
Discrete Mathematics 338 (2015) 1989–2005

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Counting subwords in flattened partitions of sets
Toufik Mansour a, Mark Shattuck b,∗, Stephan Wagner c
a Department of Mathematics, University of Haifa, 31905 Haifa, Israel
b Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
c Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa

a r t i c l e i n f o

Article history:
Received 22 January 2014
Received in revised form 21 April 2015
Accepted 22 April 2015
Available online 6 June 2015

Keywords:
Flattened set partitions
Pattern avoidance
Subword patterns
Kernel method
Asymptotic enumeration

a b s t r a c t

In this paper, we consider the problem of avoidance of subword patterns in flattened
partitions, which extends recentwork of Callan.We determine in all cases explicit formulas
and/or generating functions for the number of set partitions of size n which avoid a
single subword pattern of length three. The asymptotic behavior of the resulting counting
sequences turns out to depend quite heavily on the specific pattern. For the cases of 312
and 213, we make use of the kernel method to determine the generating function which
counts the members of the avoidance class. Furthermore, in the cases of 132, 231, and 123,
we also find formulas concerning the distribution on the set of partitions for the statistics
recording the number of occurrences of the pattern in question and some related bijective
proofs are given. Finally, in each of these cases, it is shown that the number of occurrences
of the pattern asymptotically follows a normal distribution.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let π = π1π2 · · · πn and σ = σ1σ2 · · · σd be permutations of length n and d, where n ≥ d. The permutation π is said to
contain σ as a subword (or factor) if there exists a set of consecutive letters πiπi+1 · · · πi+d−1 in π that is order-isomorphic
to σ . Otherwise, π is said to avoid σ or be σ -free. In this context, σ is usually called a (subword or consecutive) pattern.
For example, π = 13476528 ∈ S8 contains two occurrences of the pattern 321 (corresponding to 765 and 652; note that
occurrences of a given pattern need not be disjoint), but avoids the pattern 312. Subwords of the form 12 and 21 are called
ascents and descents, respectively.

The problem of counting permutations according to the number of occurrences of a given subword has been studied from
various perspectives in both enumerative and algebraic combinatorics (see, for example, [10]). The comparable problem has
also been considered on other discrete structures such as k-ary words [2], compositions [15], and set partitions [14] (see
also [8,11] and the references contained therein).

In his study of finite set partitions, Callan [3] introduced the notion of a flattened partition and considered the problem
of avoiding a single classical pattern of length three in this sense. Here, we extend this work to the avoidance of subword
patterns by flattened partitions, and in three cases, are able further to ascertain formulas which count the partitions of size
n according to the number of occurrences of a pattern. See also [12,13,16] for recent related work on flattened permutations
and [11, Section 3.2.3] for a further discussion of flattened partitions.
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Let [n] = {1, 2, . . . , n} if n ≥ 1, with [0] = ∅. By a partition of [n], we will mean a collection of pairwise disjoint subsets,
called blocks, whose union is [n]. We will denote the set of all partitions of [n] by Pn and the subset of Pn whose members
contain exactly m blocks by Pn,m. Let Bn = |Pn| denote the nth Bell number and Sn,m = |Pn,m| denote the Stirling number of
the second kind.

Let us now recall the definition of flattened partitions introduced in [3]. Suppose that π = B1/B2/ · · · ∈ Pn is represented
in standard form, i.e., elements within each block written in increasing order, with the blocks Bi arranged from left to right in
increasing order of size of their smallest elements. Let Flatten(π) be the permutation obtained by erasing the parentheses
enclosing the blocks ofπ and considering the resultingword. For example, the partitionπ = {1, 3, 8}, {2, 5, 6}, {4}, {7, 9} ∈

P9 is in standard form and Flatten(π) = 138256479.
Callan [3] coined the phrase ‘‘flatten’’ since it coincides with the command in the programming language Mathematica

which takes lists of sets (arranged in lexicographic order), removes all enclosing brackets, and concatenates the contents of
the sets into one large list. See, for example, [21] as well as the text [22]. We remark further that this notion of flattening
perhaps has its origins with Carlitz [4] who applied it to permutations expressed in standard cycle form (i.e., minimal
elements first within each cycle, with cycles arranged left-to-right in increasing order of minimal elements) in defining
a certain type of inversion statistic on Sn. See also [19], where further properties of this statistic are studied. Since set
partitions may be viewed as a subset of the permutations in standard cycle form, we are considering here essentially a
restriction of Carlitz’s flattening procedure to a subset of Sn. Furthermore, variants of this flattening procedure, wherein the
blocks are arranged in accordance with some other ordering, have been used, for example, to obtain new q-analogues of the
Bell numbers as in [6, Equation 2.9]. See Theorems 2.5 and 2.16 for comparable q-Bell numbers obtained by counting certain
subwords on flattened partitions.

We remark that a permutation that can be obtained by flattening a set partition has the property that the second elements
of all descents form an increasing subsequence (this is clear, since descents can only occur at the borders between blocks).
Conversely, any permutation with this property can be obtained from a set partition by a flattening process: simply break
the permutation into blocks by inserting delimiters at all the descents to obtain a feasible set partition.

This also shows that the number of distinct permutations that can be obtained as flattened set partitions of [n] is the Bell
number Bn−1: we can break up any such permutation that is not the identity permutation 12 · · · n uniquely into the part
before the first descent (any subset of [n] containing 1 that is not of the form [j] for some j) and the rest, which is again a
feasible permutation. Thus, the number an of permutations that can be obtained as a flattened partition of [n] satisfies the
recursion

an = 1 +

n−1
j=1


n − 1

j


− 1


aj,

and it is easy to verify that an = Bn−1 satisfies this recursion, and that the initial values agree as well. For example, when
n = 4, the B3 = 5 possibilities are 1234, 1243, 1324, 1342, and 1423.

One can combine the ideas of subword containment and avoidance on the one hand and flattening on the other in a
natural way by saying that a partition π contains the subword τ in the flattened sense if and only if Flatten(π) contains
τ (as a subword) in the usual sense and avoids τ otherwise. Using this definition of subword containment, we consider
here the case when τ has length three. For example, the partition π considered in the preceding paragraph contains three
occurrences of 123 in the flattened sense but avoids 132 as Flatten(π) = 138256479 contains three occurrences of 123 but
avoids 132.

In this paper, we find explicit formulas and/or generating functions for the number of members of Pn avoiding any
consecutive pattern of length three. For the cases 132, 231, and 123 considered in the next section, we also develop formulas
for the distribution on Pn corresponding to the statistic recording the number of occurrences of the pattern in question. As a
result, we obtain q-generalizations of the Bell numbers in these cases. In particular, we find q-analogues of the Bell number
recurrence and exponential generating function (egf). From the egf, explicit formulas can then be obtained for the total
number of occurrences of a pattern by differentiation. Furthermore, in the case 132, an explicit formula for the distribution
on Pn (taken jointly with the number of blocks) is derived from the egf and a combinatorial proof is given. Finally, it is shown
that the number of occurrences of each of these three patterns asymptotically follows a normal distribution.

In the third section, we deal with the patterns 312 and 213, which are apparently more difficult, and treat only the
avoidance. We consider here the ordinary generating function (ogf), instead of the egf, to derive our results and use the
kernel method (see [9] and the references contained therein) to solve systems of functional equations that are satisfied
by related ogf’s. To determine the number of members of Pn which avoid 312 or 213 in the flattened sense, we refine
part of the set in question by considering two suitable statistics on the set and then finding recurrences satisfied by the
refined numbers which arise. This method is somewhat reminiscent of a strategy of Zeilberger (see [23]) that he used in
the problem of determining an explicit formula for an unknown sequence. In the case of 312, we find that the avoidance
class has the same cardinality as a certain class of Motzkin type paths of length n − 1. For the case 213, though no explicit
formula is determined,we find that the corresponding ogf is the solution to a relatively simple functional equation in a single
variable.

Section 4 summarizes and compares the results obtained for the different patterns and concludes the paper.
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2. Counting subwords in flattened partitions

In this section, we consider the problem of counting the members of Pn according to the number of occurrences of a
subword of length three. We need not consider the case of counting occurrences of 321.

Proposition 2.1. All members of Pn avoid the subword 321 in the flattened sense.

Proof. Suppose π ∈ Pn and Flatten(π) = π1π2 · · · πn. If πi > πi+1, then the (i + 1)st letter from the left must start a
block of π , by the ordering of elements within blocks. But then either i = n − 1 or πi+2 > πi+1, again by the ordering of
elements. �

In the next three subsections, we count the members of Pn according to the number of occurrences of the patterns 132, 231,
and 123, deriving explicit formulas for the egf’s in each case.

2.1. The case 132

Let an(y, q) denote the joint distribution on Pn for the statistics recording the number of blocks and the number of
occurrences of 132. The polynomials an(y, q) satisfy the following recurrence relation.

Lemma 2.2. If n ≥ 1, then

an(y, q) = yan−1(y, q) + y
n−2
i=0


n − 1

i


− (1 − q)i


ai(y, q), (1)

with a0(y, q) = 1.

Proof. Let n ≥ 2 and let us abbreviate an(1, q) by an. For 1 ≤ i ≤ n, let an,i = an,i(q) be the distribution for the number of
occurrences of 132 on the members of Pn whose first block B has size i. Clearly, an,1 = an−1. Let us find an expression for
an,i when i ≥ 2. If B = {1, 2, . . . , i}, then the total weight of all such members of Pn is an−i. Suppose now B is of the form
B = {1, 2, . . . , t, a, b, . . .}, where 1 ≤ t ≤ i − 2 and a, b > t + 1. Then the second block of the partition starts with t + 1,
and there is no 132 created at the border between the first and second blocks within the flattened form of the partition since
the last two elements of the first block are greater than t + 1. This implies a contribution of

i−2
t=1


n − t − 1

i − t


an−i = an−i

i−2
t=1


n − t − 1
n − i − 1


= an−i


n − 1
n − i


− 1 − (n − i)


,

wherewe have used the identity
n

r=m

 r
m


=
n+1
m+1


. Finally, if B = {1, 2, . . . , i−1, a}, where a > i, then the letters i−1, a, i

form an occurrence of 132 at the border between the first and second blockswithin the flattened form of the partition, which
implies a contribution of q(n − i)an−i in this case. Combining the three cases then gives

an,i = an−i +


n − 1
n − i


− 1 − (n − i)


an−i + q(n − i)an−i

=


n − 1
n − i


− (1 − q)(n − i)


an−i, 2 ≤ i ≤ n.

Thus, we have

an =

n
i=1

an,i = an−1 +

n
i=2


n − 1
n − i


− (1 − q)(n − i)


an−i

= an−1 +

n−2
i=0


n − 1

i


− (1 − q)i


ai.

Adding a variable that marks the number of blocks in the preceding argument then gives (1). �

Lemma 2.3. We have
n≥0

an(y, q)
xn

n!
= 1 + ye−y

 x

0
eye

t
−(1−q)yt2/2+tdt. (2)
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Proof. To get rid of the (1 − q)iai(y, q) part of the sum on the right-hand side of (1), which is inconvenient when taking
exponential generating functions, we consider the difference an(y, q) − an−1(y, q). By (1), we have

an(y, q) − an−1(y, q) = y(an−1(y, q) − an−2(y, q))

+ y
n−2
i=0


n − 1

i


− (1 − q)i


ai(y, q) − y

n−3
i=0


n − 2

i


− (1 − q)i


ai(y, q),

which is equivalent to

an(y, q) = an−1(y, q) − y(1 − q)(n − 2)an−2(y, q) + y
n−1
i=0


n − 1

i


ai(y, q) − y

n−2
i=0


n − 2

i


ai(y, q), n ≥ 2, (3)

with a0(y, q) = 1 and a1(y, q) = y. Let A(x; y, q) =


n≥0 an(y, q)
xn
n! denote the egf for the sequence an(y, q). Multiplying

both sides of (3) by xn−1/(n − 1)!, and summing over n ≥ 2, yields

d
dx

A(x; y, q) − y = A(x; y, q) − 1 − y(1 − q)

xA(x; y, q) −

 x

0
A(t; y, q)dt


+ y


exA(x; y, q) − 1 −

 x

0
etA(t; y, q)dt


.

Differentiating both sides of this last equation with respect to x gives

d2

dx2
A(x; y, q) = (1 − (1 − q)xy + exy)

d
dx

A(x; y, q).

Thus we have ln( d
dxA(x; y, q)) = x − (1 − q)x2y/2 + exy + c for some constant c. Since d

dxA(x; y, q) |x=0 = y, we have
c = ln y − y. Therefore, d

dxA(x; y, q) = yey(e
x
−1)−(1−q)x2y/2+x. Using the initial condition A(0; y, q) = 1, we obtain (2). �

Remark 2.4. Integrating by parts the formula in (2) gives

A(x; y, q) = ey(e
x
−1)−(1−q)x2y/2

+ (1 − q)ye−y
 x

0
teye

t
−(1−q)t2y/2dt. (4)

Taking q = 1 in (4) recovers the egf for the Bell polynomial Bn(y) =
n

k=0 Sn,ky
k (see Eq. (7.54) in [7, p. 351]).

If j is odd, then let j!! = j(j − 2) · · · 1, with (−1)!! = 1. We have the following explicit formula for the polynomial an(y, q).

Theorem 2.5. If n ≥ 1, then

an(y, q) =

⌊
n−1
2 ⌋

i=0

((q − 1)y)i

n − 1
2i


(2i − 1)!!Bn−2i(y). (5)

Proof. By (2), we have that an(y, q) is the coefficient of xn−1

(n−1)! in the convolution

yey(e
x
−1)+x

· e(q−1)x2y/2
=


i≥0

Bi+1(y)
xi

i!
·


j≥0


(q − 1)y

2

j

(2j)j
x2j

(2j)!
,

which is given by

⌊
n−1
2 ⌋

i=0


(q − 1)y

2

i n − 1
2i


(2i)iBn−2i(y).

Formula (5) now follows from noting that (2i)i = (2i)!/i! = (2i)!!/i! · (2i − 1)!! = 2i(2i − 1)!!. �

Remark 2.6. Taking y = 1 and q = 0 in (5) gives a formula for the number of members of Pn which avoid the subword 132
in the flattened sense. Furthermore, we see from (5) that the number of members of Pn,m which avoid 132 is given by

[ym]an(y, 0) =

⌊
n−1
2 ⌋

i=0

(−1)i

n − 1
2i


(2i − 1)!!Sn−2i,m−i, n ≥ 1.

Differentiating both sides of (5) with respect to q, and letting q = 1, gives the following result.
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Corollary 2.7. If 1 ≤ m ≤ n, then the total number of occurrences of the subword 132 within all the members of Pn,m and Pn,
respectively, is given by

n−1
2


Sn−2,m−1 and

n−1
2


Bn−2.

It is instructive to provide a bijective proof of this result.

Combinatorial proof of Corollary 2.7. We prove only the second statement. A similar argument applies to the first upon
fixing the number of blocks. We will refer to an occurrence of the subword 132 in a flattened partition such that the 2 and
the 3 correspond to the actual letters i and j as an (i, j)-occurrence of 132. Given 2 ≤ i < j ≤ n, it suffices to show that
the number of (i, j)-occurrences of 132 within all of the members of Pn is Bn−2. That is, we need to show that there are Bn−2
members of Pn having an (i, j)-occurrence of 132. In order for π ∈ Pn to contain such an occurrence, the element imust start
a block Bwhich directly follows a block C whose largest element is j. Note further that there is at least one other element in
C , with all elements of C other than j less than i. Let π ′ be the partition obtained by removing the elements i and j from π
and merging the blocks B − {i} and C − {j} into a single block D.

Note that the mapping π → π ′ defines a bijection between the members of Pn containing an (i, j)-occurrence of 132
and partitions of [n] − {i, j}. To reverse it, given a partition ρ of the set [n] − {i, j}, identify the block of ρ whose smallest
element is largest among all of the blocks of ρ whose smallest element is less than i. (Note that there is at least one such
block since i > 1.) We then split this block into two parts, one containing all of the elements in the block that are less than
i and another containing any elements greater than i, where the second part is possibly empty. We then add j to the end of
the first part and i to the beginning of the second to obtain a partition of [n] containing an (i, j)-occurrence of 132. (Note
that if the second part is empty, then we just add the singleton block {i}.) Thus, the number of members of Pn having an
(i, j)-occurrence of 132 is Bn−2 for each i and j, as desired. �

We next extend the argument to prove (5).

Combinatorial proof of Theorem 2.5. We first prove the q = 0 case of (5) and show that the members of Pn (weighted by
the number of blocks) which avoid 132 in the flattened sense are enumerated by

⌊
n−1
2 ⌋

i=0

(−y)i

n − 1
2i


(2i − 1)!!Bn−2i(y).

To do so, let S be a subset of {2, 3, . . . , n} of size 2i. We partition S into i doubleton blocks {sj, tj}, where sj < tj and
s1 < s2 < · · · < si (i.e., we form a perfect matching of the elements of S). Note that there are

n−1
2i


choices for S and (2i−1)!!

ways to partition it into doubletons. Next,we formapartitionπ of the elements of [n]−S in one ofBn−2i ways; the polynomial
Bn−2i(y) also takes the number of blocks into account. Now we add the elements of S to π in a systematic way. Just as we
inserted two elements into the partition ρ in the second part of the preceding proof, we insert the elements s1 and t1 into π
to obtain a partition π1 of size n−2i+2 containing an (s1, t1)-occurrence of 132. In general, we insert the elements sj+1 and
tj+1, inductively, into the partition πj to obtain πj+1 in the samemanner for each 1 ≤ j < i. This results in a partition π ′

= πi
of [n] such that there is an (sj, tj)-occurrence of 132 inπ ′ for each 1 ≤ j ≤ i. Observe that themappingπ → π ′ is a bijection,
upon undoing each step sequentially startingwith the last, which is accomplished bymerging blocks as described in the first
paragraph of the preceding proof. Note that i additional blocks are created in the transition from π to π ′ since a new block is
created at each step. Thus, yiBn−2i(y) counts all partitions of [n] in which the elements within each block of the matching of
S correspond to an occurrence of 132 (alongwith possibly some elements of [n]−S, depending on the choice of the partition
π ). By an application of the inclusion–exclusion principle, the number of members of Pn that avoid 132 is as asserted above.

For the case of general q, we make use of a characteristic function argument as follows. Suppose ρ ∈ Pn and let T denote
the set of all pairs of elements (s, t), s < t , such that ρ contains an (s, t)-occurrence of 132. Note that the exponent of the
y-factor within all of the terms of (5) that count ρ is the same and is given by the number of blocks of ρ. To complete the
proof, we then must show that the sum of the factors of q in these terms is qi, where i denotes the number of pairs of T .
Suppose R is a subset of the pairs in T of size j. Then any partition σ , in particular ρ, in which the elements within each pair
of R form an occurrence of 132 in σ is counted by a factor of (q − 1)j, by the argument for the q = 0 case above. Since the
collection of pairs comprising the complete set of 132-occurrences of ρ is precisely T , it follows that ρ is counted

R⊆T

(q − 1)|R| =

i
j=0


i
j


(q − 1)j = qi

times by the sum in (5), as desired, which completes the proof. �

The combinatorial argument given in the two preceding proofs also proves the following theorem, which can also be
obtained from the generating function.

Theorem 2.8. The number of occurrences of 132 is equidistributed with the number of doubletons (blocks of cardinality 2) not
containing 1. The joint distributions of these statistics with the number of blocks are also identical.
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The rest of this subsection is devoted to an asymptotic analysis. Let us first consider the number of 132-free set partitions.
We make use of the following general theorem on Hayman-admissible functions (in a version suitable for our purposes).

Theorem 2.9 (cf. [5, Theorem VIII.4]). Let G(z) = eh(z) be an entire function that is positive for positive real values of z. Suppose
that the following conditions are satisfied:

• a(r) = rh′(r) → ∞ and b(r) = r2h′′(r) + rh′(r) → ∞ as r → ∞.
• For some function θ0(r) defined on (0, ∞) with θ0(r) ∈ (0, π) for all (sufficiently large) r, one has

G(reiθ ) ∼ G(r)eiθa(r)−θ2b(r)/2

uniformly in |θ | ≤ θ0(r) as r → ∞.
• Uniformly in θ0(r) ≤ |θ | < π ,

G(reiθ ) = o


G(r)
√
b(r)


.

If r = r(n) is such that a(r)−n = o(θ0(r)) (in particular, if rh′(r) = a(r) = n), then the coefficients of G(z) satisfy, as n → ∞:

gn = [zn]G(z) ∼
G(r)

rn
√
2πb(r)

.

Write fn for the number of 132-free set partitions of Pn. Its generating function is obtained by taking y = 1 and q = 0 in (4).
To simplify things, we also take the derivative with respect to x, which merely corresponds to a coefficient shift:

F(x) =


n≥0

fn+1
xn

n!
=


n≥0

an+1(1, 0)
xn

n!
= ee

x
+x−x2/2−1.

This generating function is easily seen to be Hayman-admissible in the sense of Theorem 2.9 (with h(z) = ez − z2/2+ z−1,
θ0(r) can be taken as e−2r/5). As for the Bell numbers Bn, an asymptotic expansion is only possible for the logarithm, the
asymptotic formula for the number itself involves an implicitly defined quantity.

Theorem 2.10. The number fn of 132-free set partitions in Pn is given by the asymptotic formula

fn ∼ n! ·
ee

r
−r2/2−1

rn
√
2πr(r + 1)er

,

where r is the unique positive real solution of the equation

rer = n.

The proportion of 132-free set partitions in Pn is

fn
Bn

∼ e−r2/2.

Proof. Since the generating function satisfies the conditions, Theorem 2.9 yields

fn+1 = an+1(1, 0) ∼ n! ·
ee

r
+r−r2/2−1

rn
√
2πr(r + 1)er

,

where r is the unique positive real solution of the equation

rer = n + 1.

Note here that rh′(r) + r2h′′(r) = r(r + 1)er − 2r2 + r ∼ r(r + 1)er . Since rer = n + 1, we obtain

fn+1 ∼ (n + 1)! ·
ee

r
−r2/2−1

rn+1
√
2πr(r + 1)er

,

from which the first statement of the theorem follows (replacing n by n − 1). Since

Bn ∼ n! ·
ee

r
−1

rn
√
2πr(r + 1)er

by the same reasoning (cf. [5, Proposition VIII.3]), the second statement follows immediately. �
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We know from Corollary 2.7 that the average number of occurrences of 132 in a randomly chosen partition of [n] isn−1
2


Bn−2/Bn ∼ (log n)2/2. The distribution satisfies a central limit theorem that follows directly from the quasi-powers

theorem, see [5, Theorem IX.13].

Theorem 2.11. Suppose that the probability generating functions pn(u) of a sequence of random variables Xn whose values are
non-negative integers satisfy an asymptotic formula of the form

pn(u) = ehn(u)(1 + o(1)),

uniformly with respect to u in some interval around 1, where each hn(u) is analytic in this interval. If the additional conditions

h′

n(1) + h′′

n(1) → ∞ and
h′′′
n (u)

(h′
n(1) + h′′

n(1))3/2
→ 0

are satisfied uniformly in u as n → ∞, then the normalized random variable

Yn =
Xn − h′

n(1)
(h′

n(1) + h′′
n(1))1/2

converges in distribution to a standard Gaussian distribution.

In our specific case, we obtain the following result.

Theorem 2.12. The number of occurrences of 132 in a randomly chosen set partition of [n] asymptotically follows a normal
distribution with mean µn ∼ (log n)2/2 and variance σ 2

n ∼ (log n)2/2.

Proof. We use the bivariate generating function (obtained from (4) by taking the derivative with respect to x and setting
y = 1):

n≥0

an+1(1, q)
xn

n!
= ee

x
+x+(q−1)x2/2−1.

The conditions of Theorem 2.9 are still satisfied, and we obtain, as before,

an(1, q) ∼ n! ·
ee

r
+(q−1)r2/2−1

rn
√
2πr(r + 1)er

,

where r = r(n) is defined by rer = n. It follows that the probability generating function satisfies

pn(q) =
an(1, q)

Bn
∼ e(q−1)r2/2,

uniformly in q (in any compact subinterval of (0, ∞)). Now we can invoke Theorem 2.11 with hn(q) = (q − 1)r2/2 to
complete the proof, and the mean and variance are asymptotically given by

µn ∼ h′

n(1) =
r2

2
∼

(log n)2

2
and

σ 2
n ∼ h′

n(1) + h′′

n(1) =
r2

2
∼

(log n)2

2
. �

2.2. The case 231

Let bn(y, q) denote the joint distribution on Pn for the statistics recording the number of blocks and the number of
occurrences of 231. Modifying the proof above for Lemma 2.2 gives the following recurrence for bn(y, q).

Lemma 2.13. If n ≥ 1, then

bn(y, q) = ybn−1(y, q) + y
n−1
i=1


q

n − 1
i − 1


+ (1 − q)i


bi−1(y, q), (6)

with b0(y, q) = 1.
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Let un denote sequence A005425 in [20] defined by the recurrence

un = 2un−1 + (n − 1)un−2, n ≥ 2,

with initial values u0 = 1 and u1 = 2. Among other things, it counts the number of partitions of [n] into blocks of size 1
or 2, where singleton blocks come in two colors. Considering the difference bn(1, 0) − bn−1(1, 0) for n ≥ 3 in (6) gives the
following result.

Corollary 2.14. If n ≥ 1, then the number of members of Pn which avoid the subword 231 in the flattened sense is given by un−1.

The asymptotic behavior of un is obtained by means of the saddle point method. We can apply Theorem 2.9 once again,
starting from the generating function

n≥0

un

n!
xn = ex

2/2+2x.

This generating function satisfies the conditionswith θ0(r) = r−3/4 and r = r(n) =
√
n−1.Weobtain b(r) = 2r(r+1) ∼ 2n

and

un ∼ n! ·
er

2/2+2r

rn
√
4πn

∼
1

√
2

· nn/2e2
√
n−n/2−1,

so that we have the following theorem (after replacing n by n − 1).

Theorem 2.15. The number of members of Pn which avoid the subword 231 in the flattened sense is asymptotically equal to

1
√
2n

· nn/2e2
√
n−n/2−1.

Let us now return to counting the number of occurrences of 231. There is the following explicit formula for the egf of the
sequence bn(y, q).

Theorem 2.16. We have
n≥0

bn(y, q)
xn

n!
= 1 + ye−qy

 x

0
eqye

t
+(1−q)yt2/2+(1+y(1−q))tdt. (7)

Proof. Proceeding as in the proof of (2), we replace n by n − 1 in (6) and subtract to get

bn(y, q) = (1 + y(1 − q))bn−1(y, q) + y(1 − q)(n − 2)bn−2(y, q) + qy
n−1
i=0


n − 1

i


bi(y, q)

− qy
n−2
i=0


n − 2

i


bi(y, q), n ≥ 2,

with b0(y, q) = 1 and b1(y, q) = y. Let B(x; y, q) =


n≥0 bn(y, q)
xn
n! . Multiplying this last recurrence by xn−1

(n−1)! , summing
over n ≥ 2, and differentiating with respect to x gives the relation

d2

dx2
B(x; y, q) = (1 + (1 − q)y + (1 − q)xy + qyex)

d
dx

B(x; y, q).

Since d
dxB(x; y, q) |x=0 = y, we get d

dxB(x; y, q) = yeqye
x
+(1−q)x2y/2+(1+y(1−q))x−qy. Formula (7) now follows from noting the

initial condition B(0; y, q) = 1. �

Corollary 2.17. If 1 ≤ m ≤ n, then the total number of occurrences of the subword 231 within all the members of Pn,m and Pn,
respectively, is given by

Sn+1,m − Sn,m − Sn,m−1 − (n − 1)Sn−1,m−1 −


n − 1
2


Sn−2,m−1

and

Bn+1 − 2Bn − (n − 1)Bn−1 −


n − 1
2


Bn−2.
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Proof. Differentiating the formula in (7) with respect to q gives

d
dq

B(x; y, q) |q=1 = y2
 x

0


et −

t2

2
− t − 1


ey(e

t
−1)+tdt

= y

ey(e

t
−1)+t

x
0
− y

 x

0
ey(e

t
−1)+tdt − y

 x

0


n≥0


Bn+1(y)


tn+2

2n!
+

tn+1

n!
+

tn

n!


dt

= 1 − y + yey(e
x
−1)+x

− ey(e
x
−1)

− y

n≥1


n − 1
2


Bn−2(y) + (n − 1)Bn−1(y) + Bn(y)


xn

n!

=


n≥1


Bn+1(y) − (1 + y)Bn(y) − (n − 1)yBn−1(y) −


n − 1
2


yBn−2(y)


xn

n!
.

Extracting the coefficient of xn
n! y

m gives the first formula. For the second, we set y = 1 and then extract the coefficient of xn
n! ,

or one may sum the prior result overm. �

It is possible to provide a bijective proof of Corollary 2.17 in the same way as for Corollary 2.7.

Combinatorial proof of Corollary 2.17. Suppose π ∈ Pn and Flatten(π) = π1π2 · · · πn. By a block ascent (or descent), we
will mean an index i ∈ [n − 1] such that πi < πi+1 (or, πi > πi+1, respectively) with πi+1 corresponding to the smallest
element of some block of π .

We prove the second statement, the first following in a similar manner upon fixing the number of blocks in a partition.
We first argue that the total number of block ascents within all of the members of Pn is given by (n − 1)Bn−1. To do so, we
will show for each j that there are Bn−1 members of Pn in which j corresponds to the second element of a block ascent for
2 ≤ j ≤ n. Suppose σ is a partition of the set [n] − {j}. If one adds j to the block of σ whose smallest element is largest
among all blocks of σ containing an element smaller than j and breaks the new block into two parts according to whether
or not an element is greater than or equal j, then one obtains a member of Pn in which j corresponds to the second letter of
a block ascent. Since this operation is seen to be reversible, it follows that there are Bn−1 such members of Pn, as desired.

Next, observe that since each block of a partition but the first is involved in a block ascent or descent with its predecessor,
we have

tot(block descents) + tot(block ascents) = tot(blocks) − (# of members of Pn),

where tot denotes the sum total of the values of the indicated statistic taken over all the members of Pn. Note that the total
number of blocks in Pn is Bn+1 −Bn. To see this, suppose π ∈ Pn+1, with the element n+1 not occurring as a singleton block.
Removing n+ 1 from its block within π and then circling this block results in an arbitrary member of Pn in which one of the
blocks is distinguished. We then get by subtraction that there are Bn+1 − 2Bn − (n− 1)Bn−1 block descents within all of the
members of Pn, since the total number of block ascents is (n − 1)Bn−1.

Finally, note that a block descent corresponds to either an occurrence of the 231 or 132 subword in the flattened sense.
Thus, we have

tot(231) + tot(132) = tot(block descents) = Bn+1 − 2Bn − (n − 1)Bn−1,

from which the result now follows by means of Corollary 2.7. �

In analogy to Theorem 2.8, we have the following result.

Theorem 2.18. The number of occurrences of 231 is equidistributed with the number of blocks of size greater than 2 not
containing 1. The joint distributions of these statistics with the number of blocks are also identical.

Moreover, the following central limit theorem holds in analogy to Theorem 2.12.

Theorem 2.19. The number of occurrences of 231 in a randomly chosen set partition of [n] asymptotically follows a normal
distribution with mean µn ∼ n/ log n and variance σ 2

n ∼ n/(log n)2.

Proof. The generating function
n≥0

bn+1(1, q)
xn

n!
= eqe

x
−(q−1)x2/2−(q−2)x−q

satisfies the conditions of Theorem 2.9 with θ0(r) = e−2r/5 and r = r(n, q) defined by qrer = n+ 1, and this is uniform in q
(restricted to any compact subinterval of (0, ∞)). One obtains

bn+1(1, q) ∼ n! ·
eqe

r
−(q−1)r2/2−(q−2)r−q

rn
√
2πqr(r + 1)er

= (n + 1)! ·
eqe

r
−(q−1)r2/2−(q−1)r−q

qrn+1
√
2π(n + 1)(r + 1)

,
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and replacing n by n − 1 we get

bn(1, q) ∼ n! ·
eqe

r
−(q−1)r2/2−(q−1)r−q

qrn
√
2πn(r + 1)

,

where r is implicitly defined by qrer = n. This makes it possible to apply Theorem 2.11 again. Implicit differentiation can be
used to obtain d

dq r(n, q)

q=1

and higher-order derivatives, and the mean and variance are found to be

µn ∼
n
r


q=1

∼
n

log n

and

σ 2
n ∼

n
r(1 + r)


q=1

∼
n

(log n)2
. �

2.3. The case 123

Let dn(q) denote the distribution on Pn for the number of occurrences of the subword 123.

Lemma 2.20. If n ≥ 2, then

dn(q) = 2qn−2
+ (n − 2)qn−3

+

n−2
i=1

qi−2

q2 − 1 +


n − 1
i − 1


dn−i(q), (8)

with d0(q) = d1(q) = 1.

Proof. Abbreviate dn(q) by dn. If 1 ≤ i ≤ n, then let dn,i = dn,i(q) be the distribution for the number of occurrences of 123 on
themembers of Pn whose first block has size i. Note first that for n ≥ 2, we have an,n = qn−2 and an,n−1 = qn−2

+(n−2)qn−3.
Furthermore, if n ≥ 3 and 1 ≤ i ≤ n − 2, then

dn,i = qidn−i + qi−2


n − 1
i − 1


− 1


dn−i. (9)

To show (9), note that the first term on the right-hand side gives the contribution of those π ∈ Pn whose first block B is
{1, 2, . . . , i}. Since the letters directly following B in Flatten(π) are i + 1, a for some a > i + 1, we see that each letter in B
starts an occurrence of a 123 subword, whence the factor of qi. If i ≥ 2 and B is any other i-element set containing 1, then
only the first i − 2 letters of B can start an occurrence of 123 since in this case there would be a descent in Flatten(π) at
index i. Thus, the weight in this case will be qi−2

n−1
i−1


− 1


dn−i, which gives (9). Recurrence (8) now follows from (9) and

the fact dn =
n

i=1 dn,i. �

We see from (8) that dn(0) = (n − 2)dn−2(0) if n ≥ 4. Since d2(0) = 2 and d3(0) = 1, we get the following result.

Corollary 2.21. If n ≥ 1, then the number of members of P2n+1 which avoid the subword 123 in the flattened sense is given by
(2n − 1)!! and the number of such members of P2n is given by 2(2n − 2)!!.

For a combinatorial explanation of this result, first note that if π ∈ P2n+1 avoids 123 in the flattened sense, then all the
blocks of π must be doubletons, with the exception of the final block, which is a singleton. If 1 ≤ i ≤ n, then there are
2n + 1 − 2i choices for the larger element in the ith doubleton since it cannot be any one of the 2i − 1 elements of [2n + 1]
that have already been used nor can it be the smallest element yet to be used (the latter requirement in order to avoid 123).
Thus, there are

n
i=1(2n+1−2i) = (2n−1)!! choices regarding the elements comprising the doubleton blocks of π , which

determines the element lying in the final block. If π ∈ P2n, by the same reasoning, there are
n−1

i=1 (2n − 2i) = (2n − 2)!!
choices for the first n − 1 blocks of π , which must all be doubletons, with the remaining two elements either belonging to
the same block or separate blocks. �

Let D(x; q) =


n≥0 dn(q)
xn
n! denote the egf for the sequence dn(q).

Theorem 2.22. We have

D(x; q) = 1 +

 x

0


e2qt−t/q−1/q2+eqt/q2

+ 2(1 − q)e2qt−t/q+eqt/q2
 t

0
e−2qr+r/q−eqr /q2dr


dt. (10)
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Proof. First note that (8) may be rewritten as

dn(q) = 2qn−2
+ (n − 2)qn−3

+ (1 − 1/q2)
n−1
i=2

qn−idi(q) +
1
q2

n−1
i=2

qn−i

n − 1

i


di(q). (11)

To eliminate the sum
n−1

i=2 qn−idi(q) in (11), we consider the difference dn(q) − qdn−1(q), which gives us

dn(q) − qdn−1(q) = qn−3
+ (q − 1/q)dn−1(q) +

1
q2

n−1
i=2

qn−i

n − 1

i


di(q) −

1
q2

n−2
i=2

qn−i

n − 2

i


di(q),

which may be rewritten as

dn(q) = (2q − 1/q)dn−1(q) +
1
q

n−1
i=0

qn−1−i

n − 1

i


di(q) −

n−2
i=0

qn−2−i

n − 2

i


di(q), n ≥ 3,

with d0(q) = d1(q) = 1 and d2(q) = 2. Multiplying this last recurrence by xn−1

(n−1)! , summing over n ≥ 3, and differentiating
with respect to x yields the relation

d2

dx2
D(x; q) = (2q − 1/q + eqx/q)

d
dx

D(x; q) + 2(1 − q).

The preceding differential equation is first order linear in the quantity d
dxD(x; q) satisfying the condition d

dxD(x; q) |x=0 = 1,
which implies

d
dx

D(x; q) = e2qx−x/q−1/q2+eqx/q2
+ 2(1 − q)e2qx−x/q+eqx/q2

 x

0
e−2qt+t/q−eqt/q2dt. (12)

Formula (10) now follows from noting the initial condition D(0; q) = 1. �

Let B∗
n denote the complementary Bell number determined by e1−ex

=


n≥0 B
∗
n
xn
n! ; see the paper by Rao Uppuluri and

Carpenter [17] and entry A000587 in [20].

Corollary 2.23. If n ≥ 1, then the total number of occurrences of the subword 123 within all the members of Pn is given by

2(n − 1)Bn−1 + (n + 3)Bn − 2Bn+1 + 2
n−1
i=1

i−1
j=0

(−1)i−j

n − 1

i


i − 1
j


Bn−iB∗

j .

Proof. Differentiating under the integral sign in (10) gives

d
dq

D(x; q) |q=1 =

 x

0


(t − 2)et + 3t + 2


ee

t
+t−1dt − 2

 x

0
ee

t
+t
 t

0
e−er−r dr dt.

The first integral may be computed as before in Corollary 2.17 and yields x

0


(t − 2)et + 3t + 2


ee

t
+t−1dt =


n≥1

(2(n − 1)Bn−1 + (n + 3)Bn − 2Bn+1)
xn

n!
.

As for the second integral, we have x

0
ee

t
+t
 t

0
e−er−rdrdt =

 x

0
ee

t
+t−1

 t

0
e1−er−rdrdt

=

 x

0
ee

t
+t−1

 t

0


j≥0

vj
r j

j!
drdt =

 x

0


i≥0

Bi+1
t i

i!
·


j≥1

vj−1
t j

j!
dt

=


n≥1


n−1
i=1


n − 1

i


vi−1Bn−i


xn

n!
,

where vi =
i

j=0(−1)i−j
i
j


B∗

j . Combining this with the previous integral gives the desired result. �

Since the exact formula for the total number of occurrences of 123 is rather complicated, it is desirable to have an asymptotic
formula as well.
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Corollary 2.24. The total number of occurrences of the subword 123 within all the members of Pn is given by

2nBn−1 + (n − A + 3)Bn − 2Bn+1 + o(Bn),

where the constant A is

2


∞

0
e1−er−r dr ≈ 0.807305.

Remark 2.25. In particular, this implies that the average number of occurrences is n − 2n/ log n + o(n/ log n).

Proof. We can focus on the part

−2
 x

0
ee

t
+t
 t

0
e−er−r dr dt

of the generating function, since we have exact formulas for the rest. Integration by parts yields x

0
ee

t
+t
 t

0
e−er−r dr dt = ee

x
 x

0
e−er−r dr −

 x

0
e−t dt

= ee
x
 x

0
e−er−r dr + e−x

− 1.

Clearly, the part e−x
− 1 only contributes O(1). For the rest, we can use a general result recently proven in [1]: namely, if g

is an entire function in the complex plane with g(z) = O(ee
(1−ϵ)|z|

) for some ϵ > 0 as |z| → ∞, then the coefficients of

F(x) = ee
x
 x

0
e−et g(t) dt

satisfy

[xn]F(x) = Bn


C + O(e−κn/ log2 n)


,

where C =


∞

0 e1−et g(t) dt and κ is a positive constant. The function g(x) = e−x satisfies this condition, so we can apply
this result to our situation. Putting everything together yields the desired statement. �

We conclude this section with a central limit theorem for the number of occurrences.

Theorem 2.26. The number of occurrences of 123 in a randomly chosen set partition of [n] asymptotically follows a normal
distribution with mean µn ∼ n(1 − 2/ log n) and variance σ 2

n ∼ 4n/(log n)2.

Proof. Once again, wemake use of the saddle pointmethod and the quasi-power theorem (Theorems 2.9 and 2.11). One can
argue as in [1] to show that the integral in the generating function (12) can be extended to the range (0, ∞) at the expense
of a small error term in the coefficients (cf. the proof of Corollary 2.24). We are then left with the analysis of the generating
function

e2qx−x/q+eqx/q2

e−1/q2

+ 2(1 − q)


∞

0
e−2qt+t/q−eqt/q2dt


.

The second factor only depends on q, and we can apply Theorem 2.9 to the first factor, with θ0(r) = e−2r/5 as before and
r = r(n) defined implicitly by reqr = qn. Since the remaining steps are analogous to Theorems 2.12 and 2.19, we omit the
details to avoid repetition. �

Remark 2.27. The central limit theorems for the patterns 132, 231 and now 123 have the following intuitive interpretation:
the pattern 123 occurs everywhere inside of blocks and only very rarely at the border between blocks, so the number of its
occurrences is essentially n minus twice the number of blocks (which is well-known to be normally distributed with mean
Bn+1/Bn ∼ n/ log n and variance ∼ n/(log n)2, see [5, Proposition IX.20]). At the border between blocks, we typically have a
descent, and the pattern 231 occurs far more frequently than 132, so that its number follows almost the same distribution
as the number of blocks.

3. Avoiding 312 or 213 and the kernel method

In this section, we consider the cases 312 and 213 and the problem of enumerating the members of Pn avoiding either
pattern. Here, we make use of ordinary generating functions and the kernel method to deal with these apparently more
difficult cases, and our arguments do not seem to extend to the more general subword counting problem for these patterns.
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3.1. The case 312

We seek to enumerate the members of Pn which avoid the pattern 312 in the flattened sense. To do so, we refine part of
the set in question as follows. Given 2 ≤ i < j ≤ n, let an,i,j count the members of Pn avoiding 312 whose first block has
size at least three, with i the second element of the first block and j the last element of this block. Given 2 ≤ i ≤ n, let bn,i
count the members of Pn avoiding 312 whose first block has size two and second letter i. For example, we have a5,2,4 = 3,
the enumerated partitions being 124/35, 124/3/5 and 1234/5, and b6,4 = 3, the partitions being 14/25/36, 14/25/3/6 and
14/256/3.

Let an denote the number of members of Pn avoiding 312 in the flattened sense. From the definitions, we have upon
considering the size of the first block the relation

an = an−1 +


i

bn,i +

i,j

an,i,j, n ≥ 3, (13)

with a1 = 1 and a2 = 2.
The arrays an,i,j and bn,i may be determined recursively as follows.

Lemma 3.1. The arrays an,i,j and bn,i can assume non-zero values only when 2 ≤ i < j ≤ n and 2 ≤ i ≤ n. They satisfy the
recurrences

an,i,j = bn−1,j−1 +

j−2
r=i

an−1,r,j−1, 2 ≤ i < j ≤ n, (14)

and

bn,i =

n−2
r=i−1

bn−2,r +

n−2
r=i−1

n−2
j=r+1

an−2,r,j, 4 ≤ i ≤ n, (15)

along with the conditions b2,2 = 1 and bn,2 = bn,3 = an−2 if n ≥ 3.

Proof. The first statement is clear from the definitions. Let An,i,j and Bn,i denote the subsets of Pn whose members are
enumerated by an,i,j and bn,i, respectively. Suppose π ∈ An,i,j. Then the second letter of the first block is extraneous
concerning the avoidance of the 312 subword since it is followed by a larger letter. Deletion of this letter then leads to
a member of Bn−1,j−1 (upon relabeling elements) if the first block has cardinality three, or to a member of ∪

j−2
r=i An−1,r,j−1

if it has cardinality four or more, which implies (14). Now suppose π ∈ Bn,i, where 4 ≤ i ≤ n. Note that (15) holds
when i = n, by the convention for empty sums, since if n ≥ 4 and if the first block of π is {1, n}, then the letter n always
starts an occurrence of 312 in Flatten(π). If 4 ≤ i < n, then the first block of π being {1, i} implies that the second block
must contain at least two elements and start with 2, s, where s > i (for otherwise, there would be an occurrence of 312).
Deletion of the first block of π then leads to a member of ∪n−2

r=i−1 Bn−2,r if the second block has size two, or to a member of
∪

n−2
r=i−1 ∪

n−2
j=r+1 An−2,r,j if it has size greater than two, which implies (15). Finally, if the first block of π is {1, 2} or {1, 3}, then

both letters in this block are extraneous concerning the avoidance of 312, and deletion of this block leads to an arbitrary
partition of length n − 2 avoiding 312, which implies bn,2 = bn,3 = an−2 if n ≥ 3. �

Let Ln, n ≥ 1, denote sequence A005773 in [20] which has generating function
n≥1

Lnxn =
3x − 1 +

√
1 − 2x − 3x2

2(1 − 3x)
.

Note that Ln counts, among other things, the number of directed animals of size n and the number of lattice paths of length
n − 1 using (1, 1), (1, 0), and (1, −1) steps which start at the origin and stay above the x-axis.

The following result provides an apparently new combinatorial interpretation of this sequence.

Theorem 3.2. If n ≥ 1, then the number of members of Pn which avoid the subword 312 in the flattened sense is given by Ln.

Proof. We first determine some recurrences satisfied by the generating functions for the arrays given in Lemma 3.1.
Multiplying both sides of (14) by various factors and adding as the usual first step leads to complications later on. Instead,
we start the problem by replacing iwith i + 1 in (14), and then subtract to get

an,i+1,j − an,i,j = −an−1,i,j−1, 2 ≤ i < j − 1 ≤ n − 1, (16)

with an,j−1,j = bn−1,j−1 if 3 ≤ j ≤ n. We now consider the sum an,i =
n

j=i+1 an,i,j, where 2 ≤ i ≤ n − 1, and treat its
recurrence instead of dealing with (16) directly, which again seems to be too difficult. Put an,i = 0 if i < 2 or i > n−1. Note
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that

an = an−1 +

n−1
i=2

an,i +
n

i=2

bn,i, n ≥ 2, (17)

with a1 = 1. We seek to find an.
Summing both sides of (16) over j ≥ i + 2 yields

an,i+1 = an,i − bn−1,i − an−1,i, 2 ≤ i ≤ n − 2, (18)

with an,2 = an−1 − an−2, an,n−1 = bn−1,n−1, and bn,2 = an−2 if n ≥ 3.
Replacing i with i + 1 in (15), and subtracting, gives

bn,i+1 − bn,i = −bn−2,i−1 −

n−2
j=i

an−2,i−1,j

= −bn−2,i−1 − an−2,i−1, 4 ≤ i ≤ n − 1, (19)

with bn,3 = an−2 if n ≥ 3 and bn,n = 0 if n ≥ 4. Now let an(u) =
n−1

i=2 an,iui if n ≥ 3 and bn(u) =
n

i=2 bn,iu
i if n ≥ 2.

Multiplying both sides of (18) by ui+1, and summing over 2 ≤ i ≤ n − 2, yields

an(u) − (an−1 − an−2)u2
= u(an(u) − an,n−1un−1) − u(bn−1(u) − bn−1,n−1un−1) − uan−1(u),

which may be rewritten as

(1 − u)an(u) − (an−1 − an−2)u2
= −u(an−1(u) + bn−1(u)), n ≥ 4. (20)

Note that (20) is also seen to hold for n = 3. Multiplying both sides of (19) by ui+1, and summing over 4 ≤ i ≤ n − 1, yields

(bn(u) − an−2u2(1 + u) − bn,4u4) − u(bn(u) − an−2u2(1 + u))

= −u2(bn−2(u) − an−4u2) − u2(an−2(u) − (an−3 − an−4)u2), n ≥ 5.

Using (15) with i = 4, or by direct combinatorial reasoning, one has bn,4 = an−2 − 2an−3 if n ≥ 4 so that the last equation
may be rewritten as

(1 − u)bn(u) − an−2u2
+ an−3u4

= −u2(an−2(u) + bn−2(u)), n ≥ 5, (21)

which is also seen to hold for n = 4.
Let g(x; u) =


n≥3 an(u)x

n and h(x; u) =


n≥2 bn(u)x
n. Multiplying both sides of (20) by xn, and summing over n ≥ 3,

yields

(1 − u)g(x; u) − u2

n≥3

(an−1(1) + bn−1(1))xn = −xu(g(x; u) + h(x; u)),

where we have used (17). The last equation may be rewritten as

(1 − u + xu)g(x; u) + xuh(x; u) = xu2(g(x; 1) + h(x; 1)). (22)

Let f (x) =


n≥1 anx
n. Multiplying both sides of (21) by xn, and summing over n ≥ 4, yields

(1 − u)(h(x; u) − x2u2
− x3(u2

+ u3)) − x2u2(f (x) − x) + x3u4f (x) = −x2u2(g(x; u) + h(x; u)).

Using (17), one can show that

f (x) =
g(x; 1) + h(x; 1) + x

1 − x
. (23)

Substituting (23) into the equation preceding it, and simplifying, gives

x2u2g(x; u) + (1 − u + x2u2)h(x; u) =
x2u2(1 − xu2)(g(x; 1) + h(x; 1))

1 − x
+

x2u2(1 − u + xu − xu2)

1 − x
. (24)

We now wish to solve for the quantity g(x; 1) + h(x; 1) in the system of functional equations (22) and (24). Solving for
g(x; u) in (24), and substituting into (22), gives

(1 − u + xu)


−
1 − u + x2u2

x2u2
h(x; u) +

(1 − xu2)(g(x; 1) + h(x; 1))
1 − x

+
1 − u + xu − xu2

1 − x


+ xuh(x; u) = xu2(g(x; 1) + h(x; 1)). (25)
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We now solve (25) using the kernel method (see [9]). Substituting

u0 = u0(x) =
1 − x −

√
1 − 2x − 3x2

2x2

for u in (25) cancels out the coefficient of h(x; u) and implies

g(x; 1) + h(x; 1) =
(1 − u0 + xu0)

2
− xu2

0(1 − u0 + xu0)

xu2
0(1 − x) − (1 − xu2

0)(1 − u0 + xu0)
. (26)

We can simplify the expression in (26). To do so, first observe that u0 is a root of the quadratic equation x2u2
+(x−1)u+1 = 0

and hence 1 − u0 + xu0 = −x2u2
0. Therefore, by (26), we have

g(x; 1) + h(x; 1) =
x4u4

0 + x3u4
0

xu2
0(1 − x) + x2u2

0(1 − xu2
0)

=
(1 + x)x2u2

0

1 − x2u2
0

=
(1 − x2)u0 − (1 + x)

2 − (1 − x)u0

=
2x2 − x2(1 − x)u0

1 − 3x
,

where the last equality can be shown by cross-multiplying and using the relation x2u2
0 = (1 − x)u0 − 1. Thus, we have

f (x) =
g(x; 1) + h(x; 1) + x

1 − x
=

2x2 − x2(1 − x)u0

(1 − x)(1 − 3x)
+

x
1 − x

=
1

1 − x


−

1 + x
2

+
(1 − x)(1 − x − 2x2u0)

2(1 − 3x)


+

x
1 − x

= −
1 + x

2(1 − x)
+

√
1 − 2x − 3x2

2(1 − 3x)
+

x
1 − x

=
3x − 1 +

√
1 − 2x − 3x2

2(1 − 3x)
=


n≥1

Lnxn,

which completes the proof. �

Remark 3.3. A standard application of the Flajolet–Odlyzko singularity analysis (see [5, Section VI]) shows that

Ln ∼
1

√
3πn

· 3n
;

that is, the number of 312-avoiding set partitions only grows exponentially, in contrast to all the cases studied in Section 2.

3.2. The case 213

Let an,i,j, bn,i, and an be just as in the preceding subsection butwith the pattern 312 replaced by 213. Note that the relation
(13) continues to hold in this case. Here the arrays are determined recursively as follows.

Lemma 3.4. The arrays an,i,j and bn,i can assume non-zero values only when 2 ≤ i < j ≤ n and 2 ≤ i ≤ n. They satisfy the
recurrences

an,i,j = bn−1,j−1 +

j−2
r=i

an−1,r,j−1, 2 ≤ i < j ≤ n, (27)

and

bn,i = an−3 +

i−2
r=2

bn−2,r +

i−2
r=2

n−2
j=r+1

an−2,r,j, 4 ≤ i ≤ n, (28)

along with the conditions bn,2 = an−2 and bn,3 = δn,3 if n ≥ 3 and b2,2 = 1.

Proof. The proof is similar to that of Lemma 3.1 above. Note that in this case we have bn,3 = δn,3 since if {1, 3} is the first
block of a partition of size nwith n ≥ 4, then the 3 is always the first letter in an occurrence of 213. For (28), observe that if
4 ≤ i ≤ n, then the right-hand side is seen to count partitions according to whether the second block has size one, two, or
greater than two. Note that the right-hand side of (28) reduces to an−2 in the case when i = n. �

The generating function f (x) =


n≥1 anx
n which counts all the partitions of size n avoiding 213 in the flattened sense is

determined by a functional equation.



2004 T. Mansour et al. / Discrete Mathematics 338 (2015) 1989–2005

Theorem 3.5. We have

f (x) =
x(1 − x)u0

2 − u0
+

xu0

2 − u0
f (xu0), (29)

where u0 = u0(x) =
x−1+

√
1−2x+5x2

2x2
.

Proof. We proceed as in the prior case. Replacing i with i + 1 in (27), and subtracting, gives

an,i+1,j − an,i,j = −an−1,i,j−1, 2 ≤ i < j − 1 ≤ n − 1,

which implies

an,i+1 = an,i − an−1,i − bn−1,i, 2 ≤ i ≤ n − 2, (30)

where an,i =
n

j=i+1 an,i,j. Replacing i with i + 1 in (28), and subtracting, gives

bn,i+1 = bn,i + an−2,i−1 + bn−2,i−1, 4 ≤ i ≤ n − 1. (31)

If g(x; u) and h(x; u) are defined analogously as before, then (30) and (31) lead to the functional equations

(1 − u + xu)g(x; u) + xuh(x; u) = xu2((1 − x)f (x) − x) (32)

and

− x2u2g(x; u) + (1 − u − x2u2)h(x; u) = x2u2(1 − u + xu2)f (x) − x2u3f (xu) + x2u2(1 − u + xu). (33)

Solving for g(x; u) in (33), and substituting into (32), gives a functional equation involving the quantities h(x; u), f (x), and
f (xu). Replacing uwith u0 in this equation, where u0 is as defined above, cancels out the coefficient of h(x; u) and yields

(1 − u0 + xu0)(u0 − 1 − xu2
0)f (x) + (1 − u0 + xu0)u0f (xu0) − (1 − u0 + xu0)

2
= x(1 − x)u2

0f (x) − x2u2
0.

Since x2u2
0 = 1 − u0 + xu0, this last equation simplifies to

x(u0 − 1 − xu2
0)f (x) + xu0f (xu0) − x3u2

0 = (1 − x)f (x) − x,

which reduces further to

(u0 − 2)f (x) + xu0f (xu0) = x(x − 1)u0. �

Remark 3.6. Note that letting u0 =
z
x in x2u2

0 = 1 − u0 + xu0 gives x = z/(1 + z − z2) and u0 = 1 + z − z2. Substituting
this into (29) yields the following alternate form involving only rational functions:

f (z) =
1 − z + z2

z
f


z
1 + z − z2


−

1 − z2

1 + z − z2
.

Functional equations involving composite functions f (g(z)) (such as f (z/(1+ z− z2)) in this case) can sometimes be solved
by means of the Riordan group [18], but this does not seem to be the case here. The main difficulty on an analytic level is
the fact that the radius of convergence of f is 0, making complex-analytic methods as in the other cases inapplicable.

4. Conclusion

Let us summarize the results obtained and compare the behavior observed for the different patterns, starting with the
number of set partitions avoiding a certain pattern as a subword in the flattened sense.

Pattern Number of set partitions of [n] avoiding the pattern

123 (n − 2)!! (n odd), 2(n − 2)!! (n even) — Corollary 2.21
132 ∼Bn exp


−(log n)2/2 + o((log n)2)


— Theorem 2.10

213 Unknown — generating function determined by Theorem 3.5
231 ∼

1
√
2n

· nn/2e2
√
n−n/2−1 — Theorem 2.15

312 ∼
1

√
3πn

· 3n — Remark 3.3
321 All set partitions, Bn ∼ exp(n log n − n log log n − n + o(n)) — Proposition 2.1

The table shows that the asymptotic behavior varies quite a lot: as n goes to infinity, we get the following chain of inequal-
ities, where f (pat)

n is the number of pat-free set partitions of [n]:

f 321n > f 132n > f 231n > f 123n > f 312n .

It would be very interesting to determine where f 213n fits in. Numerically, it seems to be between f 321n and f 132n .
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We also obtained results on the number of occurrences of four different patterns. As Proposition 2.1 shows, 321 never
occurs. For three other patterns, we were able to show that the number of occurrences asymptotically follows a normal
distribution:

• 132: mean ∼ (log n)2/2, variance ∼ (log n)2/2 (Theorem 2.12),
• 231: mean ∼ n/ log n, variance ∼ n/(log n)2 (Theorem 2.19),
• 123: mean ∼ n(1 − 2/ log n), variance ∼ 4n/(log n)2 (Theorem 2.26).

Similar results can be expected for the patterns 213 and 312, but it is not at all clear how to obtain them and what the order
of magnitude of the mean and variance will be.
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