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a b s t r a c t

In this paper, we introduce a new generalisation of Johnson graphs. The study of these
graphs is linked to the study of intransitive triple factorisations Sym(Ω) = ABA of the (fi-
nite) symmetric group, where the subgroups A and B are intransitive subgroups of Sym(Ω).
Indeed, we give combinatorial arguments to investigate the conditions under which such
factorisations exist. We also use combinatorial arguments to study those conditions for
which Sym(Ω) is a Geometric ABA-group, that is to say, Sym(Ω) = ABA, A ⊈ B, B ⊈ A and
AB ∩ BA = A ∪ B.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There are some generalisations of Johnson graphs in the literature with different applications, see for example
[10,7]. In this paper, we introduce a new generalisation of the Johnson graphs arising from the study of triple factorisations
Sym(Ω) = ABA of symmetric groups in terms of their intransitive subgroups A and B. We call such factorisations intransitive
triple factorisations. Note that triple factorisations are fundamental in group theory as well as in geometry.

Let Ω be a set of size of n ≥ 3 (an n-set), and let m and k be positive integers less than n. Let also j be a positive integer
such that max{0,m + k − n} ≤ j ≤ min{m, k}. We define a graph Γ := J(n,m, k, j) to be the graph whose vertices are
distinct m-subsets of Ω and each edge between two vertices X and Z corresponds to a k-subset Y if |X ∩ Y | = |Z ∩ Y | = j.
We observe that Γ has no loops but may have multiple edges (see Figs. 1–3). We show that the Johnson graph J(n,m)
is a spanning subgraph of Γ (see Corollary 2.11), and so Γ may be viewed as a generalisation of the Johnson graph. The
complement map (i.e., T → T = Ω \ T , for all t-subsets T of Ω) gives rise to an isomorphism between J(n,m, k, j) and
J(n, n − m, n − k, n − m − k + j), see Lemma 2.3. Therefore in most cases we may focus on the case wherem ≤ n/2.

Although in Section 2, we study some combinatorial properties of J(n,m, k, j) as a useful tool to study the existence
of intransitive triple factorisations, our interest is to find those conditions under which J(n,m, k, j) is both complete and
simple. Indeed, each triple factorisation G = ABA corresponds to a collinearly complete coset geometry Cos(G; A, B) (with
A the stabiliser of a point p and B the stabiliser of a line ℓ incident with p) in which ‘‘each pair of points is incident with
at least one line’’, see Section 3 for more details. Let now G := Sym(Ω), A := GX and B := GY with |X ∩ Y | = j, where
X and Y are an m-subset and a k-subset of Ω , respectively. Then G is a group of automorphisms of the graph J(n,m, k, j)
which is the collinearity graph of the associated coset geometry Cos(G; A, B) of the triple factorisation G = ABA. So existence
of an intransitive triple factorisation Sym(Ω) = ABA is equivalent to the graph J(n,m, k, j) being complete. Therefore,
studying the completeness of J(n,m, k, j) in Proposition 2.6 suggests a necessary and sufficient condition for the existence
of intransitive triple factorisations in Theorem 1.1.
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(a) The graph J(4, 2, 2, 1) is a multi-graph.
The number on each edge represents the
number of 2-subsets which meet vertices in 1
point. For example, there are four 2-subsets
{1, 3}, {1, 4}, {2, 3}, {2, 4} which intersect
both {1, 2} and {3, 4} in 1 point.

(b) The graph with dashed edges is the
Johnson graph J(4, 2) which is a spanning
subgraph of J(4, 2, 2, 1).

Fig. 1. The graph J(4, 2, 2, 1).

(a) The graph J(4, 2, 3, 1) is a simple graph
but not complete.

(b) The graph with dashed edges is the
Johnson graph J(4, 2) which is isomorphic to
J(4, 2, 3, 1).

Fig. 2. The graph J(4, 2, 3, 1).

Fig. 3. The graph J(4, 1, 2, 0) is simple and complete. It is also isomorphic to J(4, 1, 2, 1) and the Johnson graph J(4, 1).

Theorem 1.1. Let n ≥ 3, m and k be positive integers such that m, k < n, and let Ω := {1, . . . , n}. Let also G = Sym(Ω),
and let A and B be intransitive subgroups of G stabilising an m-subset X and a k-subset Y , respectively, with j := |X ∩ Y |. Then
G = ABA if and only if k + min{0, 2m − n} ≤ 2j ≤ k + max{0, 2m − n}.

Classifying triple factorisations G = ABA seems to be out of reach in general (see for example, [4, Proposition 4.2]),
however a reduction strategy has been introduced in [4] to the case where A is maximal (and core-free) in G. For geometric
reasons, the subgroup B may also be assumed to be maximal and so both subgroups A and B have orders at least |G|

1/3.
This motivated Alavi and Burness [3] to study large maximal subgroups H of finite simple groups G (i.e., |H| ≤ |G|

1/3). In
this direction, various triple factorisations of general linear groups GL(V ) have been studied (see [1,2]). Triple factorisations
Sym(Ω) = ABA of symmetric groupswith A and B conjugate subgroups have been studied in [8] and Theorem 1.1 focuses on
intransitive factorisations of Sym(Ω). We are also interested in a particular case of triple factorisations known as Geometric
ABA-group, that is to say, G = ABA, A ⊈ B, B ⊈ A and AB ∩ BA = A ∪ B. The notion of Geometric ABA-groups is introduced
by Higman and McLaughlin and such factorisations are linked to studying flag-transitive linear spaces [9]. In fact, G is a
Geometric ABA-group if and only if its associated collinearity graph is both complete and simple (see [9, Lemmas 1 and 3]
and Section 3). Using this fact, obtaining the conditions underwhich J(n,m, k, j) is both complete and simple (Corollary 2.18)
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gives rise to those conditions for which the associated intransitive triple factorisation of Sym(Ω) is a Geometric ABA-group,
and vice versa:

Theorem 1.2. Let G = Sym(Ω), where n := |Ω| ≥ 4, and let m and k be positive integers less than n. Suppose that A and B are
stabilisers of an m-subset X and a k-subset Y of Ω with j := |X ∩ Y |, respectively. Then G is a Geometric ABA-group if and only
if A ∼= Sn−1 and B ∼= S2 × Sn−2.

In Section 2, we study some other combinatorial properties of J(n,m, k, j). For example, Corollary 2.23 suggests an upper
bound for the distance between two vertices of J(n,m, k, j), and this leads us to an upper bound for the diameter of this
graph. Our computations (see for example, Figs. 1–3) shows that these bounds are not sharp, and so we have the following
unsolved Problem 1.3:

Problem 1.3. Let X and Z be two distinct vertices of the connected graph J(n,m, k, j) with |X ∩ Z | = i. Then the distance
d(X, Z) between X and Z is equal to


m−i
m−i0


, where i0 = max{0, 2m−n, 2j− k, 2m−n− (2j− k)}. Therefore the connected

graph J(n,m, k, j) is of diameter


m−max{0,2m−n}
m−i0


.

In a connection with geometry, a collinearly complete rank 2 geometry has an associated Buekenhout diagram with
point-diameter at most 3 (see [5]), and this gives only five possible values for the canonical parameters of the diagram:
the point-diameter dp, gonality g , and line-diameter dℓ. Thus (dp, g, dℓ) ∈ {(2, 2, 2), (3, 3, 3), (3, 3, 4), (3, 2, 3), (3, 2, 4)}.
The geometries associated to (2, 2, 2) are simply the generalised di-gons, and their automorphism groups G give degenerate
factorisations G = AB. The geometries associated to (3, 3, 3) and (3, 3, 4) are flag-transitive linear spaces which have been
classified up to the one-dimensional affine case [6]. Triple factorisations that we study in this paper and [1,2] are linked to
the geometries with parameters (3, 2, 3) and (3, 2, 4).

2. Basic properties

In this section, we investigate various combinatorial properties of J(n,m, k, j). In what follows, we call a set (subset) of
size t a t-set (t-subset).

Definition 2.1. Let Ω be an n-set with n ≥ 3, and letm and k be positive integers less than n. For 1 ≤ t ≤ n, denote by Ω(t)
the set of all t-subsets of Ω . Let also j be a positive integer such that

max{0,m + k − n} ≤ j ≤ min{m, k}. (1)

The graph Γ := J(n,m, k, j) is a multi-graph whose vertices are distinct m-subsets in Ω(m) and each edge between two
vertices X and Z corresponds to Y ∈ Ω(k) with

|X ∩ Y | = |Z ∩ Y | = j. (2)

We denote by Js(n,m, k, j) the simple graph of Γ in which we draw an edge between two distinct vertices X and Z if there
is a k-subset Y of Ω satisfying (2).

To simplify our arguments in the forthcoming sections, it is useful to introduce further notation:

Notation 2.2. Let X and Z be two distinct vertices of J(n,m, k, j) with I := X ∩ Z. Note that if i := |I|, thenmax{0, 2m− n} ≤

i ≤ m − 1. Define now

Ω1 := Ω \ (X ∪ Z), X1 := X \ I, Z1 := Z \ I.

If Y is an edge between X and Z, then Y is a k-subset of Ω satisfying (2). Set T := X ∩ Y ∩ Z with t := |T |, and define

U := X ∪ Y ∪ Z, Y1 := Y \ (X ∪ Z), J1 := (X ∩ Y ) \ T , J2 := (Z ∩ Y ) \ T .

Then |Ω1| = n − 2m + i, |X1| = |Z1| = m − i, |U| = 2m + k − 2j − i + t, |Y1| = k − 2j + t and |Jr | = j − t, for r = 1, 2
(see Fig. 4).

2.1. Algebraic properties

In this section, for studying J(n,m, k, j), we first give a reduction argument to the casewherem ≤ n/2. Thenwe show that
the symmetric group Sym(Ω) is a group of automorphisms of J(n,m, k, j).We also show that J(n,m, k, j) is vertex-transitive
but not edge-transitive. In what follows, assume that Ω , n, m, k and j are as in Definition 2.1, and set Γ := J(n,m, k, j).

Lemma 2.3. The graph J(n,m, k, j) is isomorphic to the graph J(n,m, k, j), where

m = n − m, k = n − k and j = n − m − k + j. (3)
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Fig. 4. Adjacent vertices X and Z (distinctm-subsets) in J(n,m, k, j) with |X ∩ Z | = i and an edge Y (a k-subset) between X and Z . The subsets Ω1 , I , T , X1 ,
Y1 , Z1 and Jr , for r = 1, 2, are as in Notation 2.2.

Proof. SetΓ := J(n,m, k, j) andΓ := J(n,m, k, j), and consider the complementmap f : Ω(m) → Ω(n−m)which sends
each X ∈ Ω(m) to its complement X := Ω \ X ∈ Ω(n − m). Suppose that X and Z are adjacent in Γ . Then there exists a
k-subset Y of Ω such that |X ∩ Y | = |Z ∩ Y | = j, and so

|X ∩ Y | = |X ∪ Y | = n − |X ∪ Y | = n − m − k + j = j,

and similarly |Z ∩ Y | = j. This shows that X and Z are adjacent in Γ . Clearly, f is a bijection, and hence it is an isomorphism
from Γ to Γ . �

This, in particular, allows us to assume that 1 ≤ m ≤ n/2 in the most of our arguments below.

Lemma 2.4. Sym(Ω) ≤ Aut(Γ ).

Proof. Let g ∈ Sym(Ω). Then X and Z are adjacent if and only if there is Y ∈ Ω(k) such that |X ∩ Y | = |Z ∩ Y | = j. This
holds if and only if |Xg

∩ Y g
| = |Zg

∩ Y g
| = j, or equivalently, Xg and Zg are adjacent. �

Proposition 2.5. (a) Γ is vertex-transitive;
(b) If X ∈ Ω(m) and G = Sym(Ω), then the GX -orbits on Ω(m) are of the form

∆i = {Z ∈ Ω(m) | |Z ∩ X | = i}, (4)

for max{0, 2m − n} ≤ i ≤ m. Hence Γ is not G-arc-transitive;
(c) Γ is not G-edge-transitive.

Proof. (a) This part follows from Lemma 2.4 and the fact that Sym(Ω) acts transitively on the setΩ(m) via {x1, . . . , xm}
g

:=

{xg1, . . . , x
g
m}, for all g ∈ Sym(Ω).

(b) It is well-known that Sym(Ω) has rank m + 1 in its action on the set of m-subspaces of Ω , and hence this part follows
immediately by looking at the permutation character and applying the Young’s rule.
(c) Let g ∈ Aut(Γ ). If X and Z are distinct vertices in Γ , then |X ∩ Z | = |Xg

∩ Zg
|, and so if X and Z are adjacent with

|X ∩ Z | = i, then the G-orbit of the edge XZ contains exactly those edges X ′Z ′ of Γ with |X ′
∩ Z ′

| = i. �

2.2. Completeness

Proposition 2.6. The graph J(n,m, k, j) is a complete graph if and only if k + min{0, 2m − n} ≤ 2j ≤ k + max{0, 2m − n}.

Proof. Let Γ := J(n,m, k, j), and let X and Z be vertices of Γ with |X ∩ Z | = i. In order for Γ to be complete, there must be
enough room for there to be a k-subset Y meeting both X and Z in j points (see Fig. 4). Therefore a k-set Y exists if and only
if for every possible i, the complement Ω1 of X ∪ Z contains at least k− 2j+ i elements, that is, 0 ≤ k− 2j+ i ≤ n− 2m+ i.
Note that max{0, 2m− n} ≤ i < m. Therefore Γ is complete if and only if min{0, n− 2m} ≤ k− 2j ≤ max{0, n− 2m}. This
proves the result. �

2.3. Connectivity

Lemma 2.7. Let X and Z be distinct vertices of J(n,m, k, j). Then

(a) X and Z are adjacent if and only if (k, j) ≠ (m,m), (n − m, 0) and

max{0, 2m − n, 2j − k, 2m − n − (2j − k)} ≤ |X ∩ Z | ≤ m − 1; (5)
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(b) if Y is an edge between X and Z, then

max{0, i + j − m, 2j − k} ≤ |X ∩ Y ∩ Z | ≤ min{i, j, n + 2j + i − 2m − k}. (6)

Proof. Let Γ := J(n,m, k, j). By Lemma 2.3, we may assume thatm ≤ n/2.
(a) Suppose that X and Z are adjacent vertices of Γ . Let I , T ,Ω1, U , Y1 and Jr , for r = 1, 2, are as in Notation 2.2. Since X and Z
are adjacent, there exists a k-subset Y ofΩ such that |X ∩Y | = |Z ∩Y | = j. If (k, j) = (m,m), then wemust have Y = X and
Y = Z , and so X = Z , which is a contradiction. If (k, j) = (n − m, 0), then Y meets neither X , nor Z . So Y is a subset of Ω1 of
size n−2m+ i. This implies that k = n−m ≤ n−2m+ i, or equivalently,m ≤ i, which is also a contradiction. Thus (k, j) ≠

(m,m), (n−m, 0). SinceU is a subset ofΩ , we have that 2m+k−2j−i ≤ 2|X |+|Y |−2|J1|−|J2|+|T | = |U| ≤ |Ω| = n, and
so 2m−n−2j+k ≤ i. Moreover, J1∪J2 is a subset of Y and T ⊆ I . Then 2j−i = 2j−|I| ≤ |J1|+|J2|−|T | = |J1∪J2| ≤ |Y | = k,
and so 2j − k ≤ i. Note that 0 ≤ i ≤ m − 1. Therefore (5) holds.

Conversely, suppose that X and Z are vertices inΓ with (k, j) ≠ (m,m), (n−m, 0) and i = |X ∩Z | satisfying (5). Suppose
also Ω1, I , X1 and Z1 are as in Notation 2.2. In each of the following cases, we find a k-subset Y of Ω satisfying (2), and hence
X and Z will be adjacent.

Let j = 0. Then by (5), we have that k + 2m − n = k + 2m − 2j − n ≤ i, and so k ≤ n − 2m + i = |Ω1|, and hence we
can choose a k-subset Y of Ω1. Note that |X ∩ Y | = |Z ∩ Y | = 0 = j. Then, in this case, X and Z are adjacent in Γ .

Let now 1 ≤ j ≤ m − i. By (5), we have that 2m − n − (2j − k) ≤ i, and so k − 2j ≤ n − 2m + i = |Ω1|. If k − 2j ≥ 0, we
can choose a (k− 2j)-subset Y1 of Ω1 (if k− 2j = 0, we simply choose Y1 = ∅). As j ≤ m− i, we also can choose j-subsets J1
and J2 of X1 and Z1, respectively. Then the subset Y := J1 ∪ J2 ∪ Y1 is of size k, and |X ∩ Y | = |J1| = j and |Z ∩ Y | = |J2| = j,
and hence X and Z are adjacent in Γ . If k − 2j < 0, then t := 2j − k ≥ 1. Note by (5) that t = 2j − k ≤ i, and so we can
take a t-subset T of I . Since 0 ≤ k − j = j − t ≤ j ≤ m − i, we choose (j − t)-subsets J1 and J2 of X1 and Z1, respectively. Set
Y = T ∪ J1∪ J2. Then |Y | = t+2(j−t) = 2j−t = 2j−(2j−k) = k. Moreover, |X∩Y | = |T ∪ J1| = j and |Z∩Y | = |T ∪ J2| = j.
Therefore X and Z are adjacent in Γ .

Let finally j > m − i. Set a := k − j − m + i. Since j ≥ m + k − n, we have that a = k − j − m + i ≤

k − (m + k − n) − m + i = n − 2m + i = |Ω1|. If a ≥ 0, then we can choose an a-subset Y1 of Ω1. Since j ≤ m, it
follows that j − (m − i) ≤ i = |I|, and so we choose a (j − m + i)-subset T of I . Set Y := T ∪ X1 ∪ Z1 ∪ Y1. Then |Y | = k
and |Y ∩ X | = |T ∪ X1| = |T | + |X1| = (j − m + i) + (m − i) = j. Similarly, |Y ∩ Z | = j. Thus X and Z are adjacent in Γ .
If a < 0, then k − j < m − i, and since j > m − i, it follows that 2j − k > 0, and so by (5), we have that 0 < 2j − k ≤ i.
Note that 0 < 2j − k ≤ min{i, j}. Then we can choose a (2j − k)-subset T of I , and since k − j < m − i, we can also
take (k − j)-subsets J1 and J2 of X1 and Z1, respectively. Define Y = T ∪ J1 ∪ J2. Then |Y | = (2j − k) + 2(k − j) = k,
|X ∩ Y | = |T ∪ J1| = (2j− k) + k− j = j and |Z ∩ Y | = |T ∪ J2| = (2j− k) + k− j = j. This shows that X and Z are adjacent.
(b) Let I , T , Ω1, Y1 and Jr , for r = 1, 2 be as in Notation 2.2. Recall that |I| = i, |T | = t , |Ω1| = n − 2m + i, |Y1| = k − 2j + t
and |Jr | = j − t , for r = 1, 2. Since T ⊆ I and T ⊆ X ∩ Y , it follows that t ≤ min{i, j}. Since also Y1 is a subset of Ω1, we
have that k − 2j + t ≤ n − 2m + i, or equivalently, t ≤ n + 2j + i − 2m − k. Thus t ≤ min{i, j, n + 2j + i − 2m − k}. Note
that T = I ∩ J1 and I ∪ J1 ⊆ X . Then t = |T | = |I| + |J1| − |I ∪ J1| ≥ i + j − m. Moreover T = J1 ∩ J2 and J1 ∪ J2 ⊆ Y . So
t ≥ 2j − k. Since t ≥ 0, we conclude that t ≥ max{0, i + j − m, 2j − k}. Hence (6) holds. �

Definition 2.8. Let Ω = {1, . . . , n} with n ≥ 3 positive integer, and letm be a positive integer less than n. Suppose that i is
a positive integer such that max{0, 2m − n} ≤ i ≤ m − 1. For 0 ≤ r ≤ m − i, define Ur = I ∪ Vr , where

I =


{1, . . . , i}, if 1 ≤ i ≤ m − 1;
∅, if i = 0.

Vr =


{i + r + 1, . . . ,m} ∪ {m + 1, . . . ,m + r}, if 1 ≤ r ≤ m − i − 1;
{m + 1, . . . , 2m − i}, if r = m − i;
{i + 1, . . . ,m}, if r = 0.

Note, for each possible r , that Ur is an m-subset of Ω .

Lemma 2.9. Let Ω , n, m, i and Ur be as in Definition 2.8, and let k and j be positive integers such that (k, j) ≠ (m,m), (n−m, 0).
Then, for each r with 0 ≤ r ≤ m − i − 1, we have that |Ur ∩ Ur+1| = m − 1 and (U0, . . . ,U2m−i) is a path in J(n,m, k, j).

Proof. By Definition 2.8, for 0 ≤ r ≤ m − i − 1, we observe that

Ur ∩ Ur+1 = I ∪


{i + r + 2, . . . ,m} ∪ {m + 1, . . . ,m + r}, if 1 ≤ r ≤ m − i − 2;
{m + 1, . . . , 2m − i − 1}, if r = m − i − 1;
{i + 2, . . . ,m}, if r = 0.

(7)

This shows that |Ur ∩ Ur+1| = m − 1. Then, by Lemma 2.7(a), for each r , two vertices Ur and Ur+1 are adjacent, and
consequently, (U0, . . . ,U2m−i) is a path. �

Proposition 2.10. The graph J(n,m, k, j) is connected if and only if (k, j) ≠ (m,m), (n − m, 0).
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Proof. Let Γ := J(n,m, k, j). If (k, j) = (m,m), (n − m, 0), then obviously Γ is a null graph, and hence it is not connected.
Conversely, suppose that (k, j) ≠ (m,m), (n − m, 0). By Lemma 2.3, we only need to focus one the case where m ≤ n/2.
Let X and Z be two distinct vertices of J(n,m, k, j), and let I := X ∩ Z . Set i := |I|. Then 0 = max{0, 2m − n} ≤ i ≤ m. By
Proposition 2.5(b), wemay assume that X = U0 and Z = Um−i, where U0 and Um−i are as in Definition 2.8. Hence Lemma 2.9
introduces a path between X and Z . �

Corollary 2.11. The Johnson graph J(n,m) is a spanning subgraph of the connected graph J(n,m, k, j), for every j satisfying (1).

Proof. Note that the Johnson graph J(n,m) has the same vertex set as J(n,m, k, j). Since J(n,m, k, j) is connected, it follows
fromProposition 2.10 that (k, j) ≠ (m,m), (n−m, 0). Let X and Z be two distinct vertices of J(n,m, k, j)withm−1 elements
in common. By Proposition 2.5(b), we may assume that X = U0 and Z = U1, where U0 and U1 are as in Definition 2.8, and
so by Lemma 2.9, X and Z are adjacent, for every possible j as in (1). This proves the result. �

Corollary 2.12. Let X be an m-subset of Ω , and let k be positive integer such that 1 ≤ k ≤ n := |Ω|. Let also j be as in (1).
Suppose that (k, j) ≠ (m,m), (n−m, 0). Then there exist an m-subset Z and a k-subset Y of Ω such that |Y ∩X | = |Y ∩Z | = j.

Proof. Without loss of generality we may assume that X = {1, . . . ,m}. Set Z = {1 . . . ,m − 1,m + 1}. Then X = U0 and
Z = U1, where U0 and U1 are as in Definition 2.8, and so the assertion follows from Lemma 2.9. �

2.4. Simplicity

Lemma 2.13. Let X and Z be two distinct vertices of J(n,m, k, j) with i := |X ∩ Z |. If w(X, Z) is the number of edges between
X and Z, then

w(X, Z) =

t1
t=t0


i
t


m − i
j − t

2n − 2m + i
k − 2j + t


, (8)

where t0 := max{0, i + j − m, 2j − k} and t1 := min{i, j, n + 2j + i − 2m − k}.

Proof. Let Y be an edge which joins X and Z . Then Y = T ∪ Y1 ∪ J1 ∪ J2, where I , T , U , Ω1, X1, Z1 and Jr , for r = 1, 2, are
as in Notation 2.2 (see also Fig. 4). Note that the number of edges between X and Z is the number of distinct such k-subsets
Y . Therefore to construct such k-subsets we need to choose

i
t


number of t-subsets T of I with t as in (6). Next, for each

possible t as in (6), we must choose
m−i
j−t

2
number of (j− t)-subsets J1 and J2 of X1 and Z1, respectively, and finally, we have

to choose
n−2m+i
k−2j+t


number of (k − 2j + t)-subsets Y1 of Y . The assertion follows from counting principals and (6). �

Lemma 2.14. Let X and Z be adjacent vertices in J(n,m, k, j) with n ≥ 4 and m ≥ 2. If |X ∩ Z | < m − 1, then J(n,m, k, j) is
not simple.

Proof. Assume contrary and let Γ := J(n,m, k, j) be simple. By Lemma 2.3, we only need to focus on the case where
m ≤ n/2. As n ≥ 4, we have thatm ≤ n/2 = n−2+ (4−n)/2 ≤ n−2. Set i := |X ∩Z |. Then by Proposition 2.5(b), wemay
assume that X = U0 and Z = Um−i defined as in Definition 2.8. As Γ is simple, w(X, Z) = 1, where w(X, Z) is the number
of edges between X and Z . Suppose that Y is the unique k-subset of Ω with |X ∩ Y | = |Z ∩ Y | = j. Let T := X ∩ Y ∩ Z and
t := |T | (see Fig. 4). Note by Lemma 2.13 that t ∈ {0, i}.
(i) Suppose i = 0. By Lemma 2.7(b), we have that t ≤ min{i, j} = 0, and so t = 0. Thus Lemma 2.13 implies that

w(X, Z) =


i
t


m − i
j − t

2n − 2m + i
k − 2j + t


=


m
j

2n − 2m
k − 2j


.

Sincew(X, Z) = 1 and 1 ≤ k < n, we conclude that (k, j) = (n − 2m, 0) or (2m,m). In each case, we find adjacent vertices
X ′ and Z ′ with w(X ′, Z ′) ≥ 2 which leads us to a contradiction. Since 0 = i ≤ m − 2, we can take X ′

:= U0 = X and
Z ′

:= U1 = {1, . . . ,m − 1,m + 1} as in Definition 2.8. Then i′ := |X ′
∩ Z ′

| = m − 1, and so Lemma 2.9 implies that X ′ and
Z ′ are adjacent in Γ .

If (k, j) = (n−2m, 0), then t ′0 := max{0, i′+j−m, 2j−k} = max{0, −1, −k} = 0 and t ′1 := min{i′, j, n+2j+i′−2m−k} =

min{0,m − 1} = 0, and so by Lemma 2.13, we have that

w(X ′, Z ′) =


i′

0


m − i′

j

2n − 2m + i′

k − 2j


=


m − 1

0


1
0

2n − m − 1
n − 2m


=


n − m − 1
n − 2m


.
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Asm ≥ 2, it follows that (n−m− 1) − (n− 2m) = m− 1 ≥ 1, and since n− 2m = k ≥ 1, we conclude thatw(X ′, Z ′) ≥ 2,
which is a contradiction.

If (k, j) = (2m,m), then t ′0 := max{0, i′ + j − m, 2j − k} = max{0,m − 1} = m − 1, and since 4 ≤ 2m = k < n, we
have that (n − m − 1) − (m − 1) ≥ 1, and so t ′1 := min{i′, j, n + 2j + i′ − 2m − k} = min{m − 1, n − m − 1} = m − 1.
Then Lemma 2.13 implies that

w(X ′, Z ′) =


m − 1
m − 1


1
1

2n − m − 1
m − 1


=


n − m − 1
m − 1


.

Since n − m − 1 > m − 1 ≥ 1, it follows thatw(X ′, Z ′) ≥ 2, which is a contradiction.
(ii) Suppose now i ≠ 0. Since w(X, Z) = 1, by Lemma 2.13, we must have i = t . Let Γ1 := J(n − i,m − i, k − t, j − t). Let
also X1 and Z1 be as in Notation 2.2 (see Fig. 4). Then m1 := |X1| = |Z1| = m − i, and so we may view X1 and Z1 as adjacent
vertices of Γ1. Since i ≤ m − 2 and n ≥ 2m, it follows that n1 := n − i ≥ n − (m − 2) ≥ 2m − m + 2 = m + 2 ≥ 4 and
m1 = m − i ≥ m − (m − 2) = 2. Moreover, i1 := |X1 ∩ Z1| = 0 ≤ m − 2. Hence we can apply part (i) to the graph Γ1,
for X1 and Z1. Therefore we obtain m1-subsets X ′ and Z ′ of Ω ′

:= Ω \ I with w(X ′, Z ′) ≥ 2. Therefore there exist at least
two (k − t)-subsets Y ′

1 and Y ′

2 of Ω ′ such that |X ′
∩ Y ′

r | = |Z ′
∩ Y ′

r | = j − t , for r = 1, 2. Set X ′′
:= X ′

∪ I , Z ′′
:= Z ′

∪ I
and Y ′′

r := I ∪ Y ′
r , for r = 1, 2. Since t = i, we have that |X ′′

∩ Y ′′
r | = |X ′

∩ Y ′′
r | + |I ∩ Y ′′

r | = (j − t) + i = j, and similarly
|Z ′′

∩ Y ′′
r | = j, for r = 1, 2. This shows that w(X ′′, Z ′′) ≥ 2 in Γ , which is a contradiction. �

Corollary 2.15. If the graph J(n,m, k, j) is simple with n ≥ 4 and m ≥ 2, then it is the Johnson graph J(n,m).

Proof. By Corollary 2.11, the Johnson graph J(n,m) is a spanning subgraph of J(n,m, k, j), for every j satisfying (1). If X and
Z are adjacent vertices of the simple graph J(n,m, k, j), then by Lemma 2.14, we must have |X ∩ Z | = m − 1. Thus X and Y
are adjacent in J(n,m). �

Theorem 2.16. Let n ≥ 3 be a positive integer and 1 ≤ m ≤ n/2. Then J(n,m, k, j) is a simple graph if and only if
(k, j) ∈ {(n − m − 1, 0), (n − m + 1, 1), (m + 1,m), (m − 1,m − 1)}.

Proof. If n = 3, then (m, k, j) = (1, 1, 0), and so J(3, 1, 1, 0) is the cycle graph C3 which is a simple graph. In what follows,
we assume that n ≥ 4. Suppose also Γ := J(n,m, k, j) with

(k, j) ∈ A := {(n − m − 1, 0), (n − m + 1, 1), (m + 1,m), (m − 1,m − 1)}. (9)

Let X and Z be adjacent vertices of Γ with i := |X ∩ Z |. Using Lemma 2.13, we show that the number w(X, Z) of edges
between X and Z is 1. Set

t0 := max{0, i + j − m, 2j − k} and t1 := min{i, j, n + 2j + i − 2m − k}. (10)

If m = 1, then i = 0, and since 1 ≤ k < n, by (9), we have that (k, j) = (n − 2, 0) or (2, 1). In both cases, we
observe that t0 = t1 = 0, where t0 and t1 are as in (10). Hence Lemma 2.13 implies that w(X, Z) = 1. If m ≥ 2, then
since m ≤ n/2 and n ≥ 4, it follows that m ≤ n − 2. Let (k, j) = (n − m − 1, 0). Then 2j − k = −(n − m − 1) < 0 and
2m−n−(2j−k) = 2m+(n−m−1)−n = m−1, and som−1 = max{0, 2j−k, 2m−n−(2j−k)} ≤ i ≤ m−1by Lemma2.7(a).
This implies that i = m−1. Thus i+ j−m = (m−1)−m = −1 and n+2j+ i−2m−k = n+(m−1)−2m−(n−m−1) = 0,
and so t0 = t1 = 0, where t0 and t1 are as in (10). It follows from Lemma 2.13 that

w(X, Z) =


m − 1

0


1
0

2n − m − 1
n − m − 1


= 1.

Hence, Γ is simple. By a similar argument for other possibilities of (k, j) ∈ A, we conclude that w(X, Z) = 1, and hence Γ

is simple.
Conversely, suppose that Γ is simple. Then for adjacent vertices X and Z , we have that w(X, Z) = 1, that is to say, there

exists exactly one k-subset Y of Ω such that |X ∩ Y | = |Z ∩ Y | = j. Set i := |X ∩ Z |, T := X ∩ Y ∩ Z and t := |T |.
Let m = 1. Then i = 0 and j ∈ {0, 1}. As t ≤ min{i, j} = 0, it follows that t = 0. Suppose j = 0. Then Lemma 2.13

implies that Γ is simple if and only if
n−2

k


=

n−2m+i
k−2j+t


= w(X, Z) = 1. Since k ≥ 1, this is equivalent to k = n − 2. Hence

(k, j) = (n − 2, 0). Suppose now j = 1. Similarly, by Lemma 2.13, simplicity of Γ implies that
n−2
k−2


= w(X, Z) = 1, and so

k − 2 = 0 or n − 2. The latter case does not hold as k < n. Thus k = 2, and hence (k, j) = (1, 2) = (m,m + 1).
Let now m ≥ 2. Note that m ≤ n − 2 (as m ≤ n/2 and n ≥ 4). If i ≤ m − 2, then by Lemma 2.14, the graph Γ is not

simple which is a contradiction. Thus i = m − 1. By Proposition 2.5(b), we may assume that X = {1, . . . ,m − 1,m} and
Z := {1, . . . ,m − 1,m + 1}. Note that Γ is simple if and only ifw(X, Z) = 1, or equivalently, by Lemma 2.13,

t ∈ {0, i}, j − t ∈ {0,m − i}, k − 2j + t ∈ {0, n − 2m + i} and t0 = t1, (11)

where t0 and t1 satisfy (10).
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Suppose t = 0. Then by (11), we have that j ∈ {0, 1}. Let j = 0. Since k ≥ 1, we must have k − 2j + t = n − 2m + i, or
equivalently, k = n − m − 1. Note that t0 = 0 = t1. Thus (k, j) = (n − m − 1, 0). Let now j = 1. If k − 2j + t = 0, then
k = 2, and so t0 = 0 ≠ 1 = t1 (asm ≤ n − 2) which is a contradiction. If k − 2j + t = n − 2m + i, then k = n − m + 1, and
so t0 = 0 = t1. Hence (k, j) = (n − m + 1, 1).

Suppose now t = i = m − 1. Then by (11), we have that j ∈ {m − 1,m}. Let j = m − 1. If k − 2j + i = n − 2m + t ,
then k = n − 2, and so t0 = m − 2 ≠ m − 1 = t1 which is a contradiction. Thus k − 2j + t = 0. Then k = m − 1, and so
t0 = m − 1 = t1. Therefore (k, j) = (m − 1,m − 1). Let now j = m. If k − 2j + i = n − 2m + t , then k = n which is a
contradiction. If k − 2j + t = 0, then k = m + 1, and so t0 = m − 1 = t1. Therefore (k, j) = (m + 1,m). �

Remark 2.17. By Theorem 2.16 and Lemma 2.3, we also obtain isomorphic simple graphs J(n, n − m, k, j), where (k, j) =

(m + 1, 1), (m − 1, 0), (n − m − 1, n − m − 1), (n − m + 1, n − m).

Corollary 2.18. Let n ≥ 3 be a positive integer. Then J(n,m, k, j) is complete and simple if and only if (m, k, j) ∈ {(1, n −

2, 0), (1, 2, 1), (n − 1, 2, 1), (n − 1, n − 2, n − 2)}.

Proof. It is obvious when n = 3. Let Γ := J(n,m, k, j) with n ≥ 4. Suppose first (m, k, j) ∈ {(1, n − 2, 0), (1, 2, 1)}.
Then (m, k, j) satisfies k + min{0, 2m − n} ≤ 2j ≤ k + max{0, 2m − n}. Thus Proposition 2.6 implies that Γ is complete.
Moreover, Γ is J(n,m, n − m − 1, 0) or J(n,m,m + 1,m) with m = 1, and so by Theorem 2.16, Γ is also simple. Suppose
now (m, k, j) ∈ {(n − 1, 2, 1), (n − 1, n − 2, n − 2)}. Then (m, k, j) is (1, n − 2, 0) or (1, 2, 1), where m, k, j are as in (3),
and so by Lemma 2.3 and above argument, we have that Γ is complete and simple.

Conversely, suppose that Γ is complete and simple. Let firstm ≤ n/2. Since Γ is simple, by Theorem 2.16, we have that
(k, j) ∈ {(n−m− 1, 0), (n−m+ 1, 1), (m+ 1,m), (m− 1,m− 1)}. Since also Γ is complete andm ≤ n/2, Proposition 2.6
implies that

k + 2m − n ≤ 2j ≤ k. (12)

Let (k, j) = (n − m − 1, 0). Then (12) follows that (n − m − 1) + 2m − n ≤ 0 ≤ n − m − 1, and som ≤ min{1, n − 1}.
Since n ≥ 3, we observe that min{1, n − 1} = 1, and so m = 1. This implies that k = m − m − 1 = n − 2, and hence
(m, k, j) = (1, n − 2, 0).

Let (k, j) = (m + 1,m). By (12), we have that (m + 1) + 2m − n ≤ 2m ≤ m + 1, and som ≤ min{1, n − 1}. Since n ≥ 3
and m ≥ 1, we observe thatm = 1 which implies that k = 2 and j = 1, and hence (m, k, j) = (1, 2, 1).

Let (k, j) = (n−m+1, 1). Then (12) implies that (n−m+1)+2m−n ≤ 2 ≤ n−m+1, and som ≤ min{1, n−1} = 1.
It follows that k = n, which is a contradiction. Similarly, if (k, j) = (m−1,m−1), then (m−1)+2m−n ≤ 2m−2 ≤ m−1,
and som ≤ min{1, n − 1} = 1. Hence k = m − 1 = 0 which is a contradiction.

Let now n/2 < m < n, and let m, k, j be as in (3). Since Γ is complete and simple, it follows from Lemma 2.3 that
J(n,m, k, j) is complete and simple withm ≤ n/2, and so by above argument (m, k, j) = (n−1, 2, 1), (n−1, n−2, n−2),
or equivalently, (m, k, j) = (n − 1, 2, 1), (n − 1, n − 2, n − 2). �

2.5. Girth and valency

Proposition 2.19. The connected graph J(n,m, k, j) with n ≥ 3 is of girth 3.

Proof. By Lemma 2.3, we may assume that m ≤ n/2. If n = 3, then (m, k, j) = (1, 1, 0), and so J(3, 1, 1, 0) is the cycle
graph C3 which is of girth 3. If n ≥ 4, then m ≤ n/2 = n − 2 + (4 − n)/2 ≤ n − 2, and so by Proposition 2.5(b), we can
choose three distinctm-subsets X , Z and T , where

X = {1, . . . ,m}, Z = {1, . . . ,m − 1,m + 1} and T = {1, . . . ,m − 1,m + 2}.

Note that each pair of these threem-subsets hasm − 1 points in common. Then by Corollary 2.11, we observe that X , Z and
T are pairwise adjacent, and hence J(n,m, k, j) has a triangle and is of girth 3. �

Recall that the vertices of the graph Js(n,m, k, j) are m-subsets of Ω , and two distinct vertices X and Z are adjacent if
there exists a k-subset Y such that |X ∩ Y | = |Z ∩ Y | = j.

Proposition 2.20. The graph Js(n,m, k, j) is regular of valency
m−1
i=i0


m
i


n − m
m − i


, (13)

where i0 = max{0, 2m − n, 2j − k, 2m − n − (2j − k)}.

Proof. Let X be a vertex of Γ := Js(n,m, k, j), and let Z be anm-subset adjacent to X with |X ∩ Z | = i. For each possible i as
in (5), there exist

m
i

n−m
m−i


subsets Z adjacent to X which intersect X at i points. Hence (13) is the total number ofm-subsets

adjacent to X . �
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2.6. Distance and diameter

Definition 2.21. Let Ω = {1, . . . , n} with n ≥ 3 positive integer, and let m be a positive integer less than n. Suppose that i
and i0 are positive integers such that i < i0 and

max{0, 2m − n} ≤ i ≤ m − 1;
max{0, 2m − n, 2j − k, 2m − n − (2j − k)} ≤ i0 ≤ m − 1.

Set ℓ := ⌈
m−i
m−i0

⌉. For 0 ≤ r ≤ ℓ, define Ur = I ∪ Vr , where

I =


{1, . . . , i}, if 1 ≤ i ≤ m − 1;
∅, if i = 0.

Vr =


{i + r(m − i0) + 1, . . . ,m} ∪ {m + 1, . . . ,m + r(m − i0)}, if 1 ≤ r ≤ ℓ − 1;
{m + 1, . . . , 2m − i}, if r = ℓ;
{i + 1, . . . ,m}, if r = 0.

Lemma 2.22. Let i, i0, ℓ and Ur be as in Definition 2.21. Then Ur is an m-subset of Ω , for each possible r. If 0 ≤ r < s ≤ ℓ, then

|Ur ∩ Us| =


m + (r − s)(m − i0) if 1 ≤ r < s ≤ ℓ − 1;
i + r(m − i0), if 1 ≤ r ≤ ℓ − 1 and s = ℓ;
m − s(m − i0), if r = 0 and 1 ≤ s ≤ ℓ − 1.
i, if r = 0 and s = ℓ.

(14)

Furthermore, p := (U0, . . . ,Uℓ) is a walk in J(n,m, k, j). In particular, if s− r ≥ 2 and i0 = max{0, 2m− n, 2j− k, 2m− n−

(2j − k)}, then p is a path.

Proof. It is clear that Ur is an m-subset of Ω when r = 0 or ℓ. If 1 ≤ r ≤ ℓ − 1, set Rr := {i + r(m − i0) + 1, . . . ,m} and
Sr := {m+1, . . . ,m+ r(m− i0)}. Since r ≤ ℓ−1 ≤

m−i
m−i0

−1, we have thatm−(i+ r(m− i0)+1)+1 = m− i− r(m− i0) ≥

m− i− ( m−i
m−i0

−1)(m− i0) ≥ m− i0 ≥ 1 which implies that Rr is well-defined. Similarly, Sr is well-defined as 1 ≤ r < m−i
m−i0

and m + r(m − i0) − (m + 1) + 1 = r(m − i0) ≥ 1 and m + r(m − i0) < m + ( m−i
m−i0

)(m − i0) = 2m − i < n. Note that
Rr and Sr are disjoint subsets of Ω of size m − i − r(m − i0) and r(m − i0), respectively. Since Vr = Rr ∪ Sr , we have that
|Ur | = |I| + |Vr | = |I| + |Rr | + |Sr | = i + [m − i − r(m − i0)] + r(m − i0) = m. Therefore Ur is anm-subset of Ω , for each
0 ≤ r ≤ ℓ. Now we observe that

Ur ∩ Us = I ∪


{i + s(m − i0) + 1, . . . ,m}∪ if 1 ≤ r < s ≤ ℓ − 1;

{m + 1, . . . ,m + r(m − i0)},
{m + 1, . . . ,m + r(m − i0)}, if 1 ≤ r ≤ ℓ − 1 and s = ℓ;
{i + s(m − i0) + 1, . . . ,m}, if r = 0 and 1 ≤ s ≤ ℓ − 1.
∅, if r = 0 and s = ℓ.

This shows that (14) holds. Since i < i0, it follows that m − i > m − i0, and so ℓ = ⌈
m−i
m−i0

⌉ > 1. Therefore |Ur ∩ Us| = i0
when s − r = 1, and hence, by Lemma 2.7, we conclude that p = (U0, . . . ,Uℓ) is a path.

Suppose that i0 = max{0, 2m − n, 2j − k, 2m − n − (2j − k)} and s − r ≥ 2. It suffices to show that Ur and Us are not
adjacent.

If 1 ≤ r < s ≤ ℓ − 1, then as s− r ≥ 2, we have that |Ur ∩Us| = m+ (r − s)(m− i0) ≤ 2i0 −m < i0, and so Lemma 2.7
implies that Ur and Us are not adjacent.

If s = ℓ and r ≥ 1, then since s − r ≥ 2, we have that 1 ≤ r ≤ ℓ − 2. Note that ℓ − 1 < (m − i)/(m − i0) < ℓ. So
r ≤ ℓ − 2 < m−i

m−i0
− 1 ≤ ℓ − 1, and so (14) implies that |Ur ∩ Us| = i + r(m − i0) < i + ( m−i

m−i0
− 1)(m − i0) = i0, and again

by Lemma 2.7, we conclude that Ur and Us are not adjacent.
If r = 0, then either 2 ≤ s ≤ ℓ − 1, or s = ℓ ≥ 2. By (14), either |Ur ∩ Us| = m − s(m − i0) ≤ 2i0 − m < i0, or

|Ur ∩ Us| = i < i0, respectively. Now Lemma 2.7 implies that Ur and Us are not adjacent. �

Lemma 2.22 suggests an upper bound for the distance d(X, Z) between two vertices X and Z in J(n,m, k, j) and hence
an upper bound for its diameter. Figs. 1–3 are small examples showing that these bounds are achieved. Indeed, the author
believes that the diameter of J(n,m, k, j) is equal to the bound in Corollary 2.23.

Corollary 2.23. Let X and Z be two vertices of the connected graph J(n,m, k, j) with |X ∩ Z | = i. Then

d(X, Z) ≤


m − i
m − i0


,
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where i0 = max{0, 2m − n, 2j − k, 2m − n − (2j − k)}. Therefore the diameter of the connected graph J(n,m, k, j) is bounded
by 

m − max{0, 2m − n}
m − i0


.

Proof. By Proposition 2.5(b), we may assume that X = U0 and Z = Uℓ with ℓ = ⌈
m−i
m−i0

⌉, where i0 is as in Definition 2.21.
So by Lemma 2.22, (U0, . . . ,Uℓ) is a path between X and Z , and it is of minimum length when i0 = max{0, 2m − n, 2j −
k, 2m − n − (2j − k)}. �

3. Geometric triple factorisations

This section is devoted to proving Theorem 1.2. We first establish a natural connection between triple factorisations
Sym(Ω) = ABA and the graphs J(n,m, k, j) defined as in Definition 2.1. We need first to mention some basic definitions in
geometry.

A rank 2 geometry G = (P, L, ∗) consists of a set P of points, a set L of lines and an incidence relation ∗ between them.
A flag of G is an incident point and line pair. A geometry isomorphism f from G1 = (P1, L1, ∗1) to G2 = (P2, L2, ∗2) is a
bijection from the elements P1 ∪ L1 of G1 onto the elements P2 ∪ L2 of G2 such that

(i) incidence is preserved: x ∗1 y ⇐⇒ f (x) ∗2 f (y), and
(ii) points are sent to points, lines are sent to lines: f (P1) = P2 and f (L1) = L2.

An automorphism of G = (P, L, ∗) is a geometry isomorphism of G onto itself. The group of all automorphisms of a rank
2 geometry G, denoted by Aut(G), is the full automorphism group of G. Let now G ≤ Aut(G). Then G acts on the set of flags
of G via (p, ℓ)g = (pg , ℓg), for all flags (p, ℓ) of G and g ∈ G. The group G is flag-transitive (respectively, point-transitive,
line-transitive) if G acts transitively on the set of flags (respectively, the set of points, the set of lines) of G. A rank 2 geometry
G = (P, L, ∗) is said to be collinearly complete (respectively, a linear space) if each pair of distinct points is incident with at
least (respectively, exactly) one line.

Example 3.1 (Coset Geometries). Let G be a group, and let A and B be proper subgroups of G. Let also P and L be the set
of right cosets of A and B in G, respectively. These sets together with the incidence ∗ defined by Ax ∩ By ≠ ∅ possess a
rank 2 geometry called coset geometry Cos(G; A, B) associated to the group G with subgroups A and B. In particular, G is a
flag-transitive group of automorphisms of this geometry.

Although, by Proposition 3.2, each triple factorisation naturally introduces a coset geometry, not every coset geometry
gives rise to a triple factorisation. For example, let G = Sym({1, 2, . . . , 5}), A = ⟨(4, 5)⟩ and B = ⟨(1, 2, 3)⟩. Then G ≠ ABA
while Cos(G; A, B) is a G-flag-transitive rank 2 geometry.

Proposition 3.2 ([9, Lemmas 1 and 3]). Let G be a rank 2 geometry and G ≤ Aut(G). Then G acts transitively on the flags of G if
and only if G ∼= Cos(G; A, B), where A is the stabiliser of a point p and B is the stabiliser of a line ℓ incident with p. Moreover,

(a) Cos(G; A, B) is collinearly complete if and only if G = ABA;
(b) Cos(G; A, B) is linear space if and only if G is a Geometric ABA-group, that is, G = ABA, A ⊈ B, B ⊈ A and AB ∩ BA = A ∪ B.

For a rank 2 geometry G, we may draw its collinearity graph J(G) whose vertices are points of G and each edge between
two vertices p and q corresponds to a line passes through them. Note that such graphsmay havemultiple edges but no loops.

Example 3.3. Let n, m, k and j be a positive integers such that 1 ≤ m, k < n and max{0,m + k − n} ≤ j ≤ min{m, n}. Let
also Ω be an n-set. Suppose that P := Ω(m) and L := Ω(k) are the set of all m-subsets of Ω and the set of all k-subsets of
Ω , respectively (if m = k, we simply take L as a copy of P.) Define the incidence relation ∗j on P ∪ L by X ∗j Y if and only if
|X ∩ Y | = j, for X ∈ P and Y ∈ L. This incidence gives rise to the rank 2 geometry J := (P, L, ∗j) whose collinearity graph
is the graph J(n,m, k, j) defined as in Definition 2.1. Moreover, by Lemma 2.4 and Corollary 2.12, excluding the cases where
(k, j) ≠ (m,m), (n − m, 0), the group G := Sym(Ω) acts transitively as an automorphism group on the set of flags of J.
Therefore, J is geometrically isomorphic to the coset geometry Cos(G, A, B), where A := GX and B := GY with X ∈ P and
Y ∈ L and |X ∩ Y | = j. In other words, A and B are intransitive subgroups of Sym(Ω).

Note that the collinearity graph of a collinearly complete rank 2 geometry is a complete graph. Since the geometry J
introduced in Example 3.3 is flag-transitive and J(n,m, k, j) is the collinearity graph of J, Proposition 3.2 may be restated
for J(n,m, k, j) as follows:

Corollary 3.4. Let n, m, k and j be as in Example 3.3. Let also G = Sym(Ω), A := GX and B := GY , where |X ∩ Y | = j with X and
Y an m-subset and k-subset of Ω , respectively. Then
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(a) G = ABA if and only if J(n,m, k, j) is a complete graph. Moreover, G is a Geometric ABA-group if and only if J(n,m, k, j) is
complete and simple;

(b) G = ABA if and only if G = A B A , where A := GX and B := GY , where X and Y are complements of X and Y , respectively.
Moreover, G is a Geometric ABA-group if and only if G is Geometric A B A -group.

Proof. Part (a) follows from Proposition 3.2 and part (b) immediately follows from part (a) and the fact that GX = GX and
GY = GY . �

3.1. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2.

Proof. Suppose that G := Sym(Ω) and that A and B are stabilisers of an m-subset X and a k-subset Y of Ω with
|X ∩ Y | = j, respectively. By Corollary 3.4(b), we may assume that m ≤ n/2. Assume now that G is a Geometric ABA-
group. Then by Corollary 3.4(a), the associated graph J(n,m, k, j) is complete and simple, and so Corollary 2.18 implies that
(m, k, j) = (1, n − 2, 0), (1, 2, 1). Therefore A ∼= Sn−1 and B ∼= S2 × Sn−2. The converse also follows from Corollary 3.4(a)
and Corollary 2.18. �
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