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1. Introduction

Let E and F be equivalence relations on sets X and Y , respectively. A homomorphism from E to F is a function φ : X → Y
such that x E x′ implies φ(x) F φ(x′) for all x, x′

∈ X . A homomorphism φ from E to F induces amap φ̃ : X/E → Y/F between
the quotients defined by φ̃([x]E) = [φ(x)]F . We obtain special kinds of homomorphisms by requiring φ or φ̃ to have certain
properties such as being one-to-one or onto. For instance, if φ̃ is one-to-one then φ is called a reduction. In this notewe study
the combinatorics of reductions between equivalence relations, and attempt to identify necessary and sufficient conditions
for the existence of reductions of various natural types. We will see that certain types admit simple combinatorial charac-
terizations while others do not. Our main results are a necessary and sufficient condition for the existence of an injective
reduction from E to F and a complete diagram of implications between the various types of reducibility that we consider.
While reductions between equivalence relations are often studied in the context of descriptive set theory, we work in the
purely combinatorial context without making any definability assumptions on equivalence relations or reductions.

Many of the combinatorial problems we consider may be viewed as special instances of the general matching problem
addressed in [1]. However, an application of the abstract framework of [1] to our context would be lengthier and more
difficult than the self-contained proofwe give in Theorem3.2. Thematching problemhas a long history, originatingwith [3];
other notable works include [2,6,5], and [4].

2. Reductions of equivalence relations

We now define the various types of homomorphisms that we will consider. Let E and F be equivalence relations on sets
X and Y , respectively, let φ : X → Y be a homomorphism from E to F , and let φ̃ be the inducedmap on classes. We consider
the following properties of the maps φ and φ̃:

(i) φ is one-to-one;
(ii) φ is onto;
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Fig. 1. Implications between types of reducibility.

(iii) φ̃ is one-to-one;
(iv) φ̃ is onto;
(v) ran(φ) is F-invariant; i.e., if y ∈ ran(φ) and y F y′, then y′

∈ ran(φ).

It is straightforward to check that the only implications holding between these properties are those following from the fact
that φ is onto if and only if φ̃ is onto and ran(φ) is F-invariant. It follows that there are sixteen distinct Boolean combinations
of these properties. Since we will always take φ to be a reduction (i.e., we assume (iii) holds), this reduces the number of
distinct combinations to eight. We now introduce terminology and notation for these eight types of reductions.

Definition 2.1. Let E, F , φ, and φ̃ be as above.
(1) φ is a reduction if (iii) holds;
(2) φ is an embedding if (i) and (iii) hold;
(3) φ is a surjective reduction if (ii)–(v) hold;
(4) φ is an isomorphism if (i)–(v) hold;
(5) φ is an invariant reduction if (iii) and (v) hold;
(6) φ is a full reduction if (iii) and (iv) hold;
(7) φ is an invariant embedding if (i), (iii), and (v) hold;
(8) φ is a full embedding if (i), (iii), and (iv) hold.

Definition 2.2. If E and F are equivalence relations on sets X and Y , respectively, we say that E is reducible to F and write
E ≤ F if there is a reduction from E to F , and we say that E and F are bireducible and write E ∼ F if E ≤ F and F ≤ E. We
introduce analogous terminology and notation for the other types of reductions as follows:

(1) reducible ≤ ∼

(2) embeddable ⊑ ≈

(3) surjectively reducible 4 4<
(4) isomorphic ∼= ∼=

(5) invariantly reducible ≤
i

∼
i

(6) fully reducible ≤
f

∼
f

(7) invariantly embeddable ⊑
i

≈
i

(8) fully embeddable ⊑
f

≈
f .

We display all the direct implications between these relations in Figs. 1 and 2, and we include a proof of Proposition 2.3
in Section 5.

Proposition 2.3. The diagrams in Figs. 1 and 2 are complete; that is, in each diagram, for every pair of nodes A and B, the
implication A ⇒ B holds if and only if it is implied by the arrows in the diagram.
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Fig. 2. Implications between equivalences on the class of equivalence relations.

Note, however, that certain implications involving more than two relations may not be displayed in the diagrams; for
instance, the fact that the conjunction of E ≤ F and F ≤ E implies E ≤

f F is not displayed in Fig. 1.

3. The main theorem

Nowwe consider the problemof finding necessary and sufficient combinatorial conditions for the existence of reductions
of the various types between equivalence relations.

Definition 3.1. Given an equivalence relation E and a (possibly infinite) cardinal κ , let nκ(E) be the number of E-classes of
cardinality κ . Similarly, let n≥κ(E) be the number of E-classes of size at least κ and n≤κ(E) the number of E-classes of size at
most κ .

Theorem 3.2. Let E and F be equivalence relations on sets X and Y , respectively. Then
(1) E ≤ F ⇐⇒ |X/E| ≤ |Y/F |;
(2) E ⊑ F ⇐⇒ (∀κ) n≥κ(E) ≤ n≥κ(F);
(3) E 4 F H⇒ (∀κ) [n≤κ(E) ≤ n≤κ(F) ∧ n≥κ(E) ≥ n≥κ(F)];
(4) E ∼= F ⇐⇒ (∀κ) nκ(E) = nκ(F);
(5) E ≤

i F H⇒ (∀κ) n≤κ(E) ≤ n≤κ(F);
(6) E ≤

f F ⇐⇒ |X/E| = |Y/F |;
(7) E ⊑

i F ⇐⇒ (∀κ) nκ(E) ≤ nκ(F);
(8) E ⊑

f F ⇐⇒ F 4 E.

The bi-implications (1), (4), (6), and (7) are trivial to prove, as are the forward implications in (2), (3), and (5). The
backward direction of (2) appears to be somewhat harder, and is our main result. Additionally, we will show that the
necessary conditions given in (3) and (5) are not sufficient, and we argue that there are no simple combinatorial conditions
characterizing the surjective or invariant reducibility of E to F .

Nowwe present our proof of Theorem3.2(2), whichwill make use of the following lemma. Recall that a class A of ordinals
is closed if sup B ∈ A for every subset B of A, and that a subset A of an ordinal κ is cofinal in κ if for each γ < κ there is some
γ ′

∈ A such that γ ≤ γ ′ < κ .

Lemma 3.3. Let κ be an infinite cardinal, and let A be the class of ordinals that can be partitioned into κ many cofinal subsets.
Then A is closed.
Proof. Let γ be a limit point of A, and let ⟨γα : α < cf(γ )⟩ be a continuous increasing sequence of elements of A with limit
γ . For each α < cf(γ ), let {Pα

ν : ν < κ} be a partition of γα into κ many cofinal subsets. For each ν < κ , define

Pν =


α<cf(γ )

(Pα+1
ν − γα).

The set {Pν : ν < κ} is a partition of γ into κ many cofinal subsets.

Note that for an ordinal γ and an infinite cardinal κ , γ may be partitioned into κ many cofinal subsets if and only if
γ = κ · α for some ordinal α.
Proof of Theorem 3.2(2). The forward direction is immediate. For the backward direction, we must show that assuming

(∀κ) n≥κ(E) ≤ n≥κ(F),
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there exists an injective function φ : X → Y satisfying

(∀x, x′
∈ X) x E x′

⇔ φ(x) F φ(x′).

Let us begin by fixing an enumeration ⟨Cξ : ξ < α⟩ of the E-classes such that |Cξ | ≤ |Cη| whenever ξ < η < α, as
well as an enumeration ⟨Dξ : ξ < β⟩ of the F-classes such that |Dξ | ≤ |Dη| whenever ξ < η < β . Notice that since
n≥1(E) ≤ n≥1(F), we have |α| ≤ |β|.

We will prove the result by induction on |α|. For the base case where α is finite, we have |Cn| ≤ |Dn| for all n < α, so the
greedy approach of mapping each Cn into Dn yields the desired embedding. For the inductive step, suppose that α is infinite
and that we have proven the theorem for every pair of equivalence relations (E ′, F ′) satisfying

(∀κ) n≥κ(E ′) ≤ n≥κ(F ′)

such that the number of E ′-classes is strictly less than |α|.
Since |α| ≤ |β| ≤ β , there is at least one ordinal γ ≤ β that can be partitioned into |α| many cofinal subsets. By

Lemma 3.3, there is a largest such γ ≤ β , which we fix. We first claim that |β − γ | < |α|. If not, let δ be the least ordinal
such that γ + δ = β , so that |δ| = |β − γ |. Then

γ + |α| ≤ γ + |β − γ | = γ + |δ| ≤ γ + δ = β,

contradicting the choice of γ .
Let σ be the least ordinal less than α such that |Cσ | > |Dξ | for all ξ < γ if such an ordinal exists, and let σ = α otherwise.

Then for each ν < σ there is some ξ ′ < γ such that |Cν | ≤ |Dξ ′ |. Let {Pν : ν < σ } be a partition of γ into cofinal subsets (such
a partition exists because γ can be partitioned into |α| many cofinal subsets and σ ≤ α). Given any ν < σ , we may pick
ξ ′ < γ such that |Cν | ≤ |Dξ ′ |, and then we may pick ξ ∈ Pν such that ξ ′

≤ ξ (and hence |Dξ ′ | ≤ |Dξ |). Therefore we have

(∀ν < σ)(∃ξ ∈ Pν) |Cν | ≤ |Dξ |.

Because of this, we may define an injection φ0 from


ν<σ Cν to


ξ<γ Dξ such that
∀x, x′

∈


ν<σ

Cν


x E x′

⇔ φ0(x) F φ0(x′).

If σ = α we are done, so assume σ < α. Let X1 =


σ≤ν<α Cν and Y1 =


γ≤ξ<β Dξ , and let E ′
= E � X1 and F ′

= F � Y1.
Since |β −γ | < |α|, by the definition of σ and the hypothesis that n≥|Cσ |(E) ≤ n≥|Cσ |(F)we have that |α −σ | < |α|. That is,
there are strictly fewer than |α| many E ′-classes. Also notice that (∀κ) n≥κ(E ′) ≤ n≥κ(F ′). We may now apply the inductive
hypothesis to obtain an injective reduction φ1 from E ′ to F ′. At this point we are finished, since the function φ0 ∪ φ1 is an
injective reduction from E to F .

4. Counterexamples

In this section we present some examples to show that the necessary conditions given in Theorem 3.2 for the existence
of invariant and surjective reductions are not sufficient, and indeed we argue that for these types of reducibility, no ‘‘nice’’
necessary and sufficient conditions exist.

Example 4.1. Let E and F be equivalence relations each having exactly one equivalence class of size n for 1 ≤ n < ω and
no additional classes except that E has exactly one class of size ℵ0. Then for all cardinals κ we have n≤κ(E) ≤ n≤κ(F) and
n≥κ(E) ≥ n≥κ(F), but it is not difficult to check there can be no invariant reduction from E to F .

To dispel the impression that the finiteness of the cardinals n≥κ(E) is the sole source of the problem, we give another
counterexample where this time nκ(E) and nκ(F) are either 0 or infinite for all κ . Our construction uses Fodor’s Lemma,
which is typical for the uncountable case of the matching problem (see, for instance, [1, Lemma 4.9]).

Example 4.2. There exist equivalence relations E and F such that

(1) for all cardinals κ , nκ(E) and nκ(F) are either 0 or ℵ0;
(2) (∀κ) n≤κ(E) = n≤κ(F);
(3) (∀κ) n≥κ(E) = n≥κ(F);
(4) E ≰

i F , and hence also E 4̸ F .

Proof. It suffices to specify nκ(E) and nκ(F) for each cardinal κ . Let n1(E) = ℵ0 and nℵα (E) = ℵ0 for every countable limit
ordinal α, and let nκ(E) = 0 for every other cardinal κ . Let n1(F) = ℵ0 and nℵα+1(F) = ℵ0 for every countable limit ordinal
α, and let nκ(F) = 0 for every other cardinal κ .

It is clear that conditions (1) through (3) are satisfied. Suppose, towards a contradiction, that φ is an invariant reduction
from E to F . For every countable limit ordinal α, φ maps each E-class of size ℵα onto an F-class of size less than ℵα . For each
countable limit ordinal α, arbitrarily pick some E-class Cα of size ℵα . Hence, the function φ maps each class Cα onto some
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F-class of size ℵg(α) for some g(α) < α. We have now defined a regressive function g from the (stationary) set of countable
limit ordinals to ω1. By Fodor’s Lemma, g is constant on some stationary set. This means that there is some β < ω1 such
that φ maps ω1 many E-classes onto F-classes of size ℵβ . Since there are at most ℵ0 many F-classes of size ℵβ , this is a
contradiction.

Examples 4.1 and 4.2 suggest that in general there is no ‘‘nice’’ combinatorial characterization of the existence of an
invariant or surjective reduction from one equivalence relation to another, and we now describe one way of making this
precise. Define a nice condition to be a conjunction of statements of the form ‘‘for all cardinals κ , a R b’’, where a is one of the
four terms

nκ(E), n≤κ(E), n≥κ(E), |X/E|,

b is one of the four terms
nκ(F), n≤κ(F), n≥κ(F), |Y/F |,

and R is one of the six relations
≤, ≥, =, ≠, <, > .

The proof of the following proposition is straightforward but tedious, and we omit it.

Proposition 4.3. Every nice condition which is implied by E ≤
i F follows from the condition

(∀κ) n≤κ(E) ≤ n≤κ(F),

and every nice condition which is implied by E 4 F follows from the condition

(∀κ) [n≤κ(E) ≤ n≤κ(F) ∧ n≥κ(E) ≥ n≥κ(F)].

In this sense parts (3) and (5) of Theorem 3.2 are optimal, and Examples 4.1 and 4.2 show that none of the relations E 4 F ,
E ≤

i F , and E ⊑
f F can be characterized by a nice condition.

5. Completeness of the diagrams

In this final section we prove Proposition 2.3.
Proof that the diagram in Fig. 1 is correct and complete. All displayed implications follow immediately from the definitions, so
we need only show that there are no additional implications. We will show that for every node A in the diagram, there is
no implication of the form A ⇒ B that is not displayed. For the top node E ∼= F , this is vacuous. By symmetry, it will suffice
to consider the seven nodes on the left half of the diagram. We will accomplish this using the seven pairs of equivalence
relations pictured below, where dots represent elements and boxes equivalence classes.
(1) E = • , F = • • ;
(2) E = • , F = • • ;
(3) E = • • , F = • ;
(4) E = • , F = • • • • ;
(5) E = • • , F = • • ;
(6) E = • • • • , F = • • • • ;
(7) E = • • • • , F = • • • • • • .

(1) shows that E ⊑
i F does not imply F ≤ E. (2) shows that E ⊑

f F implies neither E ≤
i F nor F ⊑ E. (3) shows that E 4 F

implies neither E ⊑ F nor F ≤
i E. (4) shows that E ⊑ F implies neither E ≤

i F nor F ≤ E. (5) shows that E ≤
i F implies

neither E ⊑ F nor F ≤ E. (6) shows that E ≤
f F implies none of E ⊑ F , E ≤

i F , F ⊑ E, and F ≤
i E. Finally, (7) shows that E ≤ F

implies none of E ⊑ F , E ≤
i F , and F ≤ E. These observations suffice to establish the completeness of the diagram in Fig. 1.

Proof that the diagram in Fig. 2 is correct and complete. The implication E ∼ F ⇒ E ∼
f F is clear, and the implication

E ≈
i F ⇒ E ∼= F is well-known and follows from the standard Schröder–Bernstein argument. The remaining displayed

implications follow immediately from the implications in Fig. 1, so it is only left to show that there are no additional
implications. For this it suffices to show the following:

(1) E 4< F ⇏ E ∼= F;

(2) E ≈ F ⇏ E ∼
i F;

(3) E ∼
i F ⇏ E ≈ F;

(4) E ∼ F ⇏ E ∼
i F;

(5) E ∼ F ⇏ E ≈ F .

This may be done using the following equivalence relations, which have no classes other than those described.
1. E has one class of size n for each even integer n, F has one class of size n for each odd integer n ≥ 3, and both E and F

have ℵ0 many classes of size 1.
2. E has ℵ0 many classes of size ℵ0 and one class of size 1; F has ℵ0 many classes of size ℵ0 and one class of size 2.
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3. Both E and F have ℵ0 many classes of size 1, and E has one class of size 2.
4. E has one class of size 1, F has one class of size 2.
5. Same as (4).
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