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Oxidative stress plays a crucial role in the development of the aging process and age dependent diseases.

Both are closely connected to disturbances of proteostasis by protein oxidation and an impairment of the

proteasomal system. The final consequence is the accumulation of highly cross-linked undegradable

aggregates such as lipofuscin. These aggregates of damaged proteins are detrimental to normal cell

functions. Here we provide an overview about effect of these aggregates on the proteasomal system,

followed by transcription factor activation and loss of cell viability. Furthermore, findings on the

mechanism of radical genesis, proteasomal inhibition and the required components of lipofuscin

formation were resumed.

& 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
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Introduction

In unstressed situations protein homeostasis is balanced by
folding and stabilization of proteins by chaperones of the Hsp
family [1] and the controlled degradation of proteins by the
proteasomal system. The proteasome exists in different forms,
and its activity is modulated by multiple regulators. The 20S core
proteasome contains the proteolytic activity and selectively
degrades a multitude of oxidized proteins [2–5], as well as other
substrates [6], in an ubiquitin- and ATP-independent manner.
When the core 20S proteasome combines with two 19S regulators,
the 26S proteasome is formed [7] which selectively removes
polyubiquitinated proteins [8–10]. Under stress conditions and,
therefore, most notably during aging the balance between protein
damage and clearance of damaged proteins is disturbed leading to
a malfunctioning of proteostasis and an accumulating mass of
oxidized proteins, aggregate and aggresome formation and finally
to the accumulation of highly cross-linked materials such as
er B.V.
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ne).
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lipofuscin, compromising cell viability. Accumulation of aggregates
in postmitotic cells seems to be especially dramatic, since they are
not able to dilute this material by cell division.

Previous work has shown that especially the 26S proteasome is
highly susceptible to inactivation during oxidative stress [11,12]
and although inhibition of 26S proteasomes could be caused by
oxidation products such as protein aggregates, it is most likely a
stress-triggered disassembly [13,14] (Fig. 1A). It could be sus-
pected, that this disassembly of 26S proteasomes serves to increase
20S proteasome abundance, allowing cells to clear irreparably
damaged proteins more effectively [9,15,16]. But inhibition of
26S is accompanied with the accumulation of undegraded, poly-
ubiquitinated proteins, which are sensed by the ubiquitinbinding
domain of HDAC6 (Histone deacetylase 6) [17].

Via HDAC6 this proteotoxic stress acts as a signal for a number

of response mechanisms that cope with proteasomal inhibition,

such as stabilization and prevention of aggregate formation by the

induction of classical Hsps, elimination of polyubiquitinated pro-

teins/aggregates by HDAC6 mediated aggresome formation and

lysosomal uptake via autophagy, containment of inflammation by

the induction of HO-1(heme oxygenase-1) and Nrf-2 (NF-E2-related

factor 2) pathway and reduction of proteotoxic stress mediated

apoptosis by the induction of classical Hsps and HO-1 [17–19]

(Fig. 1B). Furthermore, nuclear translocation of NFKB (Nuclear

factor KB) requires degradation of ubiquitinated phospho-IKB-a
D license.
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Fig. 1. Consequences of oxidative stress on proteins, the proteasomal system and transcription factors. (A) The 26S proteasome is highly susceptible to inactivation during

oxidative stress (figured as flash symbol) leading to an excessive accumulation of polyubiquitinated proteins. (B) Histone deacetylase 6 (HDAC6) has the ability to sense

and bind ubiquitinated proteins via the BUZ (bound to ubiquitin zinc finger) domain which induces the dissociation of a complex formed out of Hsp90, HSF-1, p97/VCP and

HDAC6 [35]. Following the liberation of HDAC6 and p97/VCP [17,36], the latter uses either its ATP dependent segregase activity to dissolve the bond between Hsp90 and

HSF-1 directly or p97/VCP stimulates the Hsp90 ATPase activity, which results in the release of HSF-1 and the consequence up-regulation of several heat shock proteins,

such as Hsp70 and Hsp 27 [17]. Beyond up-regulation of classical Hsps upon proteasome inhibition, HDAC6 is also involved in an induction of HO-1 after proteasome

inhibition [18]. Initiation of this pathway is also the detection of ubiquitinated proteins and the release of HDAC6 and mediated by a p38/MAPK-dependent activation of

Nrf-2, which is the most important transcriptional activator of HO-1 gene translation [171]. Further HDAC6 has the ability to favor the accumulation of polyubiquitinated

proteins in cellular aggresomes by interaction with ubiquitin and dynein motors. Aggresomes are inclusion bodies next to the nucleus at the proximity end of the

microtubule organizing center, finally eliminated by an autophagy-mediated mechanism. (C) Furthermore, a pivotal regulatory protein function is disrupted by 26S

proteasomal inhibition, the transcription factor NFKB. This factor binds to multiple DNA sequences, initiating the transcription of gene products including various

cytokines, angiogenesis factors, cell adhesion molecules, enzymes and antiapoptotic factors [21]. NFKB is located in the cytoplasm in an inactive form, bound to an inhibitor

molecule IKB. Stimulation of cells through a variety of mechanisms triggers a cascade of signaling events resulting in the degradation of IKB by the proteasome. This

degradation releases active NFKB, which then translocates into the nucleus and binds to specific DNA sequences on its target genes [20]. Proteasomal inhibition blocks

NFKB activation and leads among others to increased susceptibility to oxidative stress and apoptosis. (D) The activity of the 20S proteasome, which is mostly responsible

for the degradation of oxidized proteins and less susceptible to direct oxidative stress, can be nevertheless diminished by aggregated oxidized proteins. These protein

aggregates are formed under stress conditions as complexes of unfolded proteins which do not normally interact with each other. It might require several steps depending

on the nature of the initial conditions, leading to unfolding and aggregate formation. Due to the complex process of intermolecular interactions, such as during

physiological aging, the process of aggregation is slow [30,37,38]. The aggregate is independent from the original structure of the protein and introduces a new toxic

element into cellular metabolism, partly by inhibiting 20S proteasome. (E) Another side effect of proteasome inhibition is leading to a higher amount of phosphorylated

c-Jun leading to an activation of AP-1, known to control the expression of MMP-1 [22] and numerous other genes. Subsequently increased extracellular protein degradation

can be assumed, as observed in skin aging. (F) When proteolytic capacity declines below a critical threshold of activity required to cope with oxidative stress, the final

consequence is the accumulation of aggregated proteins which may, instead, cross-link with one another or form extensive hydrophobic bonds. This material might

undergo further reactions and finally form the age pigment lipofuscin which has toxic properties and accumulates in the lysosomal system..
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(inhibitor of KB) by the 26S proteasome [20]. NFKB regulates critical
survival pathways such as apoptosis in a variety of different cell
types [21]. During proteasomal inhibition apoptosis is enhanced
through inhibition of IKB-a degradation (Fig. 1C). Although, the 20S
proteasome is relatively resistant towards oxidants both in vitro

and in vivo [11], it was shown that oxidized protein aggregates are
able to inhibit the proteolytic activity of the 20S proteasome
(Fig. 1D). So beside 26S disassembly as a consequence of oxidative
stress the effectiveness of 20S is also diminished by accumulation
of heavily damaged, oxidized, and aggregated proteins during
postmitotic aging. It was further demonstrated that inhibition of
20S proteasome by UVA-irradiation followed aggregate formation
subsequently leads to an accumulation of phosphorylated c-Jun and
activation of activator protein-1 (AP-1), controlling MMP-1(matrix
metalloproteinase-1) expression [22]. MMP-1 as a major protease
of the extracellular matrix is thereby up-regulated causing
increased extracellular protein degradation (Fig. 1E). Noteworthy,
it can be expected that other AP-1 induced genes are also activated.

This accumulation of aggregates is the final fate of protein
damage under stress conditions. Under such circumstances
oxidized proteins may not undergo appropriate proteolytic diges-
tion but instead, cross-link with one another or form extensive
hydrophobic bonds. It is believed that the cross-linked proteins
react further with other cellular components, forming a fluores-
cent material referred to as lipofuscin (Fig. 1F). Lipofuscin is
accepted to consist of oxidized proteins (30–70%) as well as lipids
(20–50%) [23] and from the fifth decade of life, bound sugar
residues were also detected in human lipofuscin [24]. A
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Fig. 2. Properties of lipofuscin. Studies have suggested that lipofuscin is not an inert waste product, but rather an active component influencing the cellular metabolism, which

is especially relevant in senescent cells. It was proposed that lipofuscin is cytotoxic because of its ability to incorporate redox-active transition metals, resulting in a redox-active

surface, able to catalyze the Fenton reaction: in the presence of Fe2þ , H2O2 is decomposed forming hydroxyl radicals (OH�) [39]. The resulting Fe3þ can be reduced by

superoxide and the vicious cycle starts again. This ability to incorporate transition metals (iron) and form oxidants was tested by using artificial lipofuscin-like oxidized, cross-

linked protein aggregates (‘‘artificial lipofuscin’’). Non-iron-loaded artificial lipofuscin was incubated with Fe2þ and was able to incorporate a maximum amount of 7 mass%,

matching the characteristics of native lipofuscin very well [26]. In vitro this material is able to generate the formation of free radicals and initiates apoptotic cell death, resulting

in a significant loss of cellular viability (A). Another major and already demonstrated characteristic of protein aggregates/lipofuscin is the ability to inhibit the degradation of

oxidized proteins by competitively binding to the proteasome [40–42]. The proposed mechanism for proteasomal inhibition is binding to exposed hydrophobic amino acid

structures on the surface of the highly oxidized and covalently cross-linked lipofuscin [5]. These structures seem to be main sites of proteasomal substrate recognition. After

proteasomal binding to those structures the protease is unable to degrade the exposed structures completely because of sterical and/or mechanical inhibition by cross-links. So

the proteasome is bound to the surface of lipofuscin in ineffective attempts of degradation detracting proteolytic capacity from other substrates and resulting in a measurable

proteasomal inhibition. Furthermore, celluar viability is affected and significantly reduced (B). Degradation of these exposed structures by using the effective and nonspecific

protease K demonstrated that such unfolded peptide binding sites are largely responsible for the inhibition of the proteasome. This degradation of these binding sites

significantly reduces the proteasomal binding and the inhibition of the proteasome could be partially prevented. Consequently less proteasomal capacity is detracted in futile

attempts of degradation and cellular viability was unaffected or increased referred to the undegraded material (C) [29].
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hypothetical mechanism of lipofuscin formation was described in
detail by Brunk and Terman in their widely accepted model
known as ‘‘the mitochondrial–lysosomal axis theory of aging’’
[25]. According to this model, an intralysosomal accumulation of
lipofuscin can be considered as the long-term result of a
decreased degradation of oxidized proteins and an increase in
intracellular free radical formation. Metals, including Fe, Cu, Zn,
Al, Mn, and Ca, comprise up to 2% of lipofuscin [26] and especially
catalytic iron seems to be an important factor in further oxidation
reactions of the initial protein aggregate. In mammalian cells iron
is the most abundant cellular transition metal and a fundamental
player in the above mentioned mitochondrial–lysosomal axis
theory of aging [25].

However, the detailed intracellular effects of lipofuscin in
a cell are largely hypothetical and under discussion for a long
time. By using an artificial lipofuscin it could be shown, that
lipofuscin is a prominent source of oxidants and is able to
incorporate iron in a redox-active manner (Fig. 2A). It could be
shown that artificial lipofuscin and particularly iron-loaded arti-
ficial lipofuscin increase caspase-3 activity if taken up by cells
and, therefore, apoptosis [27]. Furthermore, deferoxamine as
chelating agent could reduce the effects of iron-loaded lipofuscin
significantly. Thus, the amount of iron included in lipofuscin
seems to play a crucial role in the intracellular effects of lipofuscin,
particularly considering the ability to catalyze the formation of
free radicals and the resulting cytotoxicity. These results match
very well the hypothesis of Brunk and Terman [25], postulating
that iron inclusions of lipofuscin result in a redox-active surface
catalyzing the Fenton reaction.

Another major characteristic of lipofuscin is its ability to
inhibit the degradation of oxidized proteins by competitively
binding to proteolytic enzymes including the 20S proteasome as
mentioned above as well as lysosomal proteases. How exactly the
proteasomal substrate recognition functions is still under inves-
tigation, but one of the recognition motifs might be exposed
hydrophobic patches from oxidatively damaged and partially
unfolded proteins [5,28]. It seems likely that the proteasome
also binds to such exposed hydrophobic oligopeptides on the
lipofuscin surface but is then unable to completely degrade or
to release these peptides, resulting in proteasomal inhibition
(Fig. 2B). Evidence for this hypothetical mechanism could be
recently shown by partial degradation of these hydrophobic
surface patches in artificial lipofuscin with protease K, resulting
in decreased proteasomal inhibition and reduced cytotoxicity
(Fig. 2C) [29].

Furthermore there has been some speculation about dysfunc-
tion of the lysosomal proteases due to the accumulation of
lipofuscin in lysosomes, but it is still unclear where the initial
cross-linking reactions are taking place: in the cytosol and after-
wards uptake by macroautophagy, or whether lysosomes are
required components of lipofuscin formation [30,31]. Macro-
autophagy is a process, which is beside organelle degradation
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Aggregates which are no longer degradable by the proteasome, but rather inhibit its proteolytic function are enclosed by a phagophore and transported towards the

lysosomal system. Macroautophagy comprise the formation of an autophagosome, a double-membrane vesicle that engulfs substrates trough the expansion of an isolation

membrane, called phagophore. This isolation membrane is build, expanded and closed to an autophagosome and delivered to the endo/lysosomal system. Afterwards both

structures fuse and the final structure is called autophagolysosome. The elongation of the phagophore requires two processes similar to ubiquitination: Atg12-Atg5-

conjugation and LC3 (microtubule-associated-protein-light-chain-3)-modification (illustration of Atg12-Atg5-system and LC3 conjugation system according to Levine and
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complex of LC3 with PE is called LC3II and localized via its lipid part to the autophagosomal membrane enabling membrane-elongation. Finally LC3II is deconjugated from

the phospholipid-anchor via Atg4 and the luminal associated LC3II is degraded. This cycle of conjugation and deconjugation is important for the normal progression of

autophagy. Especially under conditions of oxidative stress a huge amount of aggregated proteins accumulate. These aggregates are taken up by macroautophagy and react

further with other cellular components, forming a fluorescent material referred to as lipofuscin, which accumulates in the lysosomal system over time.
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Atg7 null mice die a few hours after birth [51]. Nevertheless it is possible to investigate the role of macroautophagy in knockout models such as fibroblasts from mouse
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phagophore, the uptake of aggregated proteins (and other substrates) is prevented in this knockdown system. The consequence is an increasing amount of cytosolic protein

aggregates and finally a dramatically enhanced cytosolic lipofuscin accumulation. These elevated levels of extralysosomal lipofuscin are combined with a decline in cellular

viability and an increased amount of ROS production.
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responsible for the uptake of larger aggregates. Normally aggregated
proteins beyond proteasomal degradation are enclosed by a phago-
phore and mediated to the lysosomal system (Fig. 3). By application
of oxidative stress to an ATG5 knockout model it was possible to
manipulate the lipofuscin amount within lysosomes and the uptake
of aggregates into lysosomes could be reduced. However this
inhibition of macroautophagy actually did not prevent the formation
of lipofuscin [32]. These findings indicate that in contrast to an
earlier hypothesis [33,34] lipofuscin can also be formed in the
cytosol (Fig. 4) and the uptake into an autophagosome seems to
take place in a secondary step. Therefore, autophagosomes/lyso-
somes are not mandatory for the formation of lipofuscin but
constitute a storage for aggregates reducing aggregate toxicity [32].
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