcriptomic expression dataset from a study of

patients with bladder cancer [42]. It has been made available as an R package [19] and is used in

the documentation of the sva R package [20] to illustrate how to batch-adjust using ComBat. It

contains expression values for 57 tissue samples with and without bladder cancer across 5

unbalanced batches. The dataset has a cancer status (cancerous vs. normal tissue) column, which

we used for “true class” classification, and a batch column. Because bladderbatch is such a small

dataset in terms of typical deep learning datasets, we selected it as a way to test whether our

network was overfitting.

2.2.3 GSE37199

The GSE37199 dataset contains Affymetrix microarray gene-expression data from patients

with advanced castration-resistant prostate cancer [43]. We accessed a version of this dataset

from http://doi.org/10.17605/OSF.IO/SSK3T that was tidied as part of a curated

compendium of human transcriptional biomarker data [44]. It contains expression values for 93

tissue samples categorized as either “advanced castration resistant” or “good prognosis.” We used

this cancer status variable as the “true class” for classification. It has two types of batch variables:

“plate” and “centre.” We adjusted against the “plate” variable because it was more balanced than

“centre” (with counts of {43,50} compared to {27,66}). The GSE37199 dataset represents a

slightly larger dataset than bladderbatch, with only two batches that are closer to being balanced

(with batch counts of {4,5,11,18,19} and {43,50}, respectively).

7

2.2.4 TCGA Pan-cancer Data

The Cancer Genome Atlas (TCGA) Pan-Cancer project produced expression data for

thousands of tumors across many cancer types [45]. In a previous study [9], we classified this

dataset based on the presence or absence of mutations in several known cancer genes. We

attempted to adjust for the confounding effect of cancer type using ComBat prior to

classification. However, we found that a strong nonlinear signal could still be identified by the

Random Forests algorithm after adjustment. Here, we used the same version of the dataset that

we tidied in this previous study (available at https://osf.io/7xjdn/). This dataset has

RNA-Seq expression values for 9,365 samples across 25 distinct cancer types. We used this

dataset as a way to test whether Confounded works on RNA-Seq data and to test whether we

could remove confounding effects that ComBat cannot remove.

2.3 Comparison to other methods

We compared our method to two other batch adjusters: a scale adjuster and ComBat [11]. We

implemented the scale adjuster in the R programming language, version 3.6.0 [46] using RStudio

version 1.2.1194 [47]. It adjusts the data by linearly expanding or contracting each batch so all

batches have the same range. We used the ComBat implementation from the R sva package [20]

with some modifications to allow it to work on columns without variance in the MNIST dataset.

We initially intended to test against the SVA [12] method but concluded that SVA is more suited

for producing surrogate variables for further statistical research rather than removing those

variables from the data. There are a number of other methods for batch adjustment that do and do

not use deep neural networks (for example, see [12, 48, 16, 17]). Unfortunately, most of these

methods lack a common interface and common assumptions that input datasets must meet. For

these reasons, we compared Confounded only to the two methods listed above. Future batch

adjustment research may benefit from standardization of input formats, user interfaces, and

validation datasets.

8

2.4 Statistics and Metrics

2.4.1 Mean squared error

Mean squared error (MSE) is a measure of how much two vectors or matrices deviate from one

another. It is commonly used as a loss value in autoencoders to make the network minimize the

difference between the input and output values. We wanted to see how well Confounded and

other batch correction software maintain patterns in the input data as measured by MSE.

2.4.2 Maximum mean discrepancy

In a recent paper, Shaham, et al. [16] used neural networks to remove batch effects. Instead of

constraining the autoencoder to remove batch effects based on a discriminator, these researchers

trained their network to minimize maximum mean discrepancy (MMD) between batches in an

embedded layer of their network. We calculated MMD using the same formula as Shaham, et al.

to determine whether batches looked like they came from the same distribution after adjustment.

For the kernel, we used the Gaussian kernel between two batches as implemented in

sklearn.metrics.pairwise.rbf kernel [49]. In cases where there were more than two

batches, we averaged all pairwise MMD values to calculate an overall MMD.

2.4.3 Classification accuracy

In order to determine (a) whether batch can still be identified post-adjustment and (b) how well

class-related signal is maintained after adjustment, we determined classification accuracy based

on batch and “true class” labels using several machine learning classifiers.

We used four classifiers from the scikit-learn 0.19.1 Python library [49] in order to classify on

batch and true class before and after adjustment: Naive Bayes [50], Random Forests [51],

k-Nearest Neighbors [52], and SVM [53] with a radial basis kernel. Table 1 details which

columns were used for training.

9

We calculated the average of classification accuracies for four-fold cross-validation repeated

three times. We interpret lower accuracy for batch classification as meaning that the batch is

removed more effectively. We also interpret higher true class classification as meaning that the

important signal is not lost during the process of adjustment. Therefore, given output data from

the ideal batch adjuster, batch classification would be no better than random for any classification

algorithm, and true class accuracy would be no lower than accuracy for the unadjusted data.

3 Results

In this study, we created Confounded, an adversarial variational autoencoder neural network, to

remove nonlinear batch and confounding effects from expression data that may not be accounted

for by traditional linear methods. We compared Confounded to a scaling method and to ComBat

[11] using various metrics. The scaling method performed consistently worse across the

qualitative and quantitative evaluations that we performed; ComBat and Confounded performed

relatively well overall, but each of these algorithms excelled in different types of scenarios, which

we illustrate below.

3.1 Confounded removes nonlinear confounding effects that other adjusters miss

To compare Confounded to other batch adjustment methods, we compared PCA and t-SNE

plots along with MSE, MMD, and classifier batch prediction accuracy (using various classifiers).

PCA and t-SNE plots seem to show a decrease in separability after adjustment with various

methods for the GSE37199 dataset (see Figures 4 and 5). However, previous research has shown

that these plots are not completely trustworthy in representing nonlinear effects [9]. In the PCA

plot, Confounded appears to maintain a similar distribution to the unadjusted data, indicating that

the underlying distribution has been faithfully reproduced by the networks. The t-SNE plot shows

that the data post-adjustment by Confounded and ComBat appear to cluster less tightly by batch

than the unadjusted and scale-adjusted data. This may indicate an effective removal of nonlinear

10

effects in both cases.

Confounded shows mixed success with the MSE and MMD metrics. With MSE, Confounded

outperformed the scale adjuster in 3 of the 4 datasets but scored drastically worse on the MNIST

dataset, with scores listed in Table 2 (see also Figure 6). With MMD, Confounded outperformed

the scale adjuster again in 3 of the 4 datasets and tied the scale adjuster on the TCGA dataset,

with scores listed in Table 3 (see also Figure 7). With both metrics, Confounded consistently

performed somewhat worse than ComBat.

We would expect that after batch adjustment by an ideal adjuster, batch would no longer be

detectable by any machine learning classifier. Using the batch classification accuracy metric,

Confounded seems to outperform other adjusters on larger datasets, whereas ComBat and

Confounded seem to perform about the same on smaller datasets (see Figure 8). With both the

bladderbatch and GSE37199 datasets, batch classification accuracy decreases well below baseline

after batch adjustment with ComBat for all classifiers we tested (see Table 4). Interestingly, batch

accuracy also decreases drastically for the MNIST and TCGA datasets, but only for the Naive

Bayes classifier. This may be due to two factors: both ComBat and Naive Bayes use Bayesian

methods, so ComBat may specifically remove the effects that Naive Bayes identifies; and Naive

Bayes does not find patterns based on interactions between variables. Although Naive Bayes is

no longer able to identify confounding effects in the data after ComBat-adjustment, Random

Forests (which does use interactions between variables) still has a very high accuracy for MNIST

and an increased accuracy for TCGA. In contrast, after adjustment by Confounded, the Random

Forests algorithm’s accuracy decreases more than with any other adjuster for both the MNIST

and TCGA datasets. This indicates that while ComBat’s performance may work at least as well

as Confounded for smaller expression datasets, Confounded may work better with larger datasets.

With the larger datasets in particular, Confounded outperforms the other adjusters. On the

MNIST dataset, Random Forests is able to detect batch with perfect or near-perfect accuracy after

11

adjustment with the scale adjuster and ComBat, but the highest batch classification accuracy after

adjustment by Confounded is Naive Bayes, with an accuracy of 68.8%. With TCGA, both the

scale adjuster and ComBat drastically increase Random Forests’ batch classification accuracy

from 87.6% to 96.3% and 97.1% respectively, whereas Confounded decreases the accuracy to

8.8%.

3.2 Class-related signal is still detectable after adjustment by Confounded

With the smaller datasets, Confounded seems to keep true class information roughly as well as

ComBat, (with Random Forests, Bladderbatch: 74.3 for ComBat% and 72.1% for Confounded,

GSE37199: 60.4% for ComBat and 69.0% for Confounded; see Figure 9 and Table 5). For the

Bladderbatch dataset, true class accuracy is much lower after adjusting with any algorithm,

indicating that cancer status and batch may not be independent.

With the larger datasets, Confounded’s true class accuracy consistently decreases below the

accuracy of other adjusters. A look at the MNIST digits before and after adjustment (see Figure

10) shows that Confounded’s output is often blurry, as is common with the output of variational

autoencoders [54]. With MNIST, Confounded’s accuracy with Random Forests is still much

higher than baseline (84.8% vs. 11.4%), but with TCGA, the accuracy decreases below baseline

(66.5% vs. 69.8%) while the other adjusters’ accuracies remain above baseline. However, the

particular set of parameters that we used in Confounded are likely not optimal for every dataset.

Additional tuning may improve the performance metrics.

4 Discussion

Why should I use a neural network for batch adjustment? The process of measuring data

typically leaves confounding effects. This is particularly problematic in expression data, where

each of the 20,000 transcript levels may influence or be influenced by other transcript levels.

These cascading network-like effects are extremely likely to have nonlinear components. Our

12

results (i.e. tools like ComBat do not fool some classifiers on the batch classification task)

indicate that these nonlinear effects do indeed exist in gene expression data, thus rendering linear

batch correction methods insufficient. Therefore, some form of nonlinear adjustment must be

used in order to correct for real-world confounding effects. Rather than individually model each

of infinitely many possible nonlinear interactions to see which represent confounders, we can use

a neural network such as Confounded to both approximate and remove the confounders, since

neural networks are proven to be universal function approximators [55].

How can I tell how well batch adjustment worked? Although the metrics and figures that

have been used in the past to validate batch adjustment (such as PCA, MSE, and MMD) represent

how well linear effects have been removed, they cannot completely display whether two batches

are distinguishable from one another. Machine learning algorithms are designed specifically to

tease out patterns in data that may distinguish one group from another. Our results show that in

some cases where PCA, MSE, and MMD indicate that ComBat removes confounding effects

better than Confounded, the effects are still identifiable by machine learning algorithms after

ComBat-adjustment, but not after adjustment by Confounded This indicates that classification

accuracy measures the presence of confounding effects better than these traditional tools. We

suggest to users of batch correction software that they use machine learning classification

accuracy before and after correction in order to determine the degree of batch removal. We also

suggest to researchers in the field of batch correction that classification accuracy be used as a

metric in validating their software. Specifically, the Random Forests algorithm [51] seems to

work very well and runs relatively quickly on gene expression data.

Which batch adjuster should I use? In our testing, ComBat did very well with small

(n < 100) datasets, even with removing any identifiable nonlinear effects. However, Confounded

outperformed ComBat on the larger datasets according to the batch classification accuracy

metric. In addition to dataset size, researchers selecting a batch adjustment algorithm should

consider how important it is for them to accurately replicate their input data. Such researchers

13

can adjust Confounded’s λ parameter in order to balance the tradeoff of removing batch and

matching the inputs.

What limitations does Confounded have? (a) Confounded uses a variational autoencoder,

which are known for often outputting a blurry version of the input data (as can be seen in Figure

10). However, recent work has identified modifications that may be made to the basic VAE

structure to make output images sharper and more realistic [54]. Similar research with variational

autoencoders and gene expression data may yield improved reconstruction losses and decrease

the blurring effect. (b) Confounded takes a long time to run in comparison with ComBat and

other linear adjusters. Although we acknowledge this as a limitation of many types of machine

learning and of neural network in particular, we believe that 30-60 minutes is a reasonable

amount of time for a step that will be run only once per pipeline and that can greatly improve

data quality. (c) It can be difficult to identify the optimal network structure and parameter set for

a neural network. Though this is the case for many applications of neural networks, we feel that

Confounded’s default structure worked well in our testing and that it will suffice for most batch

correction applications. (d) Neural networks usually perform better when given large amounts of

data, and traditional batch datasets typically have very few samples. Because of this, we were

concerned that a neural-network-based adjuster may not work well on traditional datasets.

However, although ComBat outperformed Confounded on the smaller, more traditional datasets,

Confounded did perform reasonably well with the smaller datasets and appeared to avoid

overfitting. In cases where ComBat is unable to completely remove confounding effects in a

small dataset, Confounded may be a viable replacement method.

What else might Confounded be used for? At its root, batch correction is a data integration

problem: data from multiple batches must have batch-specific confounding effects removed in

order to be treated as one dataset. Confounded shows promise in removing traditional batch

effects from microarray expression data in the Bladderbatch and GSE37199 datasets. It also

effectively decreased artificial batch effects in image data and cancer-type-specific confounding

14

effects in RNA-Seq data. Confounded may be effective in other data integration problems, such

as combining microarray with RNA-Seq datasets, or merging several large datasets measured

under different conditions.

Confounded, and adversarial autoencoders in general, show promise as a valuable way to

remove confounding biases from expression datasets. Such methods will enable researchers

access to larger datasets, therefore increasing the scope of analyses and furthering science as a

whole.

15

References

[1] Freytag S, Gagnon-Bartsch J, Speed TP, Bahlo M. Systematic Noise Degrades Gene

Co-Expression Signals but Can Be Corrected. BMC Bioinformatics. 2015 Sep;16(1):309.

[2] Stuart JM, Segal E, Koller D, Kim SK. A Gene-Coexpression Network for Global

Discovery of Conserved Genetic Modules. Science. 2003 Oct;302(5643):249–255.

[3] Henriksen PA, Kotelevtsev Y. Application of Gene Expression Profiling to Cardiovascular

Disease. Cardiovascular Research. 2002 Apr;54(1):16–24.

[4] van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, et al. Gene

Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature. 2002

Jan;415(6871):530.

[5] Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, et al. Discovery

and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression

Data. Science Translational Medicine. 2011 Aug;3(96):96ra77–96ra77.

[6] Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the

Widespread and Critical Impact of Batch Effects in High-Throughput Data. Nature Reviews

Genetics. 2010 Oct;11(10):733–739.

[7] Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A Comparative Encyclopedia

of DNA Elements in the Mouse Genome. Nature. 2014 Nov;515(7527):355–364.

[8] Gilad Y, Mizrahi-Man O. A Reanalysis of Mouse ENCODE Comparative Gene Expression

Data. F1000Research. 2015 May;4.

[9] Dayton JB, Piccolo SR. Classifying Cancer Genome Aberrations by Their Mutually

Exclusive Effects on Transcription. BMC Medical Genomics. 2017 Dec;10(Suppl 4).

16

[10] Lazar C, Meganck S, Taminau J, Steenhoff D, Coletta A, Molter C, et al. Batch Effect

Removal Methods for Microarray Gene Expression Data Integration: A Survey. Briefings in

Bioinformatics. 2013 Jul;14(4):469–490.

[11] Johnson WE, Li C, Rabinovic A. Adjusting Batch Effects in Microarray Expression Data

Using Empirical Bayes Methods. Biostatistics (Oxford, England). 2007 Jan;8(1):118–127.

[12] Leek JT, Storey JD. Capturing Heterogeneity in Gene Expression Studies by Surrogate

Variable Analysis. PLOS Genetics. 2007 Sep;3(9):e161.

[13] Liu H, Li P, Zhu M, Wang X, Lu J, Yu T. Nonlinear Network Reconstruction from Gene

Expression Data Using Marginal Dependencies Measured by DCOL. PLoS ONE. 2016

Jul;11(7).

[14] Lu Z, Pu H, Wang F, Hu Z, Wang L. The Expressive Power of Neural Networks: A View

from the Width. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan

S, et al., editors. Advances in Neural Information Processing Systems 30. Curran

Associates, Inc.; 2017. p. 6231–6239.

[15] Louizos C, Swersky K, Li Y, Welling M, Zemel R. The Variational Fair Autoencoder.

arXiv:151100830 [cs, stat]. 2015 Nov;.

[16] Shaham U, Stanton KP, Zhao J, Li H, Raddassi K, Montgomery R, et al. Removal of Batch

Effects Using Distribution-Matching Residual Networks. Bioinformatics (Oxford,

England). 2017 Aug;33(16):2539–2546.

[17] Shaham U. Batch Effect Removal via Batch-Free Encoding. bioRxiv. 2018 Jul;.

[18] Upadhyay U, Jain A. Removal of Batch Effects Using Generative Adversarial Networks.

arXiv:190106654 [cs, stat]. 2019 Jan;.

[19] Leek JT. Bladderbatch. Bioconductor; 2017.

17

[20] Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Storey JD, et al.. Sva. Bioconductor;

2017.

[21] Schmidhuber J. Deep Learning in Neural Networks: An Overview. Neural Networks. 2015

Jan;61:85–117.

[22] Danaee P, Ghaeini R, Hendrix DA. A Deep Learning Approach for Cancer Detection and

Relevant Gene Identification. In: Biocomputing 2017. WORLD SCIENTIFIC; 2016. p.

219–229.

[23] Chen Y, Li Y, Narayan R, Subramanian A, Xie X. Gene Expression Inference with Deep

Learning. Bioinformatics. 2016 Jun;32(12):1832–1839.

[24] Way GP, Greene CS. Extracting a Biologically Relevant Latent Space from Cancer

Transcriptomes with Variational Autoencoders. bioRxiv. 2017 Oct;p. 174474.

[25] Lin C, Jain S, Kim H, Bar-Joseph Z. Using Neural Networks for Reducing the Dimensions

of Single-Cell RNA-Seq Data. Nucleic Acids Research. 2017 Sep;45(17):e156–e156.

[26] Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep Learning

Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing

Using Transcriptomic Data. Molecular Pharmaceutics. 2016 Jul;13(7):2524–2530.

[27] Beaulieu-Jones BK, Wu ZS, Williams C, Byrd JB, Greene CS. Privacy-Preserving

Generative Deep Neural Networks Support Clinical Data Sharing. bioRxiv. 2017 Nov;p.

159756.

[28] Hinton GE, Salakhutdinov RR. Reducing the Dimensionality of Data with Neural

Networks. Science. 2006 Jul;313(5786):504–507.

[29] Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, et al.

Domain-Adversarial Training of Neural Networks. arXiv:150507818 [cs, stat]. 2015 May;.

18

[30] Louizos C, Shalit U, Mooij J, Sontag D, Zemel R, Welling M. Causal Effect Inference with

Deep Latent-Variable Models. arXiv:170508821 [cs, stat]. 2017 May;.

[31] Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T. Deep Domain Confusion: Maximizing

for Domain Invariance. arXiv:14123474 [cs]. 2014 Dec;.

[32] Foundation PS. The Python Language Reference — Python 3.6.8 Documentation; 2019.

https://docs.python.org/3.6/reference/index.html.

[33] Agarap AF. Deep Learning Using Rectified Linear Units (ReLU). arXiv:180308375 [cs,

stat]. 2018 Mar;.

[34] Géron A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,

Tools, and Techniques to Build Intelligent Systems. 1st ed. O’Reilly Media, Inc.; 2017.

[35] Clevert DA, Unterthiner T, Hochreiter S. Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUs). arXiv:151107289 [cs]. 2015 Nov;.

[36] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv:14126980 [cs].

2014 Dec;.

[37] Kullback S, Leibler RA. On Information and Sufficiency. The Annals of Mathematical

Statistics. 1951 Mar;22(1):79–86.

[38] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple

Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research.

2014;15:1929–1958.

[39] Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. arXiv:150203167 [cs]. 2015 Feb;.

[40] Santurkar S, Tsipras D, Ilyas A, Madry A. How Does Batch Normalization Help

Optimization? arXiv:180511604 [cs, stat]. 2018 May;.

19

[41] LECUN Y. THE MNIST DATABASE of Handwritten Digits.

http://yannlecuncom/exdb/mnist/;.

[42] Dyrskjøt L, Kruhøffer M, Thykjaer T, Marcussen N, Jensen JL, Møller K, et al. Gene

Expression in the Urinary Bladder: A Common Carcinoma in Situ Gene Expression

Signature Exists Disregarding Histopathological Classification. Cancer Research. 2004

Jun;64(11):4040–4048.

[43] Olmos D, Brewer D, Clark J, Danila DC, Parker C, Attard G, et al. Prognostic Value of

Blood mRNA Expression Signatures in Castration-Resistant Prostate Cancer: A

Prospective, Two-Stage Study. The Lancet Oncology. 2012 Nov;13(11):1114–1124.

[44] Golightly NP, Bell A, Bischoff AI, Hollingsworth PD, Piccolo SR. Curated Compendium of

Human Transcriptional Biomarker Data. Scientific Data. 2018 Apr;5:180066.

[45] The Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw

KRM, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer Analysis Project.

Nature Genetics. 2013 Sep;45:1113–1120.

[46] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria:

R Foundation for Statistical Computing; 2014.

[47] RStudio Team. RStudio: Integrated Development Environment for R. Boston, MA:

RStudio, Inc.; 2018.

[48] Espı́n-Pérez A, Portier C, Chadeau-Hyam M, van Veldhoven K, Kleinjans JCS, de Kok

TMCM. Comparison of Statistical Methods and the Use of Quality Control Samples for

Batch Effect Correction in Human Transcriptome Data. PLOS ONE. 2018

Aug;13(8):e0202947.

[49] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-Learn:

20

Machine Learning in Python. Journal of Machine Learning Research.

2011;12(Oct):2825–2830.

[50] Maron ME. Automatic Indexing: An Experimental Inquiry. J ACM. 1961

Jul;8(3):404–417.

[51] Tin Kam Ho. Random Decision Forests. In: Proceedings of 3rd International Conference on

Document Analysis and Recognition. vol. 1; 1995. p. 278–282 vol.1.

[52] Fix E, Hodges JL Jr. Discriminatory Analysis, Nonparametric Discrimination: Consistency

Properties. Randolph Field, Texas: USAF School of Aviation Medicine; 1951. 4.

[53] Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995

Sep;20(3):273–297.

[54] Hou X, Shen L, Sun K, Qiu G. Deep Feature Consistent Variational Autoencoder.

arXiv:161000291 [cs]. 2016 Oct;.

[55] Csáji BC, Eikelder HT. Approximation with Artificial Neural Networks; 2001.

21

Tables

Table 1: Dataset information for each dataset used.

Dataset Dimensions Number
of
Batches

Batch Label True Class Label Data Type

Bladder
Batch

57×22,283 5 Batch Cancer status Microarray

GSE37199 93×20,024 2 Plate Cancer stage Microarray
MNIST 10,000×784 2 Artificial

batch
Digit Grayscale

images
TCGA Pan-
Cancer

9,366×325 25 Cancer Type TP53 mutation
presence

RNA-Seq

22

Table 2: Mean squared error (MSE) of the unadjusted input data compared to the data output by the
given adjusters. Lower MSE indicates that the output has changed less from the input.

Dataset Unadjusted Scale ComBat Confounded
Bladder Batch 0 0.247 0.0424 0.0698
GSE37199 0 0.003 0.00066 0.00168
MNIST 0 0.00312 0.00183 0.0187
TCGA 0 9.12e+05 1.17e+05 1.39e+05

23

Table 3: Maximum mean discrepancy (MMD) comparing the distributions of the batches to each other
after a given adjustment. Lower MMD indicates that the distributions of the different batches are more
similar. In cases with more than two batches, MMD is computed pairwise between each batch and aver-
aged.

Dataset Unadjusted Scale ComBat Confounded
Bladder Batch 0.48 0.463 0.183 0.258
GSE37199 0.0941 0.0906 0.0255 0.0376
MNIST 0.113 0.0653 0.00665 0.0117
TCGA 0.0942 0.0942 0.0942 0.0942

24

Table 4: Batch classification accuracy for several datasets and adjusters. The ideal batch adjuster would
completely remove all signal due to batch and would therefore decrease batch classification accuracy to
around the baseline for all classifiers.

Dataset Adjustment Baseline GaussianNB KNeighbors RandomForest SVC
Unadjusted 0.626 0.764 0.661 0.578
Scale 0.315 0.492 0.514 0.472
ComBat 0.000 0.158 0.183 0.159

Bladder Batch

Confounded

0.333

0.180 0.067 0.224 0.275
Unadjusted 0.803 0.705 0.873 0.535
Scale 0.930 0.830 1.000 0.535
ComBat 0.238 0.534 0.494 0.535

GSE37199

Confounded

0.538

0.409 0.408 0.409 0.535
Unadjusted 1.000 0.899 1.000 1.000
Scale 0.992 0.760 1.000 1.000
ComBat 0.466 0.499 0.999 0.528

MNIST

Confounded

0.500

0.688 0.519 0.637 0.561
Unadjusted 0.832 0.758 0.876 0.117
Scale 0.846 0.779 0.963 0.117
ComBat 0.293 0.358 0.971 0.117

TCGA

Confounded

0.117

0.078 0.086 0.088 0.117

25

Table 5: True class classification accuracy for several datasets and adjusters. After adjustment by the
ideal batch adjuster, all true class signal should be preserved, and all classifiers should therefore have the
same accuracy in predicting true class before and after adjustment.

Dataset Adjustment Baseline GaussianNB KNeighbors RandomForest SVC
Unadjusted 0.908 0.905 0.884 0.906
Scale 0.649 0.719 0.695 0.743
ComBat 0.697 0.578 0.743 0.722

Bladder Batch

Confounded

0.702

0.673 0.676 0.721 0.698
Unadjusted 0.661 0.689 0.690 0.662
Scale 0.632 0.690 0.704 0.662
ComBat 0.647 0.676 0.604 0.662

GSE37199

Confounded

0.667

0.646 0.661 0.690 0.662
Unadjusted 0.824 0.939 0.880 0.913
Scale 0.816 0.946 0.874 0.915
ComBat 0.815 0.948 0.876 0.914

MNIST

Confounded

0.114

0.794 0.891 0.848 0.853
Unadjusted 0.625 0.738 0.768 0.698
Scale 0.603 0.723 0.760 0.698
ComBat 0.659 0.695 0.744 0.698

TCGA

Confounded

0.698

0.461 0.639 0.665 0.698

26

Figures

Figure 1: Batch adjustment justification and steps. (a) When measurements are collected from a sample
(X), systemic effects (H) also affect the measurements. (b) If data from the same sample X is measured
under two different conditions, H1 and H2, we may obtain slightly different measurements. (c) In order to
normalize batches of data relative to one another, we first estimate the effect of the hidden variables based
on differences in measurements between batches. (d) Second, we remove the estimated effects in order to
normalize the batches relative to one another.

27

Figure 2: Network architecture of Confounded. Data with batch effects (represented by different col-
ors) are input into an autoencoder. The output of the autoencoder is classified by a discriminator network
based on batch. The autoencoder is then penalized based on the success of the discriminator. Over time,
the autoencoder learns to output a faithful representation of the data without signal due to batch.

28

Figure 3: Autoencoder and discriminator loss over time for one run of Confounded on the MNIST
dataset. Over the course of training, the autoencoder more faithfully replicates the input data. The au-
toencoder also seems to introduce noise (see the red dashed line around iteration 3100) in response to the
discriminator’s slight improvements.

29

Figure 4: Principal components analysis (PCA) of the GSE37199 dataset before and after batch adjust-
ment with various adjusters. None of the datasets appear to be linearly separable. Confounded appears to
maintain the same distribution of data overall as the unadjusted data while perhaps aligning the batches’
distributions.

30

Figure 5: T-distributed Stochastic Neighbor Embedding (t-SNE) plot for the GSE37199 dataset before
and after adjustment with several algorithms. The data seem to cluster less by batch for both Confounded
and ComBat, indicating that both adjusters may be removing nonlinear effects in this dataset.

31

Figure 6: Mean squared error (MSE) between the data prior to and after adjustment with various algo-
rithms. Lower MSE represents that the adjuster has more faithfully reproduced the input data. MSE for
unadjusted data will always be 0 because the input data is identical to the output data. Confounded usually
performs better than the scale adjuster and somewhat worse than ComBat when measuring MSE.

32

Figure 7: Maximum mean discrepancy (MMD) between different batches. Lower MMD indicates that
the distributions of the different batches are more similar. In cases with more than two batches, MMD is
computed pairwise between each batch and averaged. In each case, Confounded usually performs better
than the scale adjuster and somewhat worse than ComBat when measuring MSE.

33

Figure 8: Batch classification accuracy from 4-fold cross-validation repeated 3 times for several clas-
sifiers. Lower batch accuracy indicates that more batch-related signal has been removed and therefore
indicates better performance. Confounded’s performance is similar to ComBat’s for the smaller datasets
and is improved for the larger datasets.

34

Figure 9: True class classification accuracy for several datasets and adjusters with 4-fold cross-
validation repeated 3 times. A higher accuracy after adjustment is desired because it represents that the
adjuster has not destroyed the true class signal.

35

Figure 10: MNIST handwritten digits (a) before any adjustment, (b) with artificial noise added, (c) ad-
justed for noise by the scale adjuster, (d) adjusted for noise by ComBat, and (e) adjusted for noise by Con-
founded. Although Confounded seems to remove more noise from the background, it struggles in some
cases to accurately replicate the input data.

36

