
Discrete Mathematics 338 (2015) 1953–1969

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Characterization of the finite C-MH-homogeneous graphs
Nickolas S. Rollick
University of Calgary, Department of Mathematics and Statistics, 612 Campus Place NW, 2500 University Drive NW, Calgary, AB,
Canada T2N 1N4

a r t i c l e i n f o

Article history:
Received 1 May 2014
Received in revised form 30 April 2015
Accepted 2 May 2015
Available online 5 June 2015

Keywords:
Homomorphism–homogeneous graph
Graph homomorphism
Homogeneous structure

a b s t r a c t

A graph G is C-MH-homogeneous, or C-MH, if every monomorphism between finite con-
nected induced subgraphs of G extends to a homomorphism from G into itself. Similarly, G
is C-IH if every isomorphism between finite connected induced subgraphs of G extends to
a homomorphism from G into itself. In this paper, the finite C-MH graphs are characterized
and a new family of finite C-IH graphs is discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we work with recent generalizations of the definition of a homogeneous graph, characterizing a class of
finite graphs satisfying one of the generalized definitions. A graph G is homogeneous if every isomorphism between any two
finite induced subgraphs of G extends to an automorphism of G. The concept of a general homogeneous structure was de-
fined in Fraïssé’s 1953 paper [3], but classification results for graphs were not obtained until the late 1970s, when the finite
homogeneous graphswere classified by Gardiner [4] and the countable homogeneous graphswere characterized by Lachlan
and Woodrow [10].

Incentive for further work was provided in the 2005 paper by Kechris, Pestov, and Todorcevic [9], in which the theory
of homogeneous structures is applied to topological dynamics. Generalizations of the definition were first suggested in the
2006 paper [1] by Cameron and Nešetřil. For instance, they defined an MH graph as one where every monomorphism be-
tween any two of its finite induced subgraphs extends to a homomorphism from the graph into itself. Similarly, we can
define IH, IM, II, MM, MI, HH, HM, and HI graphs, with I, M, and H representing ‘‘isomorphism’’, ‘‘monomorphism’’, and
‘‘homomorphism’’, respectively. These families of graphs are collectively called the homomorphism–homogeneous graphs. In
particular, note that II graphs are another name for homogeneous graphs. With these new definitions in place, the task of
characterizing these families began. For instance, an investigation into countable MM, MH, and HH graphs was carried out
by Rusinov and Schweitzer in [12].

A more recent generalization builds off the work of Gardiner in [5] and Gray and Macpherson in [6], characterizing what
are now known as the C-II graphs. A graph is C-II if every isomorphism between any two of its finite connected induced
subgraphs extends to an automorphism of the graph. In [11], Lockett combined this generalization with the definitions
developed by Cameron and Nešetřil, introducing C-HH graphs, C-MH graphs, C-IH graphs, and so on, where the initial
mappings considered are defined on finite, connected induced subgraphs. Such graphs are referred to as the connected-
homomorphism–homogeneous graphs. This generalization allowed for additional classification research, and Lockett charac-
terized the finite C-HI, C-MI, and C-HH graphs in [11].

It is interesting to note that the classes of homomorphism–homogeneous graphs form a partial order under containment,
given in Fig. 1 for both the general and finite cases. The poset in the finite case is simpler because any monomorphism from
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Fig. 1. The partial orders of general (left) and finite (right) homomorphism–homogeneous graphs.

Fig. 2. A K4-treelike graph and a K5-treelike graph.

a finite graph into itself must also be an isomorphism, so that IM = II, for instance. Likewise, similar posets exist for the
connected-homomorphism–homogeneous graphs. Lastly, observe that every MH graph is a C-MH graph, every HH graph is
a C-HH graph, and so on, as follows directly from the definitions.

This paper completes the characterization of the finite C-MH graphs, identified as an open problem in [11], leaving only
the class C-IH to be investigated in the case of finite graphs. Since theC-HHgraphs are a subclass of the C-MHgraphs, Lockett’s
list of finite C-HH graphs is tacitly included in the results of this paper. As such, we will state her characterizations below.

Before stating Lockett’s results, a few of the graphs mentioned in the results require some explanation. For fixed n, a
Kn-treelike graph is a connected graph constructed from copies of Kn (called components), where pairs of components are
joined by taking a unique pair of vertices, one vertex from each component, and identifying them, in such a way that no
new cycles are constructed. Examples of these graphs, eachwith five components, are given in Fig. 2. As observed in [11], for
n ≥ 2, they may also be characterized as the connected graphs such that all induced cycles are triangles and the neighbour
set of each vertex is a disjoint union of copies of Kn−1. Note also that complete graphs are Kn-treelike graphs with only one
component and that K1 is the only K1-treelike graph.

Following [11], a bipartite graph with parts X and Y where |X | ≤ |Y | is said to have a perfect complement matching
if, for each x ∈ X , we can choose a vertex yx ∈ Y such that x ≁ yx, with the additional condition that the mapping
x → yx is injective, i.e. for x ≠ x′, we have yx ≠ yx′ . If G is a finite connected bipartite graph with parts X and Y such
that 2 ≤ |X | ≤ |Y | = n and G has a perfect complement matching, then G is a PCM(n) graph. A graph is PCM(n)-free if it does
not embed a PCM(n) graph. Here, as elsewhere in this paper, a graph G embeds a graph H if H is isomorphic to an induced
subgraph of G.

A bipartite complement of a perfect matching is a bipartite graph with a perfect complement matching where |X | = |Y |.
To be explicit, it is a bipartite graph with parts X and Y , where X = {x1, . . . , xn} and Y = {y1, . . . , yn}, with xi ∼ yj if and
only if i ≠ j. Following [11], we note that such a graph may be constructed as L(K2,n), and we will use this notation to refer
to these graphs. Finally, a domino graph is a pair of 4-cycles sharing a common edge.

Now, we can state Lockett’s results:

Theorem 1 (Connected C-HH Characterization, Lockett [11]). A finite connected graph is C-HH if and only if it is one of the
following:
(i) a Kn-treelike graph;
(ii) a domino-free graph such that all induced cycles are squares;
(iii) a bipartite graph such that each part has a common neighbour;
(iv) the bipartite complement of a perfect matching L(K2,n) (n ≥ 3).

Theorem 2 (General C-HH Characterization, Lockett [11]). A finite graph is C-HH if and only if it is a finite disjoint union of finite
connected C-HH graphs

k
i=1 Gi such that one of the following holds:

(a) for fixed n, each Gi is a Kn-treelike graph;
(b) each Gi is a nontrivial domino-free graph such that all induced cycles are squares;
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Fig. 3. The bridge graphs B3 and B5 .

(c) each Gi is a bipartite graph such that each part has a common neighbour;
(d) for fixed n ≥ 3, some of the components are copies of L(K2,n), and all other components Gi are bipartite PCM(n)-free graphs

such that each part has a common neighbour.

The main goal of this paper is to characterize the finite C-MH graphs. First, we classify the connected graphs, and then
we use this to classify all finite C-MH graphs. Naturally, this leads to two different theorems: one for connected graphs and
one for the general case. Before stating them, we must introduce a family of graphs appearing in the theorems.

Definition 1. For any integer n ≥ 1, the bridge graph Bn consists of n paths of length 3, all sharing the same endpoints, with
no other shared vertices and no edges between the paths.

Examples of bridge graphs are given in Fig. 3. Note that the bridge graphs are a special type of theta graph. A theta graph
Θ(l1, . . . , lt) is a graph consisting of two vertices joined by t internally disjoint paths of lengths l1, . . . , lt respectively. Using
this notation, the bridge graph Bn is the theta graphΘ(l1, . . . , ln), where l1 = l2 = · · · = ln = 3.

Now, we can state the characterization of finite connected C-MH graphs:

Theorem 3 (Connected C-MH Characterization). A finite connected graph is C-MH if and only if it is one of the following:

(i) a finite connected C-HH graph;
(ii) a cycle Cn (n ≥ 3);
(iii) a bridge graph Bn.

It is interesting to note that only the bridge graphs Bn have not previously been identified as C-MH. After classifying the
connected C-MH graphs, we prove the following theorem:

Theorem 4 (General C-MH Characterization). A finite graph is C-MH if and only if it satisfies one of the following:

(i) for fixed n, each component is a Kn-treelike graph;
(ii) for fixed n, each component is an odd cycle C2n+1;
(iii) each component is a bipartite graph where each part has a common neighbour;
(iv) for a fixed n ≥ 3, at least one component is a copy of L(K2,n), and all components that are not copies of L(K2,n) are bipartite

PCM(n)-free graphs where each part has a common neighbour;
(v) at least one component is a bridge graph Bn, where nmay differ for each graph, and all components that are not bridge graphs

Bn are domino-free bipartite graphs where all induced cycles are squares and each part has a common neighbour;
(vi) each component is a nontrivial domino-free graph such that all induced cycles are squares;
(vii) for fixed n ≥ 3, at least one component is an even cycle C2n and all components that are not even cycles C2n are nontrivial

domino-free graphs such that all induced cycles are squares and for all n + 1 < m < 2n, the endpoints of any path in that
component with m vertices are at a distance at most 2n − m + 1 apart.

After characterizing the finite C-MH graphs, we discuss a new family of C-IH graphs, the expanded cycle graphs EC(n1,
. . . , nk), providing examples sought in [11]. These graphs may be regarded as generalizations of even cycles, and they are
discussed in more detail in Sections 3 and 5.

In Section 2, we clarify the notation that will be used and provide some background regarding connected-homomor-
phism–homogeneous graphs. Sections 3 and 4 are devoted to characterizing the finite C-MH graphs, with the connected
case handled in Section 3 and the general case in Section 4. In Section 5, we prove that the expanded cycle graphs are C-IH
and make note of some open problems.

2. Preliminaries

2.1. Notation

We begin by explaining some notation to be used throughout this paper. Any definition not explicitly mentioned here
can be found in any textbook on graph theory, such as [2] or [7]. For the remaining part of the paper, we assume that all
graphs are finite. We write v ∼ w to indicate that two vertices v and w are adjacent. Likewise, if a vertex v is adjacent to
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an entire set of vertices U , we write v ∼ U . Rather than explicitly mentioning the vertex set of a graph, we will engage in a
slight abuse of notation, using G to refer both to a graph G and to the vertex set of G.

A homomorphism between two graphs is amappreserving edges. Formally, amapφ : G1 → G2 is called a homomorphism
if, for all vertices v and w in G1, φ(v) ∼ φ(w) whenever v ∼ w. A monomorphism is an injective homomorphism. An
isomorphism is an invertible homomorphism where the inverse map is also a homomorphism. Equivalently, it is a one-to-
one, onto map φ : G1 → G2 such that v ∼ w if and only if φ(v) ∼ φ(w) for all vertices v andw in G1.

Observe that both a monomorphism and a homomorphism may map non-adjacent vertices to adjacent vertices, while
an isomorphism cannot. Additionally, a general homomorphism can map non-adjacent vertices to the same vertex, while
monomorphisms and isomorphisms cannot.

When necessary, wewill use [V ] or [a1, . . . , an] to denote the subgraph induced by a set of vertices V or {a1, . . . , an}. We
will also refer to the induced subgraph [V ] as V , when the context is clear. We will use Pn to refer to the path of length n− 1,
meaning a graph with vertices v1, . . . , vn, where vi ∼ vi+1 for 1 ≤ i ≤ n − 1 and where there are no other adjacencies. An
induced pathwill always refer to an induced subgraph Pn. On the other hand, a path refers to any subgraph Pn, not necessarily
an induced subgraph. We often write both kinds of paths with vertices v1, v2, . . . , vn as the sequence v1v2 · · · vn. If we have
already made it clear that we are dealing with an induced path, we may subsequently refer to it only as a path.

For n ≥ 3, we will use Cn to refer to the n-cycle, with vertices a1, . . . , an, and ai ∼ ai+1 for 1 ≤ i ≤ n − 1, an ∼ a1, with
no other adjacencies. Henceforth, all cycles will have this labelling unless otherwise specified. Wemay also write an n-cycle
as the sequence a1a2 · · · ana1. We will also refer to a 3-cycle as a triangle and a 4-cycle as a square. The domino graphmay be
constructed by taking a 6-cycle and adding an edge between a3 and a6, and will be labelled in this manner unless otherwise
specified.

Now, we make the following remarks about the bridge graphs Bn from Definition 1, needed in Sections 3 and 4:

• The only induced cycles in Bn are 6-cycles, involving the commonendpoints of the induced 3-paths and twoof the induced
paths connecting them.

• For n ≥ 2, any induced path in Bn is part of an induced 6-cycle.

Finally, we make a couple of observations regarding bipartite graphs. In the statement of the next lemma,∆(G) refers to
the maximum degree of the graph G.

Lemma 1 (Lockett [11]). For a nontrivial bipartite graph G, every k-subset of a part has a common neighbour for each k ≤ ∆(G)
if and only if G is either the bipartite complement of a perfect matching or each part of G has a common neighbour.

Lastly, notice that every homomorphism between connected bipartite graphs preserves the bipartition.

2.2. C-XY graphs and C-XY-symmetries

Now, we discuss connected-homomorphism–homogeneous graphs, which are the focus of this paper.
Let X and Y be any of H, M, and I, which represent the prefixes homo-, mono-, and iso-, respectively. A graph G is

(C-)XY-homogeneous, or (C-)XY, if every X-morphism from any finite (connected) induced subgraph of G into G extends
to a Y-morphism from G into itself.

Since theMH graphs are a subclass of the C-MH graphs, the characterization of finite MH graphs provides a starting point
for the current project:

Proposition 1 (Cameron & Nešetřil [1]). A finite graph is MH if and only if it is a disjoint union of complete graphs of the same
size.

When comparing this result to the list of finite C-MH graphs (Theorem 4), it is striking to see how relaxing the definition
makes for a richer and more interesting characterization. At any rate, the main importance of the above is in conjunction
with the next result. Here and elsewhere, N(v) denotes the neighbour set of the vertex v.

Lemma 2 (Lockett [11]). If G is a C-XY graph, then for each v ∈ G, the graph [N(v)] is XY.

Putting these two results together, we find that the neighbour set of any vertex in a finite C-MH graph is a disjoint union
of complete graphs of the same size, a very helpful condition. The following is even more helpful for our characterization:

Lemma 3 (Lockett [11]). For any n ≥ 3, the cycle Cn is C-MI.

Since every C-MI graph is C-MH, every cycle is C-MH. In general, a cycle is not C-HH, so this result tells us that we must
include cycles on the list of connected C-MH graphs, separate from the C-HH graphs. We will also have the chance to use
the result in other contexts throughout the paper.

Following [11], given two graphs G1 and G2, we say that G1 is C-XY-morphic to G2 if every X-morphism from any finite
connected induced subgraph of G1 into G2 extends to a Y-morphism from G1 into G2. Furthermore, the graphs G1 and G2
are C-XY-symmetric if G1 is C-XY-morphic to G2 and G2 is C-XY-morphic to G1. Note that a graph is C-XY if and only if it is
C-XY-symmetric to itself.
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It is interesting to observe that C-XY-symmetry is not generally an equivalence relation onC-XYgraphs.While the relation
is symmetric by definition, it is observed in [11] that C-HH-symmetry is not transitive. The argument used there also shows
that C-MH- and C-IH-symmetries are not transitive.

The following result explains our interest in C-XY-symmetry. It is proved for general relational structures in [11], but is
stated here specifically for graphs:

Proposition 2 (Lockett [11]). A graph G is C-XY if and only if all components of G are C-XY and are pairwise C-XY-symmetric.

Consequently, the easiest way to classify the finite C-MH graphs is to characterize the connected C-MH graphs and then
determine which pairs of connected C-MH graphs are C-MH-symmetric.

Two graphs G1 and G2 are homomorphically equivalent if there exist homomorphisms φ1 : G1 → G2 and φ2 : G2 →

G1. As the name suggests, homomorphic equivalence is an equivalence relation. Note that if two graphs G1 and G2 are
C-MH-symmetric, then they are also homomorphically equivalent. Therefore, a useful way to prove that two graphs are
not C-MH-symmetric is to prove that they are not homomorphically equivalent.

The study of graph homomorphisms is undertaken in detail in [8], but we focus only on the relevant details here. If H is
an induced subgraph of G, a homomorphism r : G → H is called a retraction if the restriction of r to H is the identity map.
If such a retraction exists, we say that G retracts to H . A core is a graph that does not retract to any of its proper induced
subgraphs.

In [8], it is shown that each graph G embeds a core that is unique up to isomorphism. This core is characterized by being
the smallest induced subgraph of G to which G is homomorphic, and we call this subgraph the core of G. A graph is homo-
morphically equivalent to its core, and from this, it can be shown that any two homomorphically equivalent graphs have
the same core. So, if we can determine that two graphs have different cores, they cannot be homomorphically equivalent
and therefore are not C-MH-symmetric.

Therefore, the following facts about cores will be useful to us:

• Every complete graph is a core.
• A connected graph G has core K1 if and only if G ∼= K1.
• A nontrivial connected graph is bipartite if and only if its core is K2.
• Every odd cycle is a core.

In particular, the third remark above tells us that amongst the nontrivial connected graphs, bipartite graphs are
C-MH-symmetric only to bipartite graphs and nonbipartite graphs are C-MH-symmetric only to nonbipartite graphs. Hence,
either every component of a C-MH graph is bipartite, or every component is nonbipartite.

3. The connected case

This section is devoted to the proof of the connected C-MH characterization (Theorem 3). We have already seen that the
list will include cycles and Lockett’s list of connected C-HH graphs. Now, we show that the bridge graphs Bn belong to the
list. In fact, we prove the stronger claim that for any n1, n2 ≥ 2, the graphs Bn1 and Bn2 are C-MH-symmetric, which we will
need in Section 4.

Proposition 3. For any integers n1, n2 ≥ 2, the graphs Bn1 and Bn2 are C-MH-symmetric.

Proof. It suffices to show that Bn1 is C-MH-morphic to Bn2 , because n1 and n2 are interchangeable. Let A be the set of common
endpoints of the n1 copies of P4 in Bn1 , with vertices a1 and a2. Wewill refer to these vertices, and the corresponding vertices
in Bn2 , as extremal vertices. Let B denote the set of remaining vertices in Bn1 , where B = {b11, b12, b21, b22, . . . , bn11, bn12}.
Furthermore, assume that a1 ∼ bi1, bi1 ∼ bi2, bi2 ∼ a2 for 1 ≤ i ≤ n1. Now,we consider all possible domains for amonomor-
phism from a connected induced subgraph of Bn1 into Bn2 . For the remaining part of the proof, let φ denote the arbitrary
monomorphism and let D denote the domain of φ. We will show how to construct an extensionψ of φ to the whole graph
in each case.

First, suppose that |D ∩A| = 0, so thatD is isomorphic to K1 or K2. The domain and range of this partial map are isomor-
phic induced paths of length 0 or 1 respectively, and hence part of induced 6-cycles in Bn1 and Bn2 , as observed in Section 2.
By Lemma 3, cycles are C-MI, so the map extends to an isomorphism between the two cycles. Without loss of generality, the
cycle in the domain is a1b11b12a2b22b21a1. By definingψ(bij) to be φ(b1j) for i ≥ 3, the extendedmapψ is a homomorphism
from Bn1 into Bn2 .

Now,we suppose that |D ∩A| = 1.Without loss of generality, suppose that a1 is inD and a2 is not. If atmost two vertices
of the form bi1 are in D , then the domain is an induced path in Bn1 and contained in an induced 6-cycle. The image must be
an isomorphic path, also contained in an induced 6-cycle, since extra edges between the vertices would induce a cycle with
less than 6 vertices. As in the previous paragraph, we can extend the map to an isomorphism between the two cycles and
then to a homomorphism defined on the entire graph Bn1 .

If at least three vertices of the form bi1 belong toD , then a1 must bemapped to one of the extremal vertices in Bn2 , because
there are at least three adjacencieswith a1 to preserve. All vertices bi1 in the domain aremapped to distinct vertices adjacent
to φ(a1). If the map is not defined for the adjacent vertex bi2, we send bi2 to the only vertex other than φ(a1) adjacent to
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φ(bi1), and ifφwas already defined for bi2, it must already havemapped to that vertex. If neither bi1 nor bi2 are in the domain
for some i, define ψ(bi1) to be an arbitrary neighbour of φ(a1) and define ψ(bi2) to be the only neighbour of ψ(bi1) aside
from φ(a1). Lastly, we map a2 to the extremal vertex in Bn2 different from φ(a1). In this way, we preserve all adjacencies.

Finally, suppose that |D∩A| = 2. Now, some path connecting a1 and a2 belongs toD since it is connected, whichwithout
loss of generality is a1b11b12a2. If exactly one vertex in some edge bi1bi2 is included in the domain, suppose that it is b21, by
relabelling if necessary. The vertex b22 needs to map to a common neighbour of φ(b21) and φ(a2). However, the induced
path b21a1b11b12a2 contained in the domainmust map to an isomorphic path under a monomorphism into Bn2 , so that there
is always a way to extend the map for b22 by completing a 6-cycle in the domain and the range. If no vertices in a given edge
bi1bi2 are included in the domain, we letψ(bi1) = φ(b11) andψ(bi2) = φ(b12) for any applicable i. If we perform the above
two steps for every vertex not in the domain, ψ is a homomorphism defined on all of Bn1 .

We have now accounted for all possible connected domains, showing that Bn1 is C-MH-morphic to Bn2 . �

By setting n1 = n2, we immediately get that Bn is C-MH for n ≥ 2. Observing that B1 ∼= P4 is a bipartite graph such that
each part has a common neighbour, we see that B1 is on the list of connected C-HH graphs, and is therefore also C-MH. This
gives us the following.

Proposition 4. For any positive integer n, the bridge graph Bn is C-MH.

Furthermore, for n ≥ 3, Bn is not C-HH, so this family is truly a source of new C-MH graphs. While this can be shown by
checking the list of connected C-HH graphs, we will show it directly. Labelling the vertices a1, a2, b11, b12, . . . , bn1, bn2 as in
Proposition 3, the homomorphism a1 → a1, b11 → b11, b12 → b12, b21 → b21, b22 → b22, b31 → b31, b32 → a1 from a
connected induced subgraph of Bn into Bn cannot be extended to a homomorphism defined on all of Bn. We would need a2
to map to a common neighbour of a1, b12, and b22, but such a vertex does not exist.

Now, we show that the list of connected C-MH graphs is complete. The plan is to consider arbitrary finite connected
C-MH graphs that are neither a cycle nor C-HH, which we will suggestively call ‘‘B-graphs’’. We will eventually show that
every B-graph is a graph Bn for some n ≥ 3.

First, we show that every B-graph is bipartite. Next, we use this to show that every B-graph not isomorphic to Bn for
n ≥ 3 must embed the domino graph. Finally, we show that every connected bipartite C-MH graph embedding the domino
graph is actually a C-HH graph. In particular, there cannot be a B-graph embedding the domino graph, so the only possible
B-graphs are bridge graphs Bn for n ≥ 3, completing the proof of Theorem 3.

The proof that every B-graph is bipartite has three parts. The proof of Part 1 is largely inspired by an argument used
in [11], but the other two parts use new arguments.

Proposition 5. Every B-graph is bipartite.

Part 1. Any finite connected graph that is C-MH but not C-HH is triangle-free.

Proof. Let G be a finite connected C-MH graph that is not C-HH. Suppose to the contrary that G embeds a 3-cycle a1a2a3a1.
It follows that for any two adjacent vertices v and w in G, the monomorphism a1 → v, a2 → w can be extended to a
homomorphism where the image of a3 is a common neighbour of v andw, so that every edge must be part of a triangle.

We now claim that every induced cycle in G is a triangle. If there were a longer induced cycle a1a2 · · · aka1 for minimal
k ≥ 4, then there is a vertex b outside the cycle that is adjacent to both a1 and a2, because every edge is part of a triangle.
We observe that neither a3 nor ak is adjacent to b, because if either vertex were adjacent to b, then [N(b)] would contain an
induced path a1a2a3 or aka1a2. By Proposition 1, such an induced path does not embed in any finite MH graph, in contradic-
tion to Lemma 2. Furthermore, if b is adjacent to some ai where 3 < i < k is maximal, then bai · · · aka1b is an induced cycle
that is not a triangle and has fewer than the minimal number of vertices.

Therefore, b is only adjacent to a1 and a2. Hence, the map taking b to a1 and fixing a2, . . . , ak is a monomorphism defined
on a connected induced subgraph of G. If this map extends to a homomorphism, then a1 maps to a common neighbour of
ak, a1, and a2. But, we have just seen that no common neighbour of a1 and a2 can also be a neighbour of ak, so we have
a contradiction. Therefore, if G contains a 3-cycle and is C-MH, then all cycles are 3-cycles. Furthermore, by Lemma 2 and
Proposition 1, the neighbour set of every vertex is a disjoint union of complete graphs of the same size.

Recall that Kn-treelike graphs are characterized as the connected graphs where all induced cycles are triangles and the
neighbour set of each vertex is a disjoint union of Kn−1 graphs for fixed n. If we can show that the complete graphs in differ-
ent neighbour sets have the same size, we can conclude that G is a Kn-treelike graph for some n and is on the list of C-HH
graphs, which is a contradiction. This is immediate from the observation that all maximal cliques in a C-MH graph have the
same size. If [v1, . . . , vn1 ] and [w1, . . . , wn2 ] are maximal cliques in G with n1 < n2, the map wi → vi for 1 ≤ i ≤ n1 is a
monomorphism between two connected induced subgraphs of G that cannot be extended to a homomorphism, sincewn1+1
needs to map to a nonexistent common neighbour of v1, . . . , vn1 . �

Part 2. For any n ≥ 4, a finite connected C-MH graph that is not C-HH cannot embed both Cn and Cn+1.

Proof. Suppose to the contrary that G is a C-MH graph that is not C-HH while embedding Cn and Cn+1 for some n ≥ 4.
Let a1a2 · · · ana1 denote an induced cycle Cn and b1b2 . . . bn+1b1 denote an induced cycle Cn+1 in G. The map bi → ai,
1 ≤ i ≤ n is a monomorphism between connected induced subgraphs of G, so by the C-MH property, the map extends
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to a homomorphism from G into itself where bn+1 maps to a common neighbour of an and a1. This induces a triangle in G,
contradicting Part 1. �

Part 3. Every B-graph embeds only even cycles.

Proof. Consider an arbitrary B-graph G, and suppose to the contrary that G embeds an odd cycle. Let a1a2 · · · a2k+1a1 be
a minimal induced odd cycle. By Part 1, k ≥ 2. Without loss of generality, since G is not a cycle and is also connected,
there must be a vertex b from outside the cycle that is adjacent to a1. The monomorphism a2k+1 → b, a1 → a1, a2 →

a2, . . . , a2k−1 → a2k−1 must extend to a homomorphism from G into itself by the C-MH property, where a2k must map to
a common neighbour b′ of b and a2k−1. Now, if b′ belongs to the (2k + 1)-cycle, then it must be a2k−2 or a2k, because these
are the only vertices adjacent to a2k−1. We claim that b′

≠ a2k−2. If the two vertices were the same, then ba1a2 · · · a2k−2b
would be an induced (2k − 1)-cycle or would embed a smaller odd cycle if other edges existed between b and the cycle,
contradicting the minimality of k.

From here, we proceed in two cases. First suppose that k = 2. By Part 2, it follows that neither C4 nor C6 embeds in G. If
b′

= a2k = a4 holds, then a4a5a1ba4 is an induced copy of C4, which is a contradiction. Now, we can conclude that b′ does not
belong to the cycle. It follows that a1bb′a3a4a5a1 is an induced copy of C6, or embeds a triangle or square. This contradicts
Parts 1 and 2, so k = 2 is impossible.

Now, we handle the case k ≥ 3. Here, we observe that the monomorphism a2 → b, a1 → a1, a2k+1 → a2k+1, . . . , a4 →

a4 must extend to a homomorphism from G into itself, where a3 maps to a common neighbour b′′ of b and a4. If b′′ belongs
to the cycle, then it must be either a3 or a5, because it is adjacent to a4. If b′′

= a5, then ba1a2k+1a2k · · · a5b is a (2k−1)-cycle
or embeds a smaller odd cycle, contradicting minimality of k.

Next, we observe that b′′
≠ b′. If the two vertices were equal, then a4a5 · · · a2k−1b′a4 would be a (2k−3)-cycle or embed

a smaller odd cycle, contradicting the minimality of k. Now, since b′
≠ a2k−2, b′′

≠ a5 and b′
≠ b′′ all hold, the induced

subgraph bb′′a4a5 · · · a2k−2a2k−1b′b is either a (2k− 1)-cycle or embeds a smaller odd cycle, even if b′
= a2k or b′′

= a3. This
contradicts the minimality of k once more. Therefore, G embeds only even cycles and is consequently bipartite. �

Now that we know every B-graph must be bipartite, we show, for a given B-graph G, if G � Bn for n ≥ 3, then G embeds
the domino graph.We show this with the goal of proving later that there cannot be a B-graph embedding the domino graph,
leaving bridge graphs as the only possibility.

To prove this, our plan is as follows: first, we use the fact that every B-graph is bipartite to show that every such graph
embeds either C6 or the domino graph. Using this property, we will show that every two vertices in the same part of the
bipartition of any B-graph have a common neighbour. Finally, we use these tools to prove our desired result.

Lemma 4. Every B-graph embeds either C6 or the domino graph.

Proof. Let G be a B-graph. We know that G is bipartite by Proposition 5, and therefore embeds only even cycles. We know
G must embed a cycle, because trees are vacuously domino-free graphs where all induced cycles are squares, and all such
graphs are on the list of connected C-HH graphs. Let n be the largest integer such that a 2n-cycle embeds in G. If n = 2, then
all induced cycles in G are squares. If G also embeds the domino graph, we are done, and if G does not embed the domino
graph, then G is on the list of connected C-HH graphs, a contradiction. If n = 3, then G embeds C6, and we are done.

Now, suppose that n ≥ 4, and let a1a2 · · · a2na1 be an induced 2n-cycle in G. Without loss of generality, since G is
connected and not a cycle, there must be another vertex b from outside the cycle that is adjacent to a1. Note that b can-
not be adjacent to vertices of the form a2k, because G is bipartite. Next, we observe that if b ∼ a3 and b ∼ a2n−1, then
[b, a2n−1, a2n, a1, a2, a3] is isomorphic to the domino graph, so without loss of generality, we may suppose that b ≁ a3.

Now, themonomorphism that fixes a4, a5, . . . , a2n, a1 andmaps a2 to b indicates that b and a4 have a common neighbour
b′, by the C-MH property. In particular, b′

≠ a3, since b ≁ a3. Also, b′ cannot be a2 or a1, because neither vertex is adjacent to
a4. In addition, since G is bipartite, a1 ≁ b′ and a3 ≁ b′. It follows that [b, a1, a2, a3, a4, b′

] is an embedded 6-cycle if b′
≁ a2

and is isomorphic to the domino graph if b′
∼ a2. �

Note that in the latter part of the proof, nomentionwasmade thatGwas not C-HH. This observation leads to the following
corollary of the proof above, which will be useful when we consider the disconnected case:

Corollary 1. For n ≥ 4, any connected bipartite C-MH graph that is not a cycle and embeds C2n also embeds either C6 or the
domino graph.

Now that we know B-graphs must embed either C6 or the domino graph, we derive another important fact about these
graphs. The result that we prove is more general than is needed here, so that it may be employed in Section 4. However, it
has a corollary for B-graphs that will be very useful in the current section.

Lemma 5. Let G1 and G2 be connected bipartite graphs, where G1 embeds C6 or the domino graph. If G1 is C-MH-morphic to G2,
then any two vertices in the same part of G2 have a common neighbour.

Proof. Let a1a2 · · · a6a1 be a copy of C6 or the domino graph in G1, with adjacencies as given in Section 2, and let b and c be
two arbitrary vertices in the same part of G2. Since G2 is connected and bipartite, there is a path of length 2k, for minimal
k ≥ 1, between b and c. We show that k = 1.
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Fig. 4. The expanded cycles EC(2, 1, 1) and EC(3, 2, 1, 2).

Fig. 5. The monomorphism and its extension from Lemma 6.

Suppose to the contrary that k ≥ 2. It follows that at least five vertices are in any shortest path from b to c , so let d1 = b,
d2k+1 = c , and d1d2d3d4d5 be the path consisting of the first five vertices in some shortest path d1d2 · · · d2kd2k+1 connecting
b and c. Because G1 is C-MH-morphic to G2, the monomorphism ai → di, 1 ≤ i ≤ 5 extends to a homomorphism where a6
must map to some common neighbour d′ of d1 and d5. Since the path d1 · · · d2k+1 is shortest possible, the path is induced,
so d′ does not belong to the path. However, it follows that d1d′d5 · · · d2k+1 is a path of length less than 2k between b and c ,
contradicting minimality of k. Therefore, we must have k = 1, so any two vertices in the same part of G2 have a common
neighbour. �

Now, since each B-graph is a connected bipartite graph that is C-MH-morphic to itself and embeds either C6 or the domino
graph, we apply the above, where G1 is a B-graph and G1 = G2, to get the following corollary:

Corollary 2. Any two vertices in the same part of any B-graph have a common neighbour.

We now have the tools we need in order to show that every B-graph that is not a bridge graph must embed the domino
graph. In order to simplify the proof, we first identify a special circumstance where a B-graph is forced to embed the domino
graph. To do so, we must now define the expanded cycle graphs alluded to in the Introduction. These graphs will be the
primary source of our attention in Section 5.

Definition 2. For positive integers n1, . . . , nk, the expanded cycle graph EC(n1, . . . , nk) is bipartite, with parts X = {x1,
. . . , xk} and Y = Y1 ∪ · · · ∪ Yk, where Y1, . . . , Yk are pairwise disjoint and |Yi| = ni for each i. In this graph, the only
adjacencies are xi ∼ Yi and Yi ∼ xi+1 for each i, taking subscripts modulo k.

For examples, see Fig. 4. These graphs may be seen as a generalization of even cycles because, in the case k ≥ 2 and
n1 = · · · = nk = 1, we have EC(n1, . . . , nk) ∼= C2k. Intuitively, an expanded cycle is obtained by starting with an even cycle
and ‘‘expanding’’ certain vertices in the cycle into several vertices.

We observe that for k ≥ 3, every induced path of length exceeding 2 is part of an induced 2k-cycle in EC(n1, . . . , nk), one
that includes every vertex in X and one vertex from each cell Yi. This will be important in Section 5.

With the formalities out of the way, we can now prove the following lemma:

Lemma 6. Any B-graph that embeds EC(2, 1, 1) also embeds the domino graph.

Proof. Let G be a B-graph embedding EC(2, 1, 1). In the copy of EC(2, 1, 1), let Yi = {yi1, . . . , yini} for each i. The map that
fixes y11 and x2, interchanges y12 and y21, sends x3 to x1, and fixes y31 is a monomorphism defined on a connected induced
subgraph of G. By the C-MH property, this map extends to a homomorphism from G into itself, where x1 must map to a
common neighbour z of y11, y21, and y31, which does not belong to EC(2, 1, 1). The vertex z cannot be adjacent to x1 or
x2 because G is bipartite. Therefore, [x1, y11, x2, y21, z, y31] is isomorphic to the domino graph. The mapping is shown in
Fig. 5. �

We are now ready to show that aside from the bridge graphs, every B-graph must embed the domino graph.

Proposition 6. Every B-graph not isomorphic to Bn for n ≥ 3 embeds the domino graph.

Proof. From Lemma 4, we know that any B-graph G must embed C6 or the domino graph. Hence, it suffices to show that if
G � Bn for n ≥ 3, then G embeds the domino graph whenever G embeds C6.
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Fig. 6. The monomorphism and its extension from Proposition 6.

So, we assume that G embeds C6 ∼= B2, and choose a positive integer k ≥ 2 such that Bk embeds in G, but Bl does not
embed for any l > k. Fix a copy of Bk in G and denote it by Bk. As in Proposition 3, let a1 and a2 denote the extremal vertices
and b11, b12, b21, b22, . . . , bk1, bk2 denote the remaining vertices in Bk, with a1 ∼ bi1, bi1 ∼ bi2, bi2 ∼ a2 for each i. The graph
G is connected and is not isomorphic to C6 or Bn for n ≥ 3, so there must be a vertex c from G \ Bk adjacent to a vertex in Bk.
The vertex c is adjacent to an extremal vertex or to a vertex bij.

Suppose that the former option holds. Without loss of generality, c ∼ a1. The only other vertices in Bk that c may be
adjacent to are of the form bi2, since G is bipartite. If c ∼ bi2 and c ∼ bj2 for i ≠ j, then [a1, c, bi2, a2, bj2, bj1] is isomorphic
to the domino graph. If c is adjacent to bi2 for exactly one i, then [a1, a2, bi1, bi2, bj1, bj2, c] ∼= EC(2, 1, 1) for any j ≠ i, and
by Lemma 6, G embeds the domino graph. Hence, we can suppose that c is not adjacent to any vertex in Bk except a1.

By Corollary 2, c and a2 must have a common neighbour c ′. We know that c ′
≠ a1, because a1 ≁ a2. Since c is not

adjacent to any vertex in Bk but a1, we may conclude that c ′
∉ Bk. Using an argument identical to the one in the previous

paragraph, with a2 in place of a1 and c ′ in place of c , we may assume that c ′ is not adjacent to any vertex in Bk except a2.
Now, [Bk ∪ {c, c ′

}] ∼= Bk+1, a contradiction to the maximality of k.
Now, suppose instead that c is adjacent to a vertex bij. Without loss of generality, c ∼ b11. If c is adjacent to both a2 and

a vertex of the form bi1 where i ≠ 1, then [a1, bi1, bi2, a2, c, b11] is isomorphic to the domino graph. If c is adjacent to a2 and
not adjacent to any vertices of the form bi1 for i ≠ 1, then [a1, a2, b11, b12, bi1, bi2, c] ∼= EC(2, 1, 1) for any such i and Gmust
embed the domino graph by Lemma 6. Likewise, if c is adjacent to a vertex of the form bi1 for i ≠ 1 but is not adjacent to
a2, we still have [a1, a2, b11, b12, bi1, bi2, c] ∼= EC(2, 1, 1), so that G embeds the domino graph. There are no other possible
adjacencies, as G is bipartite. Therefore, we may suppose that c is adjacent only to b11 in Bk.

Now, by Corollary 2, c and b22 have a common neighbour c ′. Of course, c ′
≠ b11, because b11 and b22 are nonadjacent.

We may therefore suppose that c ′
∉ Bk, by the previous paragraph. We now have a situation with c ′ symmetric to the one

with c just discussed, so we may assume that c ′ is adjacent only to b22 in Bk. Note that [a1, a2, b11, b12, b21, b22, c, c ′
] ∼= B3,

so in the case k = 2, we have a contradiction.
If k ≥ 3, the map that fixes b11, b12, b22, b31, b32, and a2, while mapping b21 to c ′, as shown in Fig. 6, is a monomorphism

defined on a connected induced subgraph of G. By the C-MH property, this map must extend to a homomorphism where a1
is mapped to a common neighbour c ′′ of b11, b31, and c ′. We can suppose that c ′′ is distinct from a1 and c , because we have
already seen that the domino graph embeds when a1 ∼ c ′ or c ∼ b31. Now, notice that [a1, b11, c, c ′, c ′′, b31] is isomorphic
to the domino graph. �

At this point, all that remains to be shown is that there cannot be a B-graph embedding the domino graph. Before showing
this, we will need one more tool, which is a partial strengthening of Lemma 5. Again, we prove a more general result than
is necessary for this section, but we will need the more general form in Section 4.

Lemma 7. Let G1 and G2 be connected bipartite graphs, where G1 embeds the domino graph. If G1 is C-MH-morphic to G2, then
any three vertices in the same part of G2 have a common neighbour.

Proof. LetG1 be a connected bipartite graph embedding the domino graph. Let a1a2a3a4a5a6a1 denote an embedded domino
graph in G1, with the extra edge between a3 and a6. By Lemma 5, any two vertices in the same part of G2 have a common
neighbour. Hence, for any three vertices b1, b2, and b3 in the same part ofG2, the vertices b1 and b2 have a common neighbour
c1, and b2 and b3 have a common neighbour c2. If c1 = c2, then we are done. Otherwise, since G1 is C-MH-morphic to G2, the
map a1 → b1, a2 → c1, a3 → b2, a4 → c2, a5 → b3 is a monomorphism from a connected induced subgraph of G1 into G2
that can be extended to a homomorphism where a6 is mapped to a common neighbour of b1, b2, and b3. �

Taking G1 to be a connected bipartite C-MH graph embedding the domino graph, we apply the above with G1 = G2 to
give us the following corollary for use in the final result of the section:

Corollary 3. Any three vertices in the same part of a connected bipartite C-MH graph embedding the domino graph have a
common neighbour.

Now, we may complete the proof of the connected C-MH characterization using the following result, which is an
adaptation of the proof of Lemma 21 in [11].

Proposition 7. Any connected bipartite C-MH graph embedding the domino graph is C-HH.
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Proof. Let G be a connected bipartite C-MH graph embedding the domino graph, with parts X and Y . Since G embeds the
domino graph, a glance at the list of connected C-HH graphs shows that G is C-HH if and only if each part of G has a common
neighbour orG ∼= L(K2,n) for some n ≥ 4. Using Lemma1,we deduce thatGwill be C-HH if and only if every k-subset of a part
has a common neighbour for every k ≤ ∆(G). So, we suppose that this condition does not hold and derive a contradiction.
Choose k to be the smallest integer such that some k-subset of a part does not have a common neighbour. Without loss of
generality, suppose that {x1, . . . , xk} is a k-subset of X without a common neighbour. By Corollary 3, we know that k ≥ 4.

By minimality of k, every (k − 1)-subset of a part has a common neighbour, so we can find vertices y1, . . . , yk in Y such
that yi ∼ {x1, . . . , xk} \ {xi} for each i. Furthermore, the vertices y1, . . . , yk must be distinct because the vertices x1, . . . , xk
do not have a common neighbour. Thus, [x1, . . . , xk, y1, . . . , yk] ∼= L(K2,k). Since no vertex in this induced subgraph has
degree ∆(G), this subgraph is proper. Therefore, without loss of generality, since G is connected, there must be a vertex
x′

∈ X \ {x1, . . . , xk} such that x′
∼ yk. If x′ is adjacent to at least one of y1, . . . , yk−1, we consider the monomorphism

that fixes x1, . . . , xk−1, y1, . . . , yk−1 and sends x′ to xk. Since k ≥ 4, the domain is connected. On the other hand, if x′ is not
adjacent to any of y1, . . . , yk−1, we certainly know that xk−1, xk, and x′ have a common neighbour y′ because every 3-subset
of a part has a common neighbour. Note that y′ cannot be any of y1, . . . , yk. In this case, by defining the map as above, but
also fixing y′, the map is again a monomorphism on a connected domain. In either case, the k-subset {x1, . . . , xk−1, x′

} with
common neighbour yk is mapped to the k-subset {x1, . . . , xk}with no common neighbour. It follows that G cannot be C-MH,
a contradiction. �

We conclude that a B-graph embedding the domino graph cannot possibly exist. Therefore, in conjunction with Proposi-
tion 6, we know that the only possible B-graphs are bridge graphs Bn for some n ≥ 3, completing the proof of the connected
C-MH characterization.

4. The general case

4.1. Overview and nonbipartite case

We now turn our attention to the general case. By Proposition 2, we only need to determine which pairs of connected
C-MH graphs are C-MH-symmetric. Since C-HH-symmetric graphs are also C-MH-symmetric, we will be able to employ
results and arguments from Lockett’s C-HH characterization in [11] throughout this section.

First, we treat the trivial case. Evidently, K1 is C-MH-symmetric to itself and has core K1, and in Section 2, we observed
that no other connected graph has core K1. Hence, K1 is C-MH-symmetric to a connected graph G if and only if G ∼= K1. For
the rest of this section, we assume that all components are nontrivial.

In Section 2, we observed that two graphs with different cores cannot be C-MH-symmetric. In particular, if some com-
ponent in a C-MH graph is bipartite, then all components are bipartite, and if some component is nonbipartite, then all
components are nonbipartite.

We first consider the case where all components are nonbipartite. On the list of connected C-MH graphs, the only non-
bipartite graphs are odd cycles and Kn-treelike graphs, where n ≥ 3. In Section 2, we noted that an odd cycle is its own core,
and it is not hard to see that the core of any Kn-treelike graph is Kn.

We start by handling the case where some component is a Kn-treelike graph, for n ≥ 3. Lockett was able to establish the
following in her work with C-HH graphs:

Lemma 8 (Lockett [11]). For fixed n, any two Kn-treelike graphs are C-HH-symmetric.

It should be noted that Lockett proves the result explicitly only for n ≥ 3. However, the only K1-treelike graph is K1, which
is clearly C-HH-symmetric to itself. Additionally, K2-treelike graphs are trees, which are domino-free graphs such that all
induced cycles are squares. Lockett proves that any two nontrivial connected graphs of the latter kind are C-HH-symmetric,
so the result above is indeed contained in Lockett’s work.

Therefore, for a fixed n, any two Kn-treelike graphs are also C-MH-symmetric. Additionally, for fixed n ≥ 3, the only con-
nected C-MHgraphs that are C-MH-symmetric to Kn-treelike graphs are other Kn-treelike graphs. This is immediate from the
observation that the only connected C-MH graphs with core Kn for n ≥ 3 are Kn-treelike graphs, as one can see by checking
the list. Hence, we get the following:

Corollary 4. For a fixed n ≥ 3, if G1 is a Kn-treelike graph and G2 is a connected C-MH graph, then G1 is C-MH-symmetric to G2
if and only if G2 is Kn-treelike.

We can also easily handle the odd cycles. First, we note that C3 is a K3-treelike graph, which we have already discussed.
Hence, we now consider cycles C2n+1 where n ≥ 2.

Lemma 9. If G is a connected C-MH graph, then for each n ≥ 2, C2n+1 is C-MH-symmetric to G if and only if G ∼= C2n+1.

Proof. Let n ≥ 2 be given. Since C2n+1 is C-MH, it is clearly C-MH-symmetric to itself. On the list of connected C-MH graphs,
the only graph with a core of C2n+1 is C2n+1, so amongst the connected C-MH graphs, C2n+1 is only C-MH-symmetric to
C2n+1. �
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Wehave nowdetermined all C-MH-symmetries between nonbipartite connected C-MHgraphs. Next, we discuss the plan
for themore interesting bipartite case. Looking at the list, any connected bipartite C-MH graphmust be one of the following:

(a) A domino-free graph such that all induced cycles are squares.
(b) A bipartite graph such that each part has a common neighbour.
(c) A bipartite complement of a perfect matching L(K2,n) (n ≥ 3).
(d) A bridge graph Bn.
(e) An even cycle C2n.

As indicated in the list, we will subsequently refer to the first two types of graphs on the list as type (a) and type (b)
graphs, respectively. We will include K2-treelike graphs as type (a) graphs in the list above.

The task of determining which graphs G with bipartite components are C-MH divides naturally into three cases, which
cover all possibilities:

Case1: Some component of G embeds the domino graph.
Case2: Each component of G is domino-free and some component embeds C6.
Case3: Each component of G is domino-free and C6-free.

We treat each case in turn.

4.2. Bipartite case 1: Domino embeds

To begin, wemust recall Lemma 7, fromwhichwemay conclude thatwhenever a C-MH graphwith bipartite components
has a component embedding the domino graph, as in the current case, any three vertices in each part of each component
have a common neighbour.

By looking at the list of connected bipartite C-MH graphs given above, the only graphs where any three vertices in each
part have a common neighbour are graphs of type (b), graphs L(K2,n) for n ≥ 4, and some graphs of type (a). However, the
next result implies that every nontrivial graph of type (a)where every three vertices in eachpart have a commonneighbour is
also of type (b), so we need not discuss type (a) graphs separately. That is, each component is either of type (b) or isomorphic
to L(K2,n) for some n ≥ 4.

Lemma 10. A nontrivial graph of type (a) where every two vertices in each part have a common neighbour is also of type (b).

Proof. Weprove the contrapositive. LetG be a nontrivial graph of type (a) that is not of type (b). Since every graph of type (a)
is connected and does not embed C6, we conclude G � L(K2,n) for any n ≥ 1. Therefore, Lemma 1 tells us that some k-subset
of a part of G does not have a common neighbour, for some k ≤ ∆(G). Hence, wemay choose the least such integer k. Since G
is nontrivial, k ≠ 1, and we claim that k = 2. If not, let {x1, x2, . . . , xk} be a k-subset of a part without a common neighbour,
where k ≥ 3. Now, each (k− 1)-subset of a part has a common neighbour, so there are distinct vertices y1, . . . , yk such that
yi is a common neighbour of {x1, . . . , xk} \ {xi} for 1 ≤ i ≤ k. As such, [x1, . . . , xk, y1, . . . , yk] ∼= L(K2,k), which embeds a
6-cycle when k ≥ 3, contradicting the fact that all induced cycles in G are squares. It follows that k = 2, as desired, so there
are two vertices in a part of Gwithout a common neighbour. �

To complete this case,we only need to determinewhen graphs of type (b) and graphs L(K2,n) are C-MH-symmetric to each
other. The conditions under which two bipartite complements of perfect matchings are C-MH-symmetric was discussed in
Lemma 25 of [11]. While the argument was developed in the context of C-HH-symmetry, it applies equally well to C-MH-
symmetry.

Lemma 11 (Lockett [11]). For n1, n2 ≥ 3, the graphs L(K2,n1) and L(K2,n2) are C-MH-symmetric if and only if n1 = n2.

Now, we determine which pairs of type (b) graphs are C-MH-symmetric. As it turns out, the next lemma implies that any
two type (b) graphs are C-MH-symmetric, while establishing a stronger result that will be useful later.

Lemma 12. Every connected bipartite graph is C-MH-morphic to any graph of type (b).

Proof. Let G1 be a connected bipartite graph, G2 be a graph of type (b), and φ be amonomorphism from a connected induced
subgraph of G1 into G2. Denote the parts of the bipartition of G1 by X1 and Y1, and the parts of G2 by X2 and Y2. By assumption,
there is a vertex x ∈ X2 serving as a common neighbour for the set Y2 and a vertex y ∈ Y2 acting as a common neighbour for
the set X2. Now, without loss of generality, we may suppose that φ maps a vertex of X1 to a vertex of X2.

Since any homomorphism between bipartite graphs must preserve the bipartition, we may extend φ to every vertex in
G1 by mapping every vertex in X1 for which φ is not yet defined to x and every vertex in Y1 for which φ is not yet defined to
y. Since x and y are each adjacent to every vertex in the other part of the bipartition, all adjacencies are preserved. �

Every type (b) graph is in particular connected and bipartite, so each type (b) graph is C-MH-morphic to every type (b)
graph. It follows that any two graphs of type (b) are C-MH-symmetric.
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Now, we must ask when a type (b) graph and a graph L(K2,n) are C-MH-symmetric. This question has been completely
answered by Lockett in her work on C-HH graphs. We will reproduce some of the arguments here for the purpose of clarity.
We begin with the following result, which combines portions of Lemmas 26 and 27 in [11].

Lemma 13 (Lockett [11]). Let G1 be a graph of type (b) and G2 ∼= L(K2,n), where n ≥ 3. If ∆(G1) ≤ n − 1, then G1 is C-HH-
morphic to G2. If ∆(G1) ≥ n and G1 is PCM(n)-free, then G1 is C-HH-symmetric to G2.

Using this result, we can complete our investigation of possible C-MH-symmetries in the case where the domino graph
embeds:

Lemma 14. If G1 is a graph of type (b) and G2 ∼= L(K2,n), where n ≥ 3, then G1 and G2 are C-MH-symmetric if and only if G1 is
PCM(n)-free.

Proof. First, suppose that G1 is PCM(n)-free. If ∆(G1) ≥ n, then by Lemma 13, G1 and G2 are C-HH-symmetric and hence
C-MH-symmetric. If∆(G1) ≤ n − 1, then by Lemma 13, G1 is C-HH-morphic to G2 and therefore C-MH-morphic to G2. We
already know that G2 must be C-MH-morphic to G1 by Lemma 12, so in fact G1 and G2 are C-MH-symmetric.

Conversely, suppose that G1 embeds a PCM(n) graph H . Let the parts of G2 be X and Y , where X = {x1, . . . , xn} and
Y = {y1, . . . , yn}. Also, let the parts of H beW and Z , whereW = {w1, . . . , wm} and Z = {z1, . . . , zn} for somem such that
2 ≤ m ≤ n, and letwi ≁ zi for 1 ≤ i ≤ m. Note that the vertices in Z have a common neighbour because each part of G1 has
a common neighbour. Thus, the monomorphism sendingwi to xi for 1 ≤ i ≤ m and zj to yj for 1 ≤ j ≤ n cannot be extended
to a homomorphism from G1 into G2, since the set Z with a common neighbour has been mapped onto the set Y without a
common neighbour. Therefore, G1 and G2 are not C-MH-symmetric. �

4.3. Bipartite case 2: Domino-free and C6 embeds

We now consider the case where C6 embeds in some component and the domino graph does not embed in any
component. Because each component is domino-free, none of the components are isomorphic to L(K2,n) for n ≥ 4.

Since C6 embeds in some component, Lemma 5 tells us that any two vertices in a part of each component have a common
neighbour. By looking at the list of connected bipartite C-MH graphs, the only such graphs not embedding the domino graph
where any two vertices in a part have a common neighbour are certain graphs of type (b) and of type (a), together with all
bridge graphs, including C6 ∼= L(K2,3) ∼= B2. However, Lemma 10 tells us that every nontrivial graph of type (a) where every
two vertices in a part have a common neighbour is also of type (b), so we do not need to handle them separately.

In other words, in the current case, each component must be either a type (b) graph or a bridge graph. Hence, we only
need to determine when two graphs from these families are C-MH-symmetric. By Lemma 12, we already know that any two
graphs of type (b) are C-MH-symmetric, and Proposition 3 establishes that for n1, n2 ≥ 2, any two bridge graphs Bn1 and Bn2
are C-MH-symmetric.

Now, we investigate the conditions under which a graph Bn(n ≥ 2) and a graph of type (b) are C-MH-symmetric.

Lemma 15. If G1 is a graph of type (b) and G2 ∼= Bn for some n ≥ 2, then G1 and G2 are C-MH-symmetric if and only if G1 is
P5-free.

Proof. By Lemma 12, we know that G2 will always be C-MH-morphic to G1, so what we must show is that G1 is C-MH-
morphic to G2 if and only if G1 does not embed P5. First, suppose that G1 embeds P5, with vertices v1, . . . , v5. Labelling the
vertices of G2 as in Proposition 3, the map v1 → b12, v2 → b11, v3 → a1, v4 → b21, v5 → b22 is a monomorphism from a
connected induced subgraph of G1 into G2. However, v1, v3, and v5 have a common neighbour, since they all belong to the
same part ofG1, while b12, b22, and a1 do not have a common neighbour, so themap cannot be extended to a homomorphism
from G1 into G2.

Conversely, suppose that G1 does not embed P5 and let φ be a monomorphism from a connected induced subgraph of G1
into G2. First, suppose that the domain of φ is an induced path. Of course, the path contains at most four vertices. The image
of each such induced path must be an induced path in G2, since the only induced cycles in G2 are 6-cycles. However, since
the path is of length at most three, this means the range of φ is contained in a bipartite induced subgraph of G2 where each
part has a common neighbour. Therefore, by Lemma 12, themap extends to a homomorphism into this subgraph, and hence
into G2.

Let the parts of G1 be X and Y . If the domain is not an induced path, then without loss of generality, it must include a
vertex x1 ∈ X together with neighbours y1, y2, . . . , yk in Y , where k ≥ 3, because the domain cannot contain any cycles,
which can be seen as follows. An induced even cycle with more than 4 vertices in the domain is impossible, since G1 is
P5-free. Moreover, a domain containing a 4-cycle is not possible because a 4-cyclemaps to a 4-cycle under amonomorphism
between bipartite graphs, and G2 embeds no such cycle. So, if the domain is neither a cycle nor an induced path, it must
contain a vertex with at least three neighbours.

Now, without loss of generality, φ(x1) = a1 because at least three neighbours of x1 are in the domain, and φ(yi) = bi1
for i ∈ {1, . . . , k}. No more than one additional neighbour of any of y1, . . . , yk can be in the domain, because the vertices
bi1 each have only one neighbour aside from a1. Also, no more than one of y1, . . . , yk has another neighbour in the domain,
for otherwise the domain would embed P5 or a 4-cycle. The former possibility is forbidden by assumption, and the latter is
impossible because G2 contains no 4-cycle.
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Therefore, if the domain contains another neighbour of any of y1, y2, . . . , yk, we may suppose without loss of generality
that this neighbour x2 is adjacent to y1 in the domain, and maps to b12. Additionally, none of y1, . . . , yk have any other
neighbours in the domain. In particular, x2 is not adjacent to any of y2, . . . , yk. It follows that no neighbour of x2 except y1
can belong to the domain, because the domainmust be P5-free. Hence, regardless ofwhether such a vertex x2 is in the domain
or not, the range is a bipartite graph where each part has a common neighbour, with the common neighbours respectively
being a1 and b11, and therefore the map extends to a homomorphism that is onto the range by Lemma 12. �

The next result simplifies the conditions of Lemma 15.

Lemma 16. A graph of type (b) is of type (a) if and only if it is P5-free.

Proof. Let G be a graph of type (b). If G is not of type (a), then it embeds either the domino graph or an even cycle with more
than four vertices, both of which embed P5. Conversely, if G embeds P5, then let v1v2v3v4v5 denote a copy of P5 in G. Since G
is of type (b), v1, v3, and v5 must have a common neighbour v′, distinct from v2 and v4. It follows that [v1, v2, v3, v4, v5, v

′
]

is isomorphic to the domino graph, so G is not a graph of type (a). �

Putting the last two results together, we get the following corollary, which gives us the condition used in the final
classification result:

Corollary 5. If G1 is a graph of type (b) and G2 ∼= Bn for some n ≥ 2, then G1 and G2 are C-MH-symmetric if and only if G1 is
also of type (a).

To conclude, we observewhat the above tells us about B1. The graph B1 is of type (a) and type (b), so it is C-MH-symmetric
to Bn for n ≥ 2. Additionally, since any two graphs of type (b) are C-MH-symmetric, B1 is C-MH-symmetric to any graph that
is both type (a) and type (b), including itself. Together with Proposition 3, we can now conclude that any two bridge graphs
are C-MH-symmetric. Also, we may conclude that every bridge graph is C-MH-symmetric to every graph that is both type
(a) and type (b).

4.4. Bipartite case 3: Domino-free and C6-free

Lastly, we handle the case where every component of a given bipartite C-MH graph is C6-free and domino-free.We know
from Corollary 1 that for n ≥ 4, a connected bipartite C-MH graph properly containing an induced 2n-cycle will embed
either C6 or the domino graph. So, we see that the only connected bipartite C-MH graphs neither embedding C6 nor the
domino graph are graphs of type (a) and cycles C2n, n ≥ 4. Yet again, we need to determine which pairs of these graphs
are C-MH-symmetric. The next two results consider each family by itself. Though we focus only on even cycles with at least
eight vertices, the result below also applies to 6-cycles.

Lemma 17. For n1, n2 ≥ 3, two even cycles C2n1 and C2n2 are C-MH-symmetric if and only if n1 = n2.

Proof. Since even cycles are C-MH, two even cycles will obviously be C-MH-symmetric when they have the same size.
Conversely, suppose without loss of generality that n1 < n2. Let C2n1 = a1 · · · a2n1a1 and C2n2 = b1 · · · b2n2b1. The
monomorphism that sends ai to bi for 1 ≤ i ≤ 2n1 − 1 is defined on a connected domain, but it cannot be extended to
a homomorphism of the two graphs. While a2n1 is a common neighbour of a2n1−1 and a1, there is no common neighbour of
b1 and b2n1−1, so there is no way to define a homomorphic extension for the vertex a2n1 . �

The next result not only shows that any two nontrivial graphs of type (a) are C-MH-symmetric, but also proves a stronger
claim that will be useful when we consider type (a) graphs together with even cycles. The argument in the proof was used
in the context of C-HH graphs by Lockett in the proof of Lemma 15 in [11], and we now apply it to our discussion of C-MH-
symmetry.

Lemma 18. Any graph of type (a) is C-HH-morphic, and therefore C-MH-morphic, to every nontrivial connected graph.

Proof. Let G1 be a graph of type (a), G2 be an arbitrary nontrivial connected graph and let φ be a homomorphism from a
connected induced subgraph A ofG1 intoG2. SinceG1 is connected, if A is a proper induced subgraph,we can find a vertex v in
G1\Awith aneighbour inA.Wewill showhow todefine themapping forv such that the extension remains a homomorphism,
from which it will follow that we can repeat the argument until the domain is all of G1. Define Av as N(v) ∩ A. Since N(v) is
an independent set for any vertex v in a bipartite graph, Av is independent. If Av = {a}, then certainly φ(a) has a neighbour
v′ in G2, because G2 is connected and nontrivial. By defining φ(v) = v′, adjacencies are preserved.

We may therefore suppose that |Av| ≥ 2. First, we show that every pair of vertices in Av has a common neighbour in
A. Consider two vertices a1 and a2 in Av . Since A is connected, there is a shortest path P between a1 and a2 in A. Since P is
shortest possible, it must be an induced path. Suppose that P ∩ Av ≠ {a1, a2}, and consider the first two vertices a1 and a′

1
from Av in P . That is, all other vertices in the path from a1 to a′

1 belong to A\Av . It follows that the path from a1 to a′

1, together
with v, is an induced cycle and therefore a 4-cycle. Hence, the path from a1 to a′

1 is a1b1a
′

1 for some b1 ∈ A\Av . Similarly, if a′

2
is the next vertex from Av in P , then the path from a′

1 to a′

2 is a
′

1b2a
′

2 for some b2 ∈ A\Av . Consequently, [a1, b1, a′

1, b2, a
′

2, v]
is isomorphic to the domino graph, a contradiction. Hence P = a1b1a2, so b1 is a common neighbour of a1 and a2.
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Fig. 7. A graph of type (a) not meeting the conditions of Lemma 19.

Wewill now show that if 2 ≤ k < |Av| and every k-subset of Av has a common neighbour in A, then so does every (k+1)-
subset. Suppose to the contrary that some (k+1)-subset does not have a common neighbour in A. Certainly, each of the k+1
k-subsets of this (k+1)-subset have a commonneighbour, each ofwhich is necessarily distinct from the rest. Hence, this (k+
1)-subset and the k+1 commonneighbours of the k-subsets induce L(K2,k+1), which embeds C6 when k ≥ 2, a contradiction.

The conclusion we can derive is that Av has a common neighbour a ∈ A, and by setting φ(v) = φ(a), all adjacencies are
preserved, so φ can be extended for v and remain a homomorphism. �

Since every graph of type (a) is connected, the result above implies that any two nontrivial graphs of type (a) are C-MH-
symmetric. The above will also aid us in our final lemma, which specifies the exact circumstances in which a graph of type
(a) and a cycle C2n, n ≥ 4, are C-MH-symmetric. Again, the result applies equally well to 6-cycles, so we include them in
the result. Importantly, also note that the paths in the lemma do not necessarily refer to induced paths. Instead, they refer
to any sequence of distinct vertices, each adjacent to its predecessor and successor.

Lemma 19. For a fixed n ≥ 3, if G is a nontrivial type (a) graph, then G is C-MH-symmetric to C2n if and only if, for all
n + 1 < m < 2n, the endpoints of any path in G with m vertices are at a distance at most 2n − m + 1 apart.
Proof. All even cycles are nontrivial connected graphs, so by Lemma 18, G is always C-MH-morphic to C2n. What we must
show is that C2n is C-MH-morphic to G if and only if the condition on G holds.

Let n ≥ 3 be fixed and suppose that there is a path v1v2 · · · vm inGwhere d(v1, vm) > 2n−m+1 for some n+1 < m < 2n.
If a1, . . . , a2n are the vertices in C2n, then the monomorphism mapping ai to vi for 1 ≤ i ≤ m is defined on a connected
induced subgraph of C2n, yet cannot be extended to a homomorphism. It would be necessary for a2n to be mapped to a
neighbour of v1, but the closest neighbours of v1 to vm are at distance at least 2n − m + 1 from vm. Since the remaining
cycle vertices am+1, . . . , a2n must map to adjacent vertices and only 2n−m vertices remain to be mapped, the image of a2n
cannot be at a greater distance than 2n − m from vm, so the map cannot extend.

Conversely, assume that for all n+1 < m < 2n, the endpoints of every path in Gwithm vertices are at a distance at most
2n − m + 1 apart, and consider an arbitrary monomorphism from a connected induced subgraph of C2n onto a connected
induced subgraph of G. The image of such a monomorphism is a path with m vertices, where 1 ≤ m ≤ 2n. However, if the
path has 2n vertices, there is nothing to do, because the map is already defined on all of C2n, so we suppose m < 2n. Let
v1v2 · · · vm denote the image path, and without loss of generality, suppose that ai → vi for 1 ≤ i ≤ m.

Next, let k = d(v1, vm). If 1 ≤ m ≤ n+1, then k ≤ n = 2n−(n+1)+1 ≤ 2n−m+1. Otherwise, n+1 < m < 2n, so by
assumption, k ≤ 2n−m+ 1. Either way, there are 2n−m vertices not in the initial domain. If k ≥ 1, the closest neighbours
of v1 to vm are at distance k − 1 ≤ 2n − m from vm. Hence, we may map the next k − 1 of the vertices am+1, . . . , a2n to
successive vertices on a shortest path from vm back to v1, ending at some neighbour v′ of v1. Note that the extension up to
this point is a homomorphism. Since a homomorphism preserves the bipartition, a cycle vertex with even index has been
mapped to v′ at the end of this stage. If k = 0, then we must have m = 1, and the initial monomorphism is just the map
a1 → v1. In this case, we select an arbitrary neighbour v′ of v1 for the next step. Now, for all values of k, if we map all
remaining cycle vertices with even index to v′ and all remaining vertices with odd index to v1, we have extended the map
to a homomorphism. �

While the condition in the above lemma may be hard to verify in practice, we can at least extract a necessary condition
and a sufficient condition from the above that may be easier to check. It is certainly necessary that the distance between
any two vertices in G be at most n. Otherwise there is, in particular, a path with n + 2 vertices where the endpoints are
at distance n + 1 from each other, which prevents the graphs from being C-MH-symmetric. However, this condition is not
sufficient. A graph of type (a) failing to meet the conditions of the lemma for n = 5 is given in Fig. 7. The graph in the figure
has a path a1a2a3a4a5a6a7a8 with eight vertices for which d(a1, a8) = 5, larger than the allowable distance of 3, even though
the distance between any two vertices is at most 5.

On the other hand, to meet the condition of the lemma, it is sufficient that the longest path between any two vertices in
G consist of at most n + 1 vertices, for then there are no paths with m vertices for n + 1 < m < 2n at all, so the condition
on G vacuously holds.

4.5. Proof of the characterization

By way of summary, we will give a formal proof of our classification result.
Proof of General C-MH Characterization. We make use of Proposition 2, which tells us that a graph is C-MH if and only if
each of its components is C-MH and all components are pairwise C-MH-symmetric.
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Using this, we can easily verify that each graph on the list is C-MH. By the connected C-MH characterization, all compo-
nents of each graph in the list are C-MH. By Proposition 3, Corollary 5, Lemmas 8, 9, 11, 12, 14 and 17–19, and the accompa-
nying remarks, all components of the graphs on the list are pairwise C-MH-symmetric, so every graph on the list is C-MH.

Now, we prove the converse. If G is a C-MH graph and some component of G is isomorphic to K1, then all components
are, because the only connected graph homomorphically equivalent to K1 is K1 itself. In this case, every component of G is
K1-treelike, and we have a graph of type (i). We henceforth assume that all components of G are nontrivial. If some
component of G is a Kn-treelike graph for a given n ≥ 3, then by Corollary 4, all components of Gmust be Kn-treelike graphs,
and we have a graph of type (i). For fixed n ≥ 2, if some component of G is a cycle C2n+1, then by Lemma 9, all components
of G must be cycles C2n+1, and the graph is of type (ii). Recall that either every component of G is nonbipartite, or every
component of G is bipartite, since nonbipartite graphs are not homomorphically equivalent to bipartite graphs. We have
now discussed all possible nonbipartite components, so we may henceforth assume that all components of G are bipartite.

We consider three subcases: (1) some component of G embeds the domino graph, (2) no component of G embeds the
domino graph but some component embeds C6, and (3) all components of G are C6-free and domino-free.

If some component of G embeds the domino graph, then by Lemma 7, all components of Gmust satisfy the property that
any three vertices in a part have a common neighbour. Checking the list of connected C-MH graphs and using Lemma 10,
the only connected bipartite C-MH graphs with this property are graphs where each part has a common neighbour and
graphs L(K2,n) where n ≥ 4, so these are the only possible components. If one of the components is L(K2,n), then all other
components of G that are bipartite complements of perfect matchings are isomorphic to L(K2,n) by Lemma 11. Furthermore,
any components where each part has a common neighbour must be PCM(n)-free by Lemma 14. Hence, the graph is of type
(iv). If none of the components are bipartite complements of perfect matchings, then each part of every component has a
common neighbour, and the graph is of type (iii).

Next, we suppose that no component of G embeds the domino graph but some component embeds C6. All graphs L(K2,n)
embed the domino graph for n ≥ 4, so such a graph cannot be a component of G. Furthermore, by Lemma 5, each component
of G has the property that any two vertices in a part have a common neighbour. This rules out cycles C2n as possible compo-
nents for n ≥ 4. Using Lemma 10, a nontrivial domino-free graph where all induced cycles are squares with this property is
also a bipartite graph where each part has a common neighbour. Therefore, all components are bridge graphs Bn or bipartite
graphs where each part has a common neighbour. If one of the components is Bn for some n ≥ 2, all components that are
bipartite where each part has a common neighbour must also be domino-free graphs where all induced cycles are squares
by Corollary 5. Therefore, the graph is of type (v). If none of the components are graphs Bn for n ≥ 2, then all components
must be bipartite where each part has a common neighbour, and G is of type (iii).

Lastly, suppose that every component of G is C6-free and domino-free. By Corollary 1, the only bipartite C-MH graphs that
have this property are cycles C2n for n ≥ 4, and domino-free graphs where all induced cycles are squares. Hence, all compo-
nents are one of these two types. If some component is C2n for n ≥ 4, then all other components that are even cycles but not
squares are also copies of C2n by Lemma 17. Furthermore, all components that are domino-free andwhere all induced cycles
are squares must have the additional property that for each n + 1 < m < 2n, the endpoints of any path in that component
withm vertices are at a distance at most 2n−m+1 apart by Lemma 19. As such, we have a graph of type (vii). Otherwise, all
components are nontrivial domino-free graphs where the only induced cycles are squares, so the graph is of type (vi). �

5. Further work

While the results of this paper bring us closer to characterizing all the classes of homomorphism–homogeneous and
connected-homomorphism-homogeneous graphs, many of the classes await a full characterization, in both the finite and
countable cases. One possible avenue for research is to try and characterize the countable C-HH and C-MH graphs, with the
aid of the characterizations of the finite C-HH and C-MH graphs that have now been obtained.

Additionally, it is observed in [11] that IH and C-IH graphs still lack characterizations, even in the finite case. The first
step in characterizing these two classes of graphs is to find examples of IH and C-IH graphs that do not belong to any of the
other classes. For instance, we seek examples of C-IH graphs that are not C-MH, not IH, and not C-II. The expanded cycles
EC(n1, . . . , nk) from Definition 2 provide such examples. Before proving this, we note what the existing characterizations
tell us about certain expanded cycles:

• The graphs EC(n1) and EC(n1, n2) are bipartite graphs where each part has a common neighbour, and hence are C-HH
graphs by Theorem 1.

• As observed in Section 3, if k ≥ 2 and n1 = · · · = nk = 1, then EC(n1, . . . , nk) ∼= C2k, which is C-MH.

Therefore, in these special cases, EC(n1, . . . , nk) is C-IH. The next proposition will demonstrate that the rest of the family
is also C-IH. Furthermore, aside from the special cases above, the proposition shows that the graphs in the family are not
C-MH, not C-II, and not IH.

In the proof of the proposition, we will frequently employ a useful fact. Namely, whenever we have an isomorphism φ
from a connected bipartite induced subgraph H1 of EC(n1, . . . , nk), where each part of H1 has a common neighbour, onto
another subgraph H2 of EC(n1, . . . , nk), H2 is also a bipartite induced subgraph where each part has a common neighbour.
Since we showed in Lemma 12 that every connected bipartite graph is C-MH-morphic, and hence C-IH-morphic, to any
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bipartite graph where each part has a common neighbour, the isomorphism φ can be extended to a homomorphism from
EC(n1, . . . , nk) into H2.

Proposition 8. If k ≥ 3 and ni > 1 for some i ∈ {1, 2, . . . , k}, then EC (n1, . . . , nk) is C-IH, but not C-MH, not C-II, and not IH.
Proof. Without loss of generality, we assume n1 > 1 for the first part of this proof. As in Lemma 6, we let Yi = {yi1, . . . , yini}
for each i. To see that EC(n1, . . . , nk) is not C-II, we consider the isomorphism x1 → y11. Since n1 > 1, the vertex x1 has at
least three neighbours, but y11 has only two, so there is no way for all the neighbours of x1 to map to distinct neighbours
of y11. Hence, the map cannot be extended to an isomorphism defined on all of EC(n1, . . . , nk). The graph EC(n1, . . . , nk) is
not IH, because the isomorphism x1 → x1, x2 → y21 between induced subgraphs of EC(n1, . . . , nk) cannot be extended to
a homomorphism. The vertex y11 would have to map to a common neighbour of x1 and y21, but such a neighbour does not
exist because x1 and y21 belong to different parts of the bipartition.

Now, we show that EC(n1, . . . , nk) is not C-MH. First, suppose k ≥ 4. Again assuming that n1 > 1 without loss of
generality, we consider the monomorphism that fixes x1, x2, . . . , xk−1 and also fixes y11, y21, y31, . . . , y(k−1)1, but maps yk1
to y12. This map cannot extend to a homomorphism, because we need xk to map to a vertex adjacent to both y(k−1)1 and y12,
which does not exist when k ≥ 4.When k = 3, themap used in the proof of Lemma 6 shows that EC(n1, n2, n3) is not C-MH,
since y11, y21, and y31 do not have a common neighbour.

From this point forward, we will consider all possible domains for an isomorphism between connected induced sub-
graphs and show that each isomorphism can be extended to a homomorphism from the graph into itself. Let φ denote
an arbitrary isomorphism and D denote the initial connected domain of φ. All subscripts will be taken modulo k for the
remaining part of the proof.

First, suppose thatD contains elements either from atmost one cell Yi, in which caseD ∩X may have 0, 1, or 2 elements,
or from two cells Yi and Yi+1, in which case we also suppose |D ∩ X | = 1. It follows that D must, without loss of generality,
be one of the following: a single vertex, a vertex xi+1 togetherwith vertices from Yi, vertices xi and xi+1 togetherwith vertices
from Yi, or a vertex xi+1 together with vertices in Yi and Yi+1. All of the nontrivial domains in the list are bipartite where each
part has a common neighbour, and if D is a single vertex, it is contained in an edge, which is also bipartite where each part
has a common neighbour. The range must be isomorphic to D , and hence, in all of these cases, is contained in a bipartite
induced subgraph of EC(n1, . . . , nk)where each part has a common neighbour. Since EC(n1, . . . , nk)must be C-IH-morphic
to any such graph by Lemma 12, the map always extends to a homomorphism from EC(n1, . . . , nk) into itself.

For the remaining part of the proof, we may suppose there are at least two sets Yi and Yj with elements in the domain
and that |D ∩ X | > 1 holds. First, suppose that |D ∩ Yi| = 1 for all Yi with vertices in D . It follows that either the domain is
an induced path and is mapped to another induced path, or the domain is an induced 2k-cycle. In the former case, the path
has at least four vertices in it under the conditions imposed, so in both cases, the domain and range must each be part of an
induced 2k-cycle. All cycles are C-MI, and hence C-II, so the map extends to an isomorphism of the two cycles. The domain
and range of this isomorphism each involve every element of X and one element from each Yi. Without loss of generality,
the element of Yi in the domain is yi1. By extending the map so that φ(Yi) = {φ(yi1)} for 1 ≤ i ≤ k, the extension is a
homomorphism defined on the whole graph.

Finally, suppose that |D ∩ Yi| > 1 for some Yi, so that some member of X in the domain has at least three neighbours in
D and both cells of Y adjacent to this vertex have vertices in D . For this case, it will be convenient to consider φ as a map
from an induced subgraph of a copy G1 of EC(n1, . . . , nk) into an isomorphic copy G2 of EC(n1, . . . , nk), rather than a map
from EC(n1, . . . , nk) into itself. We do this so that we may label vertices in G2 independently of the labelling of G1. To make
the labelling of G1 and G2 unambiguous, we let the parts of G1 be X1 and Y 1 and the parts of G2 be X2 and Y 2, with the cells
of Y i labelled Y i

1, . . . , Y
i
k and vertices in the two graphs receiving similar superscripts.

Without loss of generality, suppose that x11 is a vertex in X1 with three neighbours in D , where both Y 1
1 and Y 1

k have ver-
tices inD . Note that x11 must bemapped to a vertex inX2, since at least three adjacenciesmust be preserved.We label the ver-
tices inG2 such thatφ(x11) = x21. An isomorphismpreserves the bipartition, so all elements ofX1

∩D mustmap to elements of
X2, and elements of Y 1

∩D mustmap to elements of Y 2. Since at least two elements ofX1 are in the domain, all elements from
a given cell Y 1

i in the domain map to the same cell of Y 2, distinct from the images of all other cells, because non-adjacencies
must be preserved, as well as adjacencies. Without loss of generality, we label the vertices in G2 such that φ(Y 1

1 ∩ D) ⊆ Y 2
1 .

It follows that all vertices of the form x1i in D map to x2i and vertices from Y 1
i in D map into Y 2

i . We extend the map to a
homomorphismby sending all vertices of the form x1i to x

2
i and sending all vertices in Y 1

\D belonging to a given cell Y 1
i to y2i1.

We have now discussed all possible connected domains, so the proof is complete. �

Only special families of IH and C-IH graphs, such as this one, are known at this point. Aside from the expanded cycles,
finite graphs that are C-IH, but not IH, not C-MH, and not C-II have yet to be found. Furthermore, apart from a family of
IH graphs called ‘‘generalized multiclaws’’ mentioned in [11], there are no known examples of finite graphs that are IH but
not II. If new examples are discovered, they could lead to characterizations of these two types of graphs, completing the
characterization of all the classes in the finite case.
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