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Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in

conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are

thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric

oxide production results in the post-translational modification of protein thiols, termed S-nitrosation.

The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of

the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO) in combination with

redox-cycling agents was examined in bovine aortic endothelial cells (BAEC). CysNO significantly

impairs mitochondrial function and depletes the NADH/NADþ pool; however, these changes do not

result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate

ROS, further loss of NADþ occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also

accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells

to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated

degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.

& 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license. 
Introduction

Conserved cysteine residues occur in almost all classes of
proteins and are often critical for protein function [1–3]. Addi-
tionally, modification of protein cysteine residues, the primary
mechanism for redox signaling events, occurs in a specific
manner. While cysteine is present in most proteins, it is the
second least abundant amino acid in proteins (approximately
1.9% of total amino acid composition), and only a small percen-
tage of cysteine is susceptible to modification [4]; thus, thiols are
poised to mediate diverse and specific redox signaling responses
and control important aspects of cell growth, differentiation,
stress responses, and cell death (reviewed in [3,5]). For these
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reasons, there is significant interest in developing therapeutic
agents which target redox-sensitive pathways (termed ‘redox
therapeutics’) for multiple diseases including cardiovascular
disease, diabetes, neurodegeneration, and cancer [6].

In the vasculature, significant emphasis has been put on under-
standing the specific role for S-nitrosation, a nitric oxide-dependent
cysteine modification that results in the addition of a nitroso moiety
to a protein thiol [7]. The endothelium represents an ideal site for S-
nitrosation-dependent signals, as it constitutively expresses the nitric
oxide producing enzyme endothelial nitric oxide synthase (NOS), and
in inflammatory conditions, is also exposed to nitric oxide-derived
from the inducible NOS isoform [8]. Although canonical nitric oxide
signaling occurs through its interaction with soluble guanylyl cyclase
and control of cyclic guanosine monophosphate (cGMP)-dependent
signaling [9,10], some have suggested that S-nitrosation is an
essential component of vascular (dys)function [11].

Vasculature pathologies such as atherosclerosis are characterized
by endothelial dysfunction. In this case, the endothelium is exposed
to both nitric oxide and reactive oxygen species (ROS), such as
hydrogen peroxide and superoxide, as the result of infiltrating
inflammatory cells [12]. Environmental exposure to redox-cycling
agents also represents an important source of ROS in vivo. Environ-
mental pollutants such as polycyclic aromatic hydrocarbons [13]
and the herbicide paraquat redox-cycle [14,15] with aldo-
ketoreductases and components of the mitochondrial electron
transport chain (e.g., NADH dehydrogenase and ubiquinol:cyto-
chrome c oxidoreductase), respectively. Dietary polyphenols [16]
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and some anti-cancer agents (e.g., doxorubicin) [17] also possess
this activity. The endothelium is acutely sensitive to nitric oxide, its
downstream mediators, and ROS. It is well-established that nitric
oxide reacts readily with superoxide to produce the highly oxidizing
species peroxynitrite [18], and many of the deleterious effects of
combined exposure to nitric oxide/superoxide have been attributed
to peroxynitrite formation. However, far less is understood regard-
ing the potential interplay between S-nitrosation-dependent thiol
modification and ROS.

A key action of S-nitrosation in the vasculature is the control of
metabolic pathways. This is highlighted in work examining the
effects of S-nitrosothiols in preclinical models of ischemia-
reperfusion injury. Here, administration of S-nitrosothiols
such S-nitrosocysteine (CysNO) [19] and mitochondrial-targeted
S-nitroso-N-acetylpenicillamine [20,21] significantly improves
functional recovery of the heart upon reperfusion. Protection
from ischemia-reperfusion injury is thought to occur through
the S-nitrosation of several metabolic enzymes including
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Com-
plex I of the mitochondrial electron transport chain which inhibits
their activity and mitigates oxidant production during reperfusion
[22]. We have also shown that exposure of endothelial cells to
S-nitrosothiols significantly down-regulates mitochondrial func-
tion [23], and increasing evidence implicates mitochondria as
both sources and targets of ROS [24,25]. Thus, coupled with the
growing appreciation for exogenous redox-cycling agents as
sources of ROS in (patho)physiology, a further understanding of
the effects of S-nitrosothiols on ROS-dependent alterations in
cellular bioenergetics is needed.

Here, we examined the effects of the S-nitrosothiol CysNO on
cellular bioenergetics, nucleotide pools, and cell death in bovine
aortic endothelial cells (BAEC). CysNO significantly impairs mito-
chondrial function and depletes the NADH/NADþ pool; however,
these changes do not result in cell death. In contrast, when faced
with the additional stressor of a redox-cycling agent used to
generate ROS, further loss of NADþ occurs, and cellular ATP pools
are depleted. Concomitantly, cellular S-nitrosothiols accumulate,
and cell death is triggered. These data demonstrate that CysNO
sensitizes endothelial cells to redox cycling agent-dependent
mitochondrial dysfunction and cell death and identify attenuated
degradation of S-nitrosothiols as a potential mechanism for the
enhanced cytotoxicity.
Materials and methods

Materials

All materials were of analytical grade and obtained from
Sigma-Aldrich (St. Louis, MO) unless otherwise noted. 2,3-
Dimethoxy-1,4-naphthoquinone (DMNQ) was purchased from
Enzo Life Sciences (Farmingdale, NY). CysNO was synthesized
by incubating cysteine with acidified nitrite as described pre-
viously [26].
Cell culture

Bovine aortic endothelial cells (BAEC) were purchased from
Lonza (Walkersville, MD) and cultured in high glucose (25 mM)
DMEM supplemented with 10% fetal bovine serum (FBS),
200 units/mL penicillin, and 200 mg/mL streptomycin (Invitrogen;
Carlsbad, CA). Cells were treated with CysNO and DMNQ in
Dulbecco’s phosphate buffered saline (DPBS) supplemented with
5.5 mM glucose and 1 mM sodium pyruvate.
Lactate dehydrogenase (LDH) release

After treatment, aliquots of media were taken, and then cells
were harvested by scraping and lysed in PBS containing 0.1%
Triton-X 100. Samples were centrifuged at 10,000� g for 10 min,
and supernatants were used for LDH analysis. LDH activity in
media and cell lysates was monitored as the oxidation of NADH
(0.3 mM) at 334 nm as described previously [27].

S-nitrosothiol measurements

After treatment, cells were washed twice with DPBS, and then
scraped into 250 mL of lysis buffer (50 mM phosphate, 1 mM
diethylene triamine penta acetic acid (DTPA), and 50 mM
N-ethyl maleimide, pH 7.4). Samples were sonicated for 15 s prior
to centrifugation (10,000� g for 10 min). Supernatants were
used for tri-iodide-based chemiluminescence detection of
S-nitrosothiols as described previously [28–30]. Mercuric chloride
(5 mM for 10 min) was used to verify the presence of S-nitro-
sothiols, and a standard curve was generated using
S-nitrosoglutathione.

HPLC analysis of adenine and pyridine nucleotides

Adenine (ATP, ADP, and AMP) and oxidized pyridine (NADþ)
nucleotides were extracted using perchloric acid precipitation.
NADH was extracted using alkaline conditions (0.5 M KOH/Hank’s
balanced salt solution, 3:1), and the pH of lysates was adjusted to
�8 using 6 M HCl and ammonium acetate (1 M, pH 4.7) [31,32].
All samples were filtered prior to HPLC analysis on a Kinetex C-18
column (2.6 mm, 100 mm�4.6 mm internal diameter) and sepa-
rated using solvent A (0.1 M potassium phosphate, 4 mM tetra-
butyl ammonium bisulfate, pH 6.0, diluted v/v in water 64:36)
and solvent B (0.1 M potassium phosphate, 4 mM tetrabutyl
ammonium bisulfate, pH 6.0, diluted v/v in methanol 64:36) with
a flow rate of 1 mL/min. HPLC peaks were measured for each
sample, compared with standards, and normalized to total pro-
tein. Importantly, this protocol specifically distinguishes NADH/
NADþ from NADPH/NADPþ .

Mitochondrial function analysis

Activity of mitochondrial dehydrogenases was assessed using
the MTT assay [33]. Briefly, after treatment, complete culture
medium containing 0.4 mg/mL thiazolyl blue tetrazolium was
added, and cells were incubated for 2 h at 37 1C. Formazan
crystals were then solubilized in dimethyl sulfoxide (DMSO),
and the absorbance was measured at 590 nm with background
reference at 620 nm. A Seahorse Bioscience XF24 Analyzer (North
Billerica, MA) [34] was used to measured basal oxygen consump-
tion rates (OCRs) from BAEC. BAEC were seeded in specialized
microplates 24 h prior to treatment. Cells were then treated as
described prior to be being assayed in the XF24 Analyzer. DPBS
supplemented with 5.5 mM glucose and 1 mM sodium pyruvate
was used as assay media, and protein levels were assessed
at the end of the assay using the Bradford method (Bio-Rad,
Hercules, CA).

Statistical analysis

Results are reported as means7SEM for nZ3 as indicated in
the figure legends. Statistical significance was evaluated by
Student’s t-test. The minimum level of significance was set at
po0.05.
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Fig. 2. S-Nitrosothiol levels after exposure to CysNO and DMNQ. BAEC were

pretreated with CysNO (100 mM) for 1 h prior to treatment with (open bars) or

without (blue bars) DMNQ (20 mM) for an additional 4 h. Cells were harvested for

tri-iodide-dependent chemiluminescent detection of S-nitrosothiols, and results

were normalized to total protein per sample. Values represent mean 7SEM, n¼3.

The level of S-nitrosothiols in control samples was not detectable (N.D.). npo0.05

compared to control. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Results

Morphological changes and LDH release after exposure to CysNO and

DMNQ

We first defined the cytotoxic effects of treatment with the
S-nitrosating agent CysNO alone and in combination with DMNQ
in BAEC. Treatment with CysNO or DMNQ alone did not result in
marked changes in cell morphology; however, pretreatment with
CysNO for 1 h followed by DMNQ exposure for a further 4 h
caused cell-rounding and loss of cell adhesion to the tissue
culture plate (Fig. 1A), indicating acute effects of this treatment.
Moreover, incubation in complete culture media for an additional
12 h resulted in a significant increase in LDH release from cells
exposed to both CysNO and DMNQ (Fig. 1B).

S-nitrosothiol levels after exposure to CysNO and DMNQ

The primary mechanism by which CysNO is thought to control
cellular responses is through transnitrosation to protein thiols,
thereby initiating redox-dependent signals. We next examined the
levels of S-nitrosothiols after treatment with CysNO and DMNQ. As
expected, CysNO exposure increased S-nitrosothiol levels over that
of control to approximately 670 pmol/mg protein (Fig. 2). The
addition of DMNQ after CysNO treatment significantly enhanced
S-nitrosothiol levels to more than 3 times that of CysNO alone.

Effects of CysNO and DMNQ on the NADH/NADþ levels

A key mechanism for degradation of S-nitrosothiols in cells is
through the activity of the NADH-dependent enzyme alcohol
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Fig. 1. Morphological changes and LDH release after exposure to CysNO and

DMNQ. BAEC were pretreated with CysNO (100 mM) for 1 h prior to treatment

with (open bars) or without (blue bars) DMNQ (20 mM) for an additional 4 h.

Representative light micrographs are shown in Panel A. Treatment media was

removed, and cells were incubated for 12 h in complete culture media prior to

harvesting cells and media for analysis of LDH release spectrophotometrically (B).

Values represent mean 7SEM, n¼3. npo0.05 compared to control. (For inter-

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
dehydrogenase 3, also known as S-nitrosoglutathione (GSNO)
reductase [35], and we have previously demonstrated that BAEC
possess an NADH-dependent mechanism for the consumption of
GSNO [36]. Because protein S-nitrosothiols are in equilibrium
with low-molecular weight S-nitrosothiol such as GSNO through
transnitrosation, changes in alcohol dehydrogenase 3 activity can
affect the entire S-nitrosothiol pool [37]. Thus, the effect of
combined treatment with CysNO and DMNQ on NADH and NADþ

was examined. Interestingly, DMNQ alone resulted in a major
decrease in NADH levels (Fig. 3A), likely due to the requirement of
NADH for redox cycling [38]. However, decrease of NADH was
accompanied by a decrease rather than an increase in NADþ ,
suggesting the occurrence of oxidant-mediated DNA-damage and
the initiation of poly (ADP-ribosy)lation as others have shown
previously [39]. CysNO alone resulted in loss of NADH (Fig. 3A;
consistent with a role for enzymatic GSNO reduction) which was
enhanced in the presence of DMNQ. Disruptions in the NADH/
NADþ redox couple provide a possible explanation for the
enhanced S-nitrosothiol levels observed above through attenu-
ated alcohol dehydrogenase 3 activity and degradation of
S-nitrosothiols. More surprising was the synergistic loss of NADþ

that occurred upon combined treatment of CysNO and DMNQ
(Fig. 3B). This suggests that the combination of CysNO and DMNQ
cause a severe metabolic dysfunction in the cells. For this reason,
we examined the effect of these agents on mitochondrial
function.

Mitochondrial function in response to CysNO and DMNQ

Through the activity of Complex I, NADH dehydrogenase,
mitochondria are a major NADH-consuming organelle [24]. Due
to this and the critical role for ATP in de novo biosynthesis of
NADH, the effects of CysNO and DMNQ on mitochondrial function
in BAEC were determined. BAEC were pretreated with CysNO for
1 h, and then increasing concentrations of DMNQ (10–50 mM)
were added for an additional 4 h. DMNQ caused a concentration-
dependent decline in mitochondrial dehydrogenase activity as
measured by the reduction of MTT to formazan. Treatment with
CysNO alone resulted in significant impairment of mitochondrial
dehydrogenase activity that was not further inhibited upon the
addition of DMNQ (Fig. 4A).

Changes in mitochondrial function were confirmed using
extracellular flux analysis to monitor basal oxygen consumption
rate (OCR) after treatment. Again, CysNO alone or in combination
with DMNQ inhibited basal OCR (Fig. 4B); however, here we
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Fig. 3. Effects of CysNO and DMNQ on the NADH/NADþ ratio. BAEC were

pretreated with CysNO (100 mM) for 1 h prior to treatment with (open bars) or

without (blue bars) DMNQ (20 mM) for an additional 4 h. Cells were harvested
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NADþ levels, respectively, and results were normalized to total protein per
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observed a slight, but statistically significant increase in OCR with
DMNQ alone. This likely represents oxygen consumption which
occurs through the redox-cycling activity of DMNQ as has been
reported previously [40] and not a stimulation of basal mitochon-
drial respiration.
Effects of CysNO and DMNQ on adenine nucleotide pools

To extend the mitochondrial function findings, the effects of
CysNO and DMNQ on adenine nucleotide pools were next exam-
ined. CysNO or DMNQ alone caused a modest decrease in ATP
levels (Fig. 5A), but this did not translate into increases in ADP or
AMP (Fig. 5B,C). In contrast, the combined treatment of CysNO and
DMNQ resulted in a nearly complete loss of ATP and significant
increases in ADP and AMP. Interestingly, there is an approximately
39 nmol/mg protein decrease in ATP, but the sum of ADP and AMP
pools only increase by approximately 6 nmol/mg protein. This
suggests that further catabolism of adenine nucleotides may occur
in endothelial cells under conditions of nitrosative and oxidative
stress.
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Fig. 5. Effects of CysNO and DMNQ on adenine nucleotide pools. BAEC were

pretreated with CysNO (100 mM) for 1 h prior to treatment with (open bars) or

without (blue bars) DMNQ (20 mM) for an additional 4 h. Cells were harvested for

HPLC analysis of ATP (A), ADP (B), and AMP (C), and results were normalized to

total protein per sample. Values represent mean7SEM, n¼3. npo0.05 compared

to control. (For interpretation of the references to color in this figure legend, the
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Effect of thiol supplementation on nucleotide pools and

mitochondrial function following CysNO and DMNQ treatment

Because of the primary mechanism of action for CysNO and other
S-nitrosothiols is through transnitrosation to protein thiols, we
investigated whether bolstering the cellular thiol pool in BAEC could
restore mitochondrial function and nucleotide pools. When BAEC
were pretreated with glutathione ethyl ester (GSHee) or
N-acetyl cysteine (NAC) for 1 h prior to the addition of DMNQ, the
DMNQ-dependent depletion of ATP and NADþ as well as impair-
ment of mitochondrial dehydrogenase activity was restored to levels
similar to control (Fig. 6). ADP and AMP levels did not change in
these conditions. However, in cells exposed to both CysNO and
DMNQ, supplementation with GSHee or NAC only partially miti-
gated the loss of ATP and NADþ , and these nucleotides were not
restored to control levels (Fig. 6A,B). This also resulted in no change
in the CysNO and DMNQ-dependent decreases in mitochondrial
dehydrogenase activity (Fig. 6C). Further studies to address specific
role of GSH in the maintenance of nucleotide pools demonstrated
that, unlike CysNO, depletion of glutathione using buthioninesul-
phoximine (BSO) did not exacerbate DMNQ-dependent changes in
nucleotide pools (Supplementary Fig. 1).
Discussion

Understanding the interplay between S-nitrosation-dependent
thiol modification and ROS is critical to define biological action
of nitric oxide in vascular pathologies. Here, we have used the
S-nitrosothiol CysNO as a cell-transportable S-nitrosating agent and
examined its effects in the presence of the redox-cycling agent
DMNQ. As expected, treatment with CysNO causes an increase in
cellular S-nitrosothiols (Fig. 2) which is accompanied by significant
decreases in NADH levels and a more modest depletion of NADþ

(Fig. 3). Loss of NADH is likely due to the activity of S-nitrosothiol
degradation pathways through alcohol dehydrogenase 3, an
Fig. 6. Effect of NAC and GSHee supplementation on nucleotide pools and mitochond

CysNO (100 mM) for 1 h prior to treatment with (open bars) or without (blue bars) DMN

(200 mM; black bars). Cells were harvested for HPLC analysis of ATP (A), ADP (B), and A

were also analyzed for mitochondrial dehydrogenase activity using the MTT assay (D).
npo0.05 compared to control. (For interpretation of the references to color in this figu
NADH-dependent enzyme [35]. Our data suggest that although
S-nitrosothiol degradation is occurring, it is not sufficient to reduce
all cellular S-nitrosothiols since total S-nitrosothiols are still elevated
over control levels during the course of our experiments. CysNO also
readily impairs mitochondrial function resulting in loss in activity of
mitochondrial dehydrogenases and basal oxygen consumption
(Fig. 4). This is consistent with the modification of several metabolic
enzymes known to be targets of S-nitrosation, including GADPH and
Complex I of the mitochondrial electron transport chain [41,42]. In
fact, S-nitrosation of these enzymes is thought to play an important
role in the therapeutic effects of S-nitrosothiols in ischemia-
reperfusion injury [19–21]. Despite these marked changes in mito-
chondrial function, only modest changes in adenine nucleotide pools
occur (Fig. 5), and no cytotoxicity is observed (Fig. 1), suggesting
that compensatory mechanisms are sufficient to maintain cellular
energy balance.

The effects of the redox-cycling agent DMNQ alone are some-
what similar to those of CysNO. DMNQ also affects the NADH/
NADþ redox couple by decreasing total levels of both the reduced
and oxidized nucleotides (Fig. 3). It is well-established that DMNQ
requires NADH or another electron source to redox-cycle [43,44];
thus, a constant ‘pull’ on this nucleotide pool provides an
explanation for the observed effects. DMNQ also impairs the
activity of mitochondrial dehydrogenases, but to a lesser extent
than CysNO and without diminishing basal oxygen consumption
(Fig. 4). Interestingly, these DMNQ-dependent effects are com-
pletely reversible upon the addition of the thiol-containing agents
NAC and GSHee (Fig. 6), indicating the mechanism of action for
DMNQ in this context may also be through redox processes.
Wright et al. reported that administration of DMNQ to intact
skeletal muscles significantly inhibited protein phosphatases
through dithiothreitol (DTT)-reversible thiol modification [45].
This is just one of many instances which demonstrate effects of
redox-cycling agents on redox-sensitive cellular processes. None-
theless, DMNQ itself does not result in cell death in BAEC under
these experimental conditions (Fig. 1).
rial function following CysNO and DMNQ treatment. BAEC were pretreated with

Q (20 mM) for an additional 4 h in the presence of NAC (200 mM; red bars) or GSHee

MP (C), and results were normalized to total protein per sample. Identical samples

Values represent mean7SEM, n¼3 for adenine nucleotides and 8 for MTT assay.

re legend, the reader is referred to the web version of this article.)
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CysNO significantly sensitized BAEC to the effects of DMNQ.
Combined treatment with CysNO and DMNQ caused metabolic
stress characterized by mitochondrial dysfunction (Fig. 4), nearly
complete depletion of ATP and NADþ pools (Figs. 3 and 5), and
cell death (Fig. 1). Surprisingly, the synergistic effects of CysNO
and DMNQ were only partially reversed by supplementation of
thiol-containing agents (Fig. 6), indicating that mechanisms
beyond reversible thiol modification may also be important.

There are several possible explanations for the synergistic activity
of CysNO and DMNQ. The first is that CysNO exposure, and
subsequent S-nitrosation of protein thiols, limits the cell’s ability to
respond to oxidative stress imposed by DMNQ. Oxidative stress can
significantly impact the glutathione pool, the major redox buffer in
cells, and affect redox processes. For example, Circu et al. demon-
strated that the redox-cycling agents menadione and DMNQ oxidize
GSH. Reduction of glutathione disulfide back to GSH requires the
activity of glutathione reductase, an NADPH-dependent enzyme [38].
In this study, these authors demonstrated that as the NADPH/NADPþ

pool is tapped for detoxification pathways. NADH and NADþare then
used as substrates to produce additional NADPþ through the activity
NADþ kinase; thus, also linking nucleotide pools to detoxification
processes. However, this is an unlikely explanation for our studies,
since attempts to replete the GSH pool using NAC and GSHee had
minimal effects on the synergistic loss of ATP, NADþ , and activity of
mitochondrial dehydrogenases. Moreover, depletion of glutathione
using BSO followed by a DMNQ challenge did not alter nucleotide
levels (Supplementary Fig. 1).

A second explanation for the synergy between CysNO and DMNQ
may be through reactions between the free radicals generated by
these agents, nitric oxide and superoxide, respectively. Nitric oxide
and superoxide react at diffusion-limited rates to form peroxynitrite,
a highly oxidizing species [18]. Thus, in this case, it is the production
of a new species that accounts for synergistic effects on cellular
bioenergetics and cell death. Peroxynitrite is known to oxidatively
inactivate several mitochondrial proteins including citric acid cycle
dehydrogenases and components of the mitochondrial electron
transport chain [18,46], and we have shown that nitric oxide can be
released from CysNO in the intracellular environment [47]. Our recent
study examining the combine exposure to nitric oxide and redox
cycling agents in BAEC demonstrates the synergistic loss of ATP and
NADþ (manuscript in preparation) further supporting a role for
peroxynitrite in this context.

A final explanation for how CysNO sensitizes to DMNQ-
dependent cellular dysfunction focuses on the fact that
both compounds target the NADH/NADþ redox couple through
S-nitrosothiol degradation pathways and redox-cycling,
Impaired
respiration

Cell
death

Ferric
Cytochrome c

↑ RSNO
production

NADH/NAD+

↓ RSNO
degradation

Fig. 7. Working model for enhanced S-nitrosothiols (RSNO) levels after exposure

to CysNO and redox cycling agents. Modest impairment of respiration by CysNO

does not elicit cell death. However, in the presence of redox cycling agents,

changes in electron transport chain activity may cause increased ferric cyto-

chrome c-dependent RSNO production. Concomitantly, depletion of the NADH/

NADþ pool may limit RSNO degradation through GSNO reductase. This culminates

in the accumulation of RSNO (denoted with the starburst symbol) and ultimately

results in cell death.
respectively. The inability to degrade S-nitrosothiols through
NADH-dependent alcohol dehydrogenase 3 is consistent with
the accumulation of S-nitrosothiols observed in the combined
treatment of CysNO and DMNQ (Fig. 2). Alternatively, changes in
the redox state of the electron transport chain are known to
impact endogenous cytochrome c-dependent S-nitrosothiol pro-
duction [48]. In either case, increased S-nitrosation of protein
thiols, particularly metabolic enzymes, is likely to result in
enhanced metabolic dysfunction, depletion of adenine and pyr-
idine nucleotide pools, and ultimately cell death (Fig. 7). We have
previously shown that S-nitrosation of GAPDH results in subse-
quent covalent inactivation of the enzyme [42]. This irreversible,
S-nitrosation-dependent modification requires the synthesis of
new protein to restore GAPDH activity in cells. Irreversible
protein modification may be an important mechanism for
enhanced cytotoxicity in cells treated with both CysNO and
DMNQ in this study and would also explain the inability of thiol
supplementation to restore cellular function.
Conclusions

Taken together, these results demonstrate that S-nitrosothiols
sensitize endothelial cells to redox-cycling agent-dependent
bioenergetic dysfunction and death with a concomitant elevation
of cellular S-nitrosothiol levels. The mechanism for this sensitiza-
tion is uncertain, but likely involves effects on adenine nucleotide
pools and ATP homeostasis. We have also defined an important
interaction between adenine and pyridine nucleotide pools and
S-nitrosothiol clearance mechanisms, highlighting the fact that
changes in metabolism may indirectly enhance S-nitrosothiol-
dependent cellular effects. These findings may be particularly
relevant in defining potential beneficial and deleterious effects of
S-nitrosothiols in cardiovascular (patho)physiology.
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