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a b s t r a c t

A Pk-decomposition of a graph G is a set of edge-disjoint paths with k edges that cover the
edge set of G. Kotzig (1957) proved that a 3-regular graph admits a P3-decomposition if
and only if it contains a perfect matching. Kotzig also asked what are the necessary and
sufficient conditions for a (2k+1)-regular graph to admit a decomposition into paths with
2k + 1 edges. We partially answer this question for the case k = 2 by proving that the
existence of a perfect matching is sufficient for a triangle-free 5-regular graph to admit
a P5-decomposition. This result contributes positively to the conjecture of Favaron et al.
(2010) that states that every (2k+1)-regular graphwith a perfectmatching admits a P2k+1-
decomposition.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, the term decomposition always refer to an edge-decomposition of a graph. Given a graph G = (V , E), a
graph decomposition of G is a set of edge-disjoint subgraphs of G that cover E. The problem of finding decompositions of
graphs into subgraphs of certain types is a classical problem in graph theory that traces back to the late 19th century. One of
the earliest results of this nature is a theorem of Petersen (1891) that states that every 2k-regular graph can be decomposed
into 2-factors. Many surveys and books on this topic have appeared in the literature, among which the reader may refer
to [1,4,8,12,17–20].

In general, finding or deciding the existence of some nontrivial graph decomposition is a hard problem, and much effort
has been devoted to studying decompositions of particular classes of graphs into some classes of subgraphs. If we restrict
our attention to decompositions of arbitrary graphs into cycles or paths, we come across many interesting conjectures and
to the following old and elegant result of Lovász [27].

Theorem 1.1 (Lovász). Every n-vertex graph can be decomposed into at most ⌊n/2⌋ paths and cycles.

In fact, according to Lovász [27], in 1966 Gallai conjectured that every n-vertex connected graph admits a decomposition
into at most ⌈n/2⌉ paths, and Hajós conjectured that any Eulerian graph can be decomposed into at most ⌊n/2⌋ cycles. We
also refer to Bondy [3] for these and other conjectures. Looking for asymptotic results, Erdős and Gallai [13,14] conjectured
that every n-vertex graph can be decomposed into O(n) cycles and edges. Many researchers have obtained partial results on
these conjectures (see [9,10,15]).
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Decompositions of regular graphs have been extensively investigated in the last decades, mostly restricted to
decompositions into paths of fixed length.We denote by Pk (resp. Ck) a path (resp. cycle) of length k, that is, with k edges. (We
observe that this notation is not so standard.) Jacobson, Truszczyński and Tuza [22] proved that every 4-regular bipartite
graph admits a P4-decomposition. For other results concerning 2k-regular graphs and cartesian products of regular graphs,
the reader is referred to [24,29]; and for results on decompositions of regular graphs with large girth, we mention Kouider
and Lonc [26].

Kotzig [25] proved that a 3-regular graph G admits a P3-decomposition if and only if G contains a perfect matching. In
fact, Kotzig proved a slightly stronger result (on two P3-decompositions). The proof used by Kotzig is presented by Bouchet
and Fouquet [7]. This result was generalized by Jaeger, Payan, and Kouider [23], who proved that a (2k + 1)-regular graph
that contains a perfect matching can be decomposed into bistars. In another direction, Heinrich, Liu and Yu [21] proved that
every 3m-regular graph without cut-edges admits a P3-decomposition. Kotzig asked what are the necessary and sufficient
conditions for a (2k + 1)-regular graph G to be decomposable into paths of length 2k + 1. A necessary condition is that G
must contain a k-factor. Favaron, Genest, and Kouider [16] proved that this condition is not sufficient. For k = 2 (that is, for
a 5-regular graph), Favaron, Genest, and Kouider [16] proved that it is sufficient that G contains a perfect matching and no
cycles of length four to admit a P5-decomposition. Here we prove that every triangle-free 5-regular graph that contains a
perfect matching admits a P5-decomposition.

This paper is organized as follows. In Section 2 we give some definitions and establish the notation. In Section 3 we
show that triangle-free 5-regular graphs containing a perfect matching admit a decomposition into copies of P5 and some
specific trails T5 with five vertices. Section 4 contains some lemmas which enable us to reduce the number of copies of T5
and increase the number of copies of P5, obtaining a decomposition closer to the desired one. In Section 5 we use the results
obtained in Sections 3 and 4 to obtain a P5-decomposition.

2. Basic definitions and notation

The basic terminology and notation used in this paper are standard (see [2,11]). Amixed graph is a simple graph in which
some edgesmay receive an orientation.More precisely, it is a triple Ḡ = (V , E, A) consisting of a vertex set V , an (undirected)
edge set E and a directed edge set A, such that (V , E) is a simple graph and (V , A) is a simple directed graph; and furthermore,
no two distinct edges in E ∪ A have the same endpoints. Given a mixed graph Ḡ, we denote by V (Ḡ), E(Ḡ) and A(Ḡ), the sets
of vertices, undirected edges and directed edges of Ḡ, respectively. Let Â(Ḡ) be the underlying edge set of A(Ḡ), i.e., the set of
edges obtained by removing the orientation of the directed edges in A(Ḡ). We denote by G the underlying graph of Ḡ, i.e., G
is the graph such that V (G) = V (Ḡ) and E(G) = E(Ḡ) ∪ Â(Ḡ). We note that, in this paper all (mixed) graphs are simple.

Let Ḡ be a mixed graph. For ease of notation, we write simply ab to refer to an undirected edge {a, b} ∈ E or a directed
edge (a, b) ∈ A(Ḡ), and use the term edge to refer to an element that belongs to E(Ḡ) ∪ A(Ḡ). When the orientation of an
edge is relevant, we write ab ∈ A(Ḡ), or specify that ab is a directed edge. A mixed subgraph H̄ of Ḡ is a mixed graph such
that V (H̄) ⊆ V (Ḡ), E(H̄) ⊆ E(Ḡ) and A(H̄) ⊆ A(Ḡ). Given a set of mixed subgraphs H̄1, . . . , H̄k of Ḡ, we denote by

k
i=1 H̄i

the mixed subgraph H̄ =
k

i=1 V (H̄i),
k

i=1 E(H̄i),
k

i=1 A(H̄i)

.

We say that a mixed graph H̄ is a copy of a mixed graph Ḡ if H is isomorphic to G. A path P in Ḡ is a sequence of
distinct vertices P = v0v1 · · · vk such that vivi+1 is an edge in Ḡ, for i = 0, 1, . . . , k − 1. (Note that, possibly vi+1vi is a
directed edge, for some i in {0, . . . , k − 1}). For convenience, we will also consider that such a path P is a mixed graph with
V (P) = {v0, v1, . . . , vk} and E(P)∪A(P) = {v0v1, v1v2, . . . , vk−1vk}. The length of P is the number of edges in P . We denote
by Pk any path of length k, and we denote by Tk the graph (trail) that is obtained from a path v0v1 · · · vk−1 by the addition of
the edge vk−1v1. We refer to Tk simply as v0v1 · · · vk−1v1. If a mixed graph H̄ is a copy of Pk or Tk we also write H̄ = v0 · · · vk
or H̄ = v0 · · · vk−1v1, respectively.

We say that a set {H̄1, . . . , H̄k} of mixed graphs is a decomposition of a mixed graph Ḡ if
k

i=1 E(H̄i) = E(Ḡ),
k

i=1 A(H̄i) =

A(Ḡ), and furthermore E(H̄i) ∩ E(H̄j) = ∅ and A(H̄i) ∩ A(H̄j) = ∅ for all 1 ≤ i < j ≤ k. Let H be a family of graphs. An
H-decomposition D of Ḡ is a decomposition of Ḡ such that each element of D is isomorphic to an element of H . If H = {H}

we say that D is an H-decomposition.
In the next section we present a result that will allow us to explain the idea behind the proof of the main result, and will

also motivate the definitions given thereafter.

3. Canonical {P5, T5}-decomposition

In this section we show that a triangle-free 5-regular graph G that contains a perfect matching is the underlying graph
of a mixed graph Ḡ that admits a {P5, T5}-decomposition that has some special properties. The mixed graph Ḡwe shall deal
with is one obtained from G by assigning an orientation to the edges of each cycle of a given 2-factor F of G, obtaining a set
of directed cycles. We shall refer to such an orientation as an Eulerian orientation of F . In such a mixed graph, we say that
a copy v0v1 · · · v5 of P5 (resp. a copy v0v1 · · · v4v1 of T5) is canonical if its directed edges are precisely v1v0 and v4v5 (resp.
v1v0 and v2v1). If the Eulerian orientation of a 2-factor of G is called E , then we say that a {P5, T5}-decomposition DE of Ḡ is
E-canonical, or simply canonical, if each element of DE is canonical.

We will need the following two well-known results.
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(a) A TP-couple in position 1. (b) A TP-couple in position 2.

Fig. 1. Examples of TP-couples.

Theorem 3.1 (Petersen [28]). Every 2k-regular graph contains a 2-factor.

Theorem 3.2 (Kotzig [25]). Every 3-regular graph containing a perfect matching admits a P3-decomposition.

Given a triangle-free 5-regular graph G containing a perfect matching, we use Theorem 3.1 to obtain a mixed graph Ḡ,
then we use Theorem 3.2 to show that Ḡ has a canonical {P5, T5}-decomposition.

Lemma 3.3. Let G be a triangle-free 5-regular graph containing a perfect matching. Then G is the underlying graph of a mixed
graph Ḡ such that A(Ḡ) induces a 2-factor that has an Eulerian orientation E , and Ḡ admits an E-canonical {P5, T5}-decomposition.

Proof. Let G be a triangle-free 5-regular graph containing a perfect matching M . Let G4 = G − M be the 4-regular graph
obtained from G by removing the edges of M . By Theorem 3.1, the graph G4 contains a 2-factor F . Let G3 be the 3-regular
graph G − E(F). Note thatM ⊆ E(G3), and thus, by Theorem 3.2, the graph G3 admits a P3-decomposition, say D3.

Let E be an Eulerian orientation of F , and let F⃗ be the directed graph induced by such an orientation. For each path P ∈ D3,
let xP and yP be the end vertices of P , and let xPxF⃗ and yPyF⃗ be the directed edges of F⃗ that leave xP and yP , respectively.

Consider themixed graph Ḡ =

V (G), E(G3), A(F⃗)


(note that G is the underlying graph of Ḡ) and let P = xPvPwPyP be an

element of D3, i.e., a path of length three in G3. We claim that QP = xF⃗xPvPwPyPyF⃗ is either isomorphic to P5 or to T5. Note
that, since Ḡ contains nomultiple edges, we have yF⃗ ≠ wP , and if yF⃗ = xP then xF⃗ ≠ yP . Moreover, sinceG is triangle-free, we
have yF⃗ ≠ vP . By symmetry, analogous arguments hold for xF⃗ . Furthermore, since F⃗ is induced by the Eulerian orientation E ,
we have yF⃗ ≠ xF⃗ . Then, one of the following three cases occurs: (a) all vertices of Q̄P are distinct, (b) yF⃗ = xP , or (c) xF⃗ = yP .
In case (a),QP is a canonical copy of P5, and in case (b),QP is a canonical copy of T5. In these two cases, let Q̄P = QP . In case (c),
QP is isomorphic to the trail T = yF⃗yPwPvPxPyP , which is a canonical copy of T5, so in this case let Q̄P = T .

Let DE = {Q̄P : P ∈ D3}. Note that each vertex v ∈ V (G) is the endpoint of exactly one path P ∈ D3. This follows from
the fact that G3 is a 3-regular graph and therefore the set formed by all the intermediate edges of the paths in D3 is a perfect
matching of G3. Thus, the set DE decomposes Ḡ. Thus, by construction, DE is an E-canonical {P5, T5}-decomposition of Ḡ,
and the proof is complete. �

The idea behind the proof of our main result is to show that the canonical decomposition given by Lemma 3.3 has other
special properties, which will be used to ‘‘disentangle’’ pairs (or sequences) of T5 and P5, obtaining only P5s. For that, we
have to define some concepts to show how this disentanglement can be performed.

3.1. Couples in a {P5, T5}-decomposition

We say that a copy B̄ of T5 is well-oriented if we can label the vertices of B̄ such that B̄ = b0b1b2b3b4b1 and either
A(B̄) = {b2b1} or A(B̄) = {b2b1, b1b0}. In this case, the vertex b4 is called the connection-vertex of B̄, and is denoted by cv(B̄).

Let P̄ = v0v1v2v3v4v5 be a copy of P5 in amixed graph Ḡ.We say that P̄ is a roofed path in Ḡ if v4v1 is an edge of E(Ḡ)∪ Â(Ḡ).
Furthermore, we say that v4v1 is the roof of P̄ .

If B̄ is a subgraph of Ḡ and ab ∈ A(B̄) is such that the degree of vertex a in the underlying graph of B̄ is at least 2, then we
say that ab is an internal directed edge of B̄. Moreover, if B̄ is an element of a decomposition D , then we also say that ab is
internal to D .

Let Ḡ be a 5-regular mixed graph and let D be a {P5, T5}-decomposition of Ḡ. Given such a decomposition, it is very
important to understand how pairs of P5 and T5, or pairs of two T5’s appear in the decomposition, so that we can disentangle
them obtaining only P5s. The following definitions play special roles in this process.

Let (B̄, C̄) be a pair of elements of D , where B̄ is a well-oriented copy of T5, say b0b1b2b3b4b1, and C̄ is a copy of P5, say
c0c1c2c3c4c5. We say that (B̄, C̄) is a TP-couple of D if cv(B̄) ∈ {c1, c2, c3, c4} (possibly, B̄ and C̄ may have more common
vertices). If cv(B̄) ∈ {c1, c4}, thenwe say that (B̄, C̄) is a TP-couple in position 1, and if cv(B̄) ∈ {c2, c3}, thenwe say that (B̄, C̄)
is a TP-couple in position 2 (see Fig. 1). Now let D̄ be a well-oriented copy of T5, say w0w1w2w3w4w1, such that cv(D̄) = w4.
We say that (B̄, D̄) is a TT-couple ofD if cv(B̄) ∈ {w1, w2} (possibly, B̄ and D̄may havemore common vertices). If cv(B̄) = w1,
then we say that (B̄, D̄) is a TT-couple in position 1, and if cv(B̄) = w2, then we say that (B̄, D̄) is a TT-couple in position 2 (see
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(a) A TT-couple in position 1. (b) A TT-couple in position 2.

Fig. 2. Examples of TT-couples.

Fig. 2). Furthermore, if (B̄, X̄) is a couple, then we say that B̄ and X̄ are, respectively, the top and the base of (B̄, X̄). Hereafter,
whenever we refer to a couple, we mean either a TP-couple or a TT-couple.

Let Ḡ be a mixed 5-regular graph and D a {P5, T5}-decomposition of Ḡ. Let B̄ = b0b1b2b3b4b1 and C̄ = c0c1c2c3c4c5
be elements of D such that cv(B̄) = b4 = c1. We say that the TP-couple (B̄, C̄) is solvable if B̄+

= b0b1b2b3b4c0 and
C̄+

= b1c1c2c3c4c5 are edge-disjoint paths (of length five) in Ḡ. (Note that B̄+ is a roofed path in Ḡ and (B̄, C̄) is a TP-couple
in position 1.)

As a solvable TP-couple can be decomposed into two paths of length 5, it is of our interest to obtain {P5, T5}-
decompositions in which every TP-couple is solvable. Besides that, we need that other additional properties hold so that
we can disentangle all TT-couples. The next concept captures the properties that we need.

Definition 3.4. A {P5, T5}-decomposition D of a mixed graph Ḡ is called complete if the following three conditions hold.
(i) Every copy of T5 in D is well-oriented;
(ii) Every directed edge of Ḡ is internal to D;
(iii) Every TP-couple of D is solvable.

Let G be a graph with maximum degree 5, and suppose G is the underlying graph of a mixed graph Ḡ such that A(Ḡ)
induces a 2-factor with an Eulerian orientation. We remark that no element of a complete {P5, T5}-decomposition of Ḡ is the
top of more than one couple, or the base of more than two couples, otherwise Gwould contain vertices of degree at least 6.

Lemma 3.5. Let G be a triangle-free 5-regular graph containing a perfect matching. If G is the underlying graph of a mixed graph
Ḡ such that A(Ḡ) induces a 2-factor with an Eulerian orientation E , and Ḡ admits an E-canonical {P5, T5}-decomposition DE ,
then DE is complete.

Proof. Let G be a triangle-free 5-regular graph containing a perfect matching. Suppose that G is the underlying graph of
a mixed graph Ḡ such that A(Ḡ) induces a 2-factor with an Eulerian orientation E , and Ḡ admits an E-canonical {P5, T5}-
decomposition DE . We will prove that DE is a complete decomposition.

Items (i) and (ii) of Definition 3.4 follow from the fact that DE is E-canonical. Thus, we only have to prove that every
TP-couple of DE is solvable. Let (B̄, C̄) be a TP-couple of DE , where B̄ = b0b1b2b3b4b1, C̄ = c0c1c2c3c4c5. Note that we can
assume that cv(B̄) = b4 = c1 (or c4, by symmetry). In fact, suppose that b4 is c2 (or c3, by symmetry) and let e be the directed
edge leaving b4. Since C̄ is canonical, e is not in C̄ . Thus, let X̄ be the element of DE that contains e. Since, by item (ii), e is
internal, the vertex b4 would have degree six, a contradiction.

Note that, by (ii), C̄ is the element of D that contains the directed edge leaving b4. Thus, b4c0 is a directed edge of C̄ .
(Note that there is no TP-couple (B̄, D̄) with D̄ ≠ C̄ , otherwise we would have dG(b4) > 5. Thus, the outgoing edge of b4 has
to be a directed edge of C̄ , implying that there is no loss of generality assuming that b4 = c1). Hence, (B̄, C̄) is a TP-couple
in position 1. Since DE is E-canonical, B̄ contains precisely the directed edges b2b1 and b1b0, and C̄ contains precisely the
directed edges c1c0 and c4c5.

To conclude the proof that (B̄, C̄) is solvable, we have to show that B̄′
= b0b1b2b3b4c0 and C̄ ′

= b1c1c2c3c4c5 are edge-
disjoint paths in Ḡ. For that, it suffices to prove that c0 ∉ {b0, b1, b2, b3, b4} and b1 ∉ {c1, c2, c3, c4, c5}. Let us start by proving
that c0 ∉ {b0, b1, b2, b3, b4}. Since b4c0 ∈ A(C̄), we know that c0 ∉ {b1, b3, b4}, because B̄ and C̄ are edge-disjoint (and G is
simple). If c0 ∈ {b0, b2}, then the set {c0, b1, b4} induces a triangle, a contradiction.

Since b1c1 ∈ E(B̄), we know that b1 ∉ {c1, c2}. If b1 = c3, then the set {b1, c1, c2} induces a triangle in G, a contradiction.
Since A(Ḡ) induces a 2-factor with the Eulerian orientation E , every vertex of Ḡ is incident to exactly one ingoing edge and
one outgoing edge. Then, since the ingoing edge incident to b1 is an edge of B̄ (namely, b2b1), we know that b1 ≠ c5, otherwise
b1 would have two ingoing edges (c4b1 and b2b1). Finally, note that b1 ≠ c4, otherwise, b1 would have two outgoing edges
(b1b0 and b1c5). Therefore, we conclude that (B̄, C̄) is solvable, and hence the decomposition DE is complete. �

The following corollary, the main result of this section, follows directly from Lemmas 3.3 and 3.5.

Corollary 3.6. Let G be a triangle-free 5-regular graph containing a perfect matching. Then G is the underlying graph of a mixed
graph Ḡ such that A(Ḡ) induces a 2-factor with an Eulerian orientation, and Ḡ admits a complete {P5, T5}-decomposition.
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(a) A cycle of TT-couples in position 1. (b) A cycle of TT-couples in position 2.

Fig. 3. Examples of cycles of TT-couples.

4. Disentanglement of couples

Given a {P5, T5}-decomposition D of a mixed 5-regular graph Ḡ, we denote by τ(D) the number of copies of T5 in D . To
prove our main result, we start with a complete {P5, T5}-decomposition D of Ḡ and show that, if τ(D) ≠ 0, then TP-couples
and sets of TT-couples can be disentangled, yielding a pure P5-decomposition. As we will see, it is simpler to disentangle
TP-couples, but to deal with TT-couples, we have to introduce further definitions.

Let k ≥ 3 and let B̄1, . . . , B̄k be copies of T5 in D . We say that B̄1 · · · B̄k is a sequence of couples of D if (B̄i, B̄i+1) is a
TT-couple for 1 ≤ i ≤ k − 1. If (B̄k, B̄1) is also a TT-couple, then we say that B̄1 · · · B̄k is a cycle of couples of D . Furthermore,
if such a sequence (resp. cycle) is composed only by TT-couples in position i, then we say that it is in position i, for i = 1, 2
(see Fig. 3). A sequence (resp. cycle) of couples is calledmixed if it contains couples in positions 1 and 2.

The main results of this section are Lemmas 4.1, 4.2 and 4.6. Most of the subsequent proofs are easier understood by
drawing the (sequence or cycle of) couples of the given {P5, T5}-decomposition and redrawing the paths that we claim
to define a P5-decomposition. The reader may convince himself without following the detailed proofs. In these proofs, all
additions on the indices are taken modulo k.

We note that, although in this paper we are mainly interested in complete {P5, T5}-decompositions, some of the next
lemmas also hold for {P5, T5}-decompositions that are not necessarily complete (as in the case of Lemmas 4.1 and 4.4).

4.1. TP-couples in position 1

We shall prove that, under certain conditions, TP-couples (B̄, C̄) in position 1 are solvable.

Lemma 4.1. Let Ḡ be a triangle-free 5-regular mixed graph and let D be a {P5, T5}-decomposition of Ḡ. Let (B̄, C̄) be a TP-couple
of D in position 1. If C̄ is a roofed path in Ḡ such that its roof is not in B̄, then (B̄, C̄) is solvable.

Proof. Let Ḡ, D , and (B̄, C̄) be as stated in the hypothesis of the lemma. Suppose B̄ = b0b1b2b3b4b1, cv(B̄) = b4 = c1, and
C̄ = c0c1c2c3c4c5.

We have to prove that B̄′
= b0b1b2b3b4c0 and C̄ ′

= b1c1c2c3c4c5 are paths of length five. For that, it suffices to prove
that c0 ∉ {b0, b1, b2, b3, b4} and b1 ∉ {c1, c2, c3, c4, c5}.

Firstly, we prove that c0 ∉ {b0, b1, b2, b3, b4}. Since c0b4 is an edge of C̄ , we know that c0 ∉ {b1, b3, b4}, because B̄ and C̄
are edge-disjoint. If c0 ∈ {b0, b2}, then the set {c0, b1, b4} induces a triangle, a contradiction.

Since b1c1 is an edge of B̄, we know that b1 ∉ {c1, c2}. If b1 = c3, then the set {b1, c1, c2} induces a triangle, a contradiction.
If b1 = c4, then c1c4 is an edge of B̄, contradicting the fact that the roof of C̄ is not in B̄. If b1 = c5, then the set {b1, c4, c1}
induces a triangle, a contradiction. �

4.2. TT-couples in position 1

The next result shows that if a complete {P5, T5}-decomposition of a triangle-free 5-regular mixed graph contains a cycle
of TT-couples in position 1, then such a cycle can be decomposed into special copies of P5.

Lemma 4.2. Let Ḡ be a triangle-free 5-regular mixed graph and let D be a complete {P5, T5}-decomposition of Ḡ. If B̄1 · · · B̄k is
a cycle of TT-couples of D in position 1, then

k
i=1 B̄i admits a P5-decomposition P such that all directed edges of

k
i=1 B̄i are

internal to P .

Proof. Let Ḡ and D be as stated in the lemma. Let B̄1 · · · B̄k be a cycle of couples of D in position 1, where B̄i = bi,0bi,1
bi,2bi,3bi,4bi,1 and cv(B̄i) = bi,4 = bi+1,1 for 1 ≤ i ≤ k. For every 1 ≤ i ≤ k, let B̄′

i = bi,0bi,1bi,2bi,3bi,4bi+1,4. We shall prove
that {B̄′

1, . . . , B̄
′

k} is a P5-decomposition of
k

i=1 B̄i such that all directed edges of
k

i=1 B̄i are internal to {B̄′

1, . . . , B̄
′

k}.
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To prove that B̄′

i is a path of length five, it suffices to show that bi+1,4 ∉ {bi,4, bi,3, bi,2, bi,1, bi,0}. Since Bi and Bi+1 are
edge-disjoint, bi+1,4 ∉ {bi,4, bi,3, bi,1}. We also know that bi+1,4 ∉ {bi,2, bi,0}, otherwise {bi+1,4, bi,1, bi,4} would induce a
triangle. It is easy to check that, by the construction of B̄′

1, . . . , B̄
′

k, they are pairwise edge-disjoint, and all directed edges ofk
i=1 B̄i are internal to {B̄′

1, . . . , B̄
′

k}. �

4.3. TT-couples in position 2

The aim of this subsection is to prove Lemma 4.6, which is a version of Lemma 4.2 for TT-couples in position 2. Before we
state this lemma, we prove some auxiliary results.

Lemma 4.3. Let Ḡ be a triangle-free 5-regular mixed graph and let D be a complete {P5, T5}-decomposition of Ḡ. Then, for every
vertex v, there is exactly one element B ∈ D such that dB(v) is odd.

Proof. Let Ḡ = (V , E, A) and D be as stated in the claim. For each vertex v in V , let D(v) be the number of elements B of D
such that dB(v) is odd. As G is 5-regular, we have that D(v) ≥ 1.

Since each element D of D contains exactly two vertices of odd degree in D, we have that


v∈V D(v) = 2|D| = n.
Suppose there is a vertex x such that D(x) ≥ 2. Then, we have

n =


v∈V

D(v) = D(x) +


v∈V\{x}

D(v) ≥ 2 + n − 1 > n,

a contradiction. �

Lemma 4.4. Let Ḡ be a triangle-free 5-regular mixed graph and let D be a {P5, T5}-decomposition of Ḡ. If (B̄, C̄) is a TT-couple
of D in position 2, where B̄ = b0b1b2b3b4b1 and C̄ = c0c1c2c3c4c1, then B̄′

= b0b1b2b3b4c1 and C̄ ′
= c0c1c4c3c2b1 are roofed

paths in B̄ ∪ C̄ . Furthermore, all directed edges of B̄′ and C̄ ′ are internal.

Proof. Let Ḡ, D , and (B̄, C̄) be as stated in the lemma, with cv(B̄) = b4 = c2. Let B̄′
= b0b1b2b3b4c1 and C̄ ′

= c0c1c4c3c2b1.
We claim that B̄′ and C̄ ′ are roofed paths. Since b1b4 and c1c2 belong to E(Ḡ) ∪ A(Ḡ), we only have to prove that B̄′ and C̄ ′ are
paths, i.e., c1 ∉ {b0, b1, b2, b3, b4} and b1 ∉ {c0, c1, c2, c3, c4}.

Since c1b4 ∈ E(C̄), we know that c1 ≠ b4. Furthermore, c1 ∉ {b1, b3} because B̄ and C̄ are edge-disjoint. We also know
that c1 ∉ {b0, b2}, otherwise {c1, b1, b4} would induce a triangle in G, a contradiction. Analogously, since b1c2 ∈ E(B̄), we
know that b1 ≠ c2. Furthermore, b1 ∉ {c1, c3} because B̄ and C̄ are edge-disjoint. We also know that b1 ∉ {c0, c4}, other-
wise {b1, c1, c2} would induce a triangle in G, a contradiction. It is clear that all directed edges of B̄′ and C̄ ′ are internal, as
required. �

The next lemma refer to sequences B̄1B̄2B̄3 of TT-couples in position 2 of a complete {P5, T5}-decomposition. It shows
when such sequences can be decomposed into paths of length five. In this lemma, and thereafter, the following terminology
will be useful. If T̄ = v0v1v2v3v4 is a copy of T5, we say that v0 is the pending vertex of T̄ .

Lemma 4.5. Let Ḡ be a triangle-free 5-regular mixed graph and let D be a complete {P5, T5}-decomposition of Ḡ. Let B̄1B̄2B̄3 be
a sequence of TT-couples of D in position 2. Then, in each of the following cases, B̄1 ∪ B̄2 ∪ B̄3 admits a P5-decomposition P such
that all directed edges of B̄1 ∪ B̄2 ∪ B̄3 are internal to P .

(a) when the pending vertex of B̄1 is the connection-vertex of B̄2;
(b) when the pending vertex of B̄3 is the connection-vertex of B̄1;
(c) when the pending vertex of B̄2 is not the connection-vertex of B̄3, and the pending vertex of B̄3 is not the connection-vertex

of B̄1.

Proof. Let Ḡ and D be as in the hypothesis of the lemma, and let B̄1B̄2B̄3 be a sequence of TT-couples of D in position 2,
where B̄i = bi,0bi,1bi,2bi,3bi,4bi,1, for i = 1, 2, 3.

Proof of Case (a). In this case, b1,0 = cv(B̄2), cv(B̄1) = b1,4 = b2,2 and cv(B̄2) = b2,4 = b3,2. Let P̄1 = b1,1b1,2b1,3b1,4b2,3b2,4,
P̄2 = b2,0b2,1b2,2b1,1b2,4b3,1, and P̄3 = b2,1b2,4b3,3b3,4b3,1b3,0. We shall prove that P = {P̄1, P̄2, P̄3} is a P5-decomposition of
B̄1 ∪ B̄2 ∪ B̄3 such that all of its directed edges are internal.

For P̄1, wehave to prove that b2,3, b2,4 ∉ {b1,1, b1,2, b1,3, b1,4}. Since b1,0 = b2,4, we know that b2,4 ∉ {b1,1, b1,2, b1,3, b1,4},
because |V (B̄1)| = 5. Since b2,3b1,4 is an edge of Ḡ and B̄1 and B̄2 are edge-disjoint, b2,3 ∉ {b1,1, b1,3, b1,4}. Finally, b2,3 ≠ b1,2,
otherwise {b2,3, b1,3, b1,4} would induce a triangle in G. Clearly, b1,2b1,1, which is the unique directed edge of P̄1, is internal
to P .

For P̄2, we have to prove that b1,1, b3,1 ∉ {b2,0, b2,1, b2,2, b2,4} and that b1,1 ≠ b3,1. Clearly, b1,1 ≠ b3,1, otherwise b3,1
would have degree six. Since b1,1b2,2 is an edge of Ḡ and B̄1 and B̄2 are edge-disjoint, b1,1 ∉ {b2,1, b2,2}. If b1,1 = b2,0 or
b1,1 = b2,4, then {b1,1, b2,1, b2,2} would induce a triangle in G. Since b3,1b2,4 is an edge of Ḡ and B̄2 and B̄3 are edge-disjoint,
then b3,1 ∉ {b2,1, b2,4}. If b3,1 = b2,0 or b3,1 = b2,2, then {b3,1, b2,1, b2,4} would induce a triangle in G. Clearly, b2,1b2,0,
b2,2b2,1, b1,1b1,0 and b3,2b3,1, which are the possible directed edges of P̄2, are internal to P .
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For P̄3, we have to prove that b2,1 ∉ {b3,0, b3,1, b3,4, b3,3, b3,2}. Since b2,1b3,2 is an edge of Ḡ and B̄2 and B̄3 are edge-
disjoint, then b2,1 ∉ {b3,2, b3,3, b3,1}. If b2,1 = b3,4 or b2,1 = b3,0, then {b2,1, b3,2, b3,1} would induce a triangle. Clearly,
b3,1b3,0, which is the only possible directed edge of P̄3, is internal to P̄3. This completes the proof of case (a).
Proof of Case (b). In this case, b3,0 = cv(B̄1), cv(B̄1) = b1,4 = b2,2 and cv(B̄2) = b2,4 = b3,2. Take P̄1 = b1,0b1,1b1,2b1,3b1,4b2,1,
P̄2 = b2,0b2,1b2,4b3,1b2,2b1,1, and P̄3 = b3,1b3,4b3,3b3,2b2,3b2,2. We claim that P = {P̄1, P̄2, P̄3} is a P5-decomposition with
the desired properties.

For P̄1, we have to prove that b2,1 ∉ {b1,0, b1,1, b1,2, b1,3, b1,4}. Since b2,1b1,4 is an edge of G, and B̄2 and B̄3 are edge-
disjoint, b2,1 ∉ {b1,1, b1,3, b1,4}. If b2,1 = b1,0 or b2,1 = b1,2, then {b2,1, b1,1, b1,4} would induce a triangle. Clearly, b1,4b2,1,
b1,1b1,0 and b1,2b1,1, the only possible directed edges of P̄1, are internal to P .

For P̄2, we have to show that b3,1, b1,1 ∉ {b2,0, b2,1, b2,2, b2,4} and that b1,1 ≠ b3,1. Since b1,1b2,2 is an edge of Ḡ, B̄1 and B̄2

are edge-disjoint, and B̄1 and B̄3 are edge-disjoint, b1,1 ∉ {b2,1, b2,2, b3,1}. If b1,1 = b2,0 or b1,1 = b2,4, then {b1,1, b2,1, b2,2}
would induce a triangle in G. Since b3,1b2,4 is an edge of Ḡ, and B̄2 and B̄3 are edge-disjoint, b3,1 ∉ {b2,1, b2,4}. If b3,1 = b2,0
or b3,1 = b2,2, then {b3,1, b2,1, b2,4} would induce a triangle in G. Clearly, b2,1b2,0, b3,1b3,0 and b3,2b3,1, which are the only
possible directed edges of P̄2, are internal to P .

For P̄3, wehave to prove that b2,2, b2,3 ∉ {b3,1, b3,2, b3,3, b3,4}. Since b3,0 = b2,2, we know that b2,2 ∉ {b3,1, b3,2, b3,3, b3,4},
because |V (B̄3)| = 5. Since b2,3b2,4 is an edge of Ḡ and B̄2 and B̄3 are edge-disjoint, we have that b2,3 ∉ {b3,1, b3,2, b3,3}. Fi-
nally, b2,3 ≠ b3,4, otherwise {b2,3, b2,4, b3,3} would induce a triangle in G. Clearly, no edge of P̄3 is directed.
Proof of Case (c). In this case, cv(B̄1) = b1,4 = b2,2, cv(B̄2) = b2,4 = b3,2, b2,0 ≠ b3,4 and b3,0 ≠ b1,4. Let P̄1 = b1,0b1,1b1,2
b1,3b1,4b2,1, P̄2 = b1,1b1,4b2,3b2,4b3,1b3,0 and P̄3 = b2,0b2,1b2,4b3,3b3,4b3,1. We shall prove that P = {P̄1, P̄2, P̄3} is a P5-
decomposition with the desired properties. Since it is clear that all directed edges of B̄1 ∪ B̄2 ∪ B̄3 are internal to P , we only
have to prove that P̄1, P̄2 and P̄3 are paths of length five.

For P̄1, we have to prove that b2,1 ∉ {b1,0, b1,1, b1,2, b1,3, b1,4}. Since b2,2 = b1,4 and B̄1 and B̄2 are edge-disjoint, we know
that b2,1 ∉ {b1,1, b1,3, b1,4}. Note that b2,1 ∉ {b1,0, b1,2}, otherwise {b1,1, b1,4, b2,1} would induce a triangle in G.

For P̄2, we have to prove that b1,1 ∉ {b1,4, b2,3, b2,4, b3,1, b3,0} and b3,0, b3,1 ∉ {b1,4, b2,3, b2,4}. Let us start by analyzing
b1,1. Since b2,2 = b1,4 and B̄1 and B̄2 are edge-disjoint, we know that b1,1 ∉ {b1,4, b2,3}. Note that b1,1 ≠ b2,4, otherwise
{b1,4, b2,1, b1,1} would induce a triangle in G. By Lemma 4.3, we have that b1,1 ∉ {b3,1, b3,0}. We have to analyze b3,1. Since
b3,2 = b2,4, we know that b3,1 ∉ {b2,3, b2,4}. We also know that b3,1 ≠ b1,4, otherwise {b2,4, b2,1, b3,1} would induce a
triangle in G. To conclude, we have to analyze b3,0. By assumption, we know that b3,0 ≠ b1,4. Since |V (B̄3)| = 5, we know
that b3,0 ≠ b2,4, and we know that b3,0 ≠ b2,3, otherwise {b3,1, b2,4, b3,0} would induce a triangle in G.

For P̄3, we have to prove that b2,0, b2,1 ∉ {b2,4, b3,3, b3,4, b3,1}. Let us start by analyzing b2,0. Since |V (B̄2)| = 5, we have
b2,0 ≠ b2,4. Note that b2,0 ∉ {b3,1, b3,3}, otherwise {b2,1, b2,4, b2,0} would induce a triangle in G. Finally, by assumption,
b2,0 ≠ b3,4. Now let us analyze b2,1. Since b2,4 = b3,2, we know that b2,1 ∉ {b2,4, b3,1, b3,3}. Note that b2,1 ≠ b3,4, otherwise
{b2,4, b3,1, b2,1} would induce a triangle in G.

Clearly, the paths P̄1, P̄2 and P̄3 are edge-disjoint. This concludes the proof of case (c), and therefore, of the lemma. �

The next result, which is the main result of Section 4.3, states that a cycle of couples in position 2 of a complete {P5, T5}-
decomposition of a mixed graph admits a P5-decomposition.

Lemma 4.6. Let Ḡ be a triangle-free 5-regular mixed graph and let D be a complete {P5, T5}-decomposition of Ḡ. If B̄1 · · · B̄k is
a cycle of couples of D in position 2, then

k
i=1 B̄i admits a P5-decomposition P such that all directed edges of B̄1 ∪ B̄2 ∪ B̄3 are

internal to P .

Proof. Let Ḡ, D , and B̄1 · · · B̄k be as stated in the lemma; and let B̄i = bi,0bi,1bi,2bi,3bi,4bi,1 and cv(B̄i) = bi,4 = bi+1,2 for
i = 1, . . . , k. We divide the proof in two cases.
Case 1: k is even.

Applying Lemma 4.4 to every TT-couple (B̄i, B̄i+1), for i = 1, 3, 5, . . . , k − 1, we obtain that B̄′

i = bi,0bi,1bi,2bi,3bi,4bi+1,1

and B̄′

i+1 = bi+1,0bi+1,1bi+1,4bi+1,3bi+1,2bi,1 are roofed paths and all directed edges of B̄′

i and B̄′

i+1 are internal. Thus, clearlyk
i=1 B̄i admits a P5-decomposition P such that all directed edges of

k
i=1 B̄i are internal to P .

Case 2: k is odd.
Suppose there exists i ∈ {1, . . . , k} such that bi,0 = bi+1,4. Wemay suppose w.l.o.g. that i = 1. Applying Lemma 4.5(a) to

the sequence B̄1B̄2B̄3, we obtain a P5-decompositionP ′
= {B̄′

1, B̄
′

2, B̄
′

3} of B̄1∪B̄2∪B̄3 such that all directed edges of B̄1∪B̄2∪B̄3

are internal to P ′. If k = 3, then the lemma is proved. Thus, wemay assume that k ≥ 5. In this case, B̄4B̄5 · · · B̄k is a sequence
in position 2 of even size (size k−3). Then, applying Lemma 4.4 to every TT-couple (B̄i, B̄i+1), for i = 4, 6, 8, . . . , k−1, as in
Case 1, we obtain a P5-decomposition R′ of B̄4 ∪ B̄5 ∪ · · · ∪ B̄k such that all directed edges of B̄4 ∪ B̄5 ∪ · · · ∪ B̄k are internal to
R′. Then P = P ′

∪ R′ is a P5-decomposition of the cycle B̄1 · · · B̄k such that all directed edges of
k

i=1 B̄i are internal to P .
Suppose there exists i ∈ {1, . . . , k} such that bi,0 = bi−2,4. We may suppose w.l.o.g. that i = 3. Then, applying

Lemma 4.5(b) to the sequence B̄1B̄2B̄3, we obtain a P5-decomposition P ′
= {B̄′

1, B̄
′

2, B̄
′

3} of B̄1 ∪ B̄2 ∪ B̄3 such that all di-
rected edges of B̄1 ∪ B̄2 ∪ B̄3 are internal to P ′. If k = 3, then the lemma is proved. Thus, we may assume that k ≥ 5. In
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this case, the sequence B̄4B̄5 · · · B̄k is a sequence in position 2 of even size (size k − 3). Then, applying Lemma 4.4 to every
TT-couple (B̄i, B̄i+1), for i = 4, 6, 8, . . . , k− 1, as in Case 1, we obtain a P5-decomposition R′ of B̄4 ∪ B̄5 ∪ · · · ∪ B̄k such that
all directed edges of B̄4 ∪ B̄5 ∪ · · · ∪ B̄k are internal to R′. Then P = P ′

∪ R′ is a P5-decomposition of the cycle B̄1 · · · B̄k

such that all directed edges of
k

i=1 B̄i are internal to P .
We assume now that for every i ∈ {1, . . . , k} we have that bi,0 ≠ bi+1,4 and bi,0 ≠ bi−2,4. Thus, we have that b2,0 ≠ b3,4

and b3,0 ≠ b1,4. Then, applying Lemma 4.5(c) to the sequence B̄1B̄2B̄3, we obtain a P5-decomposition P ′ of B̄1 ∪ B̄2 ∪ B̄3 such
that all directed edges of B̄1 ∪ B̄2 ∪ B̄3 are internal to P ′. If k = 3, then the lemma is proved. Therefore, we may assume
that k ≥ 5. In this case, B̄4B̄5 · · · B̄k is a sequence in position 2 of even size. Then, applying Lemma 4.4 to every TT-couple
(B̄i, B̄i+1), for i = 4, 6, 8, . . . , k− 1, as in Case 1, we obtain a P5-decomposition R′ of B̄4 ∪ B̄5 ∪ · · · ∪ B̄k such that all directed
edges of B̄4 ∪ B̄5 ∪ · · · ∪ B̄k are internal to R′. Then P = P ′

∪ R′ is a P5-decomposition of the cycle B̄1 · · · B̄k such that all
directed edges of

k
i=1 B̄i are internal to P . �

5. Main result

We start proving a lemma which plays an important role in the proof of the main result. For that, we have to introduce
some concepts. Given a mixed graph Ḡ and a complete {P5, T5}-decomposition D of Ḡ, we say that a copy of T5 in D is an
initial element of D if it is not the base of any couple in D . If D has the least number of copies of T5 among all complete
{P5, T5}-decompositions of Ḡ, thenD is called aminimal complete {P5, T5}-decomposition of Ḡ. Furthermore, if there is at least
one copy of T5 in D , that is, τ(D) ≠ 0, then we say that D is nontrivial. Such decompositions have some properties that are
summarized in the next lemma.

Lemma 5.1. Let G be a triangle-free 5-regular graph. Suppose that G is the underlying graph of a mixed graph Ḡ such that A(Ḡ)
induces a 2-factor with an Eulerian orientation. If there is a nontrivial minimal complete {P5, T5}-decomposition D of Ḡ, then the
following properties hold.

(a) Every copy of T5 in D is the top of exactly one couple of D;
(b) D contains no initial element;
(c) Every copy of T5 in D is the base of exactly one couple of D . Furthermore, every copy of P5 in D is not the base of any couple

of D .

Proof. We divide the proof in three parts, one part for each item. For all cases, let G and D be as stated in the lemma and
note that cv(B̄) ≠ cv(B̄′) for all pairs of elements B, B′

∈ D with B ≠ B′. In fact, suppose by contradiction that cv(B̄) = cv(B̄′)
for some B̄, B̄′

∈ D . Let X̄ be an element of D such that (B̄, X̄) and (B̄′, X̄) are couples of D . Note that each of B̄, B̄′ and X̄
contains two edges that are incident to cv(B̄). Since B̄, B̄′ and X̄ are edge-disjoint, cv(B̄) has degree at least 6, a contradiction.
• Proof of item (a).

Let B̄ be a copy of T5 in D . Note that there exists at least one element C̄ ∈ D such that (B̄, C̄) is a couple, that is, C is the
element that contains the outgoing edge of cv(B̄), which we denote by e. If C̄ is a copy of T5, then, since C̄ is well-oriented
(recall that D is complete), (B̄, C̄) is a TT-couple. On the other hand, if C̄ is a copy of P5, then, since e is an internal directed
edge, (B̄, C̄) is a TP-couple.

Suppose that there are at least two elements of D , say C̄ and D̄, such that (B̄, C̄) and (B̄, D̄) are couples. By the definition
of couple, we know that dB̄(cv(B̄)), dC̄ (cv(B̄)), dD̄(cv(B̄)) ≥ 2 and, since D is a decomposition, B̄, C̄ and D̄ are edge-disjoint.
Then, we have dG(cv(B̄)) ≥ 6, a contradiction.
• Proof of item (b).

Suppose that there is an initial element B̄ in D . From item (a), we know that B̄ is the top of exactly one couple (B̄, C̄), for
C̄ ∈ D . We analyze three cases depending on whether (B̄, C̄) is a TT-couple in position 1 or 2, or a TP-couple in position 1
(since D is complete, every TP-couple is solvable, and therefore, is in position 1).
Case 1: (B̄, C̄) is a TT-couple in position 1.

Suppose that (B̄, C̄) is a TT-couple of D in position 1. Let B̄ = b0b1b2b3b4b1, C̄ = c0c1c2c3c4c1 and cv(B̄) = b4 = c1. Let
B̄′

= b0b1b2b3b4c0 and C̄ ′
= b1c1c2c3c4c1. We claim that B̄′ is a roofed path and C̄ ′ is a copy of T5. Clearly, b1b4 is an edge

of G. It is immediate that c0 ∉ {b1, b3, b4}, because B̄ and C̄ are edge-disjoint. We also know that c0 ∉ {b0, b2}, otherwise
{c0, b1, b4} would induce a triangle in G. Thus, B̄′ is a roofed path. Note that b1 ∉ {c1, c2, c4}, because B̄ and C̄ are edge-
disjoint; furthermore, b1 ≠ c3, otherwise {b1, c4, c1} would induce a triangle in G. Thus, D ′

= D \ {B̄, C̄} ∪ {B̄′, C̄ ′
} is a

{P5, T5}-decomposition of Ḡ such that τ(D ′) < τ(D).
To obtain a contradiction, we have to show that D ′ is complete. Since all elements of D are well-oriented, we know that

c2c1 ∈ A(Ḡ). Thus, C̄ ′ is also well-oriented, from where we conclude that item (i) of Definition 3.4 holds. Since B̄ and C̄ are
well-oriented, we have that besides b2b1, the possible directed edges of B̄′ are b1b0 and c1c0, and the only possible directed
edge of C̄ ′ is c2c1. It is easy to check that all these directed edges are internal toD ′. Therefore, item (ii) of Definition 3.4 holds.
It remains to check (item (iii)) that every TP-couple of D ′ is solvable. We only need to prove this for TP-couples of D ′ such
that either B̄′ is the base of the couple or C̄ ′ is the top of the couple.

First, we prove that there is no TP-couple (X̄, B̄′) in D ′. Suppose by contradiction that there is a TP-couple (X̄, B̄′) in
D ′. Since the possible directed edges of B̄′ are b1b0, b2b1, b4c0, we have that cv(X̄) ∈ {b1, b2, b4}. Since cv(C̄ ′) = cv(C̄) =
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c4 ∉ {b1, b2, b4}, we conclude that X̄ ≠ C ′. Therefore, X̄ ∈ D . Since cv(X̄) ≠ cv(B̄), we have that cv(X̄) ≠ b4. Also, if
cv(X̄) ∈ {b1, b2}, then (X̄, B̄) is a TP-couple in D , a contradiction to the hypothesis that B̄ is an initial element.

Now, suppose there is a TP-couple (C̄ ′, X̄) inD ′, where X̄ = x0x1x2x3x4x5. Since B̄′ is an initial element, X̄ ≠ B̄′, and hence
X̄ is an element of D . By the definition of couple, X̄ is the element of D ′ that contains the directed edge that leaves cv(C̄ ′).
Since cv(C̄ ′) = c4 = cv(C̄), we have that (C̄, X̄) is a TP-couple of D . Moreover, the couple (C̄ ′, X̄) is in position 1, because
(C̄, X̄) is a TP-couple of D in position 1 (since D is complete, every TP-couple of D is solvable and, hence, in position 1).
To prove that (C̄ ′, X̄) is solvable, we must prove that C̄+

= b1c1c2c3c4x0 and X̄+
= c1x1x2x3x4x5 are edge-disjoint paths.

Since C̄ ′
= b1c1c2c3c4c1 is a copy of T5, we have that b1c1c2c3c4 is a path; moreover x0 ∉ {c1, c2, c3, c4} (because (C̄, X̄) is a

TP-couple of D in position 1), and b1 ≠ x0, otherwise {b1, c4, c1} would induce a triangle in G. Thus, C̄+ is a path of length
five. Moreover, X̄+ is a path of length five, because (C̄, X̄) is solvable.

Since we proved that D ′ is a complete {P5, T5}-decomposition of Ḡ such that τ(D ′) < τ(D), we have a contradiction.
Case 2: (B̄, C̄) is a TT-couple in position 2.

Suppose that (B̄, C̄) is a TT-couple of D in position 2. Let B̄ = b0b1b2b3b4b1, C̄ = c0c1c2c3c4c1 and cv(B̄) = b4 = c2. Let
B̄′

= b0b1b2b3b4c1 and C̄ ′
= c0c1c4c3c2b1. By Lemma 4.4, the elements B̄′ and C̄ ′ are roofed paths and all their directed edges

are internal to D ′, where D ′
= D \ {B̄, C̄} ∪ {B̄′, C̄ ′

}. Note that D ′ is a {P5, T5}-decomposition of Ḡ such that τ(D ′) < τ(D).
Next, we show that D ′ is complete. Since every copy X̄ of T5 in D ′ is an element of D , and D is complete, we conclude

that X̄ is well-oriented. Thus, item (i) of Definition 3.4 holds. Since all directed edges of B̄′ and C̄ ′ are internal, we conclude
that all directed edges of Ḡ are internal toD ′. Then, item (ii) of Definition 3.4 holds. It remains to verify (item (iii)) that every
TP-couple of D ′ is solvable. We only need to prove this for TP-couples of D ′ in which either B̄′ or C̄ ′ is the base of the couple.

First, we prove that there is no TP-couple (X̄, B̄′) in D ′. Suppose by contradiction that there is a TP-couple (X̄, B̄′) in D ′.
Since the possible directed edges of B̄′ are b1b0, b2b1, b4c1, we conclude that cv(X̄) ∈ {b1, b2, b4}. Since cv(C̄ ′) = cv(C̄) =

c4 ∉ {b1, b2, b4}, we have that X̄ ≠ C ′. Therefore, X̄ ∈ D . Since cv(X̄) ≠ cv(B̄), it follows that cv(X̄) ≠ b4. Also, if
cv(X̄) ∈ {b1, b2}, then (X̄, B̄) is a TP-couple in D , a contradiction to the hypothesis that B̄ is an initial element.

Now, suppose that there is a TP-couple (X̄, C̄ ′) in D ′, where X̄ = x0x1x2x3x4x5. Since the only possible directed edge of
C̄ ′ is c1c0, we have that cv(X̄) = c1, and hence (X̄, C̄ ′) is a TP-couple in position 1. Thus, X̄ is a copy of T5, and hence X̄ ≠ B̄′

and X̄ ≠ C̄ ′. Therefore, X̄ is an element of D , and X̄ is well-oriented (because D is complete). Since (X̄, C̄ ′) is a TP-couple
of D ′ in position 1, X̄ is well-oriented and C̄ ′ is a roofed path such that its roof is not in X̄ , we conclude, by Lemma 4.1, that
(X̄, C̄ ′) is solvable.

Since we proved that D ′ is a complete {P5, T5}-decomposition of Ḡ such that τ(D ′) < τ(D), we have a contradiction.
Case 3: (B̄, C̄) is a TP-couple in position 1.

Suppose that (B̄, C̄) is a TP-couple of D in position 1. Let B̄ = b0b1b2b3b4b1, C̄ = c0c1c2c3c4c5 and cv(B̄) = b4 = c1. Let
B̄′

= b0b1b2b3b4c0 and C̄ ′
= b1c1c2c3c4c5. By the definition of a solvable couple, we know that B̄′ is a roofed path and C̄ ′ is a

path of length five. Thus, D ′
= D \ {B̄, C̄} ∪ {B̄′, C̄ ′

} is a {P5, T5}-decomposition of Ḡ such that τ(D ′) < τ(D).
Now let us prove that D ′ is complete. Since every copy X̄ of T5 in D ′ is an element of D , and D is complete, X̄ is well-

oriented. Since B̄ is well-oriented and every directed edge is internal to D , the possible directed edges of B̄′ are b1b0, b2b1
and c1c0, which are clearly internal to D ′. Since B̄ is well-oriented, we know that b1b4 is not directed. Since each directed
edge of C̄ is internal, it follows that each directed edge of C̄ ′ is internal.

It remains to show that every TP-couple (X̄, Ȳ ) ofD ′ is solvable.We only need to prove this for TP-couples ofD ′ in which
either B̄′ or C̄ ′ is the base.

First, we prove that there is no TP-couple (X̄, B̄′) in D ′. Suppose by contradiction that there is a TP-couple (X̄, B̄′) in D ′.
Since the possible directed edges of B̄′ are b1b0, b2b1, b4c0, we have that cv(X̄) ∈ {b1, b2, b4}. Since C ′ is a copy of P5, it
follows that X̄ ≠ C ′. Therefore X̄ ∈ D . Since cv(X̄) ≠ cv(B̄), we conclude that cv(X̄) ≠ b4. Also, if cv(X̄) ∈ {b1, b2}, then
(X̄, B̄) is a TP-couple in D , a contradiction to the hypothesis that B is an initial element.

Now, suppose that there is a TP-couple (X̄, C̄ ′) in D ′, where X̄ = x0x1x2x3x4x5. Since the only possible directed edges of
C̄ ′ are c1c0 and c4c5, we conclude that cv(X̄) ∈ {c1, c4}. Therefore, (X̄, C̄ ′) is a couple in position 1. Since B′ and C ′ are copies
of P5, and X̄ is a copy of T5, we have that X̄ ≠ B′ and X̄ ≠ C ′, and hence X̄ ∈ D . Since X̄ is also an element of D ′, we have
that X̄ ≠ B̄, and hence cv(X̄) ≠ cv(B̄). Therefore, cv(X̄) ≠ c1, from where we conclude that cv(X̄) = c4. Let us prove that
(X̄, C̄ ′) is solvable. We must show that X̄+

= x0x1x2x3x4c5 and C̄+
= x1c4c3c2c1b1 are edge-disjoint paths. Since (X̄, C̄) is

solvable, we know that X̄+ and x1c4c3c2c1c0 are edge-disjoint paths. Thus, x1 ∉ {c1, c2, c3, c4}. Note that x1 ≠ b1. Indeed, if
x1 = b1, since dX̄ (x1) = dB̄(b1) = 3 and B̄ and X̄ are edge-disjoint in G, the degree of x1 would be at least six, a contradiction.
Therefore, we conclude that C̄+ is a path of length five.

Since we proved that D ′ is a complete {P5, T5}-decomposition of Ḡ such that τ(D ′) < τ(D), we have a contradiction.
• Proof of item (c).

Given an element X̄ of D , denote by t(X̄) (resp. b(X̄)), the number of couples of D in which X̄ is the top (resp. X̄ is the
base). Define Qi,j = {X̄ ∈ D: b(X̄) = i and t(X̄) = j}, for 0 ≤ i, j ≤ 2. Furthermore, let qi,j = |Qi,j|.

Note that


X̄∈D b(X̄) =


X̄∈D t(X̄). Thus, we have the following equalities.

2
i=0

2
j=0

iqi,j =


X̄∈D

b(X̄) =


X̄∈D

t(X̄) =

2
i=0

2
j=0

jqi,j.
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Since there is no initial element in D (by item (b) of this lemma), we have that q0,j = 0 for j = 1, 2. Since every copy of T5
in D is the top of exactly one couple (by item (a) of this lemma), and by the definition of couples, no copy of P5 is the top of
any couple, we have that qi,2 = 0 for i = 0, 1, 2. Thus,

q1,0 + q1,1 + 2q2,0 + 2q2,1 = q1,1 + q2,1.

Therefore

q1,0 + 2q2,0 + q2,1 = 0,

from where we conclude that q1,0 = q2,0 = q2,1 = 0. Therefore, if qi,j > 0, then either i = j = 0 or i = j = 1. Let X̄ be
a copy of T5 in D . Since every copy of T5 in D is the top of exactly one couple, we have that X̄ ∈ Q1,1, i.e., X̄ is the base of
exactly one couple of D . Furthermore, let Y be a copy of T5 in D . Since every copy of P5 in D is not the top of any couple of
D , we have that Y ∈ Q0,0, i.e., Y is not the base of any couple of D . �

5.1. Proof of the main theorem

We are now ready to prove the main result of this paper.

Theorem 5.2. Every triangle-free 5-regular graph containing a perfect matching admits a P5-decomposition.

Proof. Let G be a triangle-free 5-regular graph containing a perfect matching. Applying Corollary 3.6 to G, we obtain that
G is the underlying graph of a mixed graph Ḡ such that A(Ḡ) induces a 2-factor with an Eulerian orientation, and Ḡ admits
a complete {P5, T5}-decomposition. Let D be a minimal complete {P5, T5}-decomposition of Ḡ. If τ(D) = 0, then D is a
P5-decomposition of G and the theorem is proved. Thus, we assume that τ(D) > 0 (D is nontrivial) and we aim for a
contradiction.

The idea of the proof is to find a complete {P5, T5}-decomposition D ′ of Ḡ such that τ(D ′) < τ(D), a contradiction to
the fact that D is a minimal complete {P5, T5}-decomposition of Ḡ.

By item (c) of Lemma 5.1, we know that there is no TP-couple in D . Thus, D contains only TT-couples. By Lemma 5.1,
every copy of T5 is the top of exactly one couple of D (by item (a)) and the base of exactly one couple of D (by item (c)). We
will prove that every copy of T5 is an element of a cycle of TT-couples.

Let B̄1 be a copy of T5 inD . Clearly, there is a sequence B̄1 · · · B̄k of couples inD such that (B̄i, B̄i+1) is the only couple ofD
such that B̄i is the top and B̄i+1 is the base, for 1 ≤ i ≤ k− 1. Let B̄1 · · · B̄K be such a sequence with maximum number of dis-
tinct elements. Since, by item (a) of Lemma 5.1, B̄K is the top of one couple, (B̄K , B̄j) is a TT-couple for some j ∈ {1, . . . , K −2}
(note that (B̄K , B̄K−1) cannot be a TT-couple). Note that B̄j is the base of (B̄j−1, B̄j) and is also the base of (B̄K , B̄j); thus, by
item (c) of Lemma 5.1, we conclude that j = 1, and therefore B̄1 · · · B̄K is a cycle of TT-couples.

We divide the proof in cases, depending on whether the cycle B̄1 · · · B̄K is mixed, in position 1 or in position 2.
Case 1: B̄1 · · · B̄K is mixed.

In what follows all additions are taken modulo K . Suppose that B̄1 · · · B̄K is a mixed cycle. Then, there is an index h ∈

{1, . . . , K} such that (B̄h−1, B̄h) is a TT-couple in position 1 and (B̄h, B̄h+1) is a TT-couple in position 2. Let B̄h = x0x1x2x3x4x1
and B̄h+1 = y0y1y2y3y4y1, where cv(B̄h) = x4 = y2. Let B̄′

h = x0x1x2x3x4y1 and B̄′

h+1 = y0y1y4y3y2x1. By Lemma 4.4, the
elements B̄′

h and B̄′

h+1 are roofed paths and all their directed edges are internal toD ′, whereD ′
= D \{B̄h, B̄h+1}∪{B̄′

h, B̄
′

h+1}.
Note that D ′ is a {P5, T5}-decomposition of Ḡ such that τ(D ′) < τ(D).

We have to show that D ′ is complete. Since every copy X̄ of T5 in D ′ is an element of D and D is complete, we have
that X̄ is well-oriented. Therefore, item (i) of Definition 3.4 holds. Since all directed edges of B̄′

h and B̄′

h+1 are internal, we
conclude that all directed edges of Ḡ are internal to D ′. Then, item (ii) of Definition 3.4 holds.

To verify item (iii) we have to prove that every TP-couple (X̄, Ȳ ) ofD ′ is solvable.We only need to prove it for TP-couples
ofD ′ in which B̄′

h or B̄
′

h+1 is the base. If there is a TP-couple (X̄, B̄′

h) ofD
′, then clearly X̄ = B̄h−1 and, since (B̄h−1, B̄h) is in po-

sition 1, we have that cv(B̄h−1) = x1, fromwhere we conclude that (B̄h−1, B̄′

h) is in position 1. Since (B̄h−1, B̄′

h) is a TP-couple
ofD ′ in position 1, B̄h−1 is well-oriented and B̄′

h is a roofed path such that its roof is not in B̄h−1, we know, by Lemma 4.1, that
(B̄h−1, B̄′

h) is solvable. If there is a TP-couple (X̄, B̄′

h+1) of D ′, then (X̄, B̄h+1) is a TT-couple of D . Since X̄ ∈ D ′, we have that
X̄ ≠ B̄h. Then, (X̄, B̄h+1) is in position 1, from where we conclude that B̄h+1 is the base of two couples of D , a contradiction
to item (c) of Lemma 5.1.
Case 2: B̄1 · · · B̄K is in position 1 (resp. in position 2).

By Lemma 4.2 (resp. Lemma 4.6) applied on the cycle B̄1 · · · B̄K , we obtain a P5-decomposition P of
K

i=1 B̄i such that
all directed edges of

K
i=1 B̄i are internal to P . Then, it is clear that the decomposition D ′

= D \ {B̄1, . . . , B̄K } ∪ P is a
{P5, T5}-decomposition of Ḡ such that τ(D ′) < τ(D).

Now we shall prove that D ′ is complete. Since every copy X̄ of T5 in D ′ is an element of D , and D is complete, we
conclude that X̄ is well-oriented. Thus, item (i) of Definition 3.4 holds. Furthermore, since every directed edge of

K
i=1 B̄i is

internal to P , we conclude that every directed edge of Ḡ is internal to D ′. Thus, item (ii) of Definition 3.4 holds.
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To verify item (iii) we have to prove that every TP-couple (X̄, Ȳ ) ofD ′ is solvable.We only need to prove it for TP-couples
of D ′ whose base is an element of P . Suppose that there is a TP-couple (X̄, Ȳ ) of D ′ such that Ȳ ∈ P . Since X̄ is a copy
of T5 in D ′, we have X̄ ≠ B̄i for every i in {1, . . . , K}. Let e be the directed edge leaving cv(X̄). Since every directed edge is
internal, the element Ȳ must contain e, otherwise, the degree of cv(X̄) would be at least six. Thus, we conclude that e is an
edge of

K
i=1 B̄i. Suppose without loss of generality that B̄2 is the element of D that contains e. Thus, (X̄, B̄2) and (B̄1, B̄2) are

two couples of D in which B̄2 is the base, contradicting item (c) of Lemma 5.1.
Since we proved that in both possible cases, the decomposition D ′ is a complete {P5, T5}-decomposition of Ḡ such that

τ(D ′) < τ(D), we have a contradiction. �

6. Concluding remarks

We proved that every triangle-free 5-regular graph containing a perfect matching admits a P5-decomposition. To prove
this result, we start deleting a perfect matching and orienting a 2-factor of the remaining graph. This idea was used by
Kotzig [25] to show that a 3-regular graph containing a perfect matching admits a P3-decomposition. For a triangle-free 5-
regular graph G this idea does not give straightforwardly a P5-decomposition of G; it gives a {P5, T5}-decomposition of G. The
next step, the elimination of the undesired trails T5s (if existent), is the core of this work. For that, we use the technique of
considering couples consisting of a P5 and a T5 or two T5s, and also sequences (or cycles) of T5s, satisfying certain properties,
and disentangling the undesired trails of such a decomposition. The concept of completeness of a {P5, T5}-decomposition
that we have introduced captures the property we need to be able to repeat the process of decreasing the number of unde-
sired trails.

To our knowledge, this technique has not been used in the literature. It is likely that it can be useful to obtain more
general results on path decompositions. Indeed, we have used a generalized version of this technique to show results on
path decompositions of graphs satisfying different properties [5,6].
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