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a b s t r a c t

We determine the optimal bound for the maximum number of moves required to reach
a periodic configuration of open mancala (also called open owari), inspired by a popular
African game. A mancala move can be interpreted as a map from the set of compositions
of a given integer in itself, thus relating our result to the study of the corresponding finite
dynamical system.
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1. Introduction

Mancala is a family of traditional African games played in many versions and under many names. It comprises a circular
list of holes containing zero ormore seeds. Amove consists of selecting a nonempty hole, taking all its seeds and sowing them
in the subsequent holes, one seed per hole.

Here we study an idealized version of this called open mancala (see [1], where the game is called open owari). We assume
there is an infinite sequence of holes. Further we assume that the nonempty holes are consecutive; such a configuration is
described by a sequence of positive integers λi, i = 1, . . . , ℓ, giving the number of seeds in each nonempty hole, starting
from the leftmost one.We assume amove always selects the leftmost nonempty hole, sowing to the right. Thus the leftmost
nonempty hole always advances of one position. It is clear that the sequence of configurations becomes periodic in a finite
time. The periodic configurations have been completely classified [1,3,2]: see Section 2.

This game is related to a card game called Bulgarian Solitaire, discussed by Gardner [5] in a 1983 Scientific American
column. Indeed, that game is isomorphic to the case of open mancala where λi ≥ λj for i ≤ j (monotone mancala), see
Section 6. Gardner mentioned a conjecture on the maximum number of moves before the onset of periodicity when the
number of cards is of the form k(k + 1)/2. The conjecture was proved independently a few years later by Igusa [7] and
Etienne [4]. In 1998, Griggs & Ho [6] revisited the result and proposed a new conjecture in the case of a generic number
of cards. Due to the isomorphism between monotone mancala and Bulgarian solitaire, our result is strongly related to
this conjecture. However, our results apply to open mancala, not to the monotone variant, hence the conjecture about the
Bulgarian Solitaire remains unproven.

The main result of the paper is the optimal bound for the maximum number of moves, before open mancala reaches
periodicity, as a function of n, the number of seeds. In Section 3 we prove the lower bound by producing, for any n, a
configuration that requires exactly that number of moves. In Section 4 we introduce the main tool in proving the upper
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bound, namely s-monotonicity. In Section 5 we prove that every configuration reaches periodicity within that number of
moves.

2. Notations and setting

We denote by N the set of nonnegative integers and by N∗ the set of strictly positive integers. By Tk, k ∈ N, we denote
the kth triangular number

Tk =

k
i=0

i =
k(k + 1)

2
,

where in particular T0 = 0.

Definition 2.1. A configuration λ is a sequence of nonnegative numbers λi, i ≥ 1, that is λ : N∗
→ N. The support supp(λ)

of a configuration λ is the set of indices {i ∈ N∗
: λi > 0}.

Definition 2.2. A mancala configuration λ is a configuration having a connected support of the form {1, . . . , ℓ} for some
ℓ = len(λ) ∈ N. The index len(λ) is called the length of the configuration. In the special case of the zero configuration, we
shall conventionally define its length to be zero. We shall denote by Λ the set of all mancala configurations.

Definition 2.3. If λ ∈ Λ, itsmass is the number

|λ| =

∞
i=1

λi =

len(λ)
i=1

λi.

We denote by Λn the set of all mancala configurations of mass n.

The mancala game, in our setting, is a discrete dynamical system associated with a function M : Λ → Λ mapping the
space ofmancala configurations Λ in itself.

Definition 2.4 (Sowing). The sowing of a mancala configuration λ is an operation on λ that results in a new configuration
µ = M(λ) defined as follows:

µi =


λi+1 + 1 if 1 ≤ i ≤ λ1,
λi+1 if i > λ1.

Conventionally, M maps the empty configuration into itself.

It is clear that M preserves the mass of a configuration, so that it can be restricted to Λn.
It is convenient to define the (right) shift operator E , that acts on generic sequences simply by a change in the indices.

Definition 2.5 (Shift Operator). If λ : N∗
→ N is a sequence, the sequence E(λ) is defined by

E(λ)i =


0 if i = 1,
λi−1 if i > 1.

Clearly, the result of the shift operator is never a mancala configuration (with the exception of the empty configuration).
Both M and E can be iterated, the symbol Mk (resp. E k) denoting the result of k repeated applications of M (resp. of E ).

The shift operator has a left inverse E−1, defined by E−1(λ)i = λi+1 and satisfying E−1(E(λ)) = λ for any configuration λ.

Definition 2.6 (Partial Ordering and Sum). We say that λ ≤ µ if λi ≤ µi for all i ≥ 1. Moreover we say that λ < µ if λ ≤ µ
and λ ≠ µ. If λ, µ : N∗

→ Z are two integer sequences (in particular if any of them is a configuration in Λ), we define the
sum and difference λ ± µ componentwise: (λ ± µ)i = λi ± µi.

Remark 2.1 (Comparison). It is easy to check that if λ, µ ∈ Λ and λ ≤ µ, then M(λ) ≤ M(µ).

Definition 2.7. A configuration is calledmonotone if it is weakly decreasing, i.e. if λi ≥ λj whenever i ≤ j.

Remark 2.2 (Monotone Mancala). If λ is a monotone configuration, then so it is M(λ). Moreover, if λ ∈ Λ has length ℓ, then
Mℓ−1(λ) is monotone.
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The following special configurations play an important role.

Definition 2.8 (Marching Group). For a given k ∈ Nwedefine the specialmancala configurationmgk withmass Tk and length
k, called marching group1 of order k, as follows:

mgki =


k − i + 1 if i ≤ k,
0.

Definition 2.9 (AugmentedMarching Group). Amancala configuration λ such thatmgk ≤ λ < mgk+1 for some k ∈ N is called
an augmented marching group of order k. It satisfies Tk ≤ |λ| < Tk+1.

Notice that a marching group is a particular case of an augmented marching group. The following important theorem about
augmented marching groups is readily proved. See [1, Theorems 1 and 2].

Theorem 2.1. Augmentedmarching groups are the only periodic configurations for M and, if mgk ≤ λ < mgk+1, then the period
of λ is a divisor of k + 1. Marching groups are the only fixed points for M.

A remarkable fact about open mancala is that every configuration becomes an augmented marching group, and hence
periodic, after a finite number of moves. The paper is devoted to find an optimal bound on such a number of moves which
depends only on the mass of the initial configuration.

Definition 2.10 (Depth and Diameter). The depth of a configuration λ is its distance from the periodic configuration, i.e. the
number of moves needed to reach periodicity. For n ≥ 0 we call the depth of Λn, denoted by D(n), the maximal depth of all
configurations λ with |λ| = n.

The diameter of a configuration is the number of moves before the first repetition. It is equal to its depth plus the length
of the period minus one. The maximal diameter of all configurations of mass n is called the diameter of Λn.

Clearly if n = Tk the diameter ofΛn equals its depthD(n), whereas if n = Tk+r , 1 ≤ r ≤ k the diameter ofΛn is bounded
above by D(n) + k.2

The number D(n) can be seen also as the depth of a graph. Indeed, for a given n ≥ 1 we can construct the directed graph
Gn having the configurations in Λn as nodes and an arc from λ to µ whenever µ = M(λ). The graph Gn contains exactly
2n−1 nodes. A cycle of Gn corresponds to sequences of moves that repeat periodically. A configuration is periodic if it belongs
to a cycle.

In the case n ≥ 2, if we remove all arcs connecting two periodic configurations (arcs that belong to a cycle), the remaining
graph Go

n is a disjoint union of trees rooted at a periodic configuration, and in each tree all arcs point toward the root. In this
setting, D(n) represents the depth of Gn, i.e. the maximal depth of the trees of Go

n.

2.1. Energy levels interpretation

We can view the mancala configurations and mancala moves in a way reminiscent of the energy levels for the electrons
in an atom.

Let us consider the subset L ⊂ N × N given by

L = {(i, j) ∈ N × N : 1 ≤ i ≤ j}.

It is convenient to think of the integers i and j as a numbering of square cells instead of coordinates of points, in away similar
to the familiar sea-battle game. Each square cell in L can either be empty or contain a single seed.

The column index i corresponds to one of the holes in the mancala game, so that λi, where λ ∈ Λ, is the total number
of occupied cells in column i of L. We shall also associate an energy to a seed positioned in cell (i, j), given by its second
coordinate j. The kth level of L is the set {(1, k), . . . , (k, k)} of cells having energy k. Finally we let the seeds free to
immediately fall down without changing their column, but decreasing their energy (the second coordinate of their current
position) provided the new position (and all those in between) are free.

The mancala configuration λ ∈ Λ then corresponds to a positioning of seeds in L such that (i, j) is occupied by a seed if
and only if 1 ≤ j ≤ λi (see Fig. 1).

Amancala move can now be viewed in this setting as follows. Firstly, each seed is moved one position to the left without
changing its energy level, while seeds in column 1 are rotated to the last column of that energy level. Namely, a seed at
position (i, j) is moved in the new position (i−1, j) if i > 1, (j, j) if i = 1. This is just a left rotation of the seeds of each level,
so that cells will receive at most one seed. After that, we let all the seeds in each column fall at the lowest energy possible.

1 Please note that this is not a group in the mathematical sense.
2 It is also strictly larger than D(n), more precisely a lower bound is given by D(n) + m − 1 wherem is the smallest divisor of k + 1 larger than 1.
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Fig. 1. The energy interpretation of the mancala configuration 5 3 2 (first drawing, t = 0), and some steps of its evolution until 12 mancala moves (last
drawing, t = 12). The central dot identifies a gap.

We notice that if all energy levels up to k are completely filled, then a mancala move does not change those levels (up to
a rearrangement of the seeds), and all the action takes place from the lowest level that is not completely filled, say k+ 1, up
to the highest level that is not completely empty. The lowest active level is the lowest level that is not completely filled.

The overall energy of a configuration (the sum of the individual energy of every seed) does not change after the first
part of the move (the rotation within each energy level) whereas it can decrease during the second part (vertical downward
shift).

Definition 2.11 (Gap). We shall call gap an empty cell at the lowest energy level, say k, that is not completely filled. We
shall think of a gap as an absent seed, and in this respect we can follow a gap through mancala moves as it rotates left along
its energy level.

A gap can be filled when it receives a seed that falls from above after a move, and this can happen only when the gap is
in column k.

Remark 2.3. The filling of a gap at the lowest energy level that is not completely filled is permanent, since there is no
possibility of further energy decrease for seeds at that energy level. All gaps will be eventually filled, provided there are
sufficiently many seeds at energy levels larger than k.

3. Lower bound

In order to prove a good lower boundD∗(n) for the depthD(n)weneed to find appropriate configurations and to compute
the number of moves required to reach a periodic configuration (which is an augmented marching group).

3.1. The biaugmented marching group

Let n = Tk + r with 2 ≤ r ≤ k + 1. A q-biaugmented marching group is a mancala configuration λ ∈ Λn of the form
λ = mgk + ε where mgk is the marching group of order k and ε = (εi)i is an increment of the form

ε1 = 2
εi = 1 for 2 ≤ i ≤ q + 1
εq+2 = 0
εi ∈ {0, 1} for q + 3 ≤ i ≤ k + 1

for some 0 ≤ q < k. The second (resp. fourth) row in the definition is void if q = 0 (resp. if q = k − 1). Clearly such a
configuration is not an augmentedmarching group. Suitable choices of q and ε (compatible with the definition above) allow
to obtain all the values of r such that 2 ≤ r ≤ k + 1.

Proposition 3.1. A q-biaugmented marching group has depth q(k+2)+2, i.e. it becomes an augmented marching group exactly
after q(k + 2) + 2moves.
Proof. If q = 0, a direct check shows that after two moves we obtain an augmented marching group. If q > 0, let us color
the seed3 in the first hole which is at the energy level k+ 2 (the highest energy level); we agree that the colored seed is the

3 The idea of the colored seed is due to Bouchet [2, Section 3].
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last to be sown in the mancala move, so that it moves at the energy level k + 2 until it falls on the level k + 1, when the
configuration becomes an augmented marching group. Notice that the lowest active level is k + 1.

The colored seed is again at the leftmost position after exactly k+ 2moves, while k+ 1 is the period of the seeds moving
in the lowest active level. Hence the first ‘‘hole’’ at level k + 1, which were in position q + 2 at the beginning, gets one step
closer to the colored seed every k + 2 moves. At the end, the configuration becomes a 0-biaugmented marching group in
q(k + 2) moves, and in two further moves it becomes periodic. �

As an example, in Fig. 1 it is shown the energy-level interpretation of a 2-biaugmented marching group with k = 3 and
its evolution. The gray circle in the pictures is the colored seed of the proof.

3.2. The biaugmented marching group of the second kind

Let n = Tk + r = Tk−1 + k + r with 0 ≤ r ≤ k − 2. A q-biaugmented marching group of the second kind is a configuration
λ ∈ Λn of the form λ = mgk−1

+ ε, where mgk−1 is the marching group of order k − 1 and ε = (εi)i is an increment of the
form 

εi ∈ {1, 2} for 1 ≤ i < k − q − 1
εk−q−1 = 2
εi = 1 for k − q ≤ i < k
εk = 0

for some 0 ≤ q < k − 1. Again, such a configuration is not an augmented marching group.

Proposition 3.2. The depth of a q-biaugmented marching group of the second kind is given by t = (q + 1)k, i.e. it becomes an
augmented marching group precisely after (q + 1)k moves.

Proof. Let us color red the seeds which are at the beginning in the energy level k + 1, and blue the ones in the energy level
k, which is the lowest active level. As in the proof of the previous proposition, we agree that the colored seeds are the last to
be sown in every mancala move, the red seed (if present) being sown after the blue one. In that way, the blue seeds remain
forever at the level k, while one of the red seeds will eventually lose one energy level, when the configuration becomes an
augmented marching group.

We track the evolution of the colored seeds, whichmove in the two highest energy levels. The pattern of red seeds rotates
with a period k + 1, while the pattern of blue seeds rotate with a period of k; hence the pattern of red seeds slowly slides
one position to the right with respect to the pattern of blue seeds every kmoves, and the value of q decreases by one. When
q = 0, it is easy to see that after k moves a red seed reaches the lower level. Hence the initial configuration takes exactly
(q + 1)kmoves in order to reach periodicity (see Fig. 2 for an example). �

3.3. Evolution of the Heaviside configuration

Definition 3.1 (Heaviside Configuration).We define the Heaviside configuration hn
∈ Λn by

hn
i =


1 if 1 ≤ i ≤ n,
0 if i > n.

We shall also study the special configuration h∞ with a single seed in all holes i ≥ 1: although h∞ is not in Λ since it has
unbounded support, the sowing M is still well-defined.

Proposition 3.3. Let k ≥ 1 and t = Tk + r with 0 ≤ r ≤ k. Then the configuration after t moves starting from h∞ is given by

λ
(t)
i =

k − i + 2 if 1 ≤ i ≤ k − r + 1
k − i + 3 if k − r + 1 < i ≤ k + 1
1 if i > k + 1.

(3.1)

Proof. It is easy to check that exactly at every move Tj−1 the configuration becomes greater than the marching group mgj,
hence we have the result for r = 0. In particular, for any 0 ≤ r ≤ k the leftmost element of the sequence at time t = Tk + r
is given by λ

(t)
1 = k + 1. Hence in the subsequent move we have to add one seed in the holes with indices i = 2, . . . , k + 2

and then shift all piles of one position to the left (dropping the leftmost). If r < kwe get

λ
(t+1)
i = λ

(t)
i+1 + 1 ∀i = 1, . . . , k + 1

and the result follows by induction. If r = k, then t + 1 = Tk + k + 1 = Tk+1 and we have to add one seed to the piles with
indices i = 2, . . . , k+2,which contain the values k+1, k, k−1, . . . , to beginwith. Again the result follows immediately. �
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Fig. 2. Some frames of the evolution of the q-biaugmented marching group of the second kind 7 6 4 3 2, where q = 3, n = 22, k = 6. The labels R and
B stand for ‘‘red’’ and ‘‘blue’’, resp. In the last diagram the configuration becomes an augmented marching group, exactly at move 24 = (q + 1)k.

Remark 3.1. Notice that at time t̄ = Tk−1 + r , 0 ≤ r ≤ kwemoved at most k seeds (λ(t̄−1)
1 ≤ k), so that we do not touch the

piles at position i > k, which came from t̄ shifts to the left. This means that Proposition 3.3 holds for a starting configuration
hn with n = Tk + r (we denote it by 1ˆn) until time t̄ , with truncation to zero for elements with index i > k. Moreover, the
number of seeds in the leftmost pile (index i = 1) is exactly k at times between t = Tk−1 and t = Tk − 1 and is k+ 1 at time
t = Tk if r > 0.

Remark 3.2. In the special case n = Tk + 1 (r = 1) we can exactly describe the resulting configuration at time t = Tk.
This is done by observing that the number of seeds in the first pile (Remark 3.1) is the same as for the full h∞ sequence up
to time Tk, meaning that the sowing process is exactly the same. We can thus recover the resulting sequence at time Tk by
subtracting from (3.1) the missing seeds in their expected position (2, 3, . . .) obtaining

λ
(Tk)
i =

k + 1 if i = 1
k − i + 1 if 1 < i ≤ k + 1
0 if i > k + 1

or equivalently λ(Tk) = mgk + δ1 where δ1 is the sequence with one in position 1 and zero elsewhere.

3.4. The augmented Heaviside sequences

Now we want to analyze the evolution of the augmented sequence obtained from hn by adding a seed at the position
with indexm. We can write the sequence as

hn
+ δm

where δm denotes the sequence with a 1 at the position m and zero elsewhere. The analysis can be conveniently done by
using again Bouchet’s trick, see Footnote 3. In this way the evolution of the augmented configuration coincides exactly with
the evolution of the non-augmented configuration with the addition of the colored seed, to be positioned appropriately.

At each sowing the colored seedmoves one position to the left; when it reaches the leftmost pile (index i = 1), at the next
move its new position depends on how large the pile is. We however know precisely how the Heaviside sequence evolves,
so that we can explicitly predict the position of the colored seed at each time.
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We are particularly interested in the case where n = Tk + 1 andm = Tp + 1 with 1 ≤ p ≤ k.

Lemma 3.4. The colored seed in the evolution of the augmented Heaviside sequence hn
+ δm with n = Tk + 1 and m = Tp + 1,

1 ≤ p ≤ k is located at position i = k − p + 1 at time t = Tk.

Proof. After Tp moves the colored seed reaches the leftmost pile which, according to Proposition 3.3, will contain also p+ 1
noncolored seeds. This is true even in the special case p = k, where the colored seed is added at the rightmost nonempty
pile of the sequence hn, see Remark 3.1. This covers the case p = k. If p < k, at time Tp + 1 the colored seed will go into the
hole with index p + 2 and will be again into the leftmost pile at time t = Tp + p + 2 = Tp+1 + 1. If p + 1 < kwe can again
resort to Proposition 3.3 and conclude that the leftmost pile will contain the colored seed and p+2 noncolored seeds at that
time. This argument can be repeated for q cycles as long as p+ q < kwith the leftmost pile containing p+ q+1 noncolored
seeds at time t = Tp+q + q. By taking q = k − p − 1, the largest admissible value, we have the colored seed in the leftmost
pile at time t = Tk−1 + k − p − 1 together with k noncolored seed. At the next time t = Tk−1 + k − p the colored seed will
be sown in position k + 1 and will move left of one position in the next pmoves so that at time t = Tk−1 + k = Tk it will be
in the hole at position k − p + 1, which concludes the proof. �

The method of coloring seeds can be also used with more than one seed, provided that we do not place two or more
colored seeds in the same hole and as long as the colored seeds do not interact (staying all in different piles). Thanks to
Lemma 3.4 we indeed have noninteracting colored seeds for Tk moves if we place them in positions with indices of the form
Tp + 1 for a set of values 1 ≤ p ≤ k: if two of them would land in the same pile during the evolution, then the expected
position given by Lemma 3.4 would be the same, which is not the case. We can thus exactly predict their position at time
t = Tk, there will be a colored seed in position s, if and only if there was a colored seed in position Tk−s+1 + 1. If this is true
for s = 1, . . . , q + 1 (with the addition of q + 1 colored seeds), recalling Remark 3.2 we obtain a q-biaugmented marching
group. By Proposition 3.1, the biaugmented marching group will become periodic after exactly q(k + 2) + 2 further moves.

We want to construct, for a given n = Tk + r , a configuration that takes as long as possible to become periodic. In view
of the previous discussion to achieve this goal it is mostly convenient to place the colored r seeds in the rightmost positions
with index of the form Tp + 1.

Definition 3.2. We call augmented Heaviside sequence the configuration of mass n = Tk + r , 1 ≤ r ≤ k + 1, and length
ℓ = Tk + 1, which is obtained from hℓ by adding a seed in the rightmost r − 1 positions having index of the form Tp + 1 (in
particular there will be no added seeds if r = 1).

As an example, the augmented Heaviside sequence with mass n = 19 = T5 + 4 is given by

1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2.

The preceding arguments give a proof of the following

Proposition 3.5. Let n = Tk + r with 2 ≤ r ≤ k + 1. Then the corresponding augmented Heaviside sequence becomes an
(r −2)-biaugmented marching group after Tk moves. In particular, its evolution becomes periodic after exactly D∗

1(n)moves with

D∗

1(n) := Tk + (r − 2)(k + 2) + 2. (3.2)

The choice r = k + 1 is a limit case corresponding to n = Tk+1, and we have D∗

1(Tk+1) = Tk + (k − 1)(k + 2) + 2 = 3Tk.
Moreover if we write n = Tk+1 − s with 0 ≤ s < k, then s = k + 1 − r and D∗

1(n) in (3.2) can be equivalently written as
D∗

1(n) = 3Tk − s(k + 2).
Direct inspection allows to show that for r < k + 1 the particular biaugmented marching group at which we arrive at

time Tk evolves into an augmented marching group having period of length exactly k + 1 (and not a proper divisor). Hence
the diameter of the evolution is D∗

1(n) + k.

3.5. Truncated augmented Heaviside sequences

We now consider the augmented Heaviside sequence corresponding to n = Tk + k + 1 = Tk+1: it has length k + 1,
contains an increment at all the positions of the form Tp + 1, 1 ≤ p ≤ k and the total number n of seeds is itself a triangular
number. In the rightmost positions, this sequence has a 2 followed by k − 1 ones and a final 2. Given 0 ≤ r ≤ k − 1, let
us remove from this sequence the rightmost k − r piles, obtaining a configuration with mass Tk + r . Equivalently, we can
obtain the same configuration starting from the augmented Heaviside sequence corresponding to n = Tk−1 + k = Tk and
joining to the right a sequence of r piles with one seed each.

Definition 3.3. Let us call truncated augmented Heaviside sequence such a configuration.

As an example, the truncated augmented Heaviside sequence with mass n = 17 = T5 + 2 is given by

1 2 1 2 1 1 2 1 1 1 2 1 1.
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Proposition 3.6. The truncated augmented Heaviside sequence with n = Tk + r, 0 ≤ r ≤ k − 2, becomes a (k − r − 2)-
biaugmented marching group of the second kind after Tk−1 moves.
Proof. Simply color the rightmost sequence of ones and track their position during the first Tk−1 moves of the augmented
Heaviside sequence of Proposition 3.5 with k − 1 in place of k and r = k. �

Corollary 3.7. A truncated augmented Heaviside sequence with n = Tk + r, 0 ≤ r ≤ k − 2, becomes periodic after exactly

D∗

2(n) := Tk + k(k − r − 2) = 3Tk−1 − rk (3.3)

moves.

If n = Tk + k or n = Tk + k − 1, the function D∗

2(n) is not defined by the previous corollary, and we shall conventionally
set it to −1.

As for the augmented Heaviside sequences of Section 3.4, the special biaugmented marching group of the second kind at
which we arrive if r > 0 evolves to an augmented marching group with period exactly k+ 1, and again we have a diameter
given by D∗

2(n) + k.

3.6. The special ‘‘plateau’’ sequence

In the special case n = T2r + r , r ≥ 1, we need a further type of configuration.

Definition 3.4. For n = T2r+r , r ≥ 1,we define the biaugmentedHeaviside sequence in the followingway: take the truncated
augmented Heaviside sequence for n − 1 = T2r + r − 1, and then add a third seed in the pile with two seeds at position
i = T2r−1 + 1.

As an example, n = 24 = T6 + 3 produces the sequence
1 2 1 2 1 1 2 1 1 1 2 1 1 1 1 3 1 1.

Proposition 3.8. The biaugmented Heaviside sequence with n = T2r + r becomes periodic after exactly

D∗

3(n) := T2r + 2r(r − 1) (3.4)

moves.
Proof. Let us color the extra added third seed in the pile at position i = T2r−1 +1. By construction, without the colored seed
the biaugmented Heaviside sequence becomes a truncated augmented Heaviside sequence with mass T2r + r − 1, hence
by Proposition 3.6, after T2r−1 moves we have an (r − 1)-biaugmented marching group of the second kind with an extra
seed (corresponding to an increment of +3 with respect to the marching group) in the leftmost pile. The argument we used
to study the biaugmented marching groups can be adapted to the present case, proving that the periodic configuration is
reached exactly after the same number of moves as for the biaugmented marching group of the second kind: (q + 1)kwith
q = r − 1 and k = 2r . Hence the initial configuration becomes periodic after

T2r−1 + 2r2 = T2r−1 + 2r + 2r(r − 1) = T2r + 2r(r − 1). �

Also in this case a direct inspection of the resulting augmented marching group allows to show that its period is exactly
k + 1, and again the diameter of the special plateau sequence is D∗

3(n) + k.
The lower bound D∗

3(n) is only defined for special values of n, of the form n = T2r + r = 4Tr , and we conventionally set
it to −1 in all the other cases.

We can now gather the three lower bounds and define

D∗(n) := max{D∗

1(n),D
∗

2(n),D
∗

3(n)} (3.5)
so that the previous results can be summarized as the following:

Theorem 3.9 (Lower Bound).

D(n) ≥ D∗(n). (3.6)

Proof. Simply gather the results obtained in Propositions 3.5, 3.8 and Corollary 3.7. �

A plot of the function D∗(n) for n ≤ 45 can be seen in Fig. 3.

Remark 3.3. There is an explicit way to express the lower bound D∗(n). Indeed, writing n ≥ 1 in the form n = Tk + r with
k ≥ 0 and 1 ≤ r ≤ k + 1, one can prove that

D∗(n) =

D∗

2(n) = Tk + k(k − r − 2) if r < k/2
D∗

3(n) = T2r + 2r(r − 1) if r = k/2
D∗

1(n) = Tk + (r − 2)(k + 2) + 2 if r > k/2.

Notice that the middle case occurs only when k is even.
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Fig. 3. The values of the function D∗(n) for n ≤ 45. We have D∗(45) = 108.

4. s-monotonicity

In this section we introduce one of the main notions of the paper, namely s-monotonicity. Firstly we define a sequence
which is strictly related to the energy levels interpretation of the mancala game.

Definition 4.1 (Energy Sequence). Given a mancala configuration λ ∈ Λ we define the energy sequence e = ε(λ) : Z → N
as follows: settingm = m(λ) = max{λ1, len(λ)}, we define

ei = λi + i − 1 i = 1, . . . ,m (4.1)

and extend it on Z as a periodic function of periodm.

Notice that if λ1 > len(λ) we actually use values of λ outside its support, so that we have ei = i− 1 for len(λ) < i ≤ λ1.

Remark 4.1. We have that λ ≥ mgk if and only if ε(λ)i ≥ k for all i ∈ Z.

Definition 4.2 (s-monotonicity). Given s ≥ 1 and λ ∈ Λ, we say that λ is s-monotone if:

(i) λ1 ≤ len(λ) + 1, and
(ii) its energy sequence e = ε(λ) satisfies the inequality

ej ≤ ei + 1 ∀ i < j ≤ i + s (4.2)

(notice that the first requirement λ1 ≤ len(λ) + 1 is redundant if s ≥ 2).
It is convenient to introduce also the (void) notion of 0-monotonicity, satisfied by all mancala configurations.

Definition 4.3 (Increasing Plateau). Let s ≥ 0. An increasing plateau of length s is a subset of (s + 2) consecutive values
ei, ei+1, . . . , ei+s+1 of an energy sequence such that

ei < ei+1 = · · · = ei+s < ei+s+1 if s ≥ 1
ei ≤ ei+1 − 2 if s = 0.

It is readily proved that a configuration is s-monotone if and only if each increasing plateau has length at least s.
Let us give a few examples of s-monotone configurations:

• 1 2 is 0-monotone but not 1-monotone
• 1 1 1 is 1-monotone but not 2-monotone
• 4 1 1 and 2 2 1 1 are 2-monotone but not 3-monotone
• 5 2 2 1 and 3 3 2 1 1 are 3-monotone but not 4-monotone
• 6 3 3 2 1 and 4 4 3 2 1 1 are 4-monotone but not 5-monotone.



1836 A. Musesti et al. / Discrete Mathematics 338 (2015) 1827–1844

Remark 4.2. If a mancala configuration is s2-monotone, then it is also s1-monotone for any s1 < s2. Moreover, a configura-
tion is an augmented marching group if and only if it is s-monotone for all s ∈ N.

Remark 4.3. The notions of monotonicity, in the sense of Definition 2.7, and of 1-monotonicity, in the sense of the previous
definition, are slightly different. For instance, the sequence4 2 ismonotone but not 1-monotone. However, if a configuration
λ is monotone, thenM(λ) is 1-monotone. Hence, in view also of next theorem, during the evolution of a configuration there
is at most one time when it is monotone but not 1-monotone.

In passing, we observe that any 1-monotone sequence has a predecessor that is merely monotone, i.e. a 1-monotone
configuration can be obtained by applying a move to some monotone configurations. Hence the maximal depth/diameter
in the family of monotone configurations is exactly one plus the maximal depth/diameter in the family of 1-monotone
configurations.

The following theorem shows that the class of s-monotone configurations is closed under mancala moves.

Theorem 4.1. If λ is s-monotone, then M(λ) is s-monotone.

Proof. Let us setm = max{λ1, len(λ)}, µ = M(λ), e = ε(λ) and f = ε(µ).
Clearly any mancala configuration is at least 0-monotone, hence the set of 0-monotone configurations is closed under

mancala moves. A direct check shows that the property λ1 ≤ len(λ) + 1 is preserved under a mancala move whenever λ is
a monotone configuration, indeed we have λ2 ≤ λ1 ≤ len(µ), whence µ1 = λ2 + 1 ≤ len(µ) + 1. Consequently the set of
1-monotone configurations is closed under mancala moves.

Now assume that s > 1, hence we have to check only the values of the energy sequence. We divide the proof in five
cases.

Case λ1 ≥ len(λ). We havem = len(µ) = λ1 and the new period ism(µ) = max{µ1, len(µ)} = max{λ2 + 1, λ1}. Since
s > 1, then λ is monotone and λ2 ≤ λ1, hence we have m ≤ m(µ) ≤ m + 1 and the new energy sequence f is obtained
by a left-shift of e possibly followed by the insertion of a new value. Indeed fi = µi + i − 1 = λi+1 + 1 + i − 1 = ei+1 for
i = 1, . . . ,m − 1 and fm = µm + m − 1 = m, since µm = 1. If λ2 < λ1, then m(µ) = m and the new energy sequence f
is exactly a left-shift of e, so that µ is itself s-monotone. If λ2 = λ1, then m(µ) = m + 1 and the new value to be inserted
is fm+1 = µm+1 + m + 1 − 1 = m (being µm+1 = 0) and it is equal to the previous value fm. Since inserting a value in the
sequence cannot destroy the s-monotonicity property if it is equal to the previous (or the next) value, we can conclude that
µ is s-monotone.

Case λ1 ≤ len(λ) − 3. We have m = len(λ) and len(µ) = len(λ) − 1. Since λ2 ≤ λ1 we have µ1 ≤ λ1 + 1 ≤

len(λ) − 2 = len(µ) − 1, so that f1 ≤ m − 2 and m(µ) = m − 1. Moreover, λ1 < m − 1 implies that µm−1 = λm, so that
fm−1 = µm−1 + m − 2 = λm + m − 2 ≥ m − 1. Using the inequalities above we conclude

f1 < fm−1 = f0. (4.3)

The energy sequence f is obtained from the energy sequence e with the following operations:

(1) translate the values of e to the left of one position e′

i = ei+1. This has no impact on the s-monotonicity;
(2) decrease by one the values with indices in the range λ1 + 1, . . . ,m;
(3) remove the value at indexm and extend to Z with period m − 1.

The last two operations can only impact s-monotonicity in the case of indices i ≤ 0 < j with j − i ≤ s (up to addition of
multiples of m − 1). However using (4.3) we have fj − fi < (fj − f1) + (f0 − fi) ≤ 1 + 1.

Case λ1 = len(λ) − 2. The argument is similar to the previous, but (4.3) now becomes

f1 ≤ fm−1 = f0. (4.4)

Moreover the set of indices (within the period {1, . . . ,m}) where we decrease the energy by one (step 2 above) reduces to
{m− 1,m} and is further reduced to the single index {m− 1} after removal of the energy value with indexm (step 3 above).
Now suppose by contradiction that fj − fi ≥ 2 with i ≤ 0 < j, j− i ≤ s. This is only possible if both fj − f1 = 1 and f0 − fi = 1.
The latter equation implies i < 0 and, in viewof the discussion above, it can be rewritten as 1 = fm−1−fm−1+i = em−1−em+i
which contradicts the s-monotonicity of λ.

Case λ1 = len(λ)− 1 and λ2 < λ1. It turns out thatm(µ) = len(λ)− 1 = m− 1. Moreover e0 = em = λm +m− 1 ≥ m
whereas e1 = λ1 < m, so that e1 < e0. The resulting energy f can be obtained by a left shift of e followed by removal of
element at indexm, which is the same as first removing the element at index 1 of e and then performing a left shift. The fact
that e0 > e1 allows to ensure that the removal of the value e1 does not impact the s-monotonicity, which is then unaffected
by the final left shift.

Case λ1 = len(λ) − 1 and λ2 = λ1. It turns out that in this case m(µ) = m(λ) = m = len(λ) and that the energy
sequence of µ is just a left-shift of the energy sequence of λ: fi = ei+1.

These five cases cover all possible situations so that we conclude the proof. �
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For particular configurations it is possible to prove that repeated mancala moves actually increase the order of
monotonicity.

The following is our first important result for which the distinction betweenmonotonicity and 1-monotonicity is crucial.
For instance, the result is false for the sequence 4 2, which is monotone but not 1-monotone.

Lemma 4.2. Let λ ∈ Λ, s ∈ N and 2 ≤ q ∈ N such that
(i) λ is s-monotone;
(ii) λ ≥ mgq−1;
(iii) len(λ) = q − 1, (i.e. λq = 0).
Then Mq(λ) (the configuration after q moves) is (s + 1)-monotone.

Proof. Denote by µ the configuration obtained after q moves. Since we apply a number of moves that is larger than the
length of the sequence, it follows thatµ is at least 1-monotone (it is alreadymonotone after q−2moves, hence 1-monotone
after q − 1 moves by Remark 4.3). This covers the case s = 0, and we can suppose s ≥ 1. In particular we can assume that
q − 1 ≤ λ1 ≤ q where the first inequality follows from requirement (ii) and the second inequality comes from (iii) and
constraint (i) of Definition 4.2.

Using the energy level interpretation of the game, we want to track the position after q moves of the seeds with energy
larger than q. First observe that requirement (ii) implies that all energy levels up to the (q − 1)th are completely filled and
that seeds at level q (which is not completely filled) are subjected to q rotations to the left and end up at the same initial
position. A seed in column i (notice that requirement (iii) implies that i < q) at level q + j is also rotated q times to the left,
however the (q+ j)th energy level has length q+ j, so that it will end up in column i+ j and can possibly decrease its energy
(that is, its height) once or more than once. Requirements (i) and (iii) imply that there is no seed at height q+ 1 in the first s
columns, whereas seeds in column s+1 and height at least q+1 get moved to the right after the set of qmoves. This allows
to conclude that fj − fi ≤ 1 for all i ≤ 0 < j, j− i ≤ s+1, where f = ε(µ) is the energy sequence ofµ given by Definition 4.1.
If there were no energy decrease, then all increasing plateaus would increase their length by 1 and the (s+1)-monotonicity
would follow. The decrease in energy after each move involves all seeds in the final columns and it can be easily checked
that it maintains the (s + 1)-monotonicity. �

Definition 4.4 (q-canonical Configurations). Let 2 ≤ q ∈ N, n ≥ Tq and λ ∈ Λn. We say that λ is q-canonical if

(1) λ ≥ mgq−1;
(2) len(λ) = q − 1, in particular λ is not ≥ mgq4;
(3) the gap (see Definition 2.11) in the rightmost position (column q) in the energy level at height q is the last to be filled

after repeatedmoves. Notice that requirement n ≥ Tq implies that the qth energy level will eventually fill up completely.

Due to the central importance of q-canonical configurations a few remarks are in order.

Remark 4.4. The value q of a q-canonical configuration is necessarily the height of the lowest active energy level (the lowest
level that is not completely filled). This follows from requirement (1) and (2) of the above definition. Hence a configuration
cannot be q-canonical with two different values of q.

Remark 4.5. In view of the comments following Definition 2.11, in particular the fact that filling a gap is permanent, we can
indeed define a filling order on the gaps at level q. All the gaps (at level q) will be eventually filled due to requirement n ≥ Tq,
and we can identify the gap that will be filled last.

Remark 4.6. An augmented marching group cannot be q-canonical, since if λ ∈ Λn is an augmented marching group with
n ≥ Tq then λ ≥ mgq. This is incompatible with requirement (2) of Definition 4.4.

Remark 4.7. Since the gap in the rightmost position of a q-canonical configuration λ returns in the same position after
every sequence of exactly q moves, it follows that the qth energy level fills up after exactly rq moves, for some r ∈ N∗. In
particular Mrq(λ) ≥ mgq. Moreover Miq(λ) is itself a q-canonical configuration for all i = 0, . . . , r − 1 and there are no
other q-canonical configurations in between.

As an example, let us consider the configuration λ = 5 5 3 6 2, it satisfies requirements (1) and (2) of Definition 4.4
with q = 6 (see Fig. 4 for an energy-level interpretation), it has three gaps at the energy level 6 with three seeds at higher
level, enough to completely fill the sixth energy level (|λ| = 21 = T6). However this configuration is not a 6-canonical
configuration because the rightmost gap in column 6 is not the last filled. This can only be seen by letting the configuration
evolve and annotating the filling order of the three gaps. In this example only seven mancala moves are sufficient to see
that the gap in column 6 is filled first, whereas the gap that is filled last is the one originally in column 3. The configuration
λ = 9 5 3 2 2 (obtained from the previous onewith threemancalamoves) is indeed a 6-canonical configuration. As noted in
Remark 4.7, after sixmancalamoveswe have either another 6-canonical configuration or the sixth level becomes completely

4 Using requirement (1), the energy level q is the lowest that is not completely filled.
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Fig. 4. The configuration 5 5 3 6 2, shown on the left with its energy-level interpretation, is not a 6-canonical configuration. The three gaps at level 6
are filled in the order given by the corresponding numbers. After three mancala moves we obtain the configuration 95322 (middle picture), which is a
6-canonical configuration. Another 6-canonical configuration is obtained after 6 further moves.

filled. It turns out that we have a total of four other 6-canonical configurations, one after each sequence of sixmoves starting
from the 6-canonical configuration 9 5 3 2 2.

Theorem 4.3. A q-canonical configuration cannot be (q − 1)-monotone. In other words it is at most (q − 2)-monotone.

Proof. Let λ be a q-canonical configuration, q ≥ 2; hence λ1 ≥ q − 1. Now suppose by contradiction that λ is also (q − 1)-
monotone; this implies that λ1 ≤ q by (i) of Definition 4.2. Set e = ε(λ) (the energy sequence), with period m(λ) = λ1,
hence

q − 1 ≤ m(λ) ≤ q.

Either e1 = λ1 = q − 1 or eq = q − 1. Energy levels strictly larger than q must also be present, otherwise λ would be an
augmented marching group, incompatible with q-canonicity. Hence there must exist an increasing plateau, and its length
cannot be longer thanm(λ) − 2 due to the periodicity of e, which is at most q− 2. On the other hand, (q− 1)-monotonicity
implies that the length of every increasing plateau is at least q − 1, a contradiction. �

5. Upper bound

5.1. Analyzing the evolution of a configuration

In this sectionwe shall fix n ≥ Tk for some k ∈ N and consider amancala configuration λ ∈ Λn. We let λ evolve (applying
mancala moves) until it reaches an augmented marching group; we denote by λ(t) = Mt(λ) the result of t ∈ N mancala
moves, so that in particular λ(0) = λ. Let t be the smallest time t for which λ(t) is an augmented marching group, in
particular λ(t) ≥ mgk. We also denote by t∗ ≤ t the smallest time t such that λ(t) ≥ mgk.

During the evolution λ(t) will occasionally become a q-canonical configuration. Specifically we indicate with t1 < t2 <
· · · < ts < t∗ the times before t∗ when we have a q-canonical configuration for some q ∈ N, λ(t∗) can be itself q-canonical,
however λ(t∗) ≥ mgk would imply q > k, hence n ≥ Tk+1. In other words, if we restrict Tk ≤ n < Tk+1, then λ(t∗) cannot
be q-canonical. We call such times critical times. Specifically we have a sequence q1 ≤ q2 ≤ · · · ≤ qs such that λ(ti) is a
qi-canonical configuration.

Consider two consecutive critical times ti and ti+1. Remark 4.7 applied to λ(ti) tells us that after qi moves, we have either
another qi-canonical configuration, with no other q-canonical configurations in between, in which case ti+1 = ti + qi and
qi+1 = qi, or we have just filled the qith energy level so that we have ti+1 ≥ ti + qi and qi+1 > qi. In both cases we have
ti+1 − ti ≥ qi. We can now apply Lemma 4.2 to λ(ti) with q = qi and conclude that the s-monotonicity of λ(ti+1) increases
strictly. Since λ(t1) is 0-monotone, we obtain by induction that λ(ti+1) is i-monotone and that λ(t∗) is s-monotone.

It is possible for the set of critical times to be empty. In this case we shall see that the filling up of the energy levels is
very fast.

Lemma 5.1. If λ ≥ mgq−1 and |λ| ≥ Tq, then there exists 0 ≤ i < q such that either Mi(λ) ≥ mgq or Mi(λ) is a q-canonical
configuration. If λ is itself q-canonical, the result holds true with i = q (besides the trivial value i = 0).

Proof. If the qth energy level is full, then there is nothing to prove, otherwise locate the gap that will be filled last in column
j. If j = q we already have a q-canonical sequence, otherwise we apply j moves in order to rotate the gap position into
column q, nowwe either have a q-canonical sequence or we filled the qth energy level. The second part of the Lemma easily
follows by first performing a single move and then reasoning as in the first part. �

Corollary 5.2. If the set of critical times is empty (s = 0), then one has t∗ ≤ Tk−1, i.e.

λ(Tk−1) ≥ mgk.

Proof. It can be readily seen by repeated applications of the previous Lemma. �
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Similarly, the q1-canonical sequence λ(t1) is reached after at most Tq1−1 moves, i.e. t1 ≤ Tq1−1.
Now let

I = {i ∈ N : 1 ≤ i ≤ s − 1, qi+1 > qi},
J = {i ∈ N : 1 ≤ i ≤ s − 1, qi+1 = qi}

(notice that I ∪ J = {1, . . . , s − 1}), and decompose

ts = t1 +


i∈I

(ti+1 − ti) +


j∈J

(tj+1 − tj).

If i ∈ I we first apply one move to λ(ti) and then invoke Lemma 5.1 (qi+1 − qi) times, concluding that

ti+1 − ti ≤ 1 + Tqi+1−1 − Tqi−1.

On the other hand, if j ∈ J then tj+1 − tj = qj ≤ qs (Remark 4.7). In the end we have the estimate

ts ≤ Tqs−1 + |I| + qs|J| ≤ Tqs−1 + qs(s − 1). (5.1)

At each critical time we gain one level of monotonicity, so that λ(ts) is (s− 1)-monotone. The maximal possible value of
qs is qs = k, which gives an upper bound k − 2 for the s-monotonicity of λ(ts) (Theorem 4.3) and hence we have s ≤ k − 1.
We get

ts ≤ Tqs−1 + qs(k − 2).

To obtain the configuration λ(t∗) ≥ mgk we need to apply a move to λ(ts) and again invoke Lemma 5.1 (more than once
if qs < k) for a total of at most 1 + (k − 1) + · · · + (qs − 1) moves. We notice that the last term in the previous sum is also
present in the sum that defines Tqs−1, so that using (5.1) we arrive at

t∗ ≤ Tk−1 + 1 + (qs − 1) + qs(s − 1) = Tk−1 + sqs ≤ Tk−1 + ks.

We summarize the previous analysis in the following lemma.

Lemma 5.3. Let n ≥ Tk and λ ∈ Λn. Then there exists 0 ≤ s ≤ k − 1 such that after at most t = Tk−1 + ks moves the resulting
configuration λ(t) satisfies:

(1) λ(t) ≥ mgk;
(2) λ(t) is s-monotone.

If n = Tk or n = Tk + 1 then the resulting configuration is an augmented marching group.

Definition 5.1. Given 0 < b ≤ a two integers, we define V (a, b) by

V (a, b) =


i∈N∗:a−ib>0

(a − ib).

The value of V can be explicitly computed by first expressing a = qb + p with q =
 a

b


and 0 ≤ p < b (Euclidean division)

and then using the formula for the sum of the first natural numbers. We end up with V (a, b) = qb +
b
2q(q − 1). We have

the special values

• V (a, a) = 0, V (a, b) = a − b if a ≤ 2b (only one term in the above sum),
• V (a, b) = 2a − 3b > a − b if 2b < a ≤ 3b (two terms in the above sum),
• V (a, b) > 2a − 3b if a > 3b (more than two terms in the above sum).

Moreover, if b < a then V is strictly increasing with respect to a and strictly decreasing with respect to b. We can then
‘‘invert’’ V with respect to b and define the function

W (a, v) = max{b ∈ N∗
: b ≤ a, V (a, b) ≥ v},

which is (weakly) decreasing with respect to v and (weakly) increasing with respect to a. We have the special values

• W (a, v) = a − v if 1 ≤ v ≤
a
2 + 1,

• W (a, v) =
 2a−v

3


, if a

2 ≤ v ≤ a + 3.

Referring to Fig. 5 the value of V (a, b) can be graphically interpreted as the number of unit squares completely included
in the right triangle having base (long cathetus) of length a and height (short cathetus) of length a

b .
With the same graphical interpretation in mind functionW (a, v) can be viewed as the maximal value of b such that the

right triangle of sides a and a
b contains at least v unit squares.

For n ≥ Tk, let us consider a k-canonical configuration. By Lemma 5.1, after a cycle of kmoves we have that the resulting
configuration is either itself k-canonical or it has just become larger than mgk. Iterating this procedure, we want to relate
the number of cycles needed to become larger than mgk with the degree of monotonicity of the configuration.
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Fig. 5. Five unit squares are completely contained in a right triangle of sides 7 and 7
3 , corresponding to a = 7 and b = 3. In other words 5 = V (7, 3) (see

Definition 5.1).

Lemma 5.4. Let λ ∈ Λn with n = Tk + r, r ≥ 1 and suppose that

(1) λ is a k-canonical configuration;
(2) λ is s-monotone for some s ∈ N.

Let σ ≥ 1 denote the number of cycles of k moves that are required to become larger than mgk and suppose that s+σ ≥ 2. Then

r ≤ V (k − 1, s + σ − 1) − 1.

Equivalently, reasoning by contradiction, we have the upper bound

σ ≤ max{W (k − 1, r + 1) + 1 − s, 0}.

Proof. First we analyze the case σ = 1, so that s ≥ 1. Since the configuration is s-monotone and k-canonical, in this case
λ1 ≤ k, hence e1, . . . , es ≤ k, es+1, . . . , e2s ≤ k + 1 and so on, where e is the energy sequence e = ε(λ). Then the total
number of seedswith energy above k cannot be larger than V (k−1, s). This is obtained by observing thatwe have a sequence
of q plateaus of length s and increasing height from 0 to q − 1 and a final top plateau of length p and height q. This implies
that r ≤ V (k − 1, s) − 1 where the ‘‘−1’’ is a consequence of the fact that the kth energy level is not completely full. For a
generic value of σ we simply perform σ −1 cycles of kmoves obtaining a configuration with level of monotonicity s+σ −1
with still λk = 0 and we can resort to the special case discussed above. �

5.2. Optimal upper bound

The following lemma will be fundamental in proving the optimal upper bound.

Lemma 5.5. Let λ ∈ Λn with n = Tk + r, 0 ≤ r ≤ k, and denote by σq the number of q-canonical configurations encountered
during the evolution of λ, with q = 2, . . . , k.

Then the total number s =


q σq of canonical configurations encountered, and hence the least level of monotonicity of the
first configuration that becomes larger than (or equal to) mgk, is bounded by

s ≤ W (k − 1, r + 1) + 1.

In particular, for r < k
2 we have

s ≤ k − r − 1 (5.2)

and for k−3
2 ≤ r ≤ k we have

s ≤


2k − r

3


, (5.3)

where we used the special values of function W computed in Definition 5.1.

Proof. If σq = 0 for all q, then we can resort to Corollary 5.2 and conclude immediately. Otherwise, set sq =


i≤q σi and let
q̄ be the largest value of q such that σq > 0. We apply Lemma 5.4 with k = q̄, r = n− Tq̄ and s =


i<q̄ σi = sq̄−1 and obtain

an upper bound for σq̄ that, since σq̄ > 0 can be written as

σq̄ ≤ W (q̄ − 1, n − Tq̄ + 1) + 1 − sq̄−1

or equivalently as

s = sq̄ ≤ W (q̄ − 1, n − Tq̄ + 1) + 1 ≤ W (k − 1, r + 1) + 1

where the last inequality follows from the monotonicity ofW with respect to its arguments. �

The evolution of a configuration λ ∈ Λn, with n = Tk + r and 1 ≤ r ≤ k, will be decomposed into two stages:

(1) the evolution from the beginning up to the first time t when λ(t) ≥ mgk, where as usual λ(t) = Mt(λ);
(2) the subsequent evolution until we reach an augmented marching group.
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The duration of each of these stages will be estimated from above with bounds that depend upon a few parameters and we
shall find a uniform bound valid for all possible feasible choices of such parameters finally obtaining an upper bound for
D(n).

We need some further lemmas.

Lemma 5.6. Let λ ∈ Λn and let k be the largest integer such that λ ≥ mgk. Write n = Tk + r and suppose that λ is r-monotone.
Then λ is an augmented marching group.

Proof. By contradiction suppose that λ is not an augmentedmarching group, then the energy sequence has an elementwith
value k (otherwise λ ≥ mgk+1) and an element with value k + 2 (otherwise λ would be an augmented marching group).
This implies the existence of an increasing plateau at level k+ 1, which must have length at least r . An energy level of k+ 1
at position i is possible without using one of the r exceeding seeds only if i = k + 1, however if that position is part of the
increasing plateau, then the seed at level k + 2 must necessarily stay on top of a seed at level k + 1. In all cases we need at
least r + 1 seeds to build such an increasing plateau, which contradicts the assumptions. �

Lemma 5.7. Let λ ∈ Λn with n = Tk + r, 0 ≤ r ≤ k, λ ≥ mgk and s-monotone. If MtĎ(λ) becomes an augmented marching
group, then

tĎ ≤ max{r − 1 + (r − s − 1)(k + 1), 0}.

Proof. Using the energy level interpretation we identify the gap at level k + 1 that will be filled last, and call i0 its column
index.

We consider two cases.
Case i0 < r or i0 = k + 1. The first term r − 1 in the estimate is then the maximal number of moves that are required

to move that gap into the rightmost (k + 1)th column. We observe that starting from that configuration the augmented
marching group will be obtained exactly after a number of moves multiple of k + 1

After each cycle of k+1moves the level of monotonicity increases at least of one unit (Lemma 4.2), so that after r − s−1
cycles of k + 1 moves we obtain a configuration µ that is at least (r − 1)-monotone.

Now we want to prove that (r − 1)-monotonicity (and not higher) is actually impossible under the circumstances. This
would imply at least r-monotonicity that in turn implies that we have an augmented marching group thanks to Lemma 5.6.

Suppose then by contradiction thatµ is (r−1)-monotone but not r-monotone andhence it is not an augmentedmarching
group. This means that the gap at level k+ 1, column k+ 1 is still empty. The energy sequence of µ has then both elements
at level k and elements at level k+2, so that there exists at least an increasing plateau at level k+1 (i.e. a sequence of energy
elements as contiguous positions at level k + 1 following an element at level k and preceding an element at level k + 2).
Such plateau has length at least r − 1 due to the (r − 1)-monotonicity. Now recall that we have an excess of r seeds with
energy larger or equal to k + 1 (levels k and below are completely filled thanks to the assumptions). Column k + 2 is the
only one having energy k+ 1 with no need to use one of the excess seeds, however we have barely enough seeds to form an
increasing plateau of length r − 1 which requires r + 1 seeds that reduce to r only if we take advantage of the energy step
at column k + 2.

Recalling that column k + 1 has energy level k (the gap is still empty), the only possible disposition of the r excess seeds
is the one with r − 1 of them in columns 1 to r − 1 (energy k+ 1) and the last excess seed itself in column r − 1 (then with
energy k + 2). This configuration becomes an augmented marching group after exactly r moves, however we know that an
augmented marching group is reached after a multiple of k + 1 moves and hence r = k + 1, a contradiction.

Since (r − 1)-monotonicity is impossible for µ, then we have at least r-monotonicity and hence we have an augmented
marching group.

Case r ≤ i0 < k + 1. Let us consider the result of the evolution as soon as it becomes an augmented marching group
and call it µ, the position of the ‘‘marked’’ gap is then column k + 1 and it has just been filled with the last of the r seeds
the were originally at energy levels larger then k + 1. Immediately to the left of this seed there is a contiguous sequence of,
say, ρ − 1 seeds, 1 ≤ ρ ≤ r at level k + 1, preceded by a gap in column k + 1 − ρ. Clearly this latter gap (let us call it ‘‘gap
number 2’’) can be traced back to its corresponding position in the initial configuration λ, and will originally be empty in λ
and will continue to be empty during the whole evolution. It is located in column i0 − ρ of λ, to the left of the marked gap
(in column i0).

No seed at energy larger then k+1 (they are the ‘‘active’’ seeds, the only ones that ‘‘move’’ with respect to the k+1 level)
can ever cross or reach the column containing gap number 2, so that the active seeds originally to the left of gap number 2
or to the right of the marked gap (call this region the ‘‘outer region’’) can ever interact with the region between gap number
2 and the active gap.

Without loss of generality we can then suppose that the outer region has reached its final configuration already in λ. This
actually means that there are no active seeds to the right of the marked gap.

The final step is then to observe that in this situation λ can be interpreted as the result of the evolution (with k + 1 − i0
moves) from a configuration λ̄ that itself satisfies the hypotheses of this Lemma and the marked gap already in the k + 1
position (in other words we can ‘‘steal’’ a few moves) and we can resort to the first case of the Lemma.

The proof is thus complete. �
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We now analyze the evolution of λ ∈ Λn, n = Tk + r , 0 ≤ r ≤ k. We denote with s ∈ N the number of q-canonical
configurations encountered during the evolution with q ≤ k.

Using Lemma 5.5 we obtain the constraint s ≤ W (k − 1, r + 1) + 1, which in particular gives
0 ≤ s ≤ k − r − 1 if r <

k
2
,

0 ≤ s ≤


2k − r

3


if

k − 3
2

≤ r ≤ k + 1,

0 ≤ s ≤ r if r =
k
2
.

(5.4)

The third estimate is actually just a special case of the second one; the first and second estimates coincide for r in the common
interval k−3

2 ≤ r < k
2 .

As usual we denote by λ(t) = Mt(λ) and we set

• tA the smallest time such that λ(tA) ≥ mgk

• tĎ the smallest time such that λ(tĎ) is an augmented marching group.

Lemma 5.8. We have the following estimates:

(1) tA ≤ Tk−1 + ks;
(2) tĎ − tA = 0 if s ≥ r;
(3) tĎ − tA ≤ r − 1 + (r − s − 1)(k + 1) if s < r.

Proof. The first point is exactly Lemma 5.3.
Point (2) is simply Lemma 5.6.
Point (3) follows from Lemma 5.7 �

We then have a total estimate of tĎ = tA + (tĎ − tA) as a function of s that reads as follows:

tĎ ≤


Tk−1 + (r − 1)(k + 2) − s if s < r,
Tk−1 + ks if s ≥ r. (5.5)

Clearly in the case s < r it is most convenient to take s = 0, whereas if s ≥ r themaximum value is achieved by selecting
the largest possible value of s, which is dictated by the constraints (5.4).

We recall from Section 3 the definition of D∗(n) as

D∗(n) =


3Tk−1 − kr if r <

k
2
,

3Tk−1 − k(r − 1) if r =
k
2
,

Tk−1 + (k + 2)(r − 1) if r >
k
2
,

Theorem 5.9 (Depth of Λn). Let n = Tk + r with k ≥ 2 and 0 ≤ r ≤ k. Then D(n) = D∗(n). The case k ≤ 1 corresponds to
n ≤ 2, easily studied manually.

Proof. In viewof the results of Section3 it suffices to prove theupper boundD(n) ≤ D∗(n). Letλ ∈ Λn.We invoke Lemma5.3
so that there exists s satisfying the constraints (5.4) such that after at most Tk−1 + ks moves the resulting configuration is
s-monotone and ≥ mgk. Now we enforce Lemma 5.8 and distinguish three cases.

Case r < k
2 . If s ≥ r , we use the first inequality of (5.4) in (5.5) to conclude

tĎ ≤ Tk−1 + k(k − r − 1) = D∗(n).

If s < r , using s ≥ 0, and 2r ≤ k − 1, i.e. r ≤ k − r − 1 we have

tĎ ≤ Tk−1 + (r − 1)(k + 2) ≤ Tk−1 + rk + 2r − k − 2 < Tk−1 + k(k − r − 1) − 2

so that in any case tĎ ≤ D∗(n).
Case r =

k
2 . Again we distinguish the case s ≥ r , together with the third inequality of (5.4) to obtain

tĎ ≤ Tk−1 + kr = 3Tk−1 − k(k − r − 1) = D∗(n).

Whereas if s < r , again using s ≥ 0 we have

tĎ ≤ Tk−1 + (r − 1)(k + 2) = 3Tk−1 − k(r − 1) − 2 < D∗(n).
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Case r > k
2 . We start with the case s < r and again use s ≥ 0 to get

tĎ ≤ Tk−1 + (r − 1)(k + 2) = D∗(n).

Finally, if s ≥ r , enforcing the second inequality in (5.4), using 2r − k ≥ 1 we obtain

tĎ ≤ Tk−1 + k
2k − r

3
= Tk−1 + (r − 1)(k + 2) − (2r − k)


2
3
k + 1


+ 2 < D∗(n).

We have covered all the possible cases and the proof is complete. �

The previous Theorem5.9, and in particular the upper boundD(n) ≤ D∗(n) also allows to compute themaximal diameter
of Λn:

Corollary 5.10 (Diameter ofΛn). The diameter of Λn (see Definition 2.10) is given byD∗(n)+P(n)−1where P(n) is themaximal
period of an augmented marching group, i.e. P(n) = 1 if n = Tk is a triangular number, otherwise P(n) = k if n = Tk + r, with
0 < r ≤ k, is not a triangular number.

Proof. That the diameter cannot exceed D∗(n) + P(n) − 1 immediately follows from Theorem 5.9. The reverse inequality
follows from the constructions of Section 3, in particular we make use of Proposition 3.5, Corollary 3.7, Proposition 3.8 and
the discussion about the period of the resulting augmented marching groups following each of these results. �

6. Monotone mancala and Bulgarian solitaire

The notion of s-monotonicity naturally introduces a sort of graduation on the graph ofmoves. Indeed, Theorem4.1 asserts
that the subgraph obtained by considering only the s-monotone configurations for some s ∈ N is closed under mancala
moves (no arc leaves this subset). It is then natural to ask what is the depth of such subgraphs.

More precisely, for n, s ∈ N let us denote by Λn,s and Λn,mon the subsets of Λn given by

Λn,s = {λ ∈ Λn : λ is s-monotone}, Λn,mon = {λ ∈ Λn : λ is monotone}.

Similarly, with Gn,s and Gn,mon we denote the subgraphs of Gn having nodes in Λn,s and Λn,mon respectively.
Then the depth of Gn,s, denoted by D(n, s), is the maximal distance from a node of Gn,s to a periodic configuration. In this

context, recalling that 0-monotonicity is a void notion, our main Theorem 5.9 gives a value for D(n, 0) = D(n). It would be
desirable to have a result about the depth D(n, s) for any value of s; unfortunately, at the moment we are not able to extend
our result to nontrivial values of s.

Especially the value s = 1 is interesting: indeed, Remark 4.3 relatesGn,1 toGn,mon and in particular their respective depth.
Adding one to D(n, 1) we obtain the depth of the graph of monotone configurations. This is of special interest in view of the
following

Remark 6.1. The monotone mancala graph is isomorphic to the graph of the Bulgarian solitaire [4,6,7].

The Bulgarian solitaire, already mentioned in the Introduction, is played as follows. The starting position consists of a
number of piles, each with a (possibly different) number of cards. Each move consists in removing one card from each pile
and collecting the removed cards in a new pile. Piles that become empty are simply neglected and the order of the piles
(and of the cards in a pile) is inessential. We can associate a mancala configuration to a Bulgarian solitaire configuration by
defining λi equal to the number of piles with at least i cards. In this way we obtain a valid mancala configuration which is
clearly monotone. It can be readily shown that this correspondence is one to one and that it is consistent with the respective
game rules.

Hence, the depth of the Bulgarian solitaire subgraph is given by 1 + D(n, 1). The following conjecture is stated in [6]:

Conjecture 6.1. Let n = Tk + r with k ≥ 2 and 0 ≤ r ≤ k. The depth of Gn,1 is given by

D(n, 1) =



2Tk−1 − rk − 1 if 0 ≤ r <


k
2


Tk−1 + r − 1 if r =


k
2


or


k
2


+ 1

2Tk − (k + 1 − r)(k + 2) − 1 if

k
2


+ 1 < r ≤ k + 1.

In [6] the authors proved this result for some special values of n, while the above expression is proved to be a lower
bound. Our computer simulations validates the conjecture for values up to n = 180, improving the previous limit of n = 36.
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