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a b s t r a c t

Glutathione is present in millimolar concentrations in the cell, but its relative distribution among cellular
compartments remains elusive. We have chosen the endoplasmic reticulum (ER) as an example organelle
to study compartment-specific glutathione levels. Using a glutaredoxin sensor (sCGrx1pER), which
rapidly and specifically equilibrates with the reduced glutathione (GSH)–glutathione disulfide (GSSG)
redox couple with known equilibrium constant, we showed that the [GSH]:[GSSG] ratio in the ER of
intact HeLa cells is less than 7:1. Taking into consideration the previously determined value for [GSH]2:
[GSSG] in the ER of 83 mM, this translates into a total glutathione concentration in the ER ([GStot]¼
[GSH]þ2[GSSG]) of greater than 15 mM. Since the integrated, intracellular [GStot] was measured as
�7 mM, we conclude the existence of a [GStot] gradient across the ER membrane. A possible homeostatic
mechanism by which cytosol-derived glutathione is trapped in the ER is discussed. We propose a high
[GStot] as a distinguishing feature of the ER environment compared to the extracellular space.

& 2013 The Authors. Published by Elsevier B.V.

Introduction

Many intracellular reduction–oxidation (redox) processes are
directly or indirectly linked to the redox-active, tripeptide-like
compound glutathione [1]. Glutathione is composed of the three
amino acids glutamate, cysteine, and glycine and exists as a
mixture of its reduced form, GSH, and its disulfide-linked dimeric
form, GSSG. The biosynthesis of glutathione takes place in the
cytosol, from where it is transported to other cellular compart-
ments [2]. As intracellular glutathione concentrations are in the
millimolar range, its compartment-specific status is considered a
major determinant of intracellular redox environments [3]. The
reductive (or oxidative) power of glutathione is defined by its

electrochemical half cell reduction potential (EGSH), calculated
from its standard reduction potential (E1'¼�240 mV) and the
concentrations of GSH and GSSG using the Nernst equation
(Eq. (1)) where R¼8.315 J K�1 mol�1 is the gas constant, T¼298 K
the temperature, and F¼96,485 C mol�1 the Faraday constant.

EGSH ¼ EGSH1
0 �RT

2F
ln

½GSH�2
½GSSG� ð1Þ

It is widely accepted that EGSH in the endoplasmic reticulum
(ER) is more oxidizing (i.e. higher) than in other non-secretory
organelles such as mitochondria, nucleus, or the cytosol [4]. This
makes sense, because the ER is the site where disulfide bonds are
being synthetized and transferred onto nascent secretory and
membrane proteins [5]. Relatively oxidizing ER redox conditions
were originally reported based on the measurement of the [GSH]:
[GSSG] ratio in all compartments of the secretory pathway
(including the ER) in hybridoma cells as 1:1–3:1 [6]. This was
achieved by analyzing the thiol-disulfide state of a small glyco-
peptide, which directly, but probably not specifically reacted with
GSH–GSSG. To derive EGSH from these ratios, the authors went on
to estimate the cellular concentration of total glutathione [GStot]
(¼[GSH]þ2[GSSG]) as 8 mM and assumed [GStot] in the secretory
pathway to either equal this concentration or to be eight times
lower, which returned EGSH values of �170 to �185 mV or �133
to �165 mV, respectively [6]. Subsequent studies using isolated
ER-membrane vesicles (“microsomes”) reported [GSH]:[GSSG]
ratios of 3:1–6:1 [7,8]. However, as GSH can leak through the
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microsomal membrane [9], these ratios and the derived EGSH
values based on microsomal [GStot] may not reflect the situation
in the ER of living cells.

Recently, EGSH in the ER of intact HeLa cells was directly
measured as �20874 mV using a glutathione-specific redox-
sensitive variant of green fluorescent protein [10]. On the basis
of this finding, it was concluded that either [GStot] in the ER
([GStot]ER) exceeds cellular [GStot] ([GStot]cell) or that the [GSH]:
[GSSG] ratio in the ER of live cells is Z11:1. Here, we found that a
single-cysteine glutaredoxin targeted to the ER is at least 92%
oxidized in situ at steady state. As sCGrx1p rapidly attains
equilibrium with [GSH]:[GSSG] through autocatalyzed glutathio-
nylation [11], this suggests that in the ER, [GSH]:[GSSG] is less than
7:1 and, consequently, [GStot]ER significantly greater than [GStot]cell.

Materials and methods

Cloning of sCGrx1pER

The coding sequence of sCGrx1p was amplified by PCR from
pOB3 [12] to include a C-terminal KDEL extension and ligated via
KpnI/HindIII in frame into a plasmid harboring the ER signal
sequence of ERp44 and an HA epitope upstream of a KpnI site
(kindly provided by Roberto Sitia, Milan, Italy) [13].

Cell culture and transfection

HeLa cells were cultivated in Dulbecco's Modified Eagle's
Medium (DMEM) containing 4.5 g/l glucose supplemented with
10% fetal bovine serum, 100 U/ml penicillin, 100 mg streptomycin
at 37 1C in 5% CO2 and transfected with Turbofect (Fermentas)
according to the manufacturer's protocols.

Metabolic labeling and immunoprecipitation

Transfected HeLa cells were washed with phosphate-buffered
saline (PBS) and labeled overnight in complete DMEM cultivation
medium containing 50 μCi/ml EasyTag EXPRESS 35S protein labeling
mix (PerkinElmer Life Sciences). Chase was in DMEM containing
10 mM L-methionine. For immunoprecipitation, the cells were
washed with cold PBS, lysed for 1 h on ice in lysis buffer [100 mM
Na phosphate, 1% Triton X-100, pH 8, 0.2 mM phenyl methyl
sulphonyl fluoride (PMSF)], and the lysate centrifuged at 17,000 g
for 1 hour at 41. The supernatant was added to protein A-Sepharose
beads (Life Technologies) carrying prebound anti-HA antibodies
(clone 12CA5, kindly provided by Hans-Peter Hauri). After overnight
incubation at 41 on a rotary shaker, the beads were washed four
times with lysis buffer and once with PBS.

TMM(PEG)12 modification protocol

To block the sulfhydryl groups of free cysteines in situ, cell
monolayers were washed with ice-cold PBS containing 20 mM N-
ethylmaleimide (NEM; Sigma), and incubated in the same buffer on
ice for 20 min. After immunoprecipitation, as described above,
proteins were released from the beads by incubation in 40 μl
80 mM Tris/HCl, pH7.0, 2% SDS for 5 min in a heat block at 97 1C,
followed by vortexing for 5 s. Then, 40 μl of supernatant was
transferred to a tube containing 2 μl of 200 mM Tris(2-carbox-
yethyl)phosphine (TCEP; Sigma; �10 mM final concentration) and
incubated for 10 min at room temperature to reduce the active-site
cysteine, which was then alkylated for 1 h at room temperature in
15 mM maleimide-activated polyethylene glycol (TMM(PEG)12;
Thermo Scientific; 5.5 μl of 125 mM stock added and carefully
mixed). Excess TMM(PEG)12 was removed by protein precipitation

by using methanol/chloroform as previously described [14]. The
extent of TMM(PEG)12 modification was determined by 16% SDS-
PAGE and imaging of the dried gel on a Typhoon phosphorimager
(GE Healthcare).

Determination of [GStot]cell

A total of 1.8�106 HeLa cells were seeded into a 10 cm dish and
incubated at 371 for 48 h. To measure the cell number and
diameter, cells were harvested by trypsinization and the suspen-
sion analyzed in a Luna™ automated cell counter (Logos Biosys-
tems). Cell viability, as determined by Trypan blue exclusion, was
routinely490%. Total cell volume was calculated by multiplying
the single cell volume (by standard sphere formula) and cell count
per ml of cell suspension. 1 ml of cell suspension was gently
pelleted, the supernatant discarded and the cell pellet resus-
pended in 1 ml of 1% sulfosalicylic acid followed by incubation
on ice for 15 min. Precipitated proteins were pelleted by centrifu-
gation and the supernatant subjected to a 5,5'-dithiobis(2-nitro-
benzoic acid)–glutathione reductase assay to measure [GStot] [15].
This concentration and the total cell volume were used to calculate
[GStot]cell.

Densitometry

Western blots were densitometrically quantified using the
ImageJ software (available at http://rsbweb.nih.gov/ij/). For the
quantification of Phosphorimager scans, the ImageQuant 5.2 soft-
ware (GE Healthcare) was used.

Additional methods
Indirect immunofluorescence staining, 4-acetamido-4'-maleimi-

dylstilbene-2,2'-disulphonic acid (AMS; Life Technologies) modifi-
cation, Western blot, and the XBP1 splicing assay were performed
as before [10].

Results and discussion

Principle of [GSH]:[GSSG] determination in the ER

With the aim to monitor the [GSH]:[GSSG] ratio in the ER of live
cells, we fused the C30S mutant of yeast glutaredoxin 1 (sCGrx1p)
with N-terminal signal peptide and HA-tag and C-terminal KDEL
ER retrieval motif (Fig. 1A). This mutant is known to catalyze its
own glutathionylation by reacting with one molecule of GSSG
according to Eq. (2) [11].

sCGrx1pSHþGSSG ⇄ sCGrx1pSSGþGSH ð2Þ
The equilibrium constant Kox of the above reaction (Eq. (3)) has
been determined by two independent methods with similar out-
comes [11], whereas the value of 7476 derived from MALDI-TOF
mass spectrometry was considered quantitative.

Kox ¼ sCGrx1pSSG½ �½GSH�
sCGrx1pSH½ �½GSSG� ð3Þ

Autocatalyzed equilibration of the sCGrx1p SH–sCGrx1p SSG and
the GSH–GSSG redox couples occurs rapidly in vitro [11,16]. Based
on this, we assumed this reaction to be at kinetic equilibrium even
in a complex mixture of redox couples as present in the lumen of
the ER. Thus, using the experimentally determined [sCGrx1pSH]:
[sCGrx1pSSG] ratio and Kox, the [GSH]:[GSSG] ratio RGS can be
calculated according to Eq. (4).

RGS ¼
½GSH�
½GSSG� ¼ Kox

sCGrx1pSH½ �
sCGrx1pSSG½ � ð4Þ
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We expressed ER-targeted sCGrx1p (sCGrx1pER) in HeLa cells and
confirmed its correct localization, which overlapped with that of
endogenous protein disulfide isomerase (PDI), by indirect immu-
nofluorescence microscopy using anti-HA (Fig. 1BþC). Specifically,
since both our antibody against the ER marker PDI and anti-HA are
of mouse origin, we co-expressed the ER-targeted fluorescent
protein HyPerER [17] and found co-localization with PDI (Fig. 1B)
and with sCGrx1pER (Fig. 1C).

Expression of sCGrx1pER does not disturb ER homeostasis

Although PDI family members can catalyze protein deglu-
tathionylation reactions to some extent [18], the ER in mammalian
cells does not harbor bona fide glutaredoxin enzymes [19].
Accordingly, introduction of an exogenous glutaredoxin such as
sCGrx1pER could disturb ER redox homeostasis. It could, for
instance, catalyze formation of GSSG from glutathionylated pro-
teins. This could result in a decrease in the [GSH]:[GSSG] ratio,
which in turn would likely elicit unfolded protein response (UPR)

stress signaling pathways, as has been observed before [20]. We
therefore set out to test these possibilities. To this end, HeLa cells
were transfected with sCGrx1pER, empty vector as negative con-
trol, or a plasmid encoding the hyperactive ER oxidase Ero1β-
C100/130A [10] as positive control for ER hyperoxidation. To probe
for the oxidation state of the ER in these cells, we used a
previously established electrophoretic mobility shift assay based
on the alkylation of cysteine residues in the ER-resident, PDI-
related oxidoreductase ERp57 [14,21]. Expression of sCGrx1pER did
not increase the oxidation of ERp57, whereas expression of Ero1β-
C100/130A did as expected (Fig. 2A).

We next examined two established pathways of the mammalian
UPR under the same experimental conditions, namely the phosphor-
ylation of double stranded RNA-activated protein kinase (PKR)-like
ER kinase (PERK) and the splicing of X-box binding protein 1 (XBP1)
mRNA [22]. As shown in Fig. 2B, neither PERK phosphorylation nor
XBP1 splicing was detected in cells expressing sCGrx1pER. In contrast,
treatment of cells with DTT, an established trigger of the UPR, readily
activated both PERK and XBP1.

Fig. 1. Targeting of sCGrx1p to the ER. (A) Schematic representation of sCGrx1pER. The active site Cys27 is either reduced (–SH) or glutathionylated (–SSG). SP, ER signal
peptide; HA, hemagglutinin epitope; KDEL, ER retrieval motif. (B) HyPerER (green) was transfected into HeLa cells and the cells stained with αPDI followed by a red-
fluorescent goat-anti-mouse antibody. (C) HeLa cells were co-transfected with HyPerER (green) and sCGrx1pER, which was stained with αHA/goat-anti-mouse (red). Merged
images are shown in the bottom panel, and white arrows highlight examples of co-localizing structures. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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These data are in agreement with a previous study where
human Grx1 and fusion proteins thereof expressed in the ER of
HeLa cells did not cause any detectable redox and stress responses
[10]. Likewise, it should be noted that the reported findings are not
entirely unexpected, since in an oxidizing environment like the ER
[6,10], glutaredoxin-mediated catalysis of protein deglutathionyla-
tion has been found to be weak [18]. We concluded that sCGrx1pER

was well-suited as a sensor for [GSH]:[GSSG] in the ER, as it
localized specifically to this compartment without detectably
disturbing the local redox conditions.

sCGrx1pER is not rapidly degraded

Since the native environment of Grx1p is the yeast cytosol [23], we
next tested the stability of sCGrx1p in the ER. To this end, we
performed pulse-chase experiments using HeLa cells where sCGrx1pER
was transiently expressed. Cells were metabolically labeled with 35S-
methionine to steady state overnight followed by incubation for 0–3 h
in media containing an excess of unlabeled methionine (chase).
sCGrx1pER was not significantly degraded during the chase, indicating
that it is reasonably stable in the ER (Fig. 3AþB).

sCGrx1pER is predominantly glutathionylated at steady state

Via its only cysteine in the mature protein, Cys27, sCGrx1pER
reacts with GSSG leading to glutathionylation of Cys27 (Eq. (2)). To
examine the extent of Cys27 glutathionylation in living cells, we
employed a cysteine-specific alkylation protocol of immunopreci-
pitated protein, which was previously used to assay the thiol-
disulfide state of PDI [14]. Thus, sCGrx1pER was expressed and
metabolically labeled in HeLa cells, and the non-glutathionylated
fraction of Cys27 (in the thiol form) was allowed to react with NEM
added to the cell monolayer. Following immunoprecipitation, glu-
tathionylation was reversed with TCEP, and the resulting reduced
cysteine alkylated with TMM(PEG)12, which decreased the mobility
of sCGrx1pER in SDS-PAGE. Autoradiography revealed that the vast
majority of sCGrx1pER was TMM(PEG)12-modified at steady state
(Fig. 4). Conversely, sCGrx1pER that was subjected to NEM-
alkylation after treatment of cells with DTT ran at the mobility of
the unmodified protein (compare Figs. 3 and 4), indicating that
reduced sCGrx1pER can quantitatively react with NEM in situ.

The percentage of sCGrx1pER glutathionylation (OxD) was
determined by quantifying the intensity of TMM(PEG)12-modified

and -non-modified bands by densitometry. To exclude incomple-
tely folded sCGrx1pER from the analysis, we only considered
sCGrx1pER

35S-signals that were obtained after a 1 h chase
period (Fig. 4). Analysis of three independent experiments
returned an OxD value of 9273% corresponding to a
[sCGrx1pSH]:[sCGrx1pSSG] ratio of 0.08570.033 (Table 1).
According to Eq. (4), this translates into a [GSH]:[GSSG] ratio RGS
of 6.3. As densitometric determination of an OxD value490% is
imprecise and most likely results in an underestimation of OxD,
we conservatively concluded that [GSH]:[GSSG] in the ER of HeLa
cells is less than 7:1 (Table 1).

Calculation of [GStot]ER

Having obtained a value for [GSH]:[GSSG] (RGS) in the ER of live
cells, we set out to calculate [GStot]ER. To achieve this, we used the
published value of EGSH(ER) of -208 mV [10], which can also be

DTT
dia

mide

ox
red

WB: αERp57 (AMS-mod.)

–50 kDa

em
pty

 ve
cto

r

Ero1
β -

C10
0/1

30
A

sC
Grx1

p ER

–150 kDa

–100 kDa

–250 kDa

WB: αPERK

DTT
em

pty
 ve

cto
r

Ero1
β-

C10
0/1

30
A

sC
Grx1

p ER

–500 bprtPCR: XBP1 h
su

EX
P 

I
EX

P 
II

ox
red

–50 kDa
% ox

% ox

34 40 15 5 95

18 35 23 3 99

Fig. 2. sCGrx1pER neither causes ER hyperoxidation nor ER stress. (A) HeLa cells were transfected with the indicated constructs for 24 h or, to obtain fully reduced or oxidized
control samples, treated with DTT (10 mM for 5 min) or diamide (5 mM for 5 min), respectively. Free cysteines were alkylated in situ with NEM. After cell lysis, proteins were
reduced with TCEP and re-alkylated with AMS, and the modified lysates analyzed by SDS-PAGE and anti-ERp57 western blot (WB). The AMS-modified, oxidized fraction of ERp57
(ox) runs slower than the reduced fraction (red). Oxidized fractions, as determined by densitometry, are indicated in percent (% ox). Results of two independent experiments (EXP I
and EXP II) are shown. (B) HeLa cells were transfected as in panel (A) or treated with DTT (2 mM for 1 h). The phosphorylation/activation of PERK was analyzed by anti-PERK
western blot based on the decreased mobility of the phosphorylated protein (asterisk). In equivalent cell samples, total RNA was isolated and subjected to rtPCR analysis using
primers specific for XBP1. Splicing of XBP1 mRNA is evident by the appearance of the spliced (s) and the hybrid (h) forms, as opposed to the unspliced (u) form.

20–

15–

sCGrx1pER

chase (h)0 1 2 30

- + + + +

0 

100 

200 

300 
0h 1h 2h 3h 

ba
nd

 in
te

ns
ity

(%
 o

f 0
h 

ch
as

e)

Fig. 3. Pulse-chase analysis of sCGrx1pER. (A) HeLa cells transfected or not with
sCGrx1pER were labeled with 35S-methionine overnight and chased for the
indicated time periods. sCGrx1pER was isolated by anti-HA immunoprecipitation
and analyzed by SDS-PAGE and phosphorimaging. (B) Densitometric analysis of
sCGrx1pER band intensity (n¼3; mean7SEM).

D. Montero et al. / Redox Biology 1 (2013) 508–513 511



expressed as [GSH]2:[GSSG]¼83 mM (see Eq. (1) and Table 1).
[GSH]2:[GSSG] and RGS are converted into [GStot]ER¼[GSH]þ2
[GSSG] according to Eq. (5).

½GStot�ER ðMÞ ¼ 0:083
RGS

þ2� 0:083

RGS
2 ð5Þ

Using RGS¼7, Eq. (5) returns a value for [GStot]ER of 15.2 mM.
However, since RGS is likely less than 7 (see above), the total
glutathione concentration in the ER may in reality significantly
exceed 15 mM (Table 1).

The ER membrane maintains a [GStot] gradient

Intracellular glutathione concentrations range between 0.5 and
15 mM [1]. We were therefore interested in relating [GStot]ER with
[GStot]cell in our particular experimental system. To this end, we
determined the average cell volume of trypsinized HeLa cells as
described in Materials and methods and measured the total
glutathione content of cells, which were gently pelleted from the
same suspension, using the established glutathione reductase
recycling assay. The obtained values of 2.2 pl average cell volume
and �7 mM [GStot]cell (Table 2) are in good agreement with
previous measurements [24].

Since [GStot]cell is the sum of [GStot]ER and [GStot] from all other
subcellular compartments including the cytosol, our data suggest
that [GStot] in the cytosol is significantly lower than [GStot]ER. Thus,
despite the fact that glutathione synthesis takes place in the cytosol,
the ER membrane appears to maintain an ascending [GStot] gradient
(Fig. 5). We propose that this gradient is the result of the relatively
oxidizing milieu in the ER [6,10] and the virtual impermeability of
the ER membrane to GSSG [9]. Cytosol-derived GSH can diffuse into
the ER where a fraction of it is oxidized to membrane-impermeable
GSSG [25]. This process is expected to lower [GSH]ER and to set up a

driving force for further import of GSH from the cytosol. According to
this model, the ER would constitute a trap for cellular glutathione,
which is reminiscent of the mechanism of osmosis where an
impermeable metabolite drives the diffusion of a permeable meta-
bolite across a selectivity barrier such as a biological membrane.

Conclusions

Measuring compartment-specific [GStot] is a challenging task [1]. In
this study, we addressed the question whether or not glutathione is
uniformly distributed among two subcellular compartments, cytosol
and ER. For this purpose, we implemented a novel strategy to calculate
[GStot] in the ER by using a combination of two readouts, which report
[GSH]2:[GSSG] (Grx1-roGFP1-iE; [10]) and [GSH]:[GSSG] (sCGrx1p;
this study), respectively. Our work comes to the surprising conclusion
that [GStot]ER is considerably higher than [GStot]cell and, thus, [GStot] in
the cytosol. As the literature so far assumed that [GStot]ER would either
equal [GStot]cell or be lower [6], this finding is remarkable and may
change the way we think about intracellular glutathione fluxes and its
role in specific cellular organelles.

Since [GStot]cell varies in different cell types and different
physiological settings [1], it is likely that the [GStot] gradient across
the ER membrane shows variability in different in vivo models
compared to HeLa cells. Nonetheless, we propose that a relatively
high [GStot]ER constitutes a general characteristic of ER physiology.
Since the trapping of cytosolic GSH into the ER, which is known to
bring about reductive input [21,26,27], is directly driven by the
organelle's oxidation level (see Fig. 5), we further suggest that
[GStot]ER is an adjustable and “homeostatic” parameter. The ER and
the extracellular space have similar redox conditions and calcium
concentration [28]. In contrast, our measurement of a high
[GStot]ER discloses a noteworthy distinguishing feature, as extra-
cellular [GStot] is low [2].

Acknowledgments

We thank Julia Birk for invaluable help with light microscopy
and for the preparation of Fig. 5, Alex Odermatt for generous
support, Roberto Sitia, Ari Helenius, and Hans-Peter Hauri for

0 1 30

sCGrx1pER- +

chase (h)
+ + +

TMM(PEG)12

+

00
+

+

- - - - -

- - - - -

DTT
diamide

20–

15–

+ PEG
- PEG

IP: αHA

Fig. 4. Redox state analysis of sCGrx1pER. HeLa cells were transfected or not with
sCGrx1pER, pulsed overnight with 35S-methionine and chased for the indicated
time periods. NEM-modified cell lysates were subjected to anti-HA immunopreci-
pitation, and the immunoprecipitates treated with TCEP and TMM(PEG)12 as
described in Materials and methods. Samples were separated by SDS-PAGE and
visualized on a phosphorimager. Where indicated, cells were treated with DTT or
diamide prior to NEM-alkylation as in Fig. 2A.

Table 1
Glutathione-related redox parameters measured in the endoplasmic reticulum (ER)
of HeLa cells.

Parameter (ER, HeLa) Value Reference

OxDsCGrx1p 9273% This study
[sCGrx1pSH]:[sCGrx1pSSG] 0.08570.033 This study
[GSH]:[GSSG] (RGS) o7 This study
[GSH]2:[GSSG] 83 mM [10]
[GStot] 415 mM This study

Table 2
Determination of [GStot]cell in HeLa cells.

Parameter (HeLa) Value

Average cell volume 2.2 pl (1 pl¼103 μm3)
[GStot]cell 6.972.6 mM

GSH
GSSG

Fig. 5. Schematic cartoon of a detail of a HeLa cell depicting the trapping of cellular
glutathione in the ER. GSH can freely enter the ER (light brown) from the cytosol
(cyto, light gray) where some of it is converted to GSSG through the action of the
resident machinery for oxidative protein folding. GSSG cannot (or only inefficiently)
diffuse back into the cytosol. Thus, as the concentration of GSH can equilibrate
between luminal and cytosolic side of the ER membrane, [GStot] is significantly
higher in the ER than in the cytosol.

D. Montero et al. / Redox Biology 1 (2013) 508–513512



materials, and Suzette Moes and Paul Jenö for trial mass spectro-
metry experiments. This work was funded by a Swiss National
Science Foundation Ambizione grant (C.A.-H.), the University of
Basel (C.A.-H.), and by a Grant from the Danish Natural Science
Research Council (J.R.W.) and the Villum Foundation (C.T.).

References

[1] M. Deponte, Glutathione catalysis and the reaction mechanisms of glutathione-
dependent enzymes, Biochim. Biophys. Acta 1830 (2013) 3217–3266.

[2] A.K. Bachhawat, A. Thakur, J. Kaur, M. Zulkifli, Glutathione transporters,
Biochim. Biophys. Acta 1830 (2013) 3154–3164.

[3] Y.M. Go, D.P. Jones, Redox compartmentalization in eukaryotic cells, Biochim.
Biophys. Acta 1780 (2008) 1273–1290.

[4] C. Appenzeller-Herzog, Glutathione- and non-glutathione-based oxidant con-
trol in the endoplasmic reticulum, J. Cell Sci. 124 (2011) 847–855.

[5] T. Ramming, C. Appenzeller-Herzog, The physiological functions of mamma-
lian endoplasmic oxidoreductin 1: on disulfides and more, Antioxid. Redox
Signal. 16 (2012) 1109–1118.

[6] C. Hwang, A.J. Sinskey, H.F. Lodish, Oxidized redox state of glutathione in the
endoplasmic reticulum, Science 257 (1992) 1496–1502.

[7] R. Bass, L.W. Ruddock, P. Klappa, R.B. Freedman, A major fraction of endo-
plasmic reticulum-located glutathione is present as mixed disulfides with
protein, J. Biol. Chem. 279 (2004) 5257–5262.

[8] B.M. Dixon, S.H. Heath, R. Kim, J.H. Suh, T.M. Hagen, Assessment of endoplas-
mic reticulum glutathione redox status is confounded by extensive ex vivo
oxidation, Antioxid. Redox. Signal. 10 (2008) 963–972.

[9] G. Banhegyi, L. Lusini, F. Puskas, R. Rossi, R. Fulceri, L. Braun, V. Mile, P. di
Simplicio, J. Mandl, A. Benedetti, Preferential transport of glutathione versus
glutathione disulfide in rat liver microsomal vesicles, J. Biol. Chem. 274 (1999)
12213–12216.

[10] J. Birk, M. Meyer, I. Aller, H.G. Hansen, A. Odermatt, T.P. Dick, A.J. Meyer,
C. Appenzeller-Herzog, Endoplasmic reticulum: reduced and oxidized glu-
tathione revisited, J. Cell Sci. 126 (2013) 1604–1617.

[11] R. Iversen, P.A. Andersen, K.S. Jensen, J.R. Winther, B.W. Sigurskjold, Thiol-
disulfide exchange between glutaredoxin and glutathione, Biochemistry 49
(2010) 810–820.

[12] O. Bjornberg, H. Ostergaard, J.R. Winther, Mechanistic insight provided by
glutaredoxin within a fusion to redox-sensitive yellow fluorescent protein,
Biochemistry 45 (2006) 2362–2371.

[13] M. Otsu, G. Bertoli, C. Fagioli, E. Guerini-Rocco, S. Nerini-Molteni, E. Ruffato,
R. Sitia, Dynamic retention of Ero1alpha and Ero1beta in the endoplasmic
reticulum by interactions with PDI and ERp44, Antioxid. Redox. Signal. 8
(2006) 274–282.

[14] C. Appenzeller-Herzog, L. Ellgaard, In vivo reduction-oxidation state of protein
disulfide isomerase: the two active sites independently occur in the reduced
and oxidized forms, Antioxid. Redox. Signal. 10 (2008) 55–64.

[15] T. Minich, J. Riemer, J.B. Schulz, P. Wielinga, J. Wijnholds, R. Dringen, The
multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of
glutathione and glutathione disulfide from brain astrocytes, J. Neurochem. 97
(2006) 373–384.

[16] K.S. Jensen, J.R. Winther, K. Teilum, Millisecond dynamics in glutaredoxin
during catalytic turnover is dependent on substrate binding and absent in the
resting states, J. Am. Chem. Soc. 133 (2011) 3034–3042.

[17] B. Enyedi, P. Varnai, M. Geiszt, Redox state of the endoplasmic reticulum is
controlled by Ero1L-alpha and intraluminal calcium, Antioxid. Redox. Signal.
13 (2010) 721–729.

[18] M.J. Peltoniemi, A.R. Karala, J.K. Jurvansuu, V.L. Kinnula, L.W. Ruddock, Insights
into deglutathionylation reactions. Different intermediates in the glutaredoxin
and protein disulfide isomerase catalyzed reactions are defined by the
gamma-linkage present in glutathione, J. Biol. Chem. 281 (2006) 33107–33114.

[19] A. Izquierdo, C. Casas, U. Muhlenhoff, C.H. Lillig, E. Herrero, Saccharomyces
cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the
early secretory pathway, Eukaryot. Cell 7 (2008) 1415–1426.

[20] H.G. Hansen, J.D. Schmidt, C.L. Soltoft, T. Ramming, H.M. Geertz-Hansen,
B. Christensen, E.S. Sorensen, A.S. Juncker, C. Appenzeller-Herzog, L. Ellgaard,
Hyperactivity of the Ero1alpha oxidase elicits endoplasmic reticulum stress
but no broad antioxidant response, J. Biol. Chem. 287 (2012) 39513–39523.

[21] C.E. Jessop, N.J. Bulleid, Glutathione directly reduces an oxidoreductase in the
endoplasmic reticulum of mammalian cells, J. Biol. Chem. 279 (2004)
55341–55347.

[22] J.B. DuRose, A.B. Tam, M. Niwa, Intrinsic capacities of molecular sensors of the
unfolded protein response to sense alternate forms of endoplasmic reticulum
stress, Mol. Biol. Cell 17 (2006) 3095–3107.

[23] H. Ostergaard, C. Tachibana, J.R. Winther, Monitoring disulfide bond formation
in the eukaryotic cytosol, J. Cell Biol. 166 (2004) 337–345.

[24] G.P. van der Schans, O. Vos, W.S. Roos-Verheij, P.H. Lohman, The influence of
oxygen on the induction of radiation damage in DNA in mammalian cells after
sensitization by intracellular glutathione depletion, Int. J. Radiat. Biol. Relat.
Stud. Phys. Chem. Med. 50 (1986) 453–470.

[25] J.W. Cuozzo, C.A. Kaiser, Competition between glutathione and protein thiols
for disulphide-bond formation, Nat. Cell Biol. 1 (1999) 130–135.

[26] A. Lombardi, R.S. Marshall, C.L. Castellazzi, A. Ceriotti, Redox regulation of
glutenin subunit assembly in the plant endoplasmic reticulum, Plant J. 72
(2012) 1015–1026.

[27] S.N. Molteni, A. Fassio, M.R. Ciriolo, G. Filomeni, E. Pasqualetto, C. Fagioli,
R. Sitia, Glutathione limits Ero1-dependent oxidation in the endoplasmic
reticulum, J. Biol. Chem. 279 (2004) 32667–32673.

[28] I. Braakman, N.J. Bulleid, Protein folding and modification in the mammalian
endoplasmic reticulum, Annu. Rev. Biochem. 80 (2011) 71–99.

D. Montero et al. / Redox Biology 1 (2013) 508–513 513

http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref1
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref1
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref2
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref2
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref3
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref3
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref4
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref4
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref5
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref5
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref5
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref6
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref6
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref7
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref7
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref7
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref8
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref8
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref8
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref9
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref9
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref9
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref9
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref10
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref10
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref10
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref11
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref11
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref11
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref12
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref12
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref12
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref13
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref13
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref13
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref13
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref14
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref14
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref14
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref15
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref15
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref15
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref15
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref16
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref16
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref16
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref17
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref17
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref17
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref18
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref18
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref18
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref18
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref19
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref19
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref19
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref20
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref20
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref20
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref20
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref21
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref21
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref21
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref22
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref22
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref22
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref23
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref23
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref24
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref24
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref24
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref24
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref25
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref25
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref26
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref26
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref26
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref27
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref27
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref27
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref28
http://refhub.elsevier.com/S2213-2317(13)00074-8/sbref28

	Intracellular glutathione pools are heterogeneously concentrated
	Introduction
	Materials and methods
	Cloning of sCGrx1pER
	Cell culture and transfection
	Metabolic labeling and immunoprecipitation
	TMM(PEG)12 modification protocol
	Determination of [GStot]cell
	Densitometry
	Additional methods


	Results and discussion
	Principle of [GSH]:[GSSG] determination in the ER
	Expression of sCGrx1pER does not disturb ER homeostasis
	sCGrx1pER is not rapidly degraded
	sCGrx1pER is predominantly glutathionylated at steady state
	Calculation of [GStot]ER
	The ER membrane maintains a [GStot] gradient

	Conclusions
	Acknowledgments
	References




