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ABSTRACT 
 
 
 

Homology Searching and Protein Model  

Detection Utilizing Amino Acid Properties 

 
 

Kit J. Menlove 
 

Department of Biology 
 

Master of Science 

 

Similarity searches are an essential component to most bioinformatic applications.  They 
form the bases of structural motif identification, gene identification, and insights into functional 
associations.  With the rapid increase in the available genetic data through a wide variety of 
databases, similarity searches are an essential tool for accessing these data in an informative and 
productive way.  In our chapter, we provide an overview of similarity searching approaches, 
related databases, and parameter options to achieve the best results for a variety of applications.  
We then provide a worked example and some notes for consideration. 

 
Homology detection is one of the most basic and fundamental problems at the heart of 

bioinformatics.  It is central to problems currently under intense investigation in protein structure 
prediction, phylogenetic analyses, and computational drug development.  Currently 
discriminative methods for homology detection, which are not readily interpretable, are 
substantially more powerful than their more interpretable counterparts, particularly when 
sequence identity is very low.  Here I present a computational graph-based framework for 
homology inference using physiochemical amino acid properties which aims to both reduce the 
gap in accuracy between discriminative and generative methods and provide a framework for 
easily identifying the physiochemical basis for the structural similarity between proteins.  The 
accuracy of my method slightly improves on the accuracy of PSI-BLAST, the most popular 
generative approach, and underscores the potential of this methodology given a more robust 
statistical foundation. 

 

 

Keywords:  similarity searching; fold recognition; homology modeling; sequence profiles; 

BLAST; sequence alignment; protein evolution; threading 



ACKNOWLEDGEMENTS 

 

 

I would like to thank my committee members and my former advisor, Dr. David McClellan for 

their remarkable patience, helpful comments and guidance, passion for their research, and 

stalwart examples of how to conduct meaningful research.  I am be eternally grateful to Dr. 

Crandall, Dr. Clement, and Dr. McClellan for their instrumental role in developing in me an 

interest in computational biology and bioinformatics, as well as establishing the Bioinformatics 

program at BYU.  I thank the Cancer Research Center at BYU for their support and training 

opportunities.  I thank my mother and grandparents for their encouragement and unwavering 

support.  Most of all I am indebted to my wonderful wife and my Father in Heaven who have 

faithfully and lovingly stood by me through the seemingly countless long days of thesis work.  



iv 

Table of Contents 

List of Tables ................................................................................................................................. vi 

List of Figures ............................................................................................................................... vii 

Chapter 1 Similarity searching using BLAST ............................................................................... 1 

1. Introduction ..................................................................................................................... 1 

1.1. An introduction to nucleotide databases ......................................................................... 1 

1.2. International Nucleotide Sequence Database Collaboration: DDBJ, EMBL, and 

GenBank .......................................................................................................................... 2 

1.3. Other nucleotide sequence databases .............................................................................. 3 

2. Program Usage ................................................................................................................ 4 

2.1. Database file formats ...................................................................................................... 4 

2.2. Smith-Waterman and Dynamic Programming ................................................................ 7 

2.3. Weighting/Models ........................................................................................................... 9 

2.4. Blast Programs .............................................................................................................. 11 

2.5. Query Sequence ............................................................................................................ 13 

2.6. Search Set ...................................................................................................................... 14 

2.7. Blast Search Parameters ................................................................................................ 18 

2.8. Interpreting the Results ................................................................................................. 21 

2.9. Future of Similarity Searching ...................................................................................... 23 

3. Examples ....................................................................................................................... 23 

3.1. Nucleotide-Nucleotide Blast for allele finding ............................................................. 23 

3.2. PSI-Blast for distant homology searching .................................................................... 26 

3.3. BlastX for EST identification ....................................................................................... 28 



v 

4. Notes ............................................................................................................................. 30 

Chapter 2 Model Detection based upon Amino Acid Properties ................................................ 33 

1. Introduction ................................................................................................................... 33 

2. Methods ......................................................................................................................... 36 

2.1. Scoring physiochemical properties according to their biological relevance ................. 36 

2.2. Overview of the Property Profiling Method ................................................................. 39 

2.3. Constructing the Multiple Sequence Alignment ........................................................... 41 

2.4. Constructing the Property Profile ................................................................................. 41 

2.5. Searching against a protein structure database ............................................................. 45 

3. Results ........................................................................................................................... 46 

3.1. Scoring physiochemical properties according to their biological relevance ................. 46 

3.2. Benchmarking against a database of homologous proteins .......................................... 47 

4. Discussion ..................................................................................................................... 48 

References. .................................................................................................................................... 54 

 

  



vi 

List of Tables 

Table 1.1.  FASTA File Sequence Identifiers.  Information from the NCBI Handbook (Madden 

2002). ....................................................................................................................................... 5 

Table 1.2.  IUB/IUPAC nucleotide and ambiguity codes. ............................................................. 5 

Table 1.3.  Suggested uses for common substitution matrices. The matrices highlighted in bold 

are available through NCBI’s Blast web interface.  Blosum62 has been shown to provide the 

best results in Blast searches overall due to its ability to detect large ranges of similarity.  

Nevertheless, the other matrices have their strengths.  For example if your goal is to only 

detect sequences of high similarity to infer homology within a species, the pam30, 

blosum90, and pam70 matrices would provide the best results.  This table was adapted from 

results obtained by David Wheeler (Wheeler 2003). ............................................................. 11 

Table 1.4.  RefSeq Categories ...................................................................................................... 15 

Table 1.5. Suggested scoring parameters for nucleotide-nucleotide Blast searches. When 

performing a nucleotide-nucleotide Blast search, these general guidelines may be used to 

choose a match/mismatch score, based upon the degree of conservation you expect to see in 

your results.  If you are searching for sequences with a high degree of similarity (i.e. within 

a species), the default parameters of (match +1, mismatch -2) would be appropriate.  If, 

however, you are searching for sequences between very distant organisms (a worm and a 

mouse, for example), a smaller ratio would be more appropriate (for example, -1).  

Information provided by NCBI . ........................................................................................... 20 

Table 2.1: Publicly available structural alignment programs ....................................................... 50 

Table 2.2: Combined results of ungapped analysis ...................................................................... 52 

Table 2.3: Combined results of gapped analysis .......................................................................... 52 



vii 

List of Figures 

Figure 1.1  Growth of GenBank and DDBJ genetic databases over the past ten years.  The 

INSDC databases have grown, over the past 10 years, approximately 168 fold in total 

number of base pairs.  While in the past the number of entries in INSDC databases doubled 

approximately every two years, a simple second-order polynomial regression (R2=0.9995) of 

the data over the past ten years indicates that the next redoubling will take a little over four 

years.  This graph does not include HTG data. ........................................................................ 3 

Figure 1.2  Smith-Waterman local alignment example.  A shows an empty matrix, initialized for 

a Smith-Waterman alignment.  B and c are alignments calculated using the specified scoring 

parameters.  The alignment produced in b is drastically different from that in c, though they 

only differ slightly in their scoring parameters, one using a match score of 1 and the other 2.

 ................................................................................................................................................. 7 

Figure 1.3 PAM250 and BLOSUM45 substitution matrices. ...................................................... 10 

Figure 1.4. NCBI Nucleotide BLAST Interface. ........................................................................... 14 

Figure 1.5. Organism Selection when Searching a Multi-organism Database. ........................... 17 

Figure 1.6. NCBI Nucleotide BLAST Algorithm parameters. ...................................................... 18 

Figure 1.7. Graphical Distribution of top 100 BLAST hits. .......................................................... 25 

Figure 1.8. Last 16 sequences producing significant alignments from a mouse p53 gene 

Nucleotide BLAST search.  Nineteen of the last twenty-six reported sequences are 

pseudogenes. .......................................................................................................................... 26 

Figure 1.9. BlastX Results showing E-values of 0.079 for the top ten hits, all of which are 

nucleocapsid proteins or nucleoproteins. ............................................................................... 29 



viii 

Figure 1.10. Save Search Strategies.  The new My NCBI interface allows users to save search 

strategies to assist with repetitive search tasks. ..................................................................... 32 

Figure 2.1.  A flowchart outlining the Property Profiling Method. ............................................. 40 

Figure 2.2.  This figure illustrates the creation of property regions for a single amino acid 

physiochemical property index.  Property regions are created by first finding a seed site 

where a property value is ultraconserved and then expanding the region until the average 

weighted variance of the property value being studied surpasses a given threshold.  Regions 

may contain more than one seed site such as seed sites 2 and 3 which are both in the second 

property region. ...................................................................................................................... 42 

Figure 2.3:  Property profiles are created from a set of property regions (a) by first linking 

nearby property regions within a distance t of one another (b), selecting ultraconserved 

regions to be the root nodes (highlighted in yellow), and removing sibling (beige lines) and 

foster parent (teal line) links (c).  What remains is a set of rooted trees that can then be used 

in a fast top-down search. ...................................................................................................... 44 

Figure 2.4:  A comparison of the ROC (receiver operating characteristic) score distributions for 

three remote homology detection programs run on our dataset of 240 families. .................. 48 

Figure 2.5: Property values from the combined results of the ungapped analysis.  Columns 1–16 

refer to the 16 properties in Table 2.2. ................................................................................... 49 

 



1 

Chapter 1 Similarity searching using BLAST 

Kit J. Menlove, Mark Clement, and Keith A. Crandall 
 

Published in Bioinformatics for DNA Sequence Analysis (Menlove, Clement et al. 2009) 
 

1. Introduction 

1.1. An introduction to nucleotide databases 

Perhaps THE central goal of genetics is to articulate the associations of phenotypes of interest 

with their underlying genetic components and then to understand the relationship between 

genetic variation and variation in the phenotype.  This goal has been buoyed by the tremendous 

increase in our ability to obtain molecular genetic data, both across populations and species.  As 

methods of gathering information about various aspects of biological macromolecules arose, 

biological information became abundant and the need to consolidate and make this information 

accessible became increasingly apparent.  In the early 1960’s, Margaret Dayhoff and colleagues 

at the National Biomedical Research Foundation (NBRF) began collecting information on 

protein sequences and structure into a volume entitled Atlas of Protein Sequence and Structure 

(Dayhoff, Eck et al. 1965).  Since that beginning, databases have been an important and essential 

part of biological and biochemical research.  By 1972, the size of the Atlas was becoming 

unwieldy, so Dr. Dayhoff, a pioneer of bioinformatics, developed a database infrastructure into 

which this information could be funneled.  Though nucleotide information was included in the 

Atlas as early as 1966 (Hersh 1967), its bulk was comprised of amino acid sequences with 

structural annotation.   
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1.2. International Nucleotide Sequence Database Collaboration: DDBJ, EMBL, 

and GenBank 

It was not until 1982 that databases were developed with the express purpose of storing 

nucleotide sequences by the European Molecular Biology Laboratory (EMBL: 

http://www.embl.org/) in Europe and the National Institutes of Health (NIH – NCBI: 

http://www.ncbi.nlm.nih.gov/) in North America.  Japan followed suit with the creation of their 

DNA Databank (DDBJ: http://www.ddbj.nig.ac.jp/) in 1986.  A sizeable amount of sharing 

naturally occurred between these three databases and the Genome Sequence Database, also in 

North America, a condition that led to their coalition in 1988 under the title International 

Nucleotide Sequence Database Collaboration (INSDC).  They still remain very distinct entities, 

but in the 1988 meeting, established policies to govern the formatting of and stewardship over 

the sequences each receives.  Their current policies include unrestricted access and use of all data 

records, proper citation of data originators, and the responsibilities of submitters to verify the 

validity of the data and their right to submit it.  The INSDC currently contains approximately 80 

billion base pairs (not including whole-genome shotgun sequences) and nearly 80 million 

sequence entries.  Including shotgun sequences (HTGS), it passed the 100 gigabase mark on 

August 22, 2005 and contains approximately 200 billion base pairs as of September 2007.  For 

more than ten years, the amount of data in these databases doubled approximately every 18 

months.  This expansion has begun to level off as our capacity for high-throughput sequencing is 

gradually reaching a maximum.  The next redoubling of the data is expected to occur in 

approximately 4 years (Fig. 1.1). 
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Figure 1.1  Growth of GenBank and DDBJ genetic databases over the past ten years.  The INSDC 

databases have grown, over the past 10 years, approximately 168 fold in total number of base pairs.  

While in the past the number of entries in INSDC databases doubled approximately every two years, a 

simple second-order polynomial regression (R2=0.9995) of the data over the past ten years indicates that 

the next redoubling will take a little over four years.  This graph does not include HTG data. 

 

1.3. Other nucleotide sequence databases 

Since the first nucleotide databases were initiated by EMBL and NIH (now held by NCBI), many 

DNA databases have been formed to cater to the needs of specialized research groups.  The 2007 

Database issue of Nucleic Acid Research contained 109 nucleotide sequence databases that met 

the standards to be included in its listing (Galperin 2007).  These databases are typically 

developed to include ancillary data associated with the genetic data, such as patient or specimen 

information, including clinical information, images, downstream analyses, etc.  Many do not 

meet the standards of  “quality, quantity and originality of data as well as the quality of the web 

interface” that are required to be considered for the issue (Batemen 2007).  Even more are 

privately held to permit access of costly data to a select few.  All in all, the number of DNA 
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databases is astounding and steadily increasing as we find new, powerful ways to gather, store, 

and utilize the pieces that comprise the puzzle of life. 

 

2. Program Usage 

2.1. Database file formats 

One of the largest sources of diversity among DNA databases lies in their file formats.  While 

great efforts have been made to standardize file formats, the various types and purposes of 

sequence information and annotation entreat customized file types.   

 

2.1.1. FASTA format 

First used with Pearson and Lipman’s FASTA program for sequence comparison (Pearson and 

Lipman 1988), the FASTA file format is the simplest of the widely-used formats available 

through the INSDC.  It is composed of a definition or description line followed by the sequence.  

The definition line begins with a greater-than sign (>) and marks the beginning of each new 

entry.   The information following the greater-than symbol varies according to its source.  

Generally, an identifier follows (Table 1.1), after which optional description words may be  

 

Database name Identifier syntax 
GenBank gb|accession.version 
EMBL emb|accession.version 
DDBJ dbj|accession.version 
NCBI RefSeq ref|accession.version 
PDB pdb|entry|chain 
Patents pat|country|number 
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NBRF PIR pir||entry 
SWISS-PROT sp|accession|entry 
Protein Research Foundation prf|name 
GenInfo Backbone Id bbs|number 
General database identifier gnl|database|identifier 
Local Sequence identifier lcl|identifier 

Table 1.1.  FASTA File Sequence Identifiers.  Information from the NCBI Handbook (Madden 2002). 

 

included.  If the sequence is retrieved through NCBI’s databases, a GI number precedes the 

identifier.  Though it is recommended that the definition line be no greater than 80 characters, 

various types and levels of information are often included.  The definition line is followed by the 

DNA sequence itself, in single or multi-line format.  Nucleotides are represented by their 

standard IUB/IUPAC codes, including ambiguity codes (Table 1.2). 

A adenosine M A or C (amino) V A, C or G 
C cytidine K G or T (keto) H A, C or T 
G guanine R A or G (purine) D A, G or T 
T thymidine Y C or T (pyrimidine) B C, G or T 
U uridine S A or T (strong) – gap of indeterminate length 
  W C or G (weak) N A, C, G or T (any or unknown) 

Table 1.2.  IUB/IUPAC nucleotide and ambiguity codes. 

 

2.1.2. Flat file format 

GenBank, EMBL, and DDBJ each have their own flat file format, but contain basically the same 

information.  They are all based upon the Feature Table, which can be found at 

http://www.ncbi.nlm.nih.gov/collab/FT.  For references to these file types, see (León and Markel 

2003).  

 

http://www.ncbi.nlm.nih.gov/collab/FT
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2.1.3. Accession numbers, version numbers, locus names, database identifiers, etc. 

The standard for identifying a nucleotide sequence record is by an accession.version system 

where the accession number is an identifier of two letters followed by six digits and the version 

is an incremental number indicating the number of changes that have been made to the sequence 

since it was first submitted.  Locus names (see Note 1) are older, less standardized identifiers 

whose original purpose was to group entries with similar sequences.  The original locus format 

was intended to hold information about the organism and other common group characteristics 

(such as gene product).  That 10-character format is no longer able to hold such information for 

the large number and variety of sequences now available, so the locus has become yet another 

unique identifier often set to be the same value as the accession number.  Database identifiers are 

simply two or three-character strings that serve to indicate which database originally received 

and stored the information.  The database identifier is the first value listed in the FASTA 

identifier syntax (Table 1.1). 

 

When a sequence is first submitted to GenBank, it is submitted with several defined features 

associated with the sequence.  Some include CDS (coding sequence), RBS (ribosome binding 

site), rep_origin (origin of replication), and tRNA (mature transfer RNA) information.  A 

translation of protein coding nucleotide sequences into amino acids is provided as part of the 

features section.  Likewise, labeling of different open reading frames, introns, etc. are all part of 

the table of features.  A list of features and their descriptions, formats, and conventions that were 

agreed upon by INSDC can be found in the Feature Table (see section 2.1.2). 
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2.2. Smith-Waterman and Dynamic Programming 

In 1970, Needleman and Wunsch adapted the idea of dynamic programming to the difficult 

problem of global sequence alignment (Needleman and Wunsch 1970).  In 1981, Smith and 

Waterman adapted this algorithm to local alignments (Smith and Waterman 1981).  A global 

alignment attempts to align two sequences throughout their entire length, whereas a local 

alignment aligns regions of two sequences where high similarity is observed.  Both methods 

involve initializing, scoring, and tracing a matrix where the rows and columns correspond to the 

bases or residues of the two sequences being aligned (Fig. 1.2).  In the local alignment case, the 

first row and first column are filled with zeroes.  The remaining cells are filled with a metric 

value recursively derived from neighboring values:  

  











+
+
+

scoreatch match/mism neighborleft -top
penatly gap neighbor  top
penalty gap neighbor left 

0

max  

 

 

Figure 1.2  Smith-Waterman local alignment example.  A shows an empty matrix, initialized for a Smith-

Waterman alignment.  B and c are alignments calculated using the specified scoring parameters.  The 
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alignment produced in b is drastically different from that in c, though they only differ slightly in their 

scoring parameters, one using a match score of 1 and the other 2. 

 

If the current cell corresponds to a match (identical bases), the match score is added to the value 

from the diagonal neighbor, otherwise the mismatch score is used.  The gap penalty and 

mismatch scores are generally zero or a small, negative number while the match score is a 

positive number larger in magnitude.  This method is used recursively, starting from the upper 

left corner of the matrix and proceeding to the lower right corner.  Figs. 1.2b and 1.2c show 

matrices from two different sets of gap and match scores. 

 

To find a local alignment, one simply finds the largest number in the matrix and traces a path 

back until a zero is reached, each step moving to a cell that was responsible for the current cell’s 

value.  While this method is robust and is guaranteed to give the best alignment(s) for a given set 

of scores and penalties, it is important to note that often multiple paths and therefore multiple 

alignments are possible for any given matrix when these parameters are used.  As an example, 

Figs. 2b and 2c only differ slightly in their gap and match scores, but produce very different 

alignments.  In addition, the set of scores and penalties used dramatically affect the alignment 

and finding the optimal set is neither trivial nor deterministic.  Weight matrices for protein-

coding sequences were developed in the late 1970s in an attempt to overcome these challenges. 
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2.3. Weighting/Models 

2.3.1. PAM Matrices 

In order to increase the specificity of alignment algorithms and provide a means to evaluate their 

statistical significance, it was necessary to implement a meaningful scoring scheme for 

nucleotide and amino acid substitutions.  This was especially true when dealing with protein (or 

protein-coding) sequences.  In 1978, Dayhoff et al. developed the first scoring or weighting 

matrices created from substitutions which have been observed during evolutionary history 

(Dayhoff, Schwartz et al. 1978).  These substitutions, since they have been allowed or accepted 

by natural selection, are called accepted point mutations (PAM).  For Dayhoff’s PAM matrices, 

groups of proteins with 85% or more sequence similarity were analyzed and their 1571 

substitutions were cataloged.  Each cell of a PAM matrix corresponds to the frequency in 

substitutions per 100 residues between two given amino acids.  This frequency is referred to as 

one PAM unit.  Back in the 1970’s, when they were created, however, there was a limited 

number and variety of protein sequences available, so they are biased towards small, globular 

proteins.  It is also important to note that each PAM matrix corresponds to a specific 

evolutionary distance and that each is simply an extrapolation of the original.  For example, a 

PAM250 (Fig. 1.3) matrix is constructed by multiplying the PAM1 matrix by itself 250 times and 

is viewed as a typical scoring matrix for proteins that have been separated by 250 million years 

of evolution. 
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Figure 1.3 PAM250 and BLOSUM45 substitution matrices. 

 

2.3.2. BLOSUM Matrices 

To overcome some of the drawbacks of PAM matrices, Henikoff and Henikoff developed the 

BLOSUM matrices in 1992 (Henikoff and Henikoff 1992).  These matrices were based on the 

BLOCKS database, which organizes proteins into blocks, where each block, defined by an 

alignment of motifs, corresponds to a family.  Whereas the original PAM matrix was calculated 

with proteins with at least 85% identity, BLOSUM matrices are each calculated separately using 

conserved motifs at or below a specific evolutionary distance.  This diversity of matrices coupled 

with being based on larger datasets makes the BLOSUM matrices more robust at detecting 

similarity at greater evolutionary distances and more accurate, in many cases, at performing local 

similarity searches (Baxevanis and Ouellette 2005). 

 

2.3.3. Choosing a Matrix 

When choosing a matrix, it is important to consider the alternatives.  Do not simply choose the 

default setting without some initial consideration.  In general, finding similarity at increasing 
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divergence corresponds to increasing PAM matrices (PAM1, PAM40, PAM120, etc.) and 

decreasing BLOSUM matrices (BLOSUM90, BLOSUM80, BLOSUM62, etc.) (Wheeler 2003).  PAM 

matrices are strong at detecting high similarity due to their use of evolutionary information.  

However, as evolutionary distance increases, BLOSUM matrices are more sensitive and accurate 

than their PAM counterparts.  Table 1.3 includes a list of suggested uses. 

Alignment size Best at detecting: % Similarity PAM BLOSUM 
Short Similarity within a species 75–90 PAM30 BLOSUM95 

" Similarity within a genus 60–75 PAM70 BLOSUM85 
Medium Similarity within a family 50–60 PAM120 BLOSUM80 

" The largest range of similarity 40–50 PAM160 BLOSUM62 
Long Similarity within a class 30–40 PAM250 BLOSUM45 

" Similarity within the twilight zone 20–30  BLOSUM30 
Table 1.3.  Suggested uses for common substitution matrices. The matrices highlighted in bold are 

available through NCBI’s Blast web interface.  Blosum62 has been shown to provide the best results in 

Blast searches overall due to its ability to detect large ranges of similarity.  Nevertheless, the other 

matrices have their strengths.  For example if your goal is to only detect sequences of high similarity to 

infer homology within a species, the pam30, blosum90, and pam70 matrices would provide the best 

results.  This table was adapted from results obtained by David Wheeler (Wheeler 2003). 

 

2.4. Blast Programs 

Nucleotide-nucleotide searches are beneficial because no information is lost in the alignment.  

When a codon is translated from nucleotides to amino acid, approximately sixty-nine percent of 

the complexity is lost (64 possible nucleotide combinations mapped to 20 amino acids).  In 

contrast, however, the true physical relationship between two coding sequences is best captured 

in the translated view.  Matrices that take into account physical properties, such as PAM and 

BLOSUM, can be used to add power to the search.  Additionally, in a nucleotide search, there 
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are only four possible character states compared to 20 in an amino acid search.  Thus the 

probability of a match due to chance versus a match due to common ancestry (identify in state 

versus identical by descent) is high. 

 

The Basic Local Alignment and Search Tools (BLAST) are the most widely used and among the 

most accurate in detecting sequence similarity (Altschul, Gish et al. 1990) (see Note 2).  The 

standard BLAST programs are Nucleotide BLAST (blastn), Protein BLAST (blastp), blastx, tblastn, 

and tblastx.  Others have also been developed to meet specific needs.  When choosing a BLAST 

program, it is important to choose the correct one for your question of interest.  Some of the most 

common mistakes in similarity searching come from misunderstandings of these different 

applications. 

nucleotide blast: Compares a nucleotide query against a nucleotide sequence database 

protein blast: Compares an protein query against a protein sequence database 

blastx: Compares a nucleotide query translated in all 6 reading frames against a protein 

database 

tblastn: Compares a protein query against a nucleotide sequence database dynamically 

translated in all 6 reading frames 

tblastx: Compares a nucleotide query in all 6 reading frames against a nucleotide sequence 

database in all six reading frames 

The BLAST algorithm is an heuristic program, one that is not guaranteed to return the best result.  

It is, however, quite accurate.  BLAST works by first making a look-up table of all the “words” 

and “neighboring words” of the query sequence.  Words are short subsequences of length W and 
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neighboring words are words that are highly accepted in the scoring matrix sense, determined by 

a threshold T. The database is then scanned for the words and neighboring words.  Once a match 

is found, extensions with and without gaps are initiated there both upstream and downstream.  

The extension continues, adding gap existence (initiation) and extension penalties, and match 

and mismatch scores as appropriate as in the Smith-Waterman algorithm until a score threshold S 

is reached.  Reaching this mark flags the sequence for output.  The extension then continues until 

the score drops by a value X from the maximum, at which point extension stops and the 

alignment is trimmed back to the point where the maximum score was hit.  Understanding this 

algorithm is important for users if they are to select optimal parameters for BLAST.  The 

interaction between the parameters T, W, S, X, and the scoring matrix allows the user to find a 

balance between sensitivity and specificity, alter the running time, and tweak the accuracy of the 

algorithm.  The interactions among these variables will be discussed in section 2.8. 

 

2.5. Query Sequence 

Query sequences may be entered by uploading a file or entering one manually in the text box 

provided (Fig. 1.4).  The upload option accepts files containing a single sequence, multiple 

sequences in FASTA format, or a list of valid sequence identifiers (accession numbers, GI 

numbers, etc.).  In contrast to previous versions of BLAST on the NCBI website, the current 

version allows the user to specify a descriptive job title.  This allows the user to track any 

adjustments or versions of a search as well as its purpose and query information.  This is 

especially important when sequence identifiers are not included in the uploaded file. 
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Figure 1.4. NCBI Nucleotide BLAST Interface. 

 

2.6. Search Set 

2.6.1. Databases 

When choosing a database, it is important to understand their purpose, content, and limitations.  

The list of nucleotide databases is divided into Genomic plus Transcript and Other Databases 

sections.  Some of the databases, composed of reference sequences, come from the RefSeq 

database, a highly-curated, all-inclusive, non-redundant set of INSDC (EMBL + GenBank + 

DDBJ) DNA, mRNA, and protein entries.  RefSeq sequences have accession numbers of the 

form AA_###### where AA is one of the following combination of letters (Table 1.4) and 

###### is a unique number representing the sequence. 
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Experimentally Determined 
and Curated 

Genome annotation 
(computational predictions from DNA) 

NC Complete genomic molecules   
NG Incomplete genomic region   
NM mRNA XM Model mRNA 
NR RNA (non-coding)   
NP protein XP Model protein 

Table 1.4.  RefSeq Categories 

 

A description of the nucleotide databases is included below.  A list of protein databases 

accessible through BLAST’s web interface can be found at 

http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml. 

Human genomic plus transcript: Contains all human genomic and RNA sequences. 

Mouse genomic plus transcript: Contains all mouse genomic and RNA sequences. 

Nucleotide collection (nr/nt): Contains INSDC + RefSeq nucleotides + PDB sequences, not 

including EST, STS, GSS, or unfinished HGT sequences.  The Nucleotide collection is the most 

comprehensive set of nucleotide sequences available through BLAST. 

Reference mRNA sequences (refseq_rna): Contains the non-redundant RefSeq mRNA 

sequences.   

Reference genomic sequences (refseq_genomic): Contains the non-redundant RefSeq genomic 

sequences. 

Expressed sequence tags (est): Contains short, single reads from mRNA sequencing (via 

cDNA).  These cDNA sequences represent the mRNA in a cell at a particular moment in a 

particular tissue. 

http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
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Non-human, non-mouse ESTs (est_others): The previous database with human and mouse 

sequences removed. 

Genomic survey sequences (gss): Contains random genomic sequences obtained from single-

pass genome surveys, cosmids, BACs, YACs, and other survey methods.  Their quality varies. 

High-throughput genomic sequences (HTGS): Contains sequences obtained from high-

throughput genome centers.  Sequences in this database contain a phase number, 0 being the 

initial phase and 3 being the finished phase.  Once finished, the sequences move to the 

appropriate division in their respective database. 

Patent sequences (pat): Contains sequences from the patent offices at each of the INSDC 

organizations. 

Protein data bank (pdb): The nucleotide sequences from the Brookhaven Protein Data Bank 

managed by the Research Collaboratory for Structural Bioinformatics (http://www.rcsb.org/pdb). 

Human ALU repeat elements (alu_repeats): Contains a set of ALU repeat elements that can be 

used to mask repeat elements from query sequences.  ALU sequences are regions subject to 

cleavage by Alu restriction endonucleases, around 300 base pairs long, and estimated to 

constitute about 10% of the human genome (Roy-Engel, Carroll et al. 2001). 

Sequence tagged sites (dbsts): A collection of unique sequences used in PCR and genome 

mapping that identify a particular region of a genome. 

Whole-genome shotgun reads (wgs): Contain large-scale shotgun sequences, mostly 

unassembled and non-annotated. 

http://www.rcsb.org/pdb
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Environmental samples (env_nt): Contains sets of whole-genome shotgun reads from many 

sampled organisms, each set from a particular location of interest.  These sets allow researchers 

to look into the genetic diversity existing at a particular location and environment. 

 

2.6.2. Organism 

The organism box allows the user to specify a particular organism to search.  It automatically 

suggests organisms when you begin typing.  This option is not available when Genomic plus 

Transcript databases are selected (Fig. 1.5). 

 

 

Figure 1.5. Organism Selection when Searching a Multi-organism Database. 

 

2.6.3. Entrez Queries 

Entrez queries provide a way to limit your search to a specific type of organism or molecule.  It 

is an efficient way to filter unwanted results by excluding organisms or defining sequence length 

criteria.  In addition, Entrez queries allow the user to find sequences submitted by a particular 

author, from a particular journal, with a particular property or feature key, or submitted or 

modified within a specific date range.  For help with Entrez queries, see the Entrez Help 

document at http://www.ncbi.nlm.nih.gov/entrez/query/static/help/helpdoc.html. 

http://www.ncbi.nlm.nih.gov/entrez/query/static/help/helpdoc.html
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2.7. Blast Search Parameters 

In addition to entering a query sequence, choosing a search set, and selecting a program, several 

additional parameters are available which allow you to fine-tune your search to your needs.  

These parameters are available by clicking the “Algorithm parameters” link at the bottom of the 

BLAST page (Fig. 1.6) (see Notes 3 and 4). 

 

 

Figure 1.6. NCBI Nucleotide BLAST Algorithm parameters. 

 

2.7.1. Max Target Sequences 

The maximum target sequences parameter allows you to select the number of sequences you 

would like displayed in your results.  Lower numbers do not reduce the search time, but do 

reduce the time to send the results back.  This is generally only an issue over a slow connection. 
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2.7.2. Short Queries 

When using short queries (of length 30 or less), the parameters must be adjusted or you will not 

receive statistically significant results.  Checking the “short queries” box automatically adjusts 

the parameters to return valid responses for a short query sequence. 

 

2.7.3. Expect Threshold 

The expect threshold limits the results displayed to those with an E-value lower than it.  This 

value corresponds to the number of sequence matches that are expected to be found merely by 

chance. 

 

2.7.4. Word Size 

The word size, W, as discussed earlier determines the length of the words and neighboring words 

used as initial search queries.  Increasing the word size generally results in fewer extension 

initializations, increasing the speed of the BLAST search but decreasing its sensitivity. 

 

2.7.5. Scoring Parameters 

The scoring parameters of a nucleotide search are the match and mismatch scores and gap costs.  

In protein searches, the match and mismatch scores are indicated by a scoring matrix (see section 

2.3).  A limited set of suggested match and mismatch scores are available from the dropdown 
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menu on NCBI’s BLAST search form.  Increasing the ratio in the following fashion (match, 

mismatch): (1,-1)  (4,-5)  (2,-3)  (1,-2)  (1,-3)  (1,-4) prevents mismatched 

nucleotides from aligning, increasing the number of gaps, but decreasing mismatches.  The 

greater divergence you expect in sequences you are looking for, the larger the ratio you should 

choose.  NCBI has provided the guidelines found in Table 1.5. Additionally, decreasing the gap 

existence and extension penalties will increase gap incidence. 

Match/Mismatch Ratio % Similarity 
-0.33 (1/-3) 99% 
-0.5 (1/-2) 95% 
-1 (1/-1) 75% 

Table 1.5. Suggested scoring parameters for nucleotide-nucleotide Blast searches. When performing a 

nucleotide-nucleotide Blast search, these general guidelines may be used to choose a match/mismatch 

score, based upon the degree of conservation you expect to see in your results.  If you are searching for 

sequences with a high degree of similarity (i.e. within a species), the default parameters of (match +1, 

mismatch -2) would be appropriate.  If, however, you are searching for sequences between very distant 

organisms (a worm and a mouse, for example), a smaller ratio would be more appropriate (for example, -

1).  Information provided by NCBI . 

 

2.7.6. Filters 

The low complexity regions filter removes regions of the sequence with low complexity, 

preventing those segments from producing statistically significant but uninformative results.  The 

DUST program by Tatusov and Lipman (unpublished) is used for nucleotide BLAST searches.  

Often, when a search takes much longer than expected, the query contains a low-complexity 

region that is being matched with many similar but unrelated sequences.  It is important to note, 

however, that turning this filter on may remove some interesting and informative matches from 
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the results.  In nucleotide searches, it is also possible to remove species-specific repeats by 

checking the “Species-specific repeats for:” box and selecting the appropriate species.  This 

prevents repeats that are common in a particular species from producing false-positives with 

other parts of its own or closely related genomes. 

 

2.7.7. Masks 

The “Mask for lookup table only” option allows the user to mask the low-complexity regions 

(regions of biased composition including homopolymeric runs, short-period repeats, etc.) during 

the seeding stage, where words and neighboring words are scanned, but unmask them during the 

extension phases.  This prevents the E-values from being affected in biologically interesting 

results while preventing regions of low-complexity from slowing the search down and 

introducing uninteresting results. 

 

The “Mask lower case letters” option gives the user the option to annotate his or her sequence by 

using lower case letters where masking is desired. 

 

2.8. Interpreting the Results 

By default, BLAST results contain five basic sections:  a summary of your input (query and 

parameters), a graphical overview of the top results, a table of sequences producing significant 

alignments, the best 100 alignments, and result statistics.  The number of hits shown in the 

graphical overview as well as the number of alignments, among other options, may be changed 
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by clicking “Reformat these results” at the top of the results page or by clicking “Formatting 

options” on the Formatting Results page (the page that appears after you click BLAST and 

before the results appear). 

 

In the third section, the results table contains eight columns: accession, description, max score, 

total score, query coverage, E value, max ident, and links.  The Accession number provides a 

link to detailed information about the sequence.  The description provides information about the 

species and the kind of sample the hit was generated from.  The max score provides a metric for 

how good the best local alignment is.  The total score indicates how similar the sequence is to 

the query, accounting for all local alignments between the two sequences.  If the max score is 

greater than the total score, then more than one local alignment was found between the two 

sequences.  Higher scores are correlated with more similar sequences.  Both of these scores, 

reported in bits, are calculated from a formula that takes into account matches (or similar 

residues, if doing a protein search) and mismatch penalties along with gap insertion penalties.  

Bit scores are normalized so that they can be directly compared even though the alignments 

between different sequences may be of different lengths.  The expectation value or E-value 

provides an estimate of how likely it is that this alignment occurred by random chance.  An E-

value of 2e-02 indicates that similarity found in the alignment has a 2 in 100 chance of occurring 

by chance.  The lower the E-value, the more significant the score.  An appropriate cutoff E-value 

depends on the users goals.  The max identity field shows the percentage of the query sequence 

that was identical to the database hit.  The links field provides links to UniGene, the Gene 

Expression Omnibus, Entrez Gene, Entrez’s Related Structures (for protein sequences), and the 

Map Viewer (for genomic sequences). 
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2.9. Future of Similarity Searching 

Since both PAM and BLOSUM matrices are experimentally derived from a limited set of 

sequences in a database that was available at the time they were created, they will almost 

certainly not provide optimal values for searches with new sequence families.  Current research 

is being performed to determine which chemical properties are changing in a sequence in order 

to provide a magnitude of change that is independent of scoring matrices. 

 

Current techniques to find promoter regions are severely lacking in accuracy (Tompa, Li et al. 

2005).  Techniques will arise in the future that may improve current methods by using BLAST-

like algorithms to assess the similarity of a sequence to known promoter elements, thus helping 

to identify it as a promoter. 

 

3. Examples 

This section will provide three examples of common BLAST uses: a nucleotide-nucleotide BLAST, 

a position specific iterated BLAST, and a BLASTX. 

 

3.1. Nucleotide-Nucleotide Blast for allele finding 

Here we present an example of using BLAST to search for the known alleles of a given nucleotide 

sequence.  This approach can be used to answer the question: What are the known variants of my 

gene of interest (within its species)?  Our example will be to find all known variants of a Tp53 
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nucleotide sequence (accession number AF151353) from a mouse.  While this sequence does 

code for a protein, non-coding sequences would work just as well using this approach. 

 

We will start by going to the BLAST homepage at http://www.ncbi.nlm.nih.gov/BLAST/ and 

selecting nucleotide blast.  In the “Enter Query Sequence” box, we type the accession number: 

AF151353.  You will notice that the “Job Title” box automatically fills in a title for you 

“AF151353:Mus musculus tumor suppressor p53...”.  If we were to paste a sequence instead of 

an accession number or gi, we would want to enter a job title to help us keep track of our results.  

Under “Choose Search Set”, we select the “Nucleotide collection (nr/nt)” database since it is the 

most comprehensive database (remember that nr is no longer non-redundant).   For a complete 

search, we should also perform a search on the “Expressed sequence tags (est)” database.  In the 

Organism box, we chose type “mouse” and select “mouse (taxid:10090)”, which corresponds to 

Mus musculus, the house mouse.  Since we are searching for alleles, we select “Highly similar 

sequences (megablast)” in the “Program Selection” box.   

 

Next, let’s change the algorithm parameters.  Click “Algorithm parameters” to display them.  

Since the sequence is 1409 base pairs in length, we deselect the “Automatically adjust 

parameters for short input sequences” box.  Since we expect that the p53 protein is a well 

conserved protein (due to its critical function), we set the expect threshold to a low value.  Let’s 

choose 1e-8.  For a word size, we are not concerned about speed in this case, so the number of 

extensions performed is not a concern.  Let’s select a word size of 20 to make sure we don’t miss 

any matches (although in this case a larger word size shouldn’t make much difference).  As for 

http://www.ncbi.nlm.nih.gov/BLAST/
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the scoring parameters, we choose the largest ratio, corresponding to the greatest identity: “1,-4”.  

Since this is a protein-coding sequence, we don’t expect repeats to be a factor, so we leave the 

Filters and Masking section at the default settings. 

 

The results indicate that 108 hits were found on the query sequence.  Looking at the graphical 

alignment (Fig. 1.7), we notice that only about 2/3 of them span a good portion of the query.  

When we scroll down to the gene descriptions, most of the last fourth are pseudogenes (partial 

sequence) (Fig. 1.8), which may offer insight into different alleles and their corresponding 

phenotypes, but which were not sequenced experimentally.  Performing a search on the EST 

database with the same parameters results in 101 additional hits. 

 

 

Figure 1.7. Graphical Distribution of top 100 BLAST hits. 
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Figure 1.8. Last 16 sequences producing significant alignments from a mouse p53 gene Nucleotide 

BLAST search.  Nineteen of the last twenty-six reported sequences are pseudogenes. 

 

3.2. PSI-Blast for distant homology searching 

When searching for distantly related sequences, two BLAST options are available.  One is the 

standard nucleotide-nucleotide BLAST with discontiguous BLAST, a method very similar to Ma et 

al’s work (Ma, Tromp et al. 2002), selected as the program.  The other is to use a more sensitive 

approach, PSI-BLAST, which performs an iterative search on a protein sequence query.  Though 

the second approach will only work if you are dealing with protein-coding sequences, it is more 

sensitive and accurate than the first. 

 

In this example, we will search for relatives of the cytocrome b gene of the Durango night lizard 

(Xantusia extorris).  We start by selecting protein blast from the BLAST home page and entering 

the accession number, ABY48155, into the query box. If your sequence is not available as a 

protein sequence, you will need to translate it.  This can easily be done using a program such as 

MEGA (Tamura, Dudley et al. 2007), available at http://www.megasoftware.net, or an online 

http://www.megasoftware.net/
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tool such as the JustBio Translator (http://www.justbio.com/translator/) or the ExPASy Translate 

Tool (http://www.expasy.org/tools/dna.html). 

 

Once again, the “Job Title” box is filled with “ABY48155:cytochrome b [Xantusia extorris]”.  

We will choose the “Reference proteins (refseq_protein)” database, which is more highly curated 

and non-redundant than (per gene) than the default nr database.  We do not specify an organism 

because we want results from any and all related organisms.  For the algorithm, we select PSI-

BLAST due to its ability to detect more distantly related sequences.  We hope to include as many 

sequences as possible in our iterations, so we choose 1000 as the max target sequences.  We can, 

once again, remove the “Automatically adjust parameters for short input sequences” check since 

our sequence is sufficiently long (380 amino acids).  Since we wish all related sequences, we 

keep the expect threshold at its default of 10.  While decreasing it may remove false positives, it 

may also prevent some significant results from being returned.  Since we do not have a particular 

scope in mind (within the genus or family, for example), we will use the BLOSUM62 matrix due 

to its ability to detect homology over large ranges of similarity. 

 

The first iteration results in 1000 hits on the query sequence, all of which cover at least 93% of 

the query sequence and have an E-value of 10-126 or less.  We leave all of the sequences selected 

and press the “Run PSI-Blast iteration 2” button.  The second iteration likewise returns 1000 hits, 

but this time they have E-values less than 10-99 and cover at least 65% of the query sequence (all 

but 6 cover 90% or more).  We uncheck the last hit, Bi4p [Saccharomyces cerevisiae], since we 

are unsure of its homology, and iterate one last time.  

http://www.justbio.com/translator/
http://www.expasy.org/tools/dna.html
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At this point, it would be helpful to view the taxonomy report of the results.  You can do so by 

clicking “Taxonomy Reports” near the bottom of the first section of the BLAST report.  You will 

notice that we have a good selection of  organisms, ranging from bony fishes to proteobacteria.  

While this list would need to be narrowed to produce a good taxonomy, it would be a good 

starting point if you wished to perform a broad phylogenetic reconstruction.  To perform a search 

of more closely related sequences, you would likely perform a standard blastp (protein-protein 

BLAST) instead of a PSI-BLAST and use the PAM 70 or PAM 30 matrix. 

 

3.3. BlastX for EST identification 

What if you have a nucleotide sequence such as an expressed sequence tag and wish to know if it 

codes for a known protein?  You can search the nucleotide database or take the more direct 

approach of BLASTX.  BLASTX allows you to search the protein database using a nucleotide 

query which it first translates into all six reading frames.  In this example, we will perform a 

blastx on the following sequence:  TCTCTATAGTTATGGTGTTCTGAATCAGCCTTCCCTCATA 

 

Since the sequence is only 40 base pairs long, we need to be careful with our parameters.  We 

start by selecting blastx from the BLAST homepage.  We then enter the sequence into the query 

box and enter a relevant job title, such as “EST BlastX Search 1”.  We will search the “Non-

redundant protein sequences (nr)” database since it has the largest number of annotated 

nucleotide sequences.  Under “Algorithm parameters”, we need to choose an appropriate expect 

threshold and matrix.  If we choose too low of an expect threshold, we might not find anything.  
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Likewise, if we choose the wrong matrix we may not obtain significant results due to the short 

length of our sequence.  We will choose 10 (the default) as our expect threshold and PAM70 as 

our matrix, since corresponds to finding similarity at or below the family/genus level.  Since we 

do not know what our sequence is, we want to filter regions of low complexity to ensure that if 

our sequence contains such regions, they will not return deceptively significant results. 

 

Our search produces a large number (more than 1000) results with an E-value of 0.079 (Fig. 1.9).  

If we were to use the PAM70 matrix, essentially the same results would be obtained, but each 

with an E-value of 3.0.  Since all of the 2,117 results are different entries of the nuclecapsid 

protein of the Influenza A virus, we can be somewhat confident that our protein is related, 

especially if we had any prior knowledge that would support our findings. 

 

 

Figure 1.9. BlastX Results showing E-values of 0.079 for the top ten hits, all of which are nucleocapsid 

proteins or nucleoproteins. 
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4. Notes 

One of the options NCBI provides from their homepage is to search across their databases using 

an identifier (accession number, sequence identification number, Locus ID, etc…).  This option 

can be rather straightforward if you are using an identifier unique to a particular sequence; 

however, if you are searching for a locus across organisms or individuals, you may need to pay 

close attention to the search terms you are using.  For example, since the Cytochrome b/b6 

subunit is known by the terms “Cytochrome b”, “Cytochrome b6”, “cyt-b”, “cytb”, “cyb” 

“COB”, “COB1”, “cyb6”, “petB”, “mtcyb”, and “mt-cyb”, in a search for all possible homologs 

of this subunit it is necessary to search for all of its names and abbreviations used in the 

organisms of interest. Since research groups studying different organisms create their own 

unique locus names for the same gene, it is important to use all of them in your search.  IHOP 

(www.ihop-net.org) is an excellent resource for protein names (Hoffmann and Valencia 2004).  

In addition, you will want to perform a BLAST search to make sure you have everything! 

 

In addition to the BLAST program provided by NCBI, other BLAST programs exist which have 

improved the BLAST algorithm in various ways.  Dr. Warren Gish at Washington University in 

St. Louis has developed WU-BLAST, the first BLAST algorithm that allowed gaped alignments 

with statistics (Gish 1996-2004).  It boasts speed, accuracy, and flexibility, taking on even the 

largest jobs.  Another program, FSA-BLAST (Faster Search Algorithm), was developed to 

implement recently published improvements to the original BLAST algorithm (Cameron, 

Williams et al. 2004-2006).  It promises to be twice as fast as NCBI’s and just as accurate.  WU-

BLAST is free for academic and non-profit use and FSA-BLAST is open source under the BSD 

license agreement. 

http://www.ihop-net.org/
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My NCBI is a tool that allows you to customize your preferences, save searches, and set up 

automatic searches that send results via e-mail.  If you find yourself performing the same 

searches (or even similar searches) repeatedly, you may want to take advantage of this option!  

To register, go to the NCBI home page and click the “My NCBI” link under “Hot Spots”.  Once 

you have registered and signed in, a new option will be available to you on all BLAST and Entrez 

searches (Fig. 1.10). 
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Figure 1.10. Save Search Strategies.  The new My NCBI interface allows users to save search strategies to 

assist with repetitive search tasks. 

 

To save a BLAST search strategy, simply click the “Save Search Strategies” link on the results 

page.  This will add the search to your “Saved Strategies” page, which is available through a tab 

on the top of each page in the BLAST website when you are logged in to My NCBI.  Doing so 

will not save your results, but it will save your query and all parameters you specified for your 

search so you can run it later to retrieve updated results. 
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Chapter 2 Model Detection based upon Amino Acid Properties 

1. Introduction 

Protein structure prediction, over the past two decades, has become the holy grail of 

computational biology.  The ability to predict the structure of a protein often precedes our ability 

to determine its functions and the sites at which it performs each function.  Knowing the 

structure of a protein whose sequence has been mutated is essential to understanding its effects.  

Since 1973, when Anfinsen showed that a protein’s native structure was determined, with few 

exceptions, from its amino acid sequence alone (Anfinsen 1973), many algorithms have been 

created in the attempt to predict the final protein structure from its amino acid sequence. To date, 

the best methods are based upon homology modeling, also known as threading (Kryshtafovych, 

Fidelis et al. 2007); however some ab initio methods, while extremely expensive 

computationally, have shown encouraging success with shorter proteins (Jauch, Yeo et al. 2007). 

Despite the many methods that have been applied, it has proven difficult to predict the structure 

from a protein given only its amino acid sequence due to immense number (approx. 10N, where 

N is the number of amino acids) of possible conformations (Zwanzig, Szabo et al. 1992), 

particularly when the protein is large and homologous proteins are not available or difficult to 

detect.  This is especially true within the “twilight zone”, the region surrounding 25% amino acid 

similarity where structural homology is still quite elusive.  For example, the protein adenylate 

kinase has essentially the same structure and function in all species, but has low sequence 

identity (around 20%) in some sections of the protein (Onuchic, Luthey-Schulten et al. 1997).  

Additionally, while it is estimated that there are less than 4000 distinct protein folds in nature, 
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many of these folds are yet to be identified and characterized, and methods of recognizing them 

solely from a sequence of amino acids are encouraging at best. 

 

An increasingly popular method, sometimes referred to as partial-threading, for structure 

prediction involves a combination of low-resolution prediction and high-resolution refinement 

(made popular by (Das, Bin et al. 2007)).  First, a large number of low-resolution models, 

typically accurate to 3.5 or 4 Å, are generated.  The first criterion for an optimal low-resolution 

model is that it falls within the radius of convergence of the high resolution maximum.  The 

radius of convergence defines the area of the potential energy surface which, upon energy 

minimization refinement, converges to the global minimum.  Each of these models is then 

refined to a high-resolution state, potentially accurate to 1.5 Å, a process which requires 

substantial computational power.  Therefore, increasing the accuracy of the low-resolution 

model(s), thereby reducing the number that need to be refined in order to find an optimal 

structure, is basal to both better and faster predictions.   

 

Recognizing this weakness, Chivian & Baker (Chivian and Baker 2006) developed a systematic 

way called K*Sync to incorporate a few protein features, such as how obligate a sequence region 

is to the protein fold, into the dynamic programming alignments used previously (Bellman 

1952).  While this method outperforms previous ones in most cases, there is nevertheless 

substantial room for improvement.  Other methods have used frequency profiles to search for 

distant homologs (Jaroszewski, Rychlewski et al. 2000; Yona and Levitt 2002; Edgar and 

Sjolander 2004), fold recognition methods (Jaroszewski, Rychlewski et al. 1998; Jones 1999; 
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Panchenko, Marchler-Bauer et al. 2000), and ensemble generation methods (Jaroszewski, Li et 

al. 2002; Contreras-Moreira, Fitzjohn et al. 2003; John and Sali 2003) to find structurally related 

areas of proteins where sequence similarity is low. 

 

Amino acid properties have been around for decades, but as of 2008 have not been utilized in the 

detection of remote homologues.  In the 1990s, a list of 31 amino acid properties was compiled 

with their empirical values for use with TreeSAAP (Woolley, Johnson et al. 2003).  In 2000, 

Kawashima and colleagues created a similar, but more comprehensive, list entitled AAindex 

(Kawashima, Ogata et al. 1999; Kawashima and Kanehisa 2000).  TreeSAAP’s creators then 

used this list to generate an alternate TreeSAAP-formatted list of 515 properties.  The AAindex 

database has now been expanded to include 544 properties in version 9.1 (Kawashima, 

Pokarowski et al. 2008).  Additionally, an alternate dataset of 243 properties is available, but not 

as comprehensive as that offered in AAindex (Mathura and Kolippakkam 2005). 

 

Here we present an alternative method for model detection based upon the signatures of amino 

acid properties found in particular domains.  The advantages of this method include relatively 

straightforward interpretation, rapid searching, and accuracy comparable to today’s most 

commonly used methods.  This new framework for structural homology determination and 

functional classification will assist in one of the greatest challenges facing prediction algorithms:  

"The difficulty in extracting the meaning from protein sequences is in discerning what features 

are common to all sequences, what features are specific to protein-like sequences, and what 

features are specific to a given structure." (Onuchic, Luthey-Schulten et al. 1997) 
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To detect distantly related proteins who share similar structure (but where the structure of at least 

one of them is not known), we will rely upon highly conserved “property regions.”  By singling 

out specific conserved property regions, we seek to capture the important information from a 

scoring matrix thereby reducing the amount of noise seen by the search algorithm.  The method 

creates a network of property regions representing the query sequence, which will facilitate 

further investigation on the effects of amino acid properties on functional domains.  In contrast to 

discriminative methods such as support vector machines, graph-based approaches allow for 

relatively straightforward interpretation, particularly when based upon well understood 

physiochemical properties.  Here we show that such a network-based approach based upon 

physically meaningful amino acid properties provides an effective alternative to current 

generative approaches. 

 

2. Methods 

2.1. Scoring physiochemical properties according to their biological relevance 

Many of the 544 properties found in the AAindex are highly correlated with one another or 

unimportant in sequence conservation.  To reduce the number of properties used in our study, we 

begin by making use of protein sequence alignment benchmarking datasets created from a 

combination of methods.  Current versions of publicly available datasets include BAliBASE 3 

(Thompson, Plewniak et al. 1999; Bahr, Thompson et al. 2001; Thompson, Koehl et al. 2005), 

OXBench (Raghava, Searle et al. 2003), PREFAB v4 (Edgar 2004), HOMSTRAD (Mizuguchi, 

Deane et al. 1998; de Bakker, Bateman et al. 2001; Stebbings and Mizuguchi 2004), SABmark 

1.65 (Van Walle, Lasters et al. 2005), and SMART 4.0 (Letunic, Copley et al. 2004).  Each of 
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these databases is based on a different combination of manual curation, automation, structural 

alignment methods (see Table 1.1), sequence alignments, and hidden Markov models.  For 

example, while OXBench is not manually curated and based on automatically created structure 

and sequence alignments, HOMSTRAD uses a consensus method solely based upon structural 

alignment programs and is slightly curated.  BAliBASE, on the other hand, is highly curated by 

new experts.  Each of these three databases will be used in our study due to their varying levels 

of automation and curation and excellent sampling across known protein families.  By using 

these datasets, we are able to get a feel for the properties that are most conserved in structural 

alignments and therefore are likely to display the most signal in protein sequence alignments.  In 

addition, we look at the influence of gaps on conserved amino acid properties.   

 

We began by parsing through the 515 properties compiled in 2006 for TreeSAAP to remove 

errors and duplicates.  There were three errors in property name and approximately 12 duplicates 

where the name was similar and the empirical, numerical, values were exactly the same.  After 

removal of these duplicates, 503 properties remained, including six pairs where the values were 

very similar, but not equivalent.  Most of the six were simply measurements taken by different 

groups or the same group at different times.  These properties were noted, but preserved in the 

list for this analysis. 

 

The second task was to shift the range of each property so that the different values could be 

compared.  We began by translating each property scale to range from 0 to 1.  Unfortunately, 

though expectedly, this ended up highly favoring properties with low standard deviations.  To 
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help offset this bias, we scaled each range by the inverse of its standard deviation.  While this did 

not completely eliminate the bias, it significantly reduced it, as we will discuss later. 

 

The third task was to read in the reference property file, a simple tab-delimited file of property 

values for each amino acid.  This was done by creating a Perl module (Properties.pm).  The next 

task was related – that of reading in the alignment files of each database.  Again, a Perl module 

was created (Alignments.pm) to read in the varying formats of the HOMSTRAD, OXBench, and 

BAliBASE datasets.  Each alignment was stored as an array of sites, where each site was a 

collection of single amino acid codes or ‘-’ for gaps.  Ambiguous characters, such as B 

(asparagines or aspartic acid), J (leucine or isoleucine), Z (glutamine or glutamic acid), and X 

(unspecified or unknown), which were only found in the BAliBASE dataset, were treated as gaps 

as they could add unwanted error to our results.  By treating them as gaps, we effectively remove 

them from the analysis under our protocol.  

 

Two approaches were used in this analysis in order to see the effect of gaps in amino acid 

properties, one where all sites that included gaps (and ambiguous characters) were removed and 

one that treated them as sites with fewer characters (sequences).  For the ungapped analysis, the 

Perl Data Language was used due to its built-in statistical functions and efficient matrix 

operations.  For the gapped analysis, where matrix operations could not be applied, a statistical 

module entitled Statistics::Descriptive was used for its standard deviation and mean functions. 

In either approach, the following pseudo-code summarizes what is calculated for each alignment: 

For each of the 503 properties 
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For each site in the alignment 

Calculate the standard deviation if more than one data point exists 

(i.e. is not a gap or ambiguous amino acid code) 

Calculate the average standard deviation over all sites 

In general, the mean standard deviation for each property is calculated, by which the properties 

are ranked in increasing order.  The top 10 properties for each alignment are then tallied 

independently for each of the three databases and then the three scores are combined for a total 

score.  For a few sequences, once gaps are removed, there are no differences in the amino acid 

sequence.  In such cases, the alignments are dropped and not included in the tally.  The analysis 

is then repeated to calculate a tally for the top 1, top 5, top 25, and top 50 properties for each 

alignment. 

A copy of the ranking program and associated modules is available from the author upon request. 

 

2.2. Overview of the Property Profiling Method 

Using PSI-BLAST, a MSA and its corresponding position-specific scoring matrix (PSSM) with 

sequences who share high sequence identity is constructed.  From the given alignment we 

construct a “property profile” by scanning the alignment for regions of high conservation.  Any 

sites where the protein of interest (i.e. reference sequence) contains a gap in the alignment are 

ignored.  This profile is then used to search for homologous coding sequences (of local similarity 

to the given protein) who share a high degree of similarity in the conserved properties.  This 

method is not meant to find distantly related proteins where little or no structural similarity is 
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retained; however, it will allow us to answer the question “what properties are important where?” 

and provide measures of property conservation within a family of protein sequences. 

 

Figure 2.1.  A flowchart outlining the Property Profiling Method.   

 

The back end of the homology detection program was built in C++ for speed, efficiency, and 

availability of mpiCC for parallel computing. 

 

Construct an MSA 

For each site, determine 
the mean value and 
variance for each 

property 

 P P P S E S P ξ s² 
alpha-CH chemical shifts 4.44 4.44 4.44 4.5 4.29 4.5 4.44 4.436 0.004929 
Hydrophobicity index 1.95 1.95 1.95 0.05 0.47 0.05 1.95 1.196 0.904629 
Signal sequence helical potential 0.76 0.76 0.76 0.97 0.11 0.97 0.76 0.727 0.083857 
Membrane-buried preference param. 0.76 0.76 0.76 0.81 0.23 0.81 0.76 0.699 0.043248 
Average flexibility indices 0.509 0.509 0.509 0.507 0.497 0.507 0.509 0.507 1.92E-05 
Residue volume (Bigelow) 73.6 73.6 73.6 54.9 84.7 54.9 73.6 69.84 120.6295 
Transfer free energy to surface -0.98 -0.98 -0.98 -0.39 -0.3 -0.39 -0.98 -0.714 0.110729 
Apparent partial specific volume 0.73 0.73 0.73 0.594 0.632 0.594 0.73 0.677 0.004506 
Steric parameter 0.36 0.36 0.36 0.53 0.68 0.53 0.36 0.454 0.016329 
Polarizability parameter 0.131 0.131 0.131 0.062 0.151 0.062 0.131 0.114 0.001322 
Free energy of solution in water -2.24 -2.24 -2.24 -0.524 1.77 -0.524 -2.24 -1.177 2.342917 

 

Search for regions where 
properties have been 
conserved (variance 

below a given threshold) 
and of similar magnitude 

relative to the range in 
that particular property 
across the amino acids. 

Construct a “property 
profile” for the alignment, 

consisting of “property 
regions” where a 

particular property has 
been conserved. 

Search structure 
databases for proteins that 
match at least a portion of 

this property profile, 
scoring each based upon 

several criteria. 
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2.3. Constructing the Multiple Sequence Alignment 

Using a perl script, PSI-BLAST (Altschul, Madden et al. 1997) is run and the resulting binary 

checkpoint (.chk) file is parsed into a text-based, tab-delimited PSSM.  The advantage to using 

PSI-BLAST’s checkpoint file over a standard sequence alignment is that the checkpoint file 

takes into account sequence weight, giving more weight to more divergent sequences, and gap 

frequency, placing zeroes in matrix columns with greater than 50% gap observance.  It is 

expected that the improvements in the new property-based method ChemALIGN, implemented 

in the open source bioinformatics package PSODA, will replace PSI-BLAST in this protocol in 

the future (Snell 2007; Carroll 2009), though the adaptations mentioned would need to be 

incorporated to limit skewing by sampling bias.  The increased accuracy of ChemALIGN will 

improve the detection of conserved regions, increasing the accuracy of our network model. 

 

2.4. Constructing the Property Profile 

The following definitions will be used throughout the remainder of the paper: 

• A property region is a stretch of one or more amino acids where a single property  

exhibits high conservation 

• A property profile is a collection of property regions representing a single protein 

sequence or subsequence 

Property regions should be composed of sites where the property of interest is highly conserved, 

or, rather, has a low variance across the amino acids observed throughout evolutionary history at 

that site.  The sites should also exhibit a similar magnitude.  Here, the “importance” of a property 

region is based upon the variance of property magnitudes found at the corresponding residues of 
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structurally similar proteins.  Therefore, to define our initial set of property regions, we scan 

through the columns of a PSSM (or checkpoint matrix in the case of PSI-BLAST) and locate 

regions where the variance of the amino acid property, weighted by the PSSM, is below a given 

threshold.  The weighted variance is calculated as 

𝜎�,��������
� =  �𝑤�,��𝑥� − �̅����������

�
��

���

 

where wr,i is the value in the normalized PSSM of amino acid i at position r and xi is the rescaled 

property value of the amino acid.  The property regions are then obtained using a seed-and-

expand approach, where a stringent threshold is applied to seed the property region, and it is 

expanded on each side as long as the average variance is below a second, slightly relaxed, 

threshold (Fig. 2.2).  These threshold parameters, like most of the other parameters used, are not 

statistically based at this point but rather given as inputs to the program, obtained using a training 

dataset. 

 

 

Figure 2.2.  This figure illustrates the creation of property regions for a single amino acid physiochemical 

property index.  Property regions are created by first finding a seed site where a property value is 

ultraconserved and then expanding the region until the average weighted variance of the property value 
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being studied surpasses a given threshold.  Regions may contain more than one seed site such as seed 

sites 2 and 3 which are both in the second property region. 

 

The goal in constructing a property profile is to create a data structure that is accurate and robust 

at detecting distant homology, informative at identifying property regions that are conserved 

throughout evolution, and fast at performing searches on a large database of sequences (with or 

without associated structures).  The framework should also allow for the following information 

to be stored: the arrangement (in structure) or relative order (in sequence) of property regions, 

the distance (with some flexibility) between them, and their correlation with one another (for 

example, in the same domain).  In order to meet these goals, a network-based approach is used to 

link property regions with one another.  Since we are unable, at this point, to assign correlation 

directly to sequences, currently regions within a specified distance are linked together in a 

hierarchical fashion based upon the importance of each region (Fig. 2.3).  This accounts for their 

relative order and distance, but not necessarily the grouping (as sub-networks) of regions into 

domains.  The profile is constructed in the following manner: 

1. connect all of the nodes within a distance t of one another (typically t = 2-4 residues) 

2. Select top 8% of nodes ranked by “importance” (where “importance” = 1/𝜎�,��������
� ) 

to be the root nodes 

3. Using an algorithm based on Dijkstra’s Queue, find the shortest path from each node 

to a root node and remove all other connections to that node 
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Figure 2.3:  Property profiles are created from a set of property regions (a) by first linking nearby 

property regions within a distance t of one another (b), selecting ultraconserved regions to be the root 

nodes (highlighted in yellow), and removing sibling (beige lines) and foster parent (teal line) links (c).  

What remains is a set of rooted trees that can then be used in a fast top-down search. 

 

In order to run the program from the command line, several parameters must be passed.  First, 

the program requires a sequence or PSI-BLAST checkpoint file.  If a PSI-BLAST checkpoint file 

is provided, it is used instead of re-running PSI-BLAST.  This allows the user to modify the 

parameters of the property profile without having to re-run the much more intensive PSI-BLAST 

requirement of the program.  Second, the program requires a property file.  A default file is 
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included with the program, which will be used if one is not specified.  Property files must be tab 

delimited files, with the first column containing property names, subsequent columns containing 

property values for each of the two amino acids, and the last column containing property weights 

(used to make the properties comparable to one another).  Additional parameters that may be 

passed to the program include the tightness bound on the variance of each property region 

(default is 0.08), the distance cutoff for linked regions in the profile (default is 3 residues), and a 

flexibility multiplier (default is 3.2).  The higher the tightness bound, in general, the larger each 

region will be.  The higher the flexibility multiplier, the more property regions will be included 

in the profile, slightly increasing sensitivity but decreasing speed. 

 

To obtain default parameter values, the program was trained on the Twilight Zone set from the 

SABmark database, which contains both positive and negative pairwise sequence alignments 

based on pairwise reference alignments from the consensus of SOFI and CE structural alignment 

programs.  A genetic algorithm was run multiple times, utilizing the thorough search protocol 

(see below), for two to four days per run, until each parameter had converged to roughly the 

same value three times.  Eleven runs were required to achieve this convergence.  

 

2.5. Searching against a protein structure database 

Using the property profile to search for homologous proteins performs a depth-first search of the 

“nodes”, or regions, of the profile.  It begins with regions of highest importance (the “root” 

nodes of the network.  From there, it branches out, accumulating a higher score, based upon the 

importance of each region, as it locates additional linked regions within the sequence.  Once two 
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consecutive regions are not found within a path, the path is abandoned and the next path is 

searched.  The top n sequences with the highest scores are returned. 

 

3. Results 

3.1. Scoring physiochemical properties according to their biological relevance 

The top results from both the ungapped and gapped analyses are reported in Tables 2.2 and 2.3.  

These results indicate the combined score of the three databases.  The results are out of 1896 

possible alignments: 1031 from HOMSTRAD, 672 from OXBench, and 193 from BAliBASE.  

The results indicate that in both ungapped and gapped analyses, the properties of partition 

coefficient and alpha-NH chemical shifts are both highly conserved in structural alignments.  In 

all three databases, they were ranked number one and two respectively.  From there, though the 

scores differ slightly from database to database and from ranking to ranking (number of times in 

top 10 vs. number of times in top 50, for example), the results reported in Tables 2.2 and 2.3 

consistently were among those ranked in the top 20. 

 

While the results of ungapped and gapped analyses differ slightly, in general they do not differ 

dramatically.  The only possibly significant difference lies in the property alpha helix propensity 

of position 44 in T4 lysozyme, but even there we would need to perform a significance test to 

ensure its signal.  It appears that properties that are significantly constrained/conserved in gapped 

regions are not significantly different from those of ungapped regions. 
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3.2. Benchmarking against a database of homologous proteins 

To evaluate the usefulness and accuracy of the Property Profiler method, we used a dataset 

derived from the SCOP classification.  It was obtained in a manner similar to that performed by 

Liao and Noble in 2003 to benchmark their SVM-Pairwise approach (Liao and Noble 2003), 

specifically by selecting sequences with less than 95% identity from the Astral database 

(http://astral.berkeley.edu), yielding 16,712 sequences grouped into families, superfamilies, and 

folds. 

 

The benchmarking analysis used the 240 families that contained at least 15 members each.  For 

each of those families, we calculated a mean ROC (receiver operating characteristic) value.  

ROC scores are calculated as the area under the curve of true positives as a function of false 

positives.  Sequences in the same superfamily but not in the same family were removed and each 

family member was then compared to the remaining sequences using our method.  The ROC 

score was then computed for each family member and the average value for the family was 

obtained (Fig. 2.4).  This procedure was then used on the latest versions of the PSI-BLAST and 

SVM-Pairwise programs, two popular approaches for remote homology detection.  In the SVM-

Pairwise case, the removed superfamily sequences were used as a positive training set for each 

family.  The mean ROC score for the three programs were calculated as 0.684, 0.833, and 0.691 

for PSI-BLAST, SVM-Pairwise, and Property Profiler respectively, where a higher value 

indicates a more accurate separation of positive versus negative examples (0.5 being completely 

random).  A discussion of these results will follow. 

 

http://astral.berkeley.edu/
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Figure 2.4:  A comparison of the ROC (receiver operating characteristic) score distributions for three 

remote homology detection programs run on our dataset of 240 families. 

 

4. Discussion 

It is important to note that our handling of gaps reduces the number of sequences used in the 

calculation of some sites.  Since the standard deviation is divided by n-1 (in contrast to n), the 

fewer the number of sites, the larger the standard deviation is likely to be.  This effect did not 

seem to have a great effect on our results, but may be room for further studies where the 

magnitude of property differences is not the primary concern, but rather the significance of any 

differences.  In addition, we would like to address questions on the effect of our property value 

scaling method on the results.  Were the properties scaled enough to remove the bias in their 

distribution?  When mapping the top ranked properties to a line, no obvious patterns are apparent 

which would lead to a suspicion of continuing bias (Fig. 2.5), but this needs to be statistically 

tested to be sure. 
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Figure 2.5: Property values from the combined results of the ungapped analysis.  Columns 1–16 refer to 

the 16 properties in Table 2.2. 

 

The success of the algorithm, as one would expect, is dependent upon the input.  The robustness 

of the PSSM (returned by PSI-BLAST or other alignment algorithm) largely determines how 

accurate the resulting property profile will be and is the obvious reason for the similar results 

seen across many families between the PSI-BLAST and Property Profiler.  Indeed, the more 

similar sequences available for a given protein of interest, the more accurate and powerful its 

property profile will be at detecting distant homologues and identifying regions of property 

conservation.  On top of this dependence on a robust PSSM, the program lacks a robust statistical 

framework upon which to create an accurate property profile network.  This is a common 

challenge in bioinformatics, and is a particular weakness in this approach.  The heuristic of 

depending upon a given “threshold percentile” to determine whether a region is conserved or not 

is a quite rough approximation.  By substituting this with a more rigorous statistical method, I 

believe the accuracy would increase substantially.  Ongoing work will investigate the effect of 
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the threshold percentile and other variables on both profile creation and profile matching.  

Ultimately, I believe a main contribution of this work is to show that an alignment may be 

accurately represented by a network of property regions and that the two are practically 

interchangeable, at least in the case of homology detection. 

 

The results from this paper provide a good starting point for a PCA analysis to determine which 

properties to use to achieve the greatest conservative signal in the least number of properties.  

Several properties that are highly correlated with another highly ranked property may likely be 

removed. 

 

Eliminating highly correlated properties from use in the analysis (such as Averaged turn 

propensities in a transmembrane helix and Negative charge) would decrease the number of 

redundant property regions in each profile, increasing the search speed.  A principal components 

analysis also has the potential to improve the efficiency of the program as the last PCA that was 

performed on amino acid properties was done over 40 years ago when the list of properties was 

sparse (Sneath 1966). 

 

Table 2.1: Publicly available structural alignment programs 

STAMP* (1992–1999) (Russell and Barton 1992) http://www.compbio.dundee.ac.uk/Software/St
amp/stamp.html 

MNYFIT* (Sutcliffe, Haneef et al. 1987) http://www-
cryst.bioc.cam.ac.uk/~joy/mnyfit.html 

SSAP (1989–1996) and its successor, SAP (2000) (Taylor and 
Orengo 1989; Orengo and Taylor 1996; Taylor 2000) 

http://mathbio.nimr.mrc.ac.uk 
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COMPARER (1990–1992) and its successor, BATON (Sali and 
Blundell 1990; Zhu, Sali et al. 1992) 

http://www-cryst.bioc.cam.ac.uk/COMPARER 

Structal (Subbiah, Laurents et al. 1993; Gerstein and Levitt 
1998) 

http://molmovdb.mbb.yale.edu/align 

Protein3Dfit (Lessel and Schomburg 1994)  

DALI and DaliLite (Holm and Sander 1993; Holm and Park 
2000) 

http://ekhidna.biocenter.helsinki.fi/dali_server 

http://www.ebi.ac.uk/DaliLite 

Pairwise Superposition of Protein 3D Structures (Boutonnet, 
Rooman et al. 1995) 

http://wwwsup.scmbb.ulb.ac.be/~ocha/wwwsup
1/wwwsup.cgi 

ProSup (1996–2000) and its successor, TopMatch (2007) (Feng 
and Sippl 1996; Lackner, Koppensteiner et al. 2000; Sippl and 
Wiederstein 2008) 

http://topmatch.services.came.sbg.ac.at 

VAST (Gibrat, Madej et al. 1996) http://www.ncbi.nlm.nih.gov/Structure/VAST 

LSQMAN (Kleywegt 1996) http://portray.bmc.uu.se/dejavu 

http://xray.bmc.uu.se/usf/dejavu.html 

CE (Shindyalov and Bourne 1998) http://cl.sdsc.edu 

KENOBI (2000), K2 (2002), and K2SA (Szustakowski and 
Weng 2000; Szustakowski and Weng 2002) 

http://zlab.bu.edu/k2sa 

FATCAT (2003–2006) (Ye and Godzik 2003; Ye and Godzik 
2004; Ye and Godzik 2004) 

http://fatcat.burnham.org 

SSM (2003–2004) (Krissinel and Henrick 2004) http://www.ebi.ac.uk/msd-srv/ssm 

LGA: Local-Global Alignment (Zemla 2003) http://PredictionCenter.llnl.gov/local/lga 

GANGSTA (2003–2006) (Kolbeck, May et al. 2006) http://gangsta.chemie.fu-berlin.de 

SALIGN* (Marti-Renom, Madhusudhan et al. 2004) http://salilab.org/DBAli/?page=tools&action=f
_salign 

MALECON* (Ochagavia and Wodak 2004)  

SuperPose* (Maiti, Van Domselaar et al. 2004) 

TOPOFIT (Ilyin, Abyzov et al. 2004) 

http://wishart.biology.ualberta.ca/SuperPose 

http://mozart.bio.neu.edu/topofit 

MultiProt* (Shatsky, Nussinov et al. 2004) http://bioinfo3d.cs.tau.ac.il/MultiProt 

CE-MC* (Guda, Lu et al. 2004) http://pathway.rit.albany.edu/~cemc 

POSA: Partial Order Structure Alignment* (Ye and Godzik 
2005) 

http://fatcat.burnham.org/POSA 
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FAST (Zhu and Weng 2005) http://biowulf.bu.edu/FAST 

3d-SS (Sumathi, Ananthalakshmi et al. 2006) http://cluster.physics.iisc.ernet.in/3dss 

Angle-Curve Alignment (Zhi, Krishna et al. 2006) http://pops.burnham.org/curve 

MUSTANG* (Konagurthu, Whisstock et al. 2006) http://www.cs.mu.oz.au/~arun/mustang 

OPAAS (Shih, Gan et al. 2006) http://opaas.ibms.sinica.edu.tw 

CPalign (Dundas, Binkowski et al. 2007) http://bleezer.bioengr.uic.edu/salign 

PROMALS3D* (Pei, Kim et al. 2008) http://prodata.swmed.edu/promals3d 

 * supports multiple structures 

 

Table 2.2: Combined results of ungapped analysis 

Property 1 5 10 25 50 
Partition coefficient (Garel et al.) 841 1679 1766 1787 1790 
alpha-NH chemical shifts 472 1498 1664 1730 1754 
Helix initiation parameter at position i,i+1,i+2 177 1452 1644 1725 1747 
Activation Gibbs energy of unfolding, pH7.0 136 758 1062 1372 1510 
Activation Gibbs energy of unfolding, pH9.0 30 626 1005 1346 1493 
Averaged turn propensities in a transmembrane 
helix 37 340 730 1242 1425 
Optimized propensity to form reverse turn 0 256 1013 1607 1714 
Side chain angle theta(AAR) 26 313 683 1187 1386 
RF value in high salt chromatography 0 227 950 1652 1752 
Negative charge 26 278 655 1148 1353 
Spin-spin coupling constants 3JHalpha-NH 0 202 898 1566 1685 
Positive charge 29 226 629 1153 1396 
Amphiphilicity index 0 219 768 1417 1631 
Bitterness 14 237 624 1258 1535 
Alpha helix propensity of position 44 in T4 
lysozyme 0 199 696 1387 1573 
Transfer energy, organic solvent-water 0 158 687 1537 1726 

 
Table 2.3: Combined results of gapped analysis 

Property 1 5 10 25 50 
Partition coefficient (Garel et al.) 948 1696 1767 1787 1789 
alpha-NH chemical shifts 414 1469 1632 1723 1748 
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Helix initiation parameter at posision i,i+1,i+2 127 1395 1621 1716 1742 
Activation Gibbs energy of unfolding, pH7.0 141 809 1110 1411 1538 
Activation Gibbs energy of unfolding, pH9.0 31 676 1063 1384 1528 
RF value in high salt chromatography 0 279 1041 1672 1753 
Optimized propensity to form reverse turn 0 268 1033 1610 1713 
Averaged turn propensities in a transmembrane 
helix 34 302 675 1182 1369 
Spin-spin coupling constants 3JHalpha-NH 0 199 945 1577 1694 
Side chain angle theta(AAR) 26 290 618 1133 1321 
Negative charge 24 273 643 1121 1327 
Amphiphilicity index 0 233 815 1465 1647 
Positive charge 28 243 634 1156 1378 
Bitterness 13 243 663 1353 1643 
Transfer energy, organic solvent-water 0 166 742 1589 1726 
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