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a b s t r a c t

In this paper we classify the reflexible and chiral regular oriented maps with p faces of va-
lency n, and then we compute the asymptotic behaviour of the reflexible to chiral ratio of
the regular oriented maps with p faces. The limit depends on p and for certain primes p
we show that the limit can be 1, greater than 1 and less than 1. In contrast, the reflexible
to chiral ratio of regular polyhedra (which are regular maps) with Suzuki automorphism
groups, computed by Hubard and Leemans (2014), has produced a nill asymptotic ratio.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A regular oriented map M is a triple (G; a, b) consisting of a 2-generated finite permutation group G with two
distinguished generators a and b satisfying (ab)2 = 1. The pair {|a|, |b|}, where |g| stands for the order of g , is the classical
type of M. If M = (G; a, b) is a regular orientedmap of type {m, n}, then its dual D(M) = (G; b−1, a−1) is a regular oriented
map of type {n,m}. An isomorphism (G; a, b) → (H; a′, b′) is a group isomorphism ψ : G −→ H that takes a to a′ and
b to b′. If a regular oriented map M = (G; a, b) is isomorphic to its mirror image M = (G; a−1, b−1), then M is reflexible,
otherwise M is chiral.

The work of Drmota and Nedela [10], albeit not addressing regularity, shows that the reflexible to chiral ratio function
A(n)
U(n) determined in [7], of oriented reflexible maps with n edges over oriented chiral maps with n edges, goes to zero as
n → ∞. Does this nill asymptotic question extend to any restricted reflexible to chiral ratio? A recent work of Hubard and
Leemans [13] on Suzuki groups Sz(q), for q an odd power of 2, shows thatO(g(q)) ∼ q.O(f (q)), that is, the reflexible to chiral
ratio f (q)

g(q) (computed up to isomorphism and duality) of regular polyhedra (maps corresponding to regular polytopes of rank
3) with automorphism group Sz(q), goes to zero as q → ∞.

Among other things, we compute in this paper a non-nil asymptotic chiral ratio by restricting the ratio to regular oriented
maps with prime number of faces. More specifically, we consider the ratio RCp(n) =

TpRM(n)
TpCM(n)

, where TpRM(n) is the number
of reflexible regular oriented maps with p faces up to pn darts and TpCM(n) (p > 3 and n ≥ p − 1) is the number of chiral
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regular oriented maps with p faces up to pn darts, and compute its limit when n → ∞. For some classes of primes p we
show that the limit can be 1, greater than 1 and less than 1. The main theorem (Theorem 10) states:

Theorem. For any odd prime p > 3, the function RCp(n) =
TpRM(n)
TpCM(n)

, n ≥ p − 1, has limit given by

lim
n→∞

RCp(n) =
p − 1
2 σp

,

where σp =
p−1

k=2


b|gcd( p−1
2 ,k)

b≥2, k
b odd

Φ(2b) . HereΦ is the Euler totient function.

Du, Kwak and Nedela in [11] classified, and enumerated for each order and degree, the orientable regular embeddings of
simple graphs of prime order and in [12] those of order a product of two primes. In other words, they classified the regular
oriented simple maps of prime order, and of order a product of two primes. We note that in this paper we deal with regular
maps, but not necessarily simple. Regular maps of type {m, q} are regular hypermaps of type (q, 2,m). Up to a duality, a
primer hypermap is a generalisation of a simple map (map with underlying simple graph). In [2] we have classified the
primer hypermaps with a prime number of hyperfaces and in [3] we have extended the classification to the regular oriented
hypermaps with a prime number of hyperfaces.

In this paper we derive a classification of the regular oriented maps with p (prime) faces by identifying which of the
regular oriented hypermapswith phyperfaces aremaps (the classification of the regular orientedmapswith a primenumber
of vertices is obtained by duality), get an enumeration formula for the regular maps with p faces with fixed valency, count
the number of reflexible and of chiral up to given valency and then determine the limit of the reflexible to chiral ratio.

This paper has 3 sections. The first is the actual introductionwhich includes two subsections, one giving a quick overview
of the theory of regular oriented hypermaps and the second summarising the classification of the regular hypermaps with
a prime number of hyperfaces by writing down the most important results of [3] that are used in the third section. For a
complementary reading on these subjectswe address the reader to [14,15,9,8,6,2]. In section twowederive a classification of
the regular orientedmapswith p (prime) faces by determining those hypermaps that aremaps. In section threewe compute
the asymptotic behaviour of the reflexible to chiral ratio RCp(n). We show that the limit of RCp(n) does exist for any prime
p and that this limit depends on p.

Functions in this paper are read from right to left.

1.1. Regular oriented maps

As mentioned before, a regular oriented map is a triple M = (G; a, b) consisting of a (permutation) group G, called the
monodromy group of M, and two generators a and b of G that act on G (the set of darts) by right multiplication such that
(ab)2 = 1. The faces, vertices and edges of M are, respectively, the left cosets g⟨a⟩, g⟨b⟩ and g⟨ab⟩. This triple describes an
embedding of a graph G in an oriented surface S (i.e., an orientable surface with a fixed orientation). Graphs in this paper
are multi-graphs, that is, they may have multiple edges, loops and free-edges. The darts of M are the half-edges1 of G. The
permutations a and b locally permute the darts counter clockwise (CCW) around faces and vertices respectively (actually
it is more common in the literature to see a and b as permutations of darts CCW around vertices and edges instead). The
type of M is the triple (k, 2, n), the classical notation being {n, k}, where the positive integers k, 2 and n are respectively the
vertex-, edge- and face- valencies. An extended version of the type is the M-sequence [k, 2, n; V , E, F; |G|] where (k, 2, n)
is the type, V , E and F are respectively the number of vertices, edges and faces, and |G| is the size of G (or the number of
darts of M). The Euler characteristic of the underlying surface S is the characteristic of M, and it is given by the formula
χ = V + E + F − |G|.

If M = (G; a, b) and M′
= (G′

; a′, b′) are two regular oriented maps, then M covers M′ if the assignment a → a′,
b → b′ can be extended to a (canonical) epimorphism of monodromy groups G → G′. The map M is isomorphic to M′,
M ∼= M′, if the canonical epimorphism G → G′ is an isomorphism. A map is reflexible if it is isomorphic to its mirror image
M = (G; a−1, b−1), otherwise it is chiral. The chirality group of M is the smallest normal subgroup X(M) of G such that
M/X(M) is reflexible. This group ranges from X(M) = 1 when M is reflexible, to X(M) = Mon(M) when M is totally
chiral [6,5]. The Chirality index of M is the size κ = κ(M) = |X(M)|.

Let∆denote the free productC2∗C2∗C2 generated by r0, r1 and r2, andΓ be the normal subgroupof index 2 in∆ generated
by a = r0r1 and b = r1r2, a free group of rank 2. Any regular oriented map M corresponds to a unique normal subgroup
M in Γ , called the fundamental map subgroup (or just map subgroup), such that M ∼= (Γ /M;Ma,Mb). In this context, the
chirality group of M is given by X(M) = MM/M , where M = Mr1 . If ⟨a, b: R(a, b)⟩ is a presentation of the monodromy
group G, where R(a, b) denotes a set of relators on a and b, then the chirality group of M is X(M) = ⟨R(a−1, b−1)⟩G, the
normal closure in G of the subgroup generated by R(a−1, b−1) [1].

1 Each edge, seen as a triple {u,mu,v, v} composed of two ‘‘black’’ vertices u and v (vertices of the maps) and a middle ‘‘white’’ vertex mu,v , gives rise to
two half-edges {u,mu,v} and {mu,v, v}.
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Relaxing the condition (ab)2 = 1 in the above definition, we end up with the definition of regular oriented hypermap.
Everything we said about maps applies equally to hypermaps. The type of a hypermap is now a triple (k,m, n) where m
is not necessarily equal to 2. M-sequences give rise to H-sequences which are 7-tuples [k,m, n; V , E, F; |G|] with m not
necessarily equal to 2.

A regular oriented hypermap H = (G; a, b) is (face-)canonical metacyclic if ⟨a⟩ is normal in G and factors G into a cyclic
group; this means that a and b are the canonical generators of the metacyclic group M(n, r, s, t) = ⟨a, b: an = 1, br =

as, bab−1
= at⟩ where the parameters n, r, s, t satisfy the metacyclic conditions (t − 1)s = 0 mod n, t r = 1 mod n. Simi-

larly, we say that (G; a, b) is vertex-canonical if ⟨b⟩ is normal in G and G/⟨b⟩ is a cyclic quotient. In this case G = ⟨a, b: bn =

1, am = bs, aba−1
= bt⟩ where (t − 1)s = 0 mod n and tm = 1 mod n. Both face- and vertex- canonical metacyclic hyper-

maps have cyclic chirality groups with chirality index n
gcd(n, t2−1)

; while the chirality group of a face-canonical hypermap is

the cyclic group generated by at
2
−1, the chirality group of a vertex-canonical hypermap is generated by bt

2
−1 [8]. Therefore

a (face- or vertex-) canonical metacyclic hypermap is chiral if and only if t2 ≠ 1 mod n.
The regular oriented hypermaps with 1 and 2 hyperfaces are all reflexible and the chiral hypermaps with 3 and 4

hyperfaces are all canonical metacyclic; in the particular case of 3 and 4 hyperfaces, r = F (F is the number of hyperfaces)
and the parameters satisfy the additional conditions n ≥ 13 − 2F and tF−2

≠ 1 mod n. There are no chiral maps up to 4
faces [8] and with 5 faces all chiral maps have chirality index 5 [4].

1.2. Regular hypermaps with prime number of hyperfaces

In this section we summarise the main results of [3] that are relevant to this paper. The classification of regular oriented
hypermaps with p prime hyperfaces is given in the following theorem, where

M(n, p, u, t) = ⟨a, b: an = 1, bp = au, b−1ab = at⟩

is the metacyclic group with parameters n, p, u, t , and

Gp,ℓ,t
n,u,v = ⟨a, b: an = 1, bp = au, [aℓ, b] = 1, bab−t

= av⟩.

Proposition 1 ([3, Theor. 6]). Let p be a prime number. If H = (G; a, b) is a regular oriented hypermap with p hyperfaces, each
of valency n, then H is isomorphic to one of the following hypermaps:

(1) CMn,p,u,t = (M(n, p, u, t); a, b), for some , u, t ∈ {0, 1, . . . , n − 1} such that

(t − 1)u = 0 mod n and tp = 1 mod n;

(2) H
p,ℓ,t,k
n,u,v = (Gp,ℓ,t

n,u,v; a, bak) (p odd prime), for some ℓ ∈ {2, . . . , n},
u, v ∈ {0, . . . , n − 1}, k ∈ {0, . . . , ℓ− 1} and t ∈ {2, . . . , p − 1} such that
(H1) gcd(p − 1, n) = 0 mod ℓ,
(H2) tℓ = 1 mod p and t i ≠ 1 mod p for i ∈ {1, 2, . . . , ℓ− 1}

(that is, t has order ℓ in Z∗
p = Zp \ {0}),

(H3) u = 0 mod ℓ, v = 1 mod ℓ and
(H4) (t − 1)u + p(v − 1) = 0 mod n.

Moreover, all these hypermaps H
p,ℓ,t,k
n,u,v for ℓ, t , k, n, u, v satisfying the above conditions, have p hyperfaces of valency n, and

different parameters (ℓ, t, k, u, v) correspond to non-isomorphic hypermaps with p hyperfaces of valency n.

Corollary 2 ([3, Cor. 7]). Gp,ℓ,t
n,u,v is a metacyclic group isomorphic to Gp,ℓ,t

n,0,1 = M(p, n, 0, t) = ⟨β, α: βp
= 1, αn

= 1, α−1βα

= β t
⟩ under the isomorphism ψ : a → α, b → βαθ , where θ = c(1 − v)+ du, for some c, d satisfying c(t − 1)+ dp = 1 =

gcd(t − 1, p). Moreover, Hp,ℓ,t,k
n,u,v ∼= Rθ+k(H

p,ℓ,t
n ), where H

p,ℓ,t
n is the canonical metacyclic hypermap (Gp,ℓ,t

n,0,1;α, β).

The following propositions give the chirality groups and the chirality index of these hypermaps.

Proposition 3 ([3, Theor. 9]). The chirality groups of CMn,p,u,t andH
p,ℓ,t,k
n,u,v are the cyclic groups ⟨at

2
−1

⟩ and ⟨bt
2
−1

⟩ respectively.
The chirality index of CMn,p,u,t is n

(n,t2−1)
while the chirality index of H

p,ℓ,t,k
n,u,v is

p
gcd(p, t2 − 1)

=


1, t = −1 mod p
p, t ∈ {2, . . . , p − 2}.

2. Regular maps with prime number of faces

In this section we identify the regular oriented hypermaps H = (G; a, b) with prime number of hyperfaces that are
maps, and enumerate them for fixed prime p and valency n. For it we need to find those hypermaps that satisfy |ab| = 2.
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The primer map of a map

Let M = (G; a, b) be a regular oriented map. The monodromy elements a and b acting on the left induce automorphisms
φa and φb. The primer map of M is the map P (M) = (P; A, B), where P = ⟨A, B⟩ and A = πa

−1, B = πb
−1, where πa and πb

are the permutations induced by the action of the automorphismφa andφb on the faces ofM. Being covered byM the primer
map P (M) is of course a map, though it may be degenerated, that is AB = 1; and this happens if and only if A = B = 1, that
is, if and only if the map M has one face. So if M is a regular oriented map with a prime number of faces, then its primer
mapP = P (M) is necessarily non-degenerated and has the same number of faces. According to the Classification Theorem
16 and Corollary 17 of [2], P is a primer map with a prime number p of faces (of valency ℓ) if and only if (1) p = 2 and P

is the spherical map P 2,1,1
0 (k = 0, ℓ = 1, t = 1), or (2) p > 2 and P = P

p,ℓ,t
k = (P; y, yxk), with k =

ℓ
2 − 1 and ℓ even,

where P = M(p, ℓ, 0, t) = ⟨x, y: xp = 1, yℓ = 1, xy = xt⟩ and the parameter t ∈ {1, 2, . . . , p − 1} satisfies |t| = ℓ in the
multiplicative group Z∗

p = Zp \ {0}. According to Corollary 17 of [2], the H-sequence (H-seq) of P when p > 2 is one of the
following:

(II) If k = 0 (⇒ ℓ = 2), then H-seq(P ) = [p, 2, 2 ; 2, p, p ; 2p];
(IV) If 0 < k < ℓ− 1 (⇒ ℓ ≥ 4), then

H-seq(P ) =


[ℓ, 2, ℓ ; p, p ℓ2 , p ; ℓp], if ℓ = 0 mod 4,
[
ℓ
2 , 2, ℓ ; 2p, p ℓ2 , p ; ℓp], if ℓ = 2 mod 4.

As before, let P
p
II = {P

p,2,t
0 }t and P

p
IV = {P

p,ℓ,t
k }ℓ,t , where 0 < k < ℓ − 1, be the families of p-primer maps with

H-sequences (II) and (IV) respectively.

The classification

Theorem 4. If M = (G; a, b) is a regular oriented map with p (prime) faces, of valency n, then M is isomorphic to one of the
following maps:

(1) CMn,t = (M(n, 2,−(t + 1), t); a, b),
a map with p = 2 faces, for some t ∈ {1, . . . , n − 1} such that t2 = 1 mod n. These maps are all reflexible.

(2i) M
p,2,p−1,0
n,u,n−u−1 = (Gp,2,p−1

n,u,n−u−1; a, b),
(p odd prime, and n = 2 mod 4), where u = p n−2

2 mod n.
M

p,2,p−1,0
n,u,n−u−1 is reflexible and its primer map P ∈ P

p
II .

(2ii) M
p,ℓ,t,k
n,u,v = (Gp,ℓ,t

n,u,v; a, bak),
(p odd prime> 3, and n even), k =

ℓ
2 −1 > 0, for some even ℓ ∈ {4, . . . , n}, u, v ∈ {0, . . . , n−1}, and t ∈ {2, . . . , p−1},

such that
(M1) gcd(p − 1, n) = 0 mod ℓ and n

ℓ
= 1 mod 2,

(M2) tℓ = 1 mod p and t i ≠ 1 mod p for i ∈ {1, 2, . . . , ℓ− 1},
(that is, t has order ℓ in Z∗

p = Z \ {0}),
(M3) u = 0 mod ℓ, v = 1 mod ℓ and
(M4) (1 − t)u = p(v − 1) mod n.
M

p,ℓ,t,k
n,u,v is chiral, with chirality index p, and its primer map P ∈ P

p
IV .

Moreover, all these maps M
p,ℓ,t,k
n,u,v with ℓ, t , k, n, u, v satisfying the above conditions, have p hyperfaces of valency n, and

different parameters (ℓ, t, k, u, v) correspond to non-isomorphic maps with p faces of valency n.
Furthermore, denoting by NM(j)(p, n) the number of regular oriented maps with p faces of valency n in each item (j),

j = 1, 2i and 2ii, we have:

• NM(1)(p, n) =


0, if p > 2,
|U2(n)|, if p = 2,

where U2(n) is the subgroup of the units of Zn whose elements t satisfy t2 = 1 mod n, that is, U2(n) is the set of square roots
of unity modulo n. In this case, writing n = 2e0pe11 . . . p

ek
k , where ei ≥ 0 and the pi’s are distinct odd primes dividing n, then

NM(1)(2, n) = 2λ(e0)+k
=

2k, if e0 = 0, 1;
21+k, if e0 = 2;
22+k, if e0 > 2;

where λ(0) = λ(1) = 0, λ(2) = 1, λ(e) = 2, for e > 2.
• NM(2i)(p, n) =


0, if n ≠ 2 mod 4,
1, if n = 2 mod 4.
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• NM(2ii)(p, n) = 0, if n odd, and NM(2ii)(p, n) =


ℓ|gcd(p−1,n)

ℓ≥4, ℓ even
n
ℓ

odd

Φ(ℓ), if n even.

Proof. (1) If M = (M(n, 2, u, t); a, b) is canonical metacyclic map (case 1), since p ≥ 2, 2 = |ab| =
pn

gcd(n,tp−1+···+1+u)
implies that

n ≤
pn
2

= gcd(n, tp−1
+ · · · + 1 + u) ≤ n,

so p = 2. This implies that t+1+u = 0 mod n. Conversely, if p = 2 and t+1+u = 0 mod n, thenM = (M(n, 2, u, t); a, b)
is a map. Thus u is a function of t . By themetacyclic condition t2 = 1 mod n and Proposition 3,M has trivial chirality group,
so M is reflexible.

As u is determined by t ,

NM(1)(p, n) = 0, if p > 2, and NM(1)(2, n) = |U2(n)|.

Let τ(n) = |U2(n)|. By the Chinese Remainder Theorem this function is multiplicative: τ(nm) = τ(n)τ (m) for any positive
integers n, m such that gcd(n,m) = 1. Having in account that gcd(t − 1, t + 1) is 1 if t is even and 2 if t is odd, we have
τ(pe) = 2 if p is an odd prime, and τ(2e) = 1, if e = 1, τ(2e) = 2, if e = 2, and τ(2e) = 4, if e > 2. Combining and making
the convention τ(1) = 1 and writing n = 2e0pe11 . . . p

ek
k , where ei ≥ 0 and pi’s are the k distinct odd primes dividing n, then

we get the well known formula

NM(1)(2, n) = τ(n) = τ(2e0)τ (pe11 ) . . . τ (p
ek
k ) = 2λ(e0)2δ(e1)+···+δ(ek) = 2λ(e0)+k,

where λ(0) = λ(1) = 0, λ(2) = 1, λ(e) = 2, for e > 2, and δ(0) = 0 and δ(e) = 1, for e > 0.

(2) If M = M
p,ℓ,t,k
n,u,v = (Gp,ℓ,t

n,u,v; a, bak), as G = Gp,ℓ,t
n,u,v has order pn and p is odd, then |ab| = 2 implies n even. We now

distinguish two cases according as P ∈ P
p
II or P

p
IV .

(2i) P ∈ P
p
II . Then ℓ = 2 and k =

ℓ
2 − 1 = 0. Since t2 = 1 mod p and t ≠ 1 mod p, t = −1 mod p, so t = p − 1 and

P = G/⟨a2⟩ = Dp is a dihedral group of order 2p. Since bab−t
= av ⇔ bab1−p

= av ⇔ bab = avbp ⇔ bab = au+v ,

G = ⟨a, b: an = 1, bp = au, [a2, b] = 1, bab = au+v⟩

and M is a map if and only if (ab)2 = 1 ⇔ au+v+1
= 1 ⇔ u + v + 1 = 0 mod n. Note that u + v ∈ {0, 1, . . . , n − 1}.

If M is a map, then n = 2 mod 4; in fact, replacing t = p − 1 in Eq. (H4) of part (2) of Proposition 1 we get

(2 − p)u = p(v − 1) mod n.

Then
u + v + 1 = 0 mod n ⇔ u + v − 1 + 2 = 0 mod n

⇒ pu + p(v − 1)+ 2p = 0 mod n
⇔ pu + (2 − p)u + 2p = 0 mod n
⇒ u + p = 0 mod n

2 .

As u+p is odd, then n = 2 mod 4. Since t2 = 1 mod p, by Proposition 3,M has chirality index 1, that is,M is reflexible.
Let M

p,n
II be the family of regular maps M with p faces of valency n such that its primer P (M) ∈ P

p
II . Since n and p− 1

are both even, and t = −1 mod p, the conditions (H1) and (H2) are satisfied. Condition (H3) is equivalent to u even
and v odd. Now as u + v = −1 mod n and u + v < n, then u + v = n − 1 and this implies that v = n − 1 − u, which
is odd if u is even. Condition (H4) translates to

(t − 1)u + p(v − 1) = 0 mod n ⇔ (p − 2)u + p(v − 1) = 0 mod n
⇔ p(u + v)− p = 2u mod n
⇔ p(n − 1)− p = 2u mod n
⇔ u = p n−2

2 mod n (since n
2 is odd)

and this determines uniquely u ∈ {0, 1, . . . , n − 1}. Hence for each odd prime p and each n = 2 mod 4, there is a
unique regular map with p faces of valency n, that is,

NM(2i)(p, n) = |M
p,n
II | = 1.

(2ii) P ∈ P
p
IV . Then ℓ ≥ 4, ℓ is even and k =

ℓ
2 − 1 > 0. Now M = (G; a, bak), where G = Gp,ℓ,t

n,u,v = ⟨a, b: an = 1, bp =

au, [aℓ, b] = 1, bab−t
= av⟩, which is a group of order |G| = pn. Then M is a map if and only if |b ak+1

| = 2 ⇔

|b a
ℓ
2 | = 2. Since ℓ divides p− 1, we must have p > 3. Consider the isomorphismψ : a → α, b → βαθ , of Corollary 2,

where θ = c(1 − v) + du and c , d are integers satisfying c(t − 1) + dp = 1. This isomorphism maps G = Gp,ℓ,t
n,u,v to
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Gp,ℓ,t
n,0,1 = M(p, n, 0, t) = ⟨β, α: βp

= 1, αn
= 1, α−1βα = β t

⟩. The image by ψ of b a
ℓ
2 is β αθ+

ℓ
2 . So M is a map if

and only if

β αθ+
ℓ
2 β αθ+

ℓ
2 = 1 ⇔ β α2θ+ℓ α−θ− ℓ

2 β αθ+
ℓ
2 = 1

⇔ β α2θ+ℓ β tθ+
ℓ
2

= 1

⇔ α2θ+ℓ
= β−(tθ+

ℓ
2 +1)

∈ ⟨α⟩ ∩ ⟨β⟩ = 1
⇔ 2θ + ℓ = 0 mod n ∧ t

ℓ
2 + 1 = 0 mod p;

note that θ = 0 mod ℓ, so tθ = 1 mod p. Now since t has order ℓ in the cyclic group Z∗
p , t

ℓ
2 ≠ 1 mod p and so,

t
ℓ
2 + 1 = 0 mod p ⇔ (t

ℓ
2 − 1)(t

ℓ
2 + 1) = 0 mod p ⇔ tℓ − 1 = 0 mod p,

that is, the condition t
ℓ
2 + 1 = 0 mod p is redundant. Thus, M is a map if and only if

2θ + ℓ = 0 mod n. (1)

By manipulating the four equations θp = u, θ(1 − t) = v − 1, θ = c(1 − v) + du and c(t − 1) + dp = 1, Eq. (1) is
equivalent to the following pair of equations

2u + pℓ = 0 mod n
2(v − 1)+ ℓ(1 − t) = 0 mod n. (2)

In fact, multiplying (1) by p and using θp = uwe get the first equation of (2), and multiplying (1) by (1 − t) and using
θ(1 − t) = v − 1 we get the second equation of (2). Conversely, multiplying the first equation of (2) by d and the
second by c and subtracting we get:

2du + dpℓ − ( 2c(v − 1)+ cℓ(1 − t) ) = 0 mod n
⇔ 2( du + c(1 − v) )+ ℓ( dp + c(t − 1) ) = 0 mod n
⇔ 2θ + ℓ = 0 mod n.

Since t has order ℓ in Z∗
p and ℓ ≥ 4, t2 ≠ 1 mod p, and so, by Proposition 3, H is chiral with chirality index p.

Let M
p,n
IV be the set of regular maps M with p faces of valency n such that its primer P (M) ∈ P

p
IV . Let ϑ(u, v) be the

number of pairs (u, v) such that u, v ∈ {0, 1, . . . , n − 1}, u and v − 1 are multiples of ℓ (condition (M3)), and u, v
satisfy the system of two equations (2) and the condition (M4). Then

NM(2ii)(p, n) = |M
p,n
IV | =


ℓ|gcd(p−1,n)
ℓ≥4, ℓ even


t∈Gℓ


k

ϑ(u, v) =


ℓ|gcd(p−1,n)
ℓ≥4, ℓ even


t∈Gℓ

ϑ(u, v),

since k is uniquely determined. We recall that Gℓ is the set of elements of order ℓ in the cyclic group Zp
∗

= Cp−1.
Computing the solutions u that are multiples of ℓ of the first equation of (2). Let u = µℓ. Then

2u = −pℓ mod n ⇔ 2µ = −p mod n
ℓ
.

This has solutions if and only if gcd(2, n
ℓ
) = 1, that is, if and only if n

ℓ
is odd. The number of solutions that are multiples

of ℓ is then 1; the solution is u = µℓwhere µ = −p
1+ n

ℓ
2 mod n

ℓ
.

Analogously, the second equation of (2) also has only one solution v − 1 which is a multiple of ℓ. The solution is

v = 1 + γ ℓ, where γ = (t − 1)
1+ n

ℓ
2 mod n

ℓ
.

One easily sees that the solution pair (u, v), just found, also satisfies (M4). Hence,

NM(2ii)(p, n) =


ℓ|gcd(p−1,n)
ℓ≥4, ℓ even


t∈Gℓ

ϑ(u, v) =


ℓ|gcd(p−1,n)
ℓ≥4, ℓ even

n
ℓ

odd


t∈Gℓ

1 =


ℓ|gcd(p−1,n)
ℓ≥4, ℓ even

n
ℓ
odd

Φ(ℓ). �

Corollary 5. Regular oriented maps with 2 or 3 faces are reflexible.

Corollary 6. Denoting by NM(p, n) the number of regular oriented maps with p (prime) faces of valency n, then for odd prime p
we have:

NM(p, n) =

0, if n odd,
NM(2ii)(p, n), if n = 0 mod 4,
1 + NM(2ii)(p, n), if n = 2 mod 4.

This corollary says that for primes p > 2, there are no regular oriented maps with p faces of odd valency.
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Corollary 7. Regular oriented maps with an odd prime number p > 3 of faces of valency n ≠ 2 mod 4, are chiral with chirality
index p.

Theorem 11 of [3] gives the H-sequences of the regular oriented hypermaps with p (prime) hyperfaces. Now we adapt
the H-sequences for the regular oriented maps with p faces.

Theorem 8. Let M = (G; a, b) be a regular oriented map with p (prime) faces, of valency n. Then:

(1) If M isCMn,t , then p = 2, u = n−(t+1) and t ∈ {1, . . . , n−1} such that t2 = 1 mod n. In this caseM hasM-sequence:

M-seq(M) =


2n
(n, u)

, 2 , n ; (n, u) , n , 2 ; 2n

.

(2i) If M is M
p,2,p−1,0
n,u,n−u−1, then p is odd, k = 0, t = p − 1, u + v + 1 = 0 mod n and n = 2 mod 4 and u = p n−2

2 mod n. Then

M-seq(M) =


pn
(n, u)

, 2 , n ; (n, u) ,
pn
2
, p ; pn


,

where (n, u) = 2 if p - n
2 and (n, u) = 2p if p |

n
2 .

(2ii) If M is M
p,ℓ,t,k
n,u,v = (Gp,ℓ,t

n,u,v; a, bak), then

M-seq(M) =


n

(n, θ + k)
, 2, n; p(n, θ + k),

pn
2
, p; pn


,

where θ = c(1 − v)+ du and c, d are integers satisfying c(t − 1)+ dp = 1.

3. Asymptotic behaviour of the reflexible–chiral ratio

Let TpRM(n) and TpCM(n) be, respectively, the total number of reflexible and chiral regular oriented maps with p faces
up to pn darts:

TpRM(n) =

n
m=2

NM(2i)(p,m),

TpCM(n) =

n
m=4

NM(2ii)(p,m).

Notice that duals are not counted in either of the formulae, because the number of faces in duals is not p; but in the second
formula the two chiral enantiomers are counted. The function TpCM(n) is not zerowhen n ≥ p−1. Now let RCp(n) =

TpRM(n)
TpCM(n)

for p > 3 and n ≥ p − 1. For each prime p > 3 we wish to know what is the limit of RCp (if it exists) when n → ∞.

Theorem 9. For any odd prime p > 3, the function RCp(n) =
TpRM(n)
TpCM(n)

, n ≥ p − 1, has limit given by

lim
n→∞

RCp(n) =
p − 1
2 σp

,

where σp =
p−1

k=2 NM(2ii)(p, 2k) =
p−1

k=2


b|gcd( p−1
2 ,k)

b≥2, k
b odd

Φ(2b).

Proof. (1) Calculus of TpCM(n):
Let Ψp(m) denote the function NM(2ii)(p,m) for fixed odd prime p. Since Ψp(m) = 0 form < 4,

TpCM(n) =

n
m=1

Ψp(m).

The function Ψp(n) is periodic with period 2(p− 1). In fact, since gcd(p− 1, n+ k(p− 1)) = gcd(p− 1, n) for any positive
integer k, the function Ψp(n) is periodic and seems to have period p − 1, however the restriction n

ℓ
odd implies the period

to be 2(p − 1) instead.
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Dividing n by 2(p − 1), say n = 2k(p − 1)+ r , for some 0 ≤ r < 2(p − 1), then we can write

TpCM(n) = TpCM(2k(p − 1)+ r) = k
2(p−1)
m=1

Ψp(m)+ Rp = kσp + Rp,

where Rp =
r

m=1 Ψ (m) and σp =
2(p−1)

m=1 Ψp(m) =
p−1

k=2 Ψp(2k), since Ψp(m) = 0 form odd or m < 4.
(2) Calculus of TpRM(n).

Let r ′ be (n − 2) mod 4, that is, let n = 2 + 4k′
+ r ′ for some k′ and some r ′

∈ {0, 1, 2, 3}. Since NM(2i)(p,m) = 0 for
m ≠ 2 mod 4, and 1 otherwise, then

TpRM(2 + 4k′
+ r ′) =

2+4k′+r ′
m=2

NM(2i)(p,m) =

k′
k′′=0

NM(2i)(p, 2 + 4k′′) = k′
+ 1. (3)

But n = 2k(p − 1) + r = 2 + 2k(p − 1) + r − 2 = 2 + 4k p−1
2 + r − 2, with r < 2(p − 1). Dividing r − 2 by 4 we get

r − 2 = 4q + r ′ for some r ′ < 4 and q ≤ r − 2 < 2(p − 2). Then n = 2 + 4(k p−1
2 + q)+ r ′ and so,

TpRM(n) = k
p − 1
2

+ q + 1.

Therefore,

RCp(n) =
k p−1

2 + q + 1
kσp + Rp

and thus,

lim
n→∞

RCp(n) =
p − 1
2 σp

. �

The above formula proves the existence of the limit and shows that the limit is not null. However it does not show if the
limit is smaller, equal or greater than one. A prime number p is called safe prime if p−1

2 is also prime. Define p to be a safe
2-prime if q =

p−1
2 is a product of two distinct primes p1 and p2 (let p1 < p2). If p1 = 2 we say that p is an even safe 2-prime

and if p1 > 2 we say that p is an odd safe 2-prime.

Theorem 10. For safe primes p, the function RCp(n) =
TpRM(n)
TpCM(n)

, n ≥ p − 1, has limit

lim
n→∞

RCp(n) =
p − 1

2Φ(p − 1)
=

1, p = 5;
p − 1
p − 3

> 1, p > 5.

Proof. For safe primes p, p − 1 = 2q for some prime q. Since Ψp(2k) = 0 for k ≠ 0 mod q and Ψp(4q) = 0,

σp =

p−1
k=2

Ψp(2k) =

2
k′=1

Ψp(2k′q) = Ψp(2q) = Φ(2q) =


2, if q = 2;

q − 1 =
p − 3
2

, if q odd prime. �

The above theorem says that, for large enough n, the number of reflexible regular oriented maps with 5 faces of valency
n is about the same as the number of chiral regular oriented maps with 5 faces of valency n, but for safe primes p > 5, there
are slightly more reflexible maps with p faces than chiral maps with p faces. With p faces the number of reflexible maps is
not always greater than the number of chiral ones as we can see next.

Theorem 11. For safe 2-primes p, the function RCp(n) =
TpRM(n)
TpCM(n)

, n ≥ p − 1, has limit

lim
n→∞

(RCp(n)) =


p2

3p2 − 2
< 1, p = even safe 2-prime;
p1p2

3p1p2 − 2(p1 + p2)+ 1
< 1, p = odd safe 2-prime.

Thus for safe 2-primes p, if n is large enough, there are slightly more chiral regular oriented maps with p faces than reflexible
regular oriented maps with p faces.
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Proof. Let p be a safe 2-prime, and let q =
p−1
2 = p1p2, where p1 and p2 are distinct primes. Assume p1 < p2. The non-trivial

divisors of p1p2 are p1, p2 and p1p2. Since Ψp(2k) = 0 for any k not divisible either by p1, or by p2 and or by p1p2,

σp =

p−1
k=2

k=0 mod p1
k≠0 mod p2

Ψp(2k) +

p−1
k=2

k=0 mod p2
k≠0 mod p1

Ψp(2k) +

p−1
k=2

k=0 mod p1p2

Ψp(2k)

=

2p2−1
k′=1

k′≠p2

Ψp(2k′p1) +

2p1−1
k′=1

k′≠p1

Ψp(2k′p2) +

2
k′=1

Ψp(2k′p1p2).

(I) (II) (III)

Now gcd(p1p2, k′) = p1, b | p1 and b > 1 ⇒ b = p1, and
k′p1
b =odd ⇔ k′ odd. Then Ψp(2k′p1) = 0 for k′ even, and for k′

odd, Ψp(2k′p1) = Φ(2p1). Hence

(I) =

p2−1
k′′=0

k′′≠
p2−1

2

Ψp(2(2k′′
+ 1)p1) =

p2−1
k′′=0

k′′≠
p2−1

2

Φ(2p1) = (p2 − 1)Φ(2p1).

Analogously we have,

(II) =



p1−1
k′′=0

Ψp(2(2k′′
+ 1)p2) =

p1−1
k′′=0

Φ(2p2) = p1Φ(2p2), if p1 = 2;

p1−1
k′′=0

k′′≠
p1−1

2

Ψp(2(2k′′
+ 1)p2) =

p1−1
k′′=0

k′′≠
p1−1

2

Φ(2p2) = (p1 − 1)Φ(2p2), if p1 > 2.

For (III) we have gcd(p1p2, k′) = p1p2, b | p1p2 and b > 1 ⇒ b = p1 , p2, or p1p2;
k′p1p2

b = k′p2, k′p1, or k′ is odd ⇔ k′ odd. If
p1 = 2, then b ≠ p2. So k′

= 1 and

Ψp(2p1p2) =


Φ(2p1)+ Φ(2p1p2) = Φ(4)+ Φ(4p2), if p1 = 2;
Φ(2p1)+ Φ(2p2)+ Φ(2p1p2), if p1 > 2.

Thus, for p even safe 2-prime (p1 = 2) we have:

σp = (I) + (II) + (III)
= (p2 − 1)Φ(4)+ 2Φ(2p2)+ Φ(4)+ Φ(4p2)
= 6(p2 − 1)+ 2,

and for p odd safe 2g-prime (p1 > 2) we have:

σp = (p2 − 1)Φ(2p1)+ (p1 − 1)Φ(2p2)+ Φ(2p1)+ Φ(2p2)+ Φ(2p1p2)
= 3p1p2 − 2(p1 + p2)+ 1.

The limit now follows. �

We end the paper by leaving the following conjecture:

Conjecture 1. If p is not a safe prime, then limn→∞ RCp(n) < 1.
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