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a b s t r a c t

Mitochondria are a major source of cellular oxidants and have been implicated in aging and associated
pathologies, notably cardiovascular diseases. Vascular cell senescence is observed in experimental and
human cardiovascular pathologies. Our previous data highlighted a role for angiotensin II in the
induction of telomere-dependent and -independent premature senescence of human vascular smooth
muscle cells and suggested this was due to production of superoxide by NADPH oxidase. However, since a
role for mitochondrial oxidants was not ruled out we hypothesise that angiotensin II mediates
senescence by mitochondrial superoxide generation and suggest that inhibition of superoxide may
prevent vascular smooth muscle cell aging in vitro. Cellular senescence was induced using a stress-
induced premature senescence protocol consisting of three successive once-daily exposure of cells to
1�10�8 mol/L angiotensin II and was dependent upon the type-1 angiotensin II receptor. Angiotensin
stimulated NADPH-dependent superoxide production as estimated using lucigenin chemiluminescence
in cell lysates and this was attenuated by the mitochondrial electron transport chain inhibitor, rotenone.
Angiotensin also resulted in an increase in mitoSOX fluorescence indicating stimulation of mitochondrial
superoxide. Significantly, the induction of senescence by angiotensin II was abrogated by rotenone and
by the mitochondria-targeted superoxide dismutase mimetic, mitoTEMPO. These data suggest that
mitochondrial superoxide is necessary for the induction of stress-induced premature senescence by
angiotensin II and taken together with other data suggest that mitochondrial cross-talk with NADPH
oxidases, via as yet unidentified signalling pathways, is likely to play a key role.

& 2013 The Authors. Published by Elsevier B.V.

Introduction

Cell senescence prevents uncontrolled mitosis of transformed
cells, but is also associated with mechanisms of age-related pathol-
ogies including cardiovascular disease [1]. Stress induced premature
senescence (SIPS) is defined as the early senescence of cells
resulting from repeated exposure to a variety of cellular stressors
at sub-cytotoxic concentrations, e.g. H2O2, chemotherapeutic agents,
ultraviolet and ionizing radiation [2]. Oxygen radicals and inter-
mediates are implicated in the induction of SIPS with high con-
centrations of these oxidants acting through damage to DNA but
there is also a role for physiological levels of H2O2 and Od�

2 in
particular, mediating effects through cell signalling pathways.

SIPS has been studied in cultured skin fibroblast models [3] and
endothelial cells [4] and to a limited extent in vascular smooth
muscle cells (VSMC) [5,6]. Two main types of protocol have been
used to study premature senescence or SIPS. Firstly, continuous
stress and secondly, a series of stresses with recover periods in-
between and following the final stress. Much lower concentrations
are often used for the latter (SIPS) protocol. In the continuous
model it is not possible to discriminate between immediate effects
of stress and long term, irreversible effects on aging (e.g. p53
growth arrest by oxidative damage). With the repeat stress model
the provision of complete growth media between stresses and
following final stress allows cells to recover, thus avoiding inter-
actions between acute effects and long term or aging effects; this
paradigm has been adopted here to study angiotensin II (Ang II)-
induced senescence in human VSMC.

In vivo, SIPS has been observed in chronic kidney disease patients
[7] and in experimental models [8]. Notably, cells with a character-
istic senescence phenotype have been observed in human arteries at
sites prone to atherosclerosis [9] and their accumulationmay account
for the decline in tissue and organ function observed with aging
in vivo.
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Reports have suggested a correlation between dysfunctional or
damaged mitochondria and the onset or accumulation of cellular
senescence [10]. An increase in mitochondrial dysfunction has been
observed in human tissue with advancing age [11], which correlates
with a gradual accumulation of senescent cells. There is little evidence
to determine whether mitochondria have a mechanistic role in
promoting premature senescence, however, a very recent study
showed that inhibition of mitochondrial superoxide promoted cell
death and senescence of B16 mouse melanoma cells [12].

We and others have reported that Ang II induces senescence in
human VSMC in vitro [5,13]. Ang II causes oxygen radical produc-
tion in VSMC via NADPH oxidase [14,15] and oxidative DNA
damage [5]. Both replicative senescence, by accelerated telomere
attrition over a number of cell divisions and premature senescence
have been identified as possible mechanisms for the effects of Ang
II [5] but formal proof of induction of SIPS has not been demon-
strated. Prevention of senescence may partly explain the beneficial
effects, in terms of increasing lifespan and maintaining organ/
tissue function in rodents, of drugs which inhibit Ang II synthesis
and function [16]. We hypothesise that Ang II mediates senescence
of VSMC by O�

2 generation dependent upon mitochondrial func-
tion and that inhibition of mitochondrial O�

2 may help delay or
prevent VSMC aging in vitro.

Materials and methods

Reagents

All chemicals were supplied by Sigma unless otherwise noted.
Mito-TEMPO was purchased from Enzo Life Sciences and mitoSOX
from Invitrogen Ltd.

Thenoyltrifluoroacetone (TTFA) was supplied by Fisher Scientific.
EXP3174 was a gift from Merck & Co Inc.

hVSMC culture and induction of SIPS

VSMC were cultured as previously described [5] and used
between passage 2 and 9. Cells were cultured in RPMI 1640 media
containing 10% foetal calf serum (FCS), 2.5% (v/v) smooth muscle cell
growth supplement (TCS Cellworks), 100 μg/ml glutamine, 100 μg/ml
penicillin/streptomycin and 20 mmol/L HEPES buffer and maintained
in a 5% CO2 atmosphere. Near confluent cells were rendered
quiescent in media containing 0.5% (v/v) FCS (without growth
supplement) for 24 h prior to Ang II (1�10�8 or 1�10�7 mol/L)
exposures.

In order to investigate induction of SIPS, the protocol of Toussaint
et al. was adopted [3,2]. Sub-confluent cells were treated with
successive Ang II for 2 h each day, for 3 days, followed by 24 h
recovery periods after each treatment by replacing the culture media
with fresh growth media. Treatment with tert-butylhydroperoxide
(tert-BHP; 4�10�5 mol/L) was conducted in the same manner in
parallel cultures as a positive control. The same schedule of media
changes without the stress treatment was performed on control cells.

Senescence-associated β-galactosidase (SA-β-gal) staining

Senescence was determined by measurement of SA-β-gal activity
[17] using the ‘Senescence Cell Staining kit’ (Sigma). Following treat-
ments with peroxide or Ang II, hVSMC were re-plated (5�104 per
well) in 12-well plates in media containing 10% FCS for 24 h prior to
staining. Senescent cells were enumerated by light microscopy in five
fields of view selected at random in each well.

To investigate the effect of antioxidants and mitochondrial
inhibitors on senescence, VSMC were maintained in media contain-
ing 0.5% (v/v) foetal calf serum for 24 h. Cells were then incubated in

media containing catalase (300 Units/ml for 3 h), N-acetylcysteine
(NAC; 0.5�10�3 mol/L for 2 h), SOD (50 Units/ml for 3 h), rotenone
(2�10�6 mol/L for 3 h), thenoyltrifluoroacetone (TTFA; 1�10�6

mol/L for 3 h) or the mitochondrial O�
2 scavenger mito-TEMPO

(25�10�9 mol/L for 4 h) prior to Ang II exposure at 1�10�8 mol/L
for 24 h at 37 1C. Following Ang II treatment, cells were trypsinized,
counted using a haemocytometer and re-plated at 5�104 cells per
well in 12-well plates, in media containing 10% (v/v) FCS. Cells were
then left to adhere for 24 h at 37 1C prior to fixation and staining for
SA-β-gal.

Measurement of NADPH-dependent superoxide production

Quiescent hVSMC were stimulated with Ang II for 1 h then
homogenized by sonication. The lucigenin chemiluminescence assay
was used as previously described to determine NADPH-dependent
superoxide production in cell lysates [5]. To assess whether Ang
II-induced superoxide production was dependent upon mitochon-
drial activity, the effect of electron transport chain inhibitors for
complex I (rotenone, 10�10�6 mol/L) and II (TTFA, 10�10�6 mol/L)
was studied.

Detection of mitochondrial Od�
2

MitoSOXTM red was used in live hVSMC. Near confluent cells were
exposed to tert-BHP (50�10�6 mol/L) for 2 h or Ang II (1�10�7 mol/
L) for 1 h at 37 1C. Following treatment, cells were loaded with
5�10�6 mol/L MitoSOXTM red in Hanks' balanced salt solution (HBSS)
for 10 min at 37 1C. Cells were washed 3� in HBSS and finally 500 μl
of HBSS was added to each well and fluorescence was measured using
a Cary Eclipse Fluorescence Spectrophotometer plate reader (excita-
tion: 510 nm; emission: 580 nm). Fluorescence measurements were
calculated relative to untreated cells loaded with the probe.

Analysis of data

Comparison of means was performed using one way-ANOVA.

Results

Induction of SIPS in cultured hVSMC by tert-BHP

To our knowledge, the induction of SIPS under the defined protocol
described by Toussaint et al. [2] has not been previously reported for
hVSMC. In order to investigate this, hVSMC were exposed to mild,
successive tert-BHP stresses for 2 h each over 3 days with 24 h
recovery periods between each treatment followed by an extended
period of recovery. Following tert-BHP, hVSMC displayed 42.5-fold
increase in cells staining for SA-β-gal compared with controls (Fig. 1A).
This is the first direct evidence, using the strict definition of SIPS
induction, that hVSMC in culture undergo SIPS in response to peroxide
stress.

Ang II stresses induce SIPS via angiotensin II receptor

Previous work from our group showed that Ang II accelerated the
onset of hVSMC senescence via telomere-dependent and -indepen-
dent mechanisms [5]. To determine whether Ang II induced SIPS,
hVSMC were exposed to Ang II using the same regime as for tert-BHP,
namely treatment followed by recovery and consistent with other
reported studies on SIPS in other cell types [3,18]. A two-fold increase
in SIPS was observed at an Ang II concentration of 1�10�8 mol/L
(Fig. 1B). This is the first report that acute, repeated Ang II treatments
cause senescence of hVSMC. Induction of senescence was reduced
(po0.05) by approximately 50% by pre-incubation of cells with the
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type-1 angiotensin II receptor (AT1) antagonist, EXP3174 (E3174) prior
to each Ang II exposure (Fig. 1C) confirming a true receptor-
mediated mechanism for induction of SIPS by Ang II.

Contribution of mitochondria to Ang II-induced superoxide
production in hVSMC

Since Ang II initiates various cell signalling pathways in
VSMC via increased ROS generation [14], which is also a key

trigger of cellular senescence [19], it is therefore reasonable to
hypothesize that O�

2 is a significant mediator of SIPS in hVSMC.
Previous work has shown that Ang II elevates superoxide
generation via NADPH oxidase activity in VSMC [20,15] and
that, in this model, superoxide production was not detected
when Complex III of the electron transport chain was inhibited
by antimycin A [5]. The addition of the mitochondrial complex I
inhibitor rotenone almost fully suppressed NADPH-dependent
superoxide production due to Ang II over a period of 40 min
(Fig. 2). There was also a trend towards decreased Ang II-
induced superoxide with TTFA but this did not reach statistical
significance in this model (Fig. 2). These data implicated mito-
chondrial function as an important determinant of NADPH-
dependent O�

2 production following Ang II stimulation, how-
ever, a direct scavenging of O�

2 by rotenone or a direct effect on
NADPH oxidase activity in lysates cannot be ruled out from
these data.

The possible contribution of mitochondria to cellular Od�
2

following Ang II stimulation was investigated using mito-SOX as
a superoxide reporter in live hVSMC (Fig. 3). Both tert-BHP and
Ang II stimulated mitoSOX fluorescence by 1.5–2.0 fold compared
to the control indicating that mitochondria within cells produce
superoxide in response to Ang II.
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Fig. 1. Tert-BHP and Ang II induce SIPS in hVSMC. A, Successive tert-BHP exposures
induce SIPS in hVSMC. Sub-confluent cells were submitted to 3 stresses of 4�10�5 mol/
L tert-BHP for 2 h, over 3 days. Senescence was determined by SA-β-gal activity on the
third day after the final recovery period. Bars represent meanþSD; n¼6 (***po0.001
compared to the control). B, quiescent cells were submitted to 3, once daily stresses of
Ang II for 2 h. Bars represent meanþSD; n¼6–9 (**po0.01 compared with control). C,
Ang II-induced SIPS is mediated via AT1. Quiescent cells were pre-incubated with E3174
(1�10�5 mol/L for 1 h) prior to each Ang II (1�10�8 mol/L for 2 h) stress over the
3 days. Bars represent meanþSD; n¼5 (nnnpo0.001 compared with control and
†po0.05 compared with Ang II alone).
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Fig. 2. Ang II stimulated NADPH-dependent superoxide production is modulated
by mitochondrial ETC inhibitors in hVSMC. Cells were pre-incubated with Ang II
(1�10�7 mol/L) for 1 h then lysates were used for the measurement of NADPH-
dependent superoxide production using lucigenin chemiluminescence. NADPH
stimulated O�

2 production was derived from the relative light units (RLU)/minute/
100 μg of protein over a 40-min period. A, complex I inhibitor, rotenone signifi-
cantly reduced Ang II-induced Od�

2 production. Bars represent meanþSD, n¼3–4.
nnpo0.01 compared with control and ††po0.01 compared with Ang II. B, Complex
II inhibitor TTFA, did not affect Ang II-induced Od�

2 production. Bars represent
meanþSD, n¼2–4. npo0.05 compared with control.
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Ang II induced premature senescence of hVSMC involves oxidant
generation and the mitochondrial electron transport chain

In non-phagocytic cells a major portion of cellular ROS is
believed to be derived from the mitochondrial electron transport
chain (mtETC). Our data on Ang II exposure suggested that super-
oxide was generated via the mtETC in addition to NADPH oxidase,
as previously described in hVSMC [5]. Supporting our previous
data, antioxidants catalase, NAC and SOD inhibited Ang II-induced
premature senescence of VSMC (Fig. 4A–C) confirming the invol-
vement of oxidants in senescence.

To determine whether mitochondria were directly involved in
the mechanism or contributed to the Ang II induced premature
senescence of hVSMC, cells were pre-incubated with mitochondrial
complex inhibitors. Ang II exposure for 24 h consistently caused a
�2-fold increase in senescent cells (Fig. 4). Pre-incubation with
rotenone completely inhibited Ang II-induced senescence of hVSMC
(Fig. 4D) as did incubation with the complex II inhibitor, TTFA
(Fig. 4E).

Ang II-induced premature senescence is dependent upon superoxide
generated by mitochondria

The data presented so far illustrate that Ang II induces NADPH-
dependent O�

2 in cell lysates and mt O�
2 in living cells and that SIPS is

dependent upon oxidant generation and mtETC activity. Further
investigation into whether mitochondria stimulated by Ang II
participate in the induction of senescence, was conducted using a
mitochondrially-targeted oxygen radical scavenger, mito-TEMPO.
Mito-TEMPO accumulates within mitochondria, where it scavenges
O�

2 and alkyl radicals specifically [21]. Incubation of hVSMC with a
relatively low concentration of mito-TEMPO (25�10�9 mol/L) com-
pletely prevented Ang II-induced senescence, strongly implicating
mitochondrial function and specifically O�

2 in the rapid senescence
response to Ang II.

Discussion

Here we show that mitochondria play a key role in Ang II-
induced human VSMC senescence. Inhibition studies suggest that
mitochondrial function, specifically mtETC activity, is important in
the induction of premature senescence.

Our previous work showed that catalase inhibited Ang II-
induced senescence [5] and this was not only confirmed here but
extended with the application of SOD and NAC. Here, inhibition of
O�

2 and senescence by rotenone and the effectiveness of nanomolar

concentrations of mitoTEMPO at blocking senescence induced by
Ang II, implicate superoxide production by mitochondria in this
mechanism. This is in agreement with the suggestion that mito-
TEMPO mimicks the antioxidant effects of SOD2 in mitochondria
[22] and further adds weight to the hypothesis that mitochondrial
superoxide is a mediator of physiological and stress response
pathways in human cells [23]. Complex I is proposed as the main
source of O�

2 in the mitochondrial electron transport chain, includ-
ing via reverse electron transport following inhibition at complex II
[24]. Therefore, the current data suggest that Complex I is an
important source of superoxide generation by Ang II in hVSMC.
The complex interactions between mitochondrial and NADPH
oxidase O�

2 generation are discussed below.
It is well described that Ang II stimulates superoxide production

via activation of NADPH oxidases in vascular cells [25,26]. A mechan-
ism for the observed mitochondrial dysfunction caused by Ang II in
endothelial cells has been described involving upstream NADPH
oxidase activity [27] and redox-dependent mitochondrial KATP chan-
nels which may be activated by either O�

2 or H2O2 [28]. Nevertheless,
there is also evidence in some cell models e.g. endothelial cells, that
mitochondrial O�

2 is upstream of NADPH oxidase (NOX) activity
which leads to further O�

2 production in the cytosolic phase [22].
In this endothelial cell model, in response to Ang II, SOD2 modulated
NADPH oxidase activity in the cytosol, implying that mitochondrial
superoxide was the signal for increased NOX activity. Moreover,
mitoTEMPO effectively mimicked the activity of SOD2 in that it
prevented Ang II-stimulated O�

2 production in SOD2 depleted cells
[22]. Furthermore, the ability of Ang II to mediate NADPH oxidase
expression and activity in rabbit VSMC was eliminated by mtDNA
depletion with ethidium bromide or inhibition of complex III by
antimycin A [29]. In addition to suggesting a complex mitochondrial-
NOX crosstalk [30], these findings support the contention that
mitochondrial redox biology plays a key biological role in regulating
important cellular processes [23]. In the current model (see Fig. 5),
mitochondrial O�

2 is vital for the senescence process but it is
unknown whether the signal from mitochondria involves its dis-
mutation to H2O2 and/or whether other intermediate signalling
event(s) is/are required. In this respect, targeting catalase to mito-
chondria might be informative.

There are many implications of a mitochondrial pharmacology
approach in biology and medicine. Mitochondrial function/signal-
ling is a developing clinical target and mitochondria-targeted
antoxidants are amongst several promising modalities [31].
Although it is some way from clinical fruition, the data presented
here support the contention that this class(es) of compounds may
be employed as potential therapies for targeting cells and tissues
prone to aging and age-related disease with the aim of maintaining
tissue/organ function and prolonging a healthy lifespan.

The present study provides the first report of SIPS in hVSMC
using the specific experimental criteria developed by Toussaint
et al. [2]. The current study demonstrates that short, successive
exposures to either tert-BHP or Ang II, with periods of recovery
between treatments, were sufficient to induce SIPS of hVSMC. Both
of these mediators act via redox mechanisms, which have been
intimately associated with induction of cellular senescence in
several cell systems [3,13,5].

Data from the current and previous studies [5] suggest that Ang
II acts via its cognate receptor, AT1, since the inhibition of the AT1
with EXP3174 prior to daily Ang II exposure blocked the senes-
cence response in hVSMC. Complete inhibition of senescence was
not attained with EXP3174 which may mean that this antagonist
only partially prevents Ang II agonism under the experimental
conditions employed, however an alternate mechanism for Ang II,
for example via binding to the type-2 angiotensin II receptor,
cannot be ruled out. Nevertheless, we favour the former explana-
tion since in previous studies EXP3174 fully inhibited DNA damage
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Fig. 3. Ang II stimulated mitochondrial superoxide production in live hVSMC. Cells
were pre-incubated with Ang II (1�10�7 mol/L) for 1 h then loaded with MitoSOX
(5 mmol/L) for 10 min at 37 1C. Cells were washed to remove excess probe prior to
measurement of fluorescence. Bars represent meanþSD, n¼3–4. (npo0.05 and
**po0.01 compared with control).
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and telomere attrition in addition to induction of senescence by
Ang II [5].

Induction of senescence by Ang II was first reported in vitro in
aortic VSMC and also in vivo in apoE deficient mice [13]. These
in vivo analyses showed that Ang II infusion promoted staining for
SA-β-gal activity within mouse aortas and co-staining for smooth
muscle actin suggested that much of the senescence staining was
associated with VSMC [13]. This evidence provides an important
in vivo context for the observations on Ang II-induced senescence
and provides a rationale for studying mechanisms in vitro. Sub-
sequent workers [32] have highlighted the complexity of path-
ways which may be involved in signal transduction and may also
include a significant contribution from the cytoskeleton-extra
cellular matrix axis [33].

A body of work looking at the possible role of Ang II in aging in vivo
has been reported [16] with the pleiotropic actions of Ang II imply-
ing several mechanisms may be involved. One initial experimental
paradigm showed that lifelong feeding of ACE inhibitors to CF1
mice resulted in lifespan extension and reduced pathology usually
associated with the normal aging process, at least for laboratory

animals [34]. This and subsequent work by the same group has
suggested that preservation of mitochondrial function is a key
determinant of anti-Ang II treatments in rodent models of aging and
is not dependent on blood pressure lowering [16]. It confirms that,
perhaps inadvertently, these drugs are amongst the most effective
antioxidant therapies currently used in man. In this respect, blockade
of the renin-angiotensin system in humans is likely to affect several
biological processes/pathways and provides an avenue for further
exploration particularly to mitigate cardiovascular aging.

Conclusions

The data presented here demonstrate that Ang II induces true
stress-induced premature senescence in human VSMC and suggest
that mitochondrial O�

2 is necessary for this premature aging
response. Furthermore, the data confirm an Ang II receptor
mediated process which is likely to involve mitochondria-NADPH
oxidase crosstalk by as yet undefined signalling pathways.
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Fig. 4. Ang II induction of premature senescence in hVSMC is dependent upon cellular oxidants, mtETC activity and mitochondrial superoxide. Quiescent cells were pre-
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2 scavenger mitoTEMPO (F) for 4 h prior to induction
of senescence with 1�10�8 mol/L Ang II. Following treatment, senescence was assessed by staining for SA-β-gal activity. Bars represent meanþSD; n¼3–5. nnpo0.01,
nnnpo0.001, nnnnpo0.0001 compared with control. †po0.05, ††po0.01, †††po0.001 compared with Ang II alone.
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