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a b s t r a c t

Nitrite, long considered a biologically inert metabolite of nitric oxide (NO) oxidation, is now accepted as

a physiological storage pool of NO that can be reduced to bioactive NO in hypoxic conditions to mediate

a spectrum of physiological responses in blood and tissue. This graphical review will provide a broad

overview of the role of nitrite in physiology, focusing on its formation and reduction to NO as well as its

regulation of the mitochondrion—an emerging subcellular target for its biological actions in tissues.

& 2013 The Author. Published by Elsevier B.V. Open access under CC BY-NC-ND license. 
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Introduction

While nitrite (NO2
�) was for decades considered to be physio-

logically inert, it is now accepted that NO2
� represents a stable

reservoir that can be reduced to bioactive NO and other reactive
nitrogen species during hypoxia to mediate physiological signal-
ing [1]. Concentrations of the anion are maintained at low
micromolar levels in tissues (1–20 mM) and nanomolar levels in
blood (100–200 nM) [2,3]. The majority of NO2

� is derived from
the oxidation of NO Synthase (NOS)-generated NO. While this one
electron auto-oxidation of NO proceeds relatively slowly
(k¼2�106 M�2 s�1) compared to the two electron oxidation of
NO to nitrate (NO3

�) by heme proteins in the blood and tissue
(k¼8�107 M�1 s�1), NO2

� formation can be catalyzed by the
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multicopper oxidase ceruloplasmin in the plasma or cytochrome c
oxidase (ccox) in tissues [4–6]. A smaller proportion (�30%) of
NO2
� is derived from dietary sources. Nitrite itself is present in

cured meats, however green leafy vegetable are a principal source
of NO3

� , which is reduced to NO2
� in the body by commensal

bacteria in the oral cavity and the gastrointestinal tract and to a
lesser extent by mammalian xanthine oxidoreductase (XOR) in
the liver [7] (Fig. 1).

Once formed, NO2
� is reduced to bioactive NO through acid-

ification or via reaction with a number of proteins possessing
NO2
� reductase activity, including heme globins [8–10],

molybdenum-containing enzymes [11,12], NOS [13], and compo-
nents of the mitochondrial electron transport chain (ETC)
[14–16]. While the reaction mechanism by which each of these
systems reduce NO2

� has been elucidated to differing degrees, it is
clear that NO2

� reduction by all mammalian reductases is opti-
mized in conditions of hypoxia and acidosis (Fig. 2). Thus, NO2

�

reduction represents a physiological mechanism by which NO
production is sustained in hypoxic conditions, during which
catalytic NO generation by NOS, which relies on oxygen as a
substrate, is compromised (Fig. 1).
 license. 
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Perhaps the most well-characterized mammalian NO2
� reduc-

tases are the heme globins, which catalyze the following reaction:

deoxy(FeII)þNO2
�
þHþ-(FeIII)þdNOþOH�

For hemoglobin (Hb), the rate of this reaction is regulated by
the allosteric structural transition of the protein from its R
(relaxed) to T (tense) state, such that the maximal rate of Hb-
catalyzed NO2

� reduction occurs around the p50 of the protein
(26 mmHg) [17]. This reaction has been implicated in the
Fig. 1. The nitrite–NO cycle. In normoxia, NOS is functional and generates NO,

which is oxidized by Mb and Hb to nitrate and by cytochrome c oxidase (ccox) and

ceruloplasmin (Cp) to nitrite. Nitrite is also derived from the diet as well as the

normoxic oxidation of nitrite by cytochrome P450 enzymes. In hypoxia, nitrate is

reduced to nitrite by anaerobic commensal bacteria and nitrite is reduced to

bioactive NO by a number of mammalian nitrite reductase enzymes including Hb,

Mb, neuroglobin (Ngb), xanthine oxidoreductase (XOR), aldehyde oxidase (AO),

sulfite oxidase (SO), components of the mitochondrial electron transport chain

(ETC) and NOS.

Fig. 2. Major classes of mammalian nitrite reductases. Heme globins (hemoglobin, myo

(ferrous) in the presence of a proton, to generate NO and yielding oxidized heme. Mol

oxidase) reduce nitrite at their molybdenum site in hypoxic conditions when reduction

III and IV reduce nitrite in hypoxia. Cytochrome c, like neuroglobin exists as a hexacoord

the bond between the iron and the distal histidine is broken such that the heme is pe
mechanism underlying hypoxic vasodilation. In tissues, the
monomeric heme globins, myoglobin (Mb) and neuroglobin
(Ngb), catalyze NO2

� reduction by the same reaction but at lower
oxygen tensions (p50 Mb¼2.4 mmHg; p50 Ngb¼2.2 mmHg).
Mb-dependent NO2

� reduction has been implicated in the protec-
tive effects of NO2

� after ischemia/reperfusion (I/R) in the heart as
well as in vasodilation [18,19]. Neuroglobin, present in the brain
and retina contains a hexa-coordinated group, which can be
converted to a penta-coordinate heme capable of reducing NO2

�

at a greater reaction rate than Mb and Hb. This transition of the
heme coordination is regulated by the oxidation of two surface
cysteine residues on the protein [10]. Molybdenum containing
enzymes, of which XOR is best characterized, have been impli-
cated in the mechanism underlying nitrite-dependent protection
after I/R as well as protective vascular remodeling after vascular
injury [12,20–22]. While the exact reaction scheme underlying
XOR-mediated NO2

� reduction is unclear, it is known that this
reaction occurs at the molybdenum cofactor of XOR and aldehyde
oxidase [11,12]. Nitrite reduction by the mitochondrial ETC has
been shown to occur in near anoxic conditions, predominantly at
pH less than 7 and with relatively high (millimolar) concentra-
tions of NO2

� [15]. Within the ETC, complexes III and IV pre-
dominate, while the hexacoordinate protein cytochrome c can
reduce NO2

� to NO when it is converted to its pentacoordinate
form, similarly to Ngb [14] (Fig. 2). Nitrite reduction by these
enzymes with differing oxygen affinities, tissue distribution and
rates of reduction, ensures NO generation and nitrosative mod-
ification of target proteins over a wide range of physiological
hypoxia in the cell [1]. This leads to downstream signaling to
induce a wide spectrum of biological responses including hypoxic
vasodilation [8], stimulation of angiogenesis [23], modulation of
glucose metabolism [24], augmentation of exercise efficiency
[20], regulation of mitochondrial function [9,25,26] and tolerance
to I/R [22,27–29] (Fig. 3).

It is now well-established that NO2
� mediates a number of

beneficial tissue responses. While the downstream molecular
signaling underlying these effects remains unclear, the
globin, neuroglobin) reduce nitrite through the reaction of nitrite with deoxyheme

ybdenum containing enzymes (xanthine oxidoreductase, aldehyde oxidase, sulfite

of the molybdenum co-factor is favored. Within the mitochondrial ETC, complexes

inate heme protein. Cytochrome c and neuroglobin efficiently reduce nitrite when

nta-coordinate.



Fig. 3. The nitrite pyramid. Nitrite is reduced by a number of nitrite reductase enzymes in hypoxia including heme globins, molybdenum containing enzymes, components

of the mitochondrial ETC, other enzymes (NOS, cytochrome P450—CYP450, and carbonic anhydrase—CA) as well as non-enzymatic reactions (acidification, reaction with

polyphenols and ascorbate). Reduction of nitrite generates NO as well as nitrosating (N2O3) and nitrating (dNO2) species, which can modify protein and lipids to form

nitrated fatty acids (FA-NO2), iron nitrosyl (Fe-NO), nitrosamines (RN-NO) and S-nitrosothiols (RSNO). These species mediate signaling leading to downstream

physiological effects including modulation of mitochondrial function, vasodilation, stimulation of angiogenesis, modulation of glucose metabolism, decrease inflammation,

and modulate host defenses. These species also mediate therapeutic benefits in a number of pathologies in virtually all organ systems.

Fig. 4. Nitrite-dependent modulation of mitochondrial function. Red ‘‘X’’ denotes points of modulation by nitrite. (A) During ischemia/reperfusion, nitrite inhibits complex

I by S-nitrosation of the complex, leading to decreased mitochondrial reactive oxygen species generation. This decreases cytochrome c release and inhibits opening of the

permeability transition pore (PTP), which consists of the Adenine nucleotide translocase (ANT), Cyclophylan D (CD) and the Voltage Gated Anion Channel (VDAC). Nitrite

also inhibits complex IV during ischemia to potentially mediate cardiac hibernation. (B) Slight inhibition of complex IV by nitrite can decrease oxygen consumption, while

not impacting ATP generation during exercise. Nitrite also decreases expression of the ANT (adenine nucleotide translocase) and Uncoupling protein 3 (UCP-3), both of

which dissipate the proton gradient by allowing the re-entry of protons into the mitochondrial matrix. In aggregate, these effects would decreases respiratory rate as well

as proton leak, as observed in human subjects with increased exercise efficiency after oral nitrate ingestion. (C) Chronic nitrite treatment activates AMP kinase and sirtuin-

1 which de-acetylates PPARg co-activator-1a (PGC1a) to increase mitochondrial number in hypoxia.
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mitochondrion has emerged as a major sub-cellular target of
NO2
�. Accumulating evidence demonstrates that NO2

� differen-
tially regulates mitochondrial function through the modulation of
specific proteins within the organelle in both physiology and
pathology (Fig. 4). The inhibition of mitochondrial complexes I
and IV have been implicated in NO2
�-mediated cytoprotection

after I/R [18,26]. The mitochondrion plays a central role in the
progression of I/R injury. During ischemia, ATP production is
limited, contributing to the depletion of high energy phosphate
stores. Upon reperfusion, overwhelming influx of oxygen into the
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respiratory chain results in excessive reactive oxygen species
generation at complexes I and III and oxidation of critical proteins
leading to opening of the mitochondrial permeability transition
pore (PTP) as well as release of cytochrome c to initiate apoptosis
[30,31]. Inhibitors of complex I have been demonstrated to
attenuate I/R injury by limiting electron flow through the ETC at
reperfusion, thereby limiting ROS generation [32]. It has now
been demonstrated in a number of animal models of I/R that NO2

�

inhibits complex I activity specifically after ischemia [26,33,34].
This inhibition is attributed to the NO2

�-dependent S-nitrosation
of complex I and results in an attenuation of mitochondrial ROS
generation, as well as inhibition of PTP opening and cytochrome c
release after I/R [26].

The reversible inhibition of cytochrome c oxidase (ccox;
complex IV) has also been implicated in NO2

�-mediated protec-
tion after I/R [18]. Ccox, the terminal complex of the etc to which
oxygen binds at the copperB/hemea3 binuclear center and is
reduced to water, is the primary target of NO within the
mitochondrion. Binding of NO to the binuclear center excludes
oxygen binding and inhibits respiration [35]. This NO-dependent
inhibition of mitochondrial oxygen consumption is greater as
oxygen tension is decreased and fully reversible [35]. We have
demonstrated that Mb-dependent reduction of NO2

� to NO results
in the inhibition of ccox in the heart [9,18]. This inhibition of
mitochondrial respiration potentially underlies the downregula-
tion of metabolism, a protective phenomenon termed ‘‘short-term
hibernation’’ that is responsible for conserving oxygen as well as
high energy phosphates during prolonged ischemic episodes [18].
Once reperfusion commences, this inhibition is removed and
metabolic function returns (Fig. 4A).

Nitrite dependent inhibition of ccox also potentially regulates
responses to physiological hypoxia, such as that present in the
muscle during exercise. Larsen and colleagues recently demon-
strated that ingestion of NO3

� decreased whole body oxygen
consumption during exercise without changing maximal attain-
able work rate in human subjects [20]. This increase in exercise
efficiency, which was associated with augmented plasma NO2

�

levels, has now been corroborated by a number of studies in
various exercise models. While the underlying mechanism of this
beneficial effect is not completely elucidated, a decrease in the
rate of oxygen consumption due to proton leak and state
4 respiration in the skeletal muscle of subjects receiving NO3

�

was reported [25]. Further, the authors reported a NO3
�-induced

decrease in the expression of uncoupling protein 3 (UCP-3) and
the adenine nucleotide translocase (ANT), two proteins which
facilitate proton leak [25]. Notably, numerous studies of respira-
tory control suggest that oxygen consumption by ccox can be
inhibited to a certain degree without significantly affecting ATP
production by the ETC [36,37]. Hence, it is possible that NO2

�-
mediated inhibition of ccox could decrease oxygen consumption
without negatively impacting ATP generation, contributing to the
augmentation of the ratio of ATP generated per mole of oxygen
consumed that was observed in subjects after NO3

� ingestion.
In addition to modulating specific proteins within the mito-

chondrion, NO2
� has also recently been shown to stimulate

hypoxic mitochondrial biogenesis [38]. Treatment of cells with
physiological levels of NO2

� during chronic hypoxia induced a
significant increase in mitochondrial number per cell. This effect
is mediated through the classical mitochondrial biogenesis path-
way involving the nitrite-dependent activation of AMP Kinase,
Sirtuin-1, PPARg-coactivator-1a and upregulation of mitochon-
drial transcription factors. This effect, observed both in vitro as
well as in a rat model of restenosis, is associated with NO2

�-
dependent protective vascular remodeling [38].

While the field of nitrite biology has advanced rapidly in the last
decade, several challenges remain. The mechanisms underlying the
regulation of individual nitrite reductases as well as the assessment of
crosstalk between mammalian nitrite reductases are currently being
elucidated. Ongoing study in a number of labs is identifying down-
stream targets through which nitrite mediates its effects. Future study
will further delineate the role of nitrite reduction versus NOS-
dependent NO generation in physiological NO signaling.
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