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and only if it contains a perfect matching. Kotzig also asked what are the necessary and
sufficient conditions for a (2k + 1)-regular graph to admit a decomposition into paths with
2k + 1 edges. We partially answer this question for the case k = 2 by proving that the
existence of a perfect matching is sufficient for a triangle-free 5-regular graph to admit

'é‘;’ﬁ;vlff;omposmon a Ps-decomposition. This result contributes positively to the conjecture of Favaron et al.
Paths (2010) that states that every (2k+-1)-regular graph with a perfect matching admits a Py 1-
Regular graphs decomposition.

Matching © 2015 Elsevier B.V. All rights reserved.

Triangle-free

1. Introduction

In this paper, the term decomposition always refer to an edge-decomposition of a graph. Given a graph G = (V,E), a
graph decomposition of G is a set of edge-disjoint subgraphs of G that cover E. The problem of finding decompositions of
graphs into subgraphs of certain types is a classical problem in graph theory that traces back to the late 19th century. One of
the earliest results of this nature is a theorem of Petersen (1891) that states that every 2k-regular graph can be decomposed
into 2-factors. Many surveys and books on this topic have appeared in the literature, among which the reader may refer
to [1,4,8,12,17-20].

In general, finding or deciding the existence of some nontrivial graph decomposition is a hard problem, and much effort
has been devoted to studying decompositions of particular classes of graphs into some classes of subgraphs. If we restrict
our attention to decompositions of arbitrary graphs into cycles or paths, we come across many interesting conjectures and
to the following old and elegant result of Lovasz [27].

Theorem 1.1 (Lovdsz). Every n-vertex graph can be decomposed into at most |n/2] paths and cycles.

In fact, according to Lovasz [27], in 1966 Gallai conjectured that every n-vertex connected graph admits a decomposition
into at most [n/2] paths, and Hajos conjectured that any Eulerian graph can be decomposed into at most [n/2] cycles. We
also refer to Bondy [3] for these and other conjectures. Looking for asymptotic results, Erdés and Gallai [ 13,14] conjectured
that every n-vertex graph can be decomposed into O(n) cycles and edges. Many researchers have obtained partial results on
these conjectures (see [9,10,15]).

* This research has been partially supported by CNPq Projects (Proc. 477203/2012-4 and 456792/2014-7), Fapesp Project (Proc. 2013/03447-6) and
MacCLinC Project of NUMEC/USP, Brazil.
* Corresponding author.
E-mail addresses: fbotler@ime.usp.br (F. Botler), mota@ime.usp.br (G.0. Mota), yw@ime.usp.br (Y. Wakabayashi).

http://dx.doi.org/10.1016/j.disc.2015.04.018
0012-365X/© 2015 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.disc.2015.04.018
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.04.018&domain=pdf
mailto:fbotler@ime.usp.br
mailto:mota@ime.usp.br
mailto:yw@ime.usp.br
http://dx.doi.org/10.1016/j.disc.2015.04.018

1846 F. Botler et al. / Discrete Mathematics 338 (2015) 1845-1855

Decompositions of regular graphs have been extensively investigated in the last decades, mostly restricted to
decompositions into paths of fixed length. We denote by Py (resp. Ci) a path (resp. cycle) of length k, that is, with k edges. (We
observe that this notation is not so standard.) Jacobson, Truszczyniski and Tuza [22] proved that every 4-regular bipartite
graph admits a P4-decomposition. For other results concerning 2k-regular graphs and cartesian products of regular graphs,
the reader is referred to [24,29]; and for results on decompositions of regular graphs with large girth, we mention Kouider
and Lonc [26].

Kotzig [25] proved that a 3-regular graph G admits a P;-decomposition if and only if G contains a perfect matching. In
fact, Kotzig proved a slightly stronger result (on two P;-decompositions). The proof used by Kotzig is presented by Bouchet
and Fouquet [7]. This result was generalized by Jaeger, Payan, and Kouider [23], who proved that a (2k + 1)-regular graph
that contains a perfect matching can be decomposed into bistars. In another direction, Heinrich, Liu and Yu [21] proved that
every 3m-regular graph without cut-edges admits a P3-decomposition. Kotzig asked what are the necessary and sufficient
conditions for a (2k + 1)-regular graph G to be decomposable into paths of length 2k + 1. A necessary condition is that G
must contain a k-factor. Favaron, Genest, and Kouider [ 16] proved that this condition is not sufficient. For k = 2 (that is, for
a 5-regular graph), Favaron, Genest, and Kouider [16] proved that it is sufficient that G contains a perfect matching and no
cycles of length four to admit a Ps-decomposition. Here we prove that every triangle-free 5-regular graph that contains a
perfect matching admits a Ps-decomposition.

This paper is organized as follows. In Section 2 we give some definitions and establish the notation. In Section 3 we
show that triangle-free 5-regular graphs containing a perfect matching admit a decomposition into copies of Ps and some
specific trails Ts with five vertices. Section 4 contains some lemmas which enable us to reduce the number of copies of Ts
and increase the number of copies of Ps, obtaining a decomposition closer to the desired one. In Section 5 we use the results
obtained in Sections 3 and 4 to obtain a Ps-decomposition.

2. Basic definitions and notation

The basic terminology and notation used in this paper are standard (see [2,11]). A mixed graph is a simple graph in which
some edges may receive an orientation. More precisely, itisa triple G = (V, E, A) consisting of a vertex set V, an (undirected)
edge set E and a directed edge set A, such that (V, E) is a simple graph and (V, A) is a simple directed graph; and furthermore,
no two distinct edges in E U A have the same endpomts Given a mixed graph G, we denote by V(G), E(G) and A(G), the sets
of vertices, undirected edges and directed edges of G, respectively. Let A(G) be the underlying edge set of A(G), i.e., the set of
edges obtained by removing the orientation of the directed edges in A(G). We denote by G the underlying graph of G, i.e., G
is the graph such that V(G) = V(G) and E(G) = E(G) U A(G) We note that, in this paper all (mixed) graphs are simple.

Let G be a mixed graph. For ease of notation, we write simply ab to refer to an undirected edge {a, b} € E or a directed
edge (a, b) € A(G), and use the term edge to refer to an element that belongs to E(G) U A(G). When the orientation of an
edge is relevant, we write ab € A(G), or spec1fy that ab is a directed edge. A mixed subgraph H of G is a mixed graph such
that V(H) € V(G), E(H) C E(G) and A(H) C A(G). Given a set of mixed subgraphs Hy, .. ., Hy of G, we denote by Ul 1H
the mixed subgraph H = (Ul CVHD, U EH), U A ).

We say that a mixed graph H is a copy of a mixed graph G if H is isomorphic to G. A path P in G is a sequence of

distinct vertices P = vgv; - - - v such that v;v;41 is an edge in G fori = 0,1,..., k — 1. (Note that, possibly vi;1v; is a
directed edge, for some i in {0, ..., k—1}). For convenience, we will also consider that such a path P is a mixed graph with
V(P) = {vg, v1, ..., vy} and E(P) UA(P) = {vgvq, v1V3, ..., Vk_1Vk}. The length of P is the number of edges in P. We denote

by P, any path of length k, and we denote by T the graph (trail) that is obtained from a path vov; - - - vg—; by the addition of
the edge vy_1v1. We refer to Ty, simply as vovy - - - vk—qv1. If a mixed graph H is a copy of Py or T, we also write H = vg - - - vy
orH = vg - - - vp_1v1, respectively.

We say that a set {Hy, . . ., Hy} of mixed graphs is a decomposition of a mixed graph G if | J_, E(H;) = E(G), U, A(H)) =
A(G), and furthermore E(H;) N E(I:Ij) = ¢ and A(H) N A(I:Ij) =@forall1 <i < j < k. Let # be a family of graphs. An
Je-decomposition D of G is a decomposition of G such that each element of D is isomorphic to an element of J¢. If # = {H}
we say that D is an H-decomposition.

In the next section we present a result that will allow us to explain the idea behind the proof of the main result, and will
also motivate the definitions given thereafter.

3. Canonical {Ps, T5}-decomposition

In this section we show that a triangle-free 5-regular graph G that contains a perfect matching is the underlying graph
of a mixed graph G that admits a {Ps, Ts}-decomposition that has some special properties. The mixed graph G we shall deal
with is one obtained from G by assigning an orientation to the edges of each cycle of a given 2-factor F of G, obtaining a set
of directed cycles. We shall refer to such an orientation as an Eulerian orientation of F. In such a mixed graph, we say that
a copy Vo - - - Us Of P5 (resp. a copy vovs - - - v4v1 of Ts) is canonical if its directed edges are precisely vivo and v4vs (resp.
v1vg and v, vy). If the Eulerian orientation of a 2-factor of G is called &, then we say that a {Ps, Ts}-decomposition D¢ of G is
&-canonical, or simply canonical, if each element of D is canonical.

We will need the following two well-known results.
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Fig. 1. Examples of TP-couples.

Theorem 3.1 (Petersen [28]). Every 2k-regular graph contains a 2-factor.

Theorem 3.2 (Kotzig [25]). Every 3-regular graph containing a perfect matching admits a P3-decomposition.

Given a triangle-free 5-regular graph G containing a perfect matching, we use Theorem 3.1 to obtain a mixed graph G,
then we use Theorem 3.2 to show that G has a canonical {Ps, Ts}-decomposition.

Lemma 3.3. Let G be a triangle-free 5-regular graph containing a perfect matching. Then G is the underlying graph of a mixed
graph G such that A(G) induces a 2-factor that has an Eulerian orientation &, and G admits an &-canonical {Ps, Ts }-decomposition.

Proof. Let G be a triangle-free 5-regular graph containing a perfect matching M. Let G4 = G — M be the 4-regular graph
obtained from G by removing the edges of M. By Theorem 3.1, the graph G4 contains a 2-factor F. Let G3 be the 3-regular
graph G — E(F). Note that M C E(G3), and thus, by Theorem 3.2, the graph G3 admits a P;-decomposition, say £s.

Let & be an Eulerian orientation of F, and let F be the directed graph induced by such an orientation. For each path P € D3,
let xp and yp be the end vertices of P, and let xpxz and ypy; be the directed edges of F that leave xp and yp, respectively.

Consider the mixed graph G = (V(G), E(G3), A(IT")) (note that G is the underlying graph of G) and let P = xpupwpyp be an
element of O3, i.e., a path of length three in G3. We claim that Qp = XzXpvpwpypy; is either isomorphic to Ps or to Ts. Note
that, since G contains no multiple edges, we have y; # wp,andifyz = xp thenxz # yp. Moreover, since G is triangle-free, we
have y; # vp. By symmetry, analogous arguments hold for x;. Furthermore, since Fisinduced by the Eulerian orientation &,
we have y; # xz. Then, one of the following three cases occurs: (a) all vertices of Qp are distinct, (b)yg = xp, o1 (C) Xg = yp.
In case (a), Qp is a canonical copy of Ps, and in case (b), Qp is a canonical copy of Ts. In these two cases, let Qp = Qp.In case (c),
Qp is isomorphic to the trail T = yzypwpvpXpyp, Which is a canonical copy of Ts, so in this case let Qp = T.

Let D¢ = {Qp: P € D3}. Note that each vertex v € V(G) is the endpoint of exactly one path P € Ds. This follows from
the fact that Gs is a 3-regular graph and therefore the set formed by all the intermediate edges of the paths in Dj3 is a perfect
matching of Gs. Thus, the set D, decomposes G. Thus, by construction, D is an &-canonical {Ps, Ts}-decomposition of G,
and the proof is complete. O

The idea behind the proof of our main result is to show that the canonical decomposition given by Lemma 3.3 has other
special properties, which will be used to “disentangle” pairs (or sequences) of Ts and Ps, obtaining only Pss. For that, we
have to define some concepts to show how this disentanglement can be performed.

3.1. Couples in a {Ps, Ts}-decomposition

We say that a copy B of Ts is well-oriented if we can label the vertices of B such that B = bgb;b,bsbsb; and either
A(B) = {byb1} or A(B) = {byb1, b1bo}. In this case, the vertex by is called the connection-vertex of B, and is denoted by cv(B)

Let P = vyv;v,03v405 be a copy of Ps ina mixed graph G.We say that P is a roofed path in G if v4v; is an edge of E(G)U A(G).
Furthermore, we say that v4v; is the roof of P. B

If Bis a subgraph of G and ab € A(B) is such that the degree of vertex a in the underlying graph of B is at least 2, then we
say that ab is an internal directed edge of B. Moreover, if B is an element of a decomposition £, then we also say that ab is
internal to D. _

Let G be a 5-regular mixed graph and let D be a {Ps, Ts}-decomposition of G. Given such a decomposition, it is very
important to understand how pairs of Ps and Ts, or pairs of two Ts’s appear in the decomposition, so that we can disentangle
them obtaining only Pss. The following definitions play special roles in this process.

Let (B, C) be a pair of elements of D, where B is a well-oriented copy of Ts, say bob1bybsbsbq, and C is a copy of Ps, say
C0oC1C2C3C4C5. We say that (B C) is a TP- couple of D if cv(B) € {c1, €2, ¢3, c4} (possibly, B and C may have more common
vertices). If cv(B) € {c1, ¢4}, then we say that (B, C) is a TP-couple in position 1, and if cv(B) € {c,, c3}, then we say that (B, C)
is a TP-couple in position 2 (see Fig. 1). Now let D be a well-oriented copy of Ts, say wow;wyw3w4ws, such that cv(D) = Wjy.
We say that (B, D) is a TT-couple of D if cv(B) € {w1, w-} (possibly, Band D may have more common vertices). If cv(B) = wy,
then we say that (B, D) is a TT-couple in position 1, and if cv(B) = w», then we say that (B, D) is a TT-couple in position 2 (see
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Fig. 2. Examples of TT-couples.

Fig. 2). Furthermore, if (B, X) is a couple, then we say that B and X are, respectively, the top and the base of (B, X). Hereafter,
whenever we refer to a couple, we mean either a TP-couple or a TT-couple.

Let G be a mixed 5- regular graph and O a {Ps, Ts}-decomposition of G.Let B = bgb; babsbsby and C = €oC162C3CaCs
be elements of D such that cv(B) = by = c¢;. We say that the TP-couple (B, C) is solvable if Bt = bob1b;b3bsco and
Ct = bycqcac3c4cs are edge-disjoint paths (of length five) in G. (Note that BT is a roofed path in G and (B, C) is a TP-couple
in position 1.)

As a solvable TP-couple can be decomposed into two paths of length 5, it is of our interest to obtain {Ps, Ts}-
decompositions in which every TP-couple is solvable. Besides that, we need that other additional properties hold so that
we can disentangle all TT-couples. The next concept captures the properties that we need.

Definition 3.4. A {Ps, Ts}-decomposition D of a mixed graph G is called complete if the following three conditions hold.
(i) Every copy of Ts in £ is well-oriented,
(ii) Every directed edge of G is internal to D;
(iii) Every TP-couple of D is solvable.

Let G be a graph with maximum degree 5, and suppose G is the underlying graph of a mixed graph G such that A(G)
induces a 2-factor with an Eulerian orientation. We remark that no element of a complete {Ps, Ts }-decomposition of G is the
top of more than one couple, or the base of more than two couples, otherwise G would contain vertices of degree at least 6.

Lemma 3.5. Let G be a triangle-free 5-regular graph containing a perfect matching. If G is the underlying graph of a mixed graph
G such that A(G) induces a 2-factor with an Eulerian orientation &, and G admits an &-canonical {Ps, Ts}-decomposition D,
then Dg is complete.

Proof. Let G be a triangle-free 5-regular graph containing a perfect matching. Suppose that G is the underlying graph of
a mixed graph G such that A(G) induces a 2-factor with an Eulerian orientation &, and G admits an &-canonical {Ps, Ts}-
decomposition De. We will prove that Dy is a complete decomposition.

Items (i) and (ii) of Definition 3.4 follow from the fact that D¢ is &-canonical. Thus, we only have to prove that every
TP-couple of Dg is solvable. Let (B C) be a TP-couple of D¢, where B = bgbibybsbaby, C = cociCac5C4Cs. Note that we can
assume that cv(B) = by = ¢1 (or ¢4, by symmetry). In fact, suppose that by is ¢, (or c3, by symmetry) and let e be the directed
edge leaving b,. Since C is canonical, e is not in C. Thus, let X be the element of D¢ that contains e. Since, by item (ii), e is
internal, the vertex b, would have degree six, a contradiction.

Note that, by (ii), C is the element of D that contains the directed edge leaving by. Thus, bscy is a directed edge of C.
(Note that there is no TP-couple (B, D) with D #* C, otherwise we would have d¢(bs) > 5. Thus, the outgoing edge of by has
to be a directed edge of C, implying that there is no loss of generality assuming that b, = c1). Hence, (B, C) is a TP-couple
in position 1. Since D¢ is &-canonical, B contains precisely the directed edges b,b; and b;bg, and C contains precisely the
directed edges cico and c4¢5. _ _

To conclude the proof that (B, C) is solvable, we have to show that B’ = bgb1byb3bscy and C' = bcicyc3¢4C5 are edge-
disjoint paths in G. For that, it suffices to prove thatco & {bo, b1, by, b3, ba} and by ¢ {c1, 3, C3, C4, Cs5}. Let us start by proving
that cg & {bo, b1, bz, b3, bs}. Since bscy € A(C), we know that ¢y & {b1, bs, b4}, because B and C are edge-disjoint (and G is
simple). If co € {bg, by}, then the set {co, b1, b4} induces a triangle, a contradiction.

Since byc; € E(B), we know that by ¢ {c1, c2}. If by = c3, then the set {by, c1, ¢;} induces a triangle in G, a contradiction.
Since A(G) induces a 2-factor with the Eulerian orientation &, every vertex of G is incident to exactly one ingoing edge and
one outgoing edge. Then, since the ingoing edge incident to b, is an edge of B(namely, b, b ), we know that b; # cs, otherwise
b; would have two ingoing edges (c4b; and by b1 ). Finally, note that by # ¢4, otherwise, b; would have two outgoing edges
(b1bg and bqcs). Therefore, we conclude that (B, C) is solvable, and hence the decomposition D¢ is complete. O

The following corollary, the main result of this section, follows directly from Lemmas 3.3 and 3.5.

Corollary 3.6. Let G be a triangle-free 5-regular graph containing a perfect matching. Then G is the underlying graph of a mixed
graph G such that A(G) induces a 2-factor with an Eulerian orientation, and G admits a complete {Ps, Ts}-decomposition.
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(a) A cycle of TT-couples in position 1. (b) A cycle of TT-couples in position 2.
Fig. 3. Examples of cycles of TT-couples.
4. Disentanglement of couples

Given a {Ps, Ts}-decomposition O of a mixed 5-regular graph G, we denote by 7 (D) the number of copies of Ts in £D. To
prove our main result, we start with a complete {Ps, Ts}-decomposition £ of G and show that, if (D) # 0, then TP-couples
and sets of TT-couples can be disentangled, yielding a pure Ps-decomposition. As we will see, it is simpler to disentangle
TP-couples, but to deal with TT-couples, we have to introduce further definitions.

Let k > 3 and let By, . Bk be copies of Ts in £H. We say that B - Bk is a sequence of couples of D if (B;, B,H) isa
TT-couplefor1 <i<k— 1 If (B, By) is also a TT-couple, then we say that By - - - By is a cycle of couples of D. Furthermore,
if such a sequence (resp. cycle) is composed only by TT-couples in position i, then we say that it is in position i, fori = 1, 2
(see Fig. 3). A sequence (resp. cycle) of couples is called mixed if it contains couples in positions 1 and 2.

The main results of this section are Lemmas 4.1, 4.2 and 4.6. Most of the subsequent proofs are easier understood by
drawing the (sequence or cycle of) couples of the given {Ps, Ts}-decomposition and redrawing the paths that we claim
to define a Ps-decomposition. The reader may convince himself without following the detailed proofs. In these proofs, all
additions on the indices are taken modulo k.

We note that, although in this paper we are mainly interested in complete {Ps, Ts}-decompositions, some of the next
lemmas also hold for {Ps, Ts}-decompositions that are not necessarily complete (as in the case of Lemmas 4.1 and 4.4).

4.1. TP-couples in position 1
We shall prove that, under certain conditions, TP-couples (B, C) in position 1 are solvable.

Lemma 4.1. Let G be a triangle-free 5- regular mixed graph and let D be a {Ps, Ts}-decomposition of G. Let (B, C) be a TP-couple
of D in position 1. If C is a roofed path in G such that its roof is not in B, then (B, C) is solvable.

Proof. Let G, D, and (B, C) be as stated in the hypothesis of the lemma. Suppose B = bob;b,bsbsb1, cv(B) = by = c1, and
C= CpC1C2C3C4Cs. _ _

We have to prove that B = bgbib,bsbscy and C' = bycicyc3cacs are paths of length five. For that, it suffices to prove
that Co ¢ {bo, bl, bz, b3, b4} and b] ¢ {C], Cy, C3, C4, C5}

Firstly, we prove that cq & {bo, b1, b2, bs, bs}. Since cyb, is an edge of C, we know that o & {b1, b3, by}, because Band C
are edge-disjoint. If co € {bg, by}, then the set {cy, b1, b4} induces a triangle, a contradiction.

Since b;cy is an edge of B, we know that by ¢ {c1, c2}.1fby = c3, thenthe set {bs, ¢y, ¢;} induces a triangle, a contradiction.
If by = c4, then cyc4 is an edge of B, contradicting the fact that the roof of C is not in B. If b; = cs, then the set {by, c4, c1}
induces a triangle, a contradiction. O

4.2. TT-couples in position 1

The next result shows that if a complete {Ps, Ts }-decomposition of a triangle-free 5-regular mixed graph contains a cycle
of TT-couples in position 1, then such a cycle can be decomposed into special copies of Ps.

Lemma 4.2. Let G be a triangle-free 5-regular mixed graph and let D be a complete {Ps, Ts}-decomposition of G. If 1_31 -By is
a cycle of TT-couples of D in position 1, then Uf , B; admits a Ps-decomposition # such that all directed edges of U i1 B; are
internal to P

Proof. Let G and D be as stated in the lemma. Let By - - - B be a cycle of couples of O in position 1, where B = biobi 1
bi2bisbi 4b; 1 and CV(B]‘) =bj4s =biy11for1 <i <k Foreveryl <i<k,let Bl{ = bj obi 1bi 2b; 3b; 4bi+1 4. We shall prove
that {B;, ..., B}} is a Ps-decomposition of | J}_, B; such that all directed edges of | J}_, B; are internal to {B), .. ., B,}.
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To prove that 1_315 is a path of length five, it suffices to show that bi;14 & {b; 4, bi 3, bi2, bi 1, bio}. Since B; and B;; are
edge-disjoint, bit14 & {bia, bi3, bi1}. We also know t_hat bi+1,_4 & {bi2, bio}, otherwise {bi11 4, bi 1, bi 4} would induce a
triangle. It is easy to check that, by the construction of B}, . . ., B, they are pairwise edge-disjoint, and all directed edges of
UY, Biareinternal to {B,, ..., B}}. O

4.3. TT-couples in position 2

The aim of this subsection is to prove Lemma 4.6, which is a version of Lemma 4.2 for TT-couples in position 2. Before we
state this lemma, we prove some auxiliary results.

Lemma 4.3. Let G be a triangle-free 5-regular mixed graph and let D be a complete {Ps, Ts}-decomposition of G. Then, for every
vertex v, there is exactly one element B € D such that dg(v) is odd.

Proof. Let G = (V, E, A) and D be as stated in the claim. For each vertex v in V, let D (v) be the number of elements B of D
such that dg(v) is odd. As G is 5-regular, we have that D(v) > 1.

Since each element D of £ contains exactly two vertices of odd degree in D, we have that )
Suppose there is a vertex x such that £ (x) > 2. Then, we have

n:Z:D(v)::D(x)—l— Z D) >2+n—1>n,

veV veV\{x}

D) = 2|D| = n.

veV

a contradiction. O

Lemma 4.4. Let Gbea triangle-free 5-regular mixed graph and let D be a {Ps, Ts}-decomposition of G.If (B, C)isaTT-couple
of D in position 2, where B = bob1b,bsbsb, and C = CoC1C2C3C4Cq, then B' = bobybybsbscy and C' = cocicacsczby are roofed
paths in B U C. Furthermore, all directed edges of B’ and C’ are internal.

Proof. Let G, D, and (B, C) be as stated in the lemma, with cv(B) = by = ¢5. Let B = bob1bybsbacy and C’ = cocqCaC3¢2by.
We claim that B’ and C’ are roofed paths. Since b1b,4 and c; ¢, belong to E(G) UA(G), we only have to prove that B’ and C’ are
paths, i.e., ¢ & {bo, b1, bz, b3, bs} and by ¢ {co, 1, C2, C3, Ca}.

Since c1by € E(C), we know that ¢; # by. Furthermore, c; ¢ {b1, b3} because Band C are edge-disjoint. We also know
that c; ¢ {bo, by}, otherwise {cy, b1, b4} would induce a triangle in G, a contradiction. Analogously, since bic; € E (B) we
know that by # c,. Furthermore, b; ¢ {cy, c3} because B and C are edge-disjoint. We also know that by ¢ {co, c4}, other-
wise {b1, 1, c;} would induce a triangle in G, a contradiction. It is clear that all directed edges of B’ and C’ are internal, as
required. O

The next lemma refer to sequences B;B,B; of TT-couples in position 2 of a complete {Ps, Ts}-decomposition. It shows
when such sequences can be decomposed into paths of length five. In this lemma, and thereafter, the following terminology
will be useful. If T = vgvqvyv3v4 is a copy of Ts, we say that vg is the pending vertex of T.

Lemma 4.5. Let G be a triangle-free 5-regular mixed graph and let D be a complete {Ps, Ts}-decomposition of G. Let B1B,Bs be
a sequence of TT-couples of D in position 2. Then, in each of the following cases, B; U B, U B admits a Ps-decomposition & such
that all directed edges of By U B, U B; are internal to .

(a) when the pending vertex of 1_31 is the connection-vertex of ]§2,
(b) when the pending vertex of Bs is the connection-vertex of By; _
(c) when the pending vertex of B, is not the connection-vertex of Bs, and the pending vertex of Bs is not the connection-vertex

Of B]
Proof. Let G and D be as in the hypothesis of the lemma, and let B1B,Bs be a sequence of TT-couples of D in position 2,
where B; = bi Ob,‘ 1b,‘ zb,‘ 3b,‘ 4b,‘ 1 fori = 1,2,3.
Pl'OOfOfcase( ) In this case, b] 0= CV(Bz) CV(B]) = b] 4 = b2 2 and CV(Bz) = bz 4 = b3 5. Let P] = b] ]b] zb] 3b] 4b2 3b2 4
Pz = bz 0b2 1b2 2b1 1b2 4b3 1y and P3 = bz 1b2 4b3 3b3 4b3 1b3 0- We shall prove that » {P], Pz, P3} 1Sa P5 decomposmon of
By U Bz U B; such that all of its directed edges are internal.

FOI‘Pl Wehavetoprovethatbz 3, bz 4 ¢ {b1 1y bl 2, bl 3, b] 4} Slnceb1 0= bz 4,wel(nowthatb2 4 ¢ {b] 1, b] 2, b1 3, b1 4}
because |V(Bl)| = 5.Since b, 3b; 4 is an edge of Gand B; and B, are edge-disjoint, by 3 & {b1,1, b1.3, b1.4}. Flnally, by 3 # b1,

otherwise {b, 3, b1 3, b1 4} would induce a triangle in G. Clearly, by ;b 1, which is the unique directed edge of Py, is internal
to P.

For P,, we have to prove that by 1, bs1 & {b2,0, bz 1, by, 2, by 4} and that by 1 # b3 ;. Clearly, b1,1 # bs 1, otherwise bs 4
would have degree six. Since by 1b; > is an edge of G and B, and B, are edge-disjoint, by 1 ¢ {bz 1, by, 2} Ifby 1 = by or
b1.1 = by.4, then {by 1, by 1, b2} would induce a triangle in G. Since bs 1b, 4 is an edge of G and B, and Bs are edge-disjoint,
then b3’] ¢ {bz,l, b2,4}. If bg’] = bz,o or bg’] = bz’z, then {bg’], b2,1’ b2’4} would induce a triangle in G. Clearly, bz’lbz,g,
by.2by 1, b1,1b1,0 and bs 5 b3 1, which are the possible directed edges of P,, are internal to #
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For P;, we have to prove that b, 1 & {bs0, bs.1, b3 4, b33, b3>}. Since b, 1b3 is an edge of G and B, and B; are edge-
disjoint, then by 1 & {bs2, b33, b31}. If bay = b3, 4 01 b1 = bs, then {by 1, b33, b3 1} would induce a triangle. Clearly,
b3 1b3,0, which is the only possible directed edge of Ps, is internal to P5. This completes the proof of case (a).

Proof of Case (b). In this case, b3 o = = cv(By), cv(B;) = by 4=Dbyyand cv(By) = by 4 = b3 . Take P, = b, ob1,1b1.2b1,3b1.4b2 1,
Pz = bz 0b2 ]bz 4b3 ]bz zb] 1» and P3 = b3 ]b3 4b3 3b3 2b2 3b2 5. We claim that # = {P], Pz, P3} isa P5 decomposmon with
the de51red properties.

For P;, we have to prove that b1 & {b1.0, b1,1, b1.2, b1.3, b1.4}. Since b, 1by 4 is an edge of G, and B, and Bs are edge-
disjoint, by 1 & {b1.1, b1,3,b1.4}. If by 1 = bigorby; = b1 2, then {by 1, b1 1, b1’4} would induce a triangle. Clearly, by 4b> 1,
b1.1b1, 0 and by b1 1, the only possible directed edges of Py, are internal to

For P,, we have to show that bs1,b11 & {by0, b2.1, b2.2, by 4} and that by 4 ;é b3 1.Since by 1b;, ; is an edge of G, B; and B,
are edge-disjoint, and B; and Bj are edge-disjoint, b11 & {b2.1,b22,b31}.1fb11 = by g or by 1 = by 4, then {by 1, bz 1, b22}
would induce a triangle in G. Since bs 1b, 4 is an edge of G, and B, and Bj are edge-disjoint, b3 ; & {by.1, by.4}. 1fb31 = by
or b3 1 = by, then {b3 1, ba 1, by 4} would induce a triangle in G. Clearly, by 1b 0, b3,1b3 0 and bs b3 1, which are the only
possible directed edges of P,, are internal to P

FOl'Pg,We have to prove thatbz 2, b2 3 Q/ {b3 1, b3 2, b3 3, b3 4} Since b3 0= b2 2, We kI'IOWthatbz 2 ¢ {b3 1, b3 2 b3 3, b3 4}
because |V(B3)| = 5. Since b, 3b; 4 is an edge of G and B, and Bs are edge-disjoint, we have that by 35 & {b3 1, b3 2, b3 3}. Fi-
nally, by 3 # bs 4, otherwise {b, 3, b, 4, b3 3} would induce a triangle in G. Clearly, no edge of P; is directed.

Proof of Case (¢). In this case, cv(By) = bi14 = by, cv(B,) = bya = b33, by # bsaand b3 # by 4. Let Py = by ob1.1b12
b] 3b1 4b2 1 Pz = b] ]b] 4b2 3b2 4b3 1b3 0 and P3 = b2 obz ]bz 4b3 3b3 4b3 1. We shall pl‘OVG that # = {P], Pz, P3} isa P5—
decomposition with the desired properties. Since it is clear that all directed edges of B; U B, U B are internal to &, we only
have to prove that Py, P, and P are paths of length five.

For Py, we have to prove that b, 1 & {b1,0, b1,1, b1,2, b13, b1.4}. Since b » = by 4 and B, and B, are edge-disjoint, we know
that by 1 & {b1,1, b1,3, b1,4}. Note that by 1 & {bl,o, bl,z} otherwise {b11, b1,4, bz,l} would induce a triangle in G.

For P,, we have to prove that by 1 & {b1.4, b23, D24, b3 1, b3,0} and b3 o, b3 1 & {b1.4, b2 3, b3 4}. Let us start by analyzing
by.1. Since by, = by 4 and B; and B, are edge-disjoint, we know that by ; & {by 4, by3}. Note that by ; # b, 4, otherwise
{b1,4, b2,1, b1,1} would induce a triangle in G. By Lemma 4.3, we have that by ; & {b3 1, b3 0}. We have to analyze bs ;. Since
b3, = b4, we know that b3 1 & {b, 3, by 4}. We also know that bs ; # by 4, otherwise {b, 4, by 1, b3 .1} would induce a
triangle in G. To conclude, we have to analyze bs o. By assumption, we know that b3 o # by 4. Since [V(Bs)| = 5, we know
that bs, 0 # by 4, and we know that b3 o # b, 3, otherwise {bs 1, by 4, b3 0} would induce a triangle in G.

For P3, we have to prove that by o, by 1 & {b2.4, b3 3, b3 4, b3 1}. Let us start by analyzing b, . Since |V(Bz)| = 5, we have
by o # by.4. Note that by o & {b3 1, b33}, otherwise {b, 1, b, 4, by o} would induce a triangle in G. Finally, by assumption,
by.0 # bs.4. Now let us analyze b, ;. Since b, 4 = b3 5, we know that b, 1 & {b 4, b3 1, b3 3}. Note that by 1 # b3 4, otherwise
{b2,4, b3 1, bz.1} would induce a trlangle in G.

Clearly, the paths Py, P, and P; are edge-disjoint. This concludes the proof of case (c), and therefore, of the lemma. O

The next result, which is the main result of Section 4.3, states that a cycle of couples in position 2 of a complete {Ps, Ts}-
decomposition of a mixed graph admits a Ps-decomposition.

Lemma 4.6. Let G be a triangle-free 5- regular mixed graph and let D be a complete {Ps, Ts }-decomposition of G. If Bl - Byis

a cycle of couples of D in position 2, then Ul 1 B; admits a Ps-decomposition & such that all directed edges of B; U B, U By are
internal to P.

Proof. Let (_;, D, and B] s Bk be as stated in the lemma; and let Bi = bi,Obi,lbi,Zbi,3bi,4bi,l and CV(B{) = bi’4 = b,‘+]$2 for
i=1,..., k We divide the proof in two cases.
Case 1: kis even. ~

Applymg Lemma 4.4 to every TT-couple (B;, B+1) fori =1,3,5,...,k— 1, we obtain that B; = b; ob; 1b; 2b; 3b; 4bi11,1
and B,+1 = bit1.0bi+1.1bi+1.4bit1.3bit1.2bi1 are roofed paths and all dlrected edges ofB and BIJrl are internal. Thus, clearly
Ui:l B; admits a Ps- -decomposition & such that all directed edges of Ui=1 B; are internal to »

Case 2: k is odd.
Suppose th_er_e e_exists ie{l,...,k}suchthatb;o = biy14. We may suppose w. l.o.g. thati = 1. Applying Lemma 4. 5( )to

the sequence BB,Bs3, we obtain a P5 decomposition P’ = {B/, B/z, B/ } of B;UB, UB5 such that all directed edges of ByUB,UB;
are internal to #'. If k = 3, then the lemma is proved. Thus, we may assume that k > 5. In this case, B4Bs - - - By is a sequence
in position 2 of even size (size k — 3). Then, applying Lemma 4.4 to every TT-couple (B, B,+1) fori=4,6,8,...,k—1,asin
Case 1, we obtain a Ps-decomposition R of B;UBs U - --U By such that all directed edges of B4 U BsU---U Bk are internal to
R'.Then £ = £’ U R’ is a Ps-decomposition of the cycle By - - - By such that all directed edges of UL] B; are internal to

Suppose there exists i € {1,...,k} such that b;y = b;_» 4. We may suppose w.l.o.g. that i = 3. Then, applying

Lemma 4.5(b) to the sequence B;B,B3, we obtain a Ps-decomposition #' = {B’, B’z, 1_3’3} of B; U B, U By such that all di-
rected edges of By U B, U B3 are internal to &’. If k = 3, then the lemma is proved. Thus, we may assume that k > 5. In
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this case, the sequence B4Bs - - - By is a sequence in position 2 of even size (size k — 3). Then, applying Lemma 4.4 to every
TT-couple (B;, Bii1),fori=4,6,8,...,k—1,asinCase 1, we obtain a P5 decomposition R’ of By UBs U - - - U By such that
all directed edges of B4UBsU---U Bk are internal to R’. Then # = £’ U R’ is a Ps-decomposition of the cycle By---By
such that all directed edges of UL B; are internal to

We assume now that foreveryi € {1, ..., k} we have that b; g # bi+1.4 and b; g # bj_5 4. Thus, we have that b, o ;ﬁ b3 4
and bs g # b.4. Then, applying Lemma 4.5(c ) to the sequence B;B, B3, we obtain a Ps-decomposition #’ of B; U B, U Bs such
that all directed edges of 1_31 U 1_32 U B are internal to #'. If k = 3, then the lemma is proved. Therefore, we may assume
that k > 5. In this case, B4Bs - - - B, is a sequence in position 2 of even size. Then, applying Lemma 4.4 to every TT-couple

(B;, B,H) fori=4,6,8, ..., k—1,asin Case 1, we obtain a Ps-decomposition R’ of B4 UBs U - - - U By such that all directed
edges of B4UBsU---U Bk are internal to R'. Then = £’ U R’ is a Ps-decomposition of the cycle By - - - B such that all
directed edges of Ui:l B;areinternalto . O

5. Main result

We start proving a lemma which plays an important role in the proof of the main result. For that, we have to introduce
some concepts. Given a mixed graph G and a complete {Ps, Ts}-decomposition £ of G, we say that a copy of Ts in D is an
initial element of D if it is not the base of any couple in D. If O has the least number of copies of Ts among all complete
{Ps, Ts}-decompositions of G, then D is called a minimal complete {Ps, Ts}-decomposition of G. Furthermore, if there is at least
one copy of Ts in D, that is, T (D) # 0, then we say that D is nontrivial. Such decompositions have some properties that are
summarized in the next lemma.

Lemma 5.1. Let G be a triangle-free 5-regular graph. Suppose that G is the underlying graph of a mixed graph G such that A(G)
induces a 2-factor with an Eulerian orientation. If there is a nontrivial minimal complete {Ps, Ts}-decomposition D of G, then the
following properties hold.

(a) Every copy of Ts in D is the top of exactly one couple of D;

(b) D contains no initial element;

(c) Every copy of Ts in D is the base of exactly one couple of D. Furthermore, every copy of Ps in D is not the base of any couple
of D.

Proof. We divide the proof in three parts, one part for each item. For all cases, let G and D be as stated in the lemma and
note that cv(B) # cv(B') for all pairs of elements B, B’ € O with B # B'.In fact, suppose by contradiction that cv(B) = cv(B’)
for some B, B € D. Let X be an element of D such that (B, X) and (B, X) are couples of D. Note that each of B, B and X
contains two edges that are incident to cv(B). Since B, B’ and X are edge-disjoint, cv(B) has degree at least 6, a contradiction.

® Proof of item (a).

Let B be a copy of Ts in D. Note that there exists at least one element C € D such that (B,C)isa couple, that is, C is the
element that contains the outgoing edge of cv(B), which we denote by e. If C is a copy of Ts, then, since C is well-oriented
(recall that ©D is complete), (B, C) is a TT-couple. On the other hand, if C is a copy of Ps, then, since e is an internal directed
edge, (B, C) is a TP-couple. ~ ~ o o

Suppose that there are at least two elements of ©, say C and D, such that (B, C) and (B, D) are couples. By the definition
of couple, we know that dz(cv(B)), dz(cv(B)), d5(cv(B)) > 2 and, since D is a decomposition, B, C and D are edge-disjoint.
Then, we have d¢(cv(B)) > 6, a contradiction.
® Proof of item (b). _ _ o
_ Suppose that there is an initial element B in £. From item (a), we know that B is the top of exactly one couple (B, C), for
C € D.We analyze three cases depending on whether (B, C) is a TT-couple in position 1 or 2, or a TP-couple in position 1
(since D is complete, every TP-couple is solvable, and therefore, is in position 1).

Case1: (B,C)isa TT-couple in position 1.

_ Suppose that (B C) is a TT-couple of D in position 1. Let B = bob1bab3bsb;, C = cocicac3cacy and cv(B) = by = cy. Let
B’ = bob1bybsbace and C' = bycicycscacy. We claim that B is a roofed path and Cisa copy of Ts. Clearly, b1b,4 is an edge
of G. It is immediate that co & {b1, b3, bs}, because B and C are edge-disjoint. We also know that ¢, & {bo, b,}, otherwise
{co, b1, bs} would induce a triangle in G. Thus, B’ is a roofed path. Note that b; & {cq, ¢z, ¢4}, because B and C are edge-
disjoint; furthermore, b; # c3, otherwise {by, ¢4, ¢1} would induce a triangle in G. Thus, D" = D \ {B,CYU{B,C'}isa
{Ps, Ts}-decomposition of G such that 7(D’) < (D).

To obtain a contradiction, we have to show that £’ is complete. Since all elements of £ are well-oriented, we know that
c2¢1 € A(G). Thus, C’ is also well-oriented, from where we conclude that item (i) of Definition 3.4 holds. Since B and C are
well-oriented, we have that besides b, b1, the possible directed edges of B’ are bybg and ¢;¢o, and the only possible directed
edge of C’ is cyc;. It is easy to check that all these directed edges are internal to ©’. Therefore, item (ii) of Definition 3.4 holds.
It remains to check (item (iii)) that every TP-couple of £’ is solvable. We only need to prove this for TP-couples of D’ such
that either B’ is the base of the couple or C’ is the top of the couple.

First, we prove that there is no TP-couple (X, B') in D'. Suppose by contradiction that there is a TP- couple X, B/) in
D'. Since the possible directed edges of B' are bybg, b2b1, baco, we have that cv(X) € {by, ba, bs}. Since cv(C’) = cv(C) =
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4 & {b1, b2, bs}, we conclude that X # ('. Therefore, X € . Since cv(X) #* cv(B), we have that cv(X) # by. Also, if
cv(X) € {b, by}, then (X, B) is a TP- couple in D, a contradiction to the hypothesis that Bis an initial element.
_ Now, suppose there is a TP-couple (C/ X)in D, where X = XoX1XaX3X4Xs. Since B’ is an initial element, X #* B’,and hence
X is an element of D. By the definition of couple, X is the element of £’ that contains the directed edge that leaves cv(C’).
Since cv(C’) = ¢4 = cv(C), we have that (C, X) is a TP-couple of D. Moreover, the couple (C’, X) is in position 1, because
(C,X) is a TP- couple of D in position 1 (since D is complete, every TP-couple of O is solvable and, hence, in position 1).
To prove that (C’, X) is solvable, we must prove that C T = bicicac3caXo and XT = c1x1X2X3X4Xs5 are edge- disjoint paths.
Since C’ = bycyCac3€4¢q is a copy of Ts, we have that bycicac3¢4 is a path; moreover xg & {c1, ¢2, c3, ¢4} (because (C, X) is a
TP-couple of D in position 1), and by # xo, otherwise {b1, c4, ¢1} would induce a triangle in G. Thus, Ct is a path of length
five. Moreover, X T is a path of length five, because (C, X) is solvable.

Since we proved that D' is a complete {Ps, T5}-decomposition of G such that 7(D’) < 7(D), we have a contradiction.

Case 2: (B, C) isa TT- -couple in position 2.
_ Suppose that (B, 0) is a TT-couple of D in position 2. Let B = bob1bybsbsby, C = coC1C205¢4¢1 and cv(B) = by = c,. Let
B’ = bob1bybsbscy and €' = CoC1C4C3C2b1. By Lemma 4.4, the elements B and C’ are roofed paths and all their directed edges
are internal to ©’, where ©' = D \ {B, C} U{B/, C'}. Note that D’ is a {Ps, Ts}-decomposition of G such that 7 (D) < (D).
Next, we show that £’ is complete. Since every copy X of Ts in D’ is an element of D, and D is complete, we conclude
that X is well-oriented. Thus, item (i) of Definition 3.4 holds. Since all directed edges of B’ and C’ are internal, we conclude
that all directed edges of G are internal to D'. Then, item (ii) of Definition 3.4 holds. It remains to verify (item (iii)) that every
TP-couple of D' is solvable. We only need to prove this for TP-couples of D’ in which either B’ or C’ is the base of the couple.
First, we prove that there is no TP-couple (X, B') in £’. Suppose by contradiction that there is a TP-couple (X, B') in D'.
Since the possible directed edges of B’ are byby, byb1, bsc1, we conclude that cv(X) € {by, ba, bs}. Since cv(C’) = cv(C) =
cs & {b1, bz, bs}, we have that X # C'. Therefore, X € D. Since cv(X) #* cv(B) it follows that cv(X) # by. Also, if
cv(X) € {by, b}, then (X, B) is a TP-couple in D, a contradiction to the hypothesis that B is an initial element.
_ Now, suppose that there is a TP-couple X, C ) in O’, where X = XoX1X2X3X4Xs. Since ‘the only possible directed edge of
C’ is c1co, we have that cv(X) = ¢y, and hence (X, C') is a TP-couple in position 1. Thus, X is a copy of Ts, and hence X # B
and X # C. Therefore, X is an element of D, and X is well-oriented (because D is complete). Since (X, C’) is a TP-couple
of D’ in position 1, X is well-oriented and C’ is a roofed path such that its roof is not in X, we conclude, by Lemma 4.1, that
(X, C’) is solvable. B
Since we proved that D’ is a complete {Ps, Ts}-decomposition of G such that t(D’) < (D), we have a contradiction.

Case 3: (B, C) is a TP- -couple in position 1.

Suppose that (B, C) is a TP-couple of O in position 1. Let B = bob1bybsbsby, C = CoC1C2C3C4Cs and cv(B) = by = . Let
B’ = bobibybsbsco and C' = bycy 2€3€4Cs. By the definition of a solvable couple, we know that B’ is a roofed path and Cisa
path of length five. Thus, ' = D \ {B, C} U{B’, C'}isa {Ps, Ts}-decomposition of G such that t(D’) < (D).

Now let us prove that D’ is complete. Since every copy X of Ts in £’ is an element of D, and D is complete, X is well-
oriented. Since B is well-oriented and every directed edge is internal to D, the possible directed edges of B’ are bybg, bob;
and c;¢g, which are clearly internal to £'. Since B is well-oriented, we know that b, b, is not directed. Since each directed
edge of C is internal, it follows that each directed edge of C’ is internal.

It remains to show that every TP-couple (X, Y) of £’ is solvable. We only need to prove this for TP-couples of £’ in which
either B’ or C’ is the base. o o

First, we prove that there is no TP-couple (X, B') in £'. Suppose by contradiction that there is a TP-couple (X, B') in D'.
Since the possible directed edges of B’ are byby, byb1, bscy, we have that cv(X) € {by, by, bs}. Since C’ is a copy of Ps, it
follows that X # C'. Therefore X € . Since cv(X) # cv(B), we conclude that cv(X) # by. Also, if cv(X) € {by, by}, then
(X, B) is a TP-couple in D, a contradiction to the hypothesis that B is an initial element.

Now, suppose that there is a TP-couple (X, C)in D', where X = XoX1X2X3X4X5. Since the only possible directed edges of
C’ are ¢1¢o and c4¢5, we conclude that cv(X) € {c1, cs}. Therefore, X,C)i is a couple in position 1. Since B" and C’ are copies
of Ps, and X is a copy of Ts, we have that X # B’ and X # C’, and hence X € D.Since X is also an element of D', we have
that X # B, and hence cv(X) #* cv(B) Therefore, cv(X) # c1, from where we conclude that cv(X) = cq. Let us prove that
(X, C') is solvable. We must show that X* = xgX1X2X3X4Cs and Ct = xyc4c50501bq are edge-disjoint paths. Since (X, C)is
solvable, we know that X* and X1C4€3C2C1Cp are edge-disjoint paths. Thus, x; & {c1, ¢, c3, c4}. Note that x; # by. Indeed, if
X1 = by, since dg(x;) = dg(b1) = 3 and Band X are edge-disjoint in G, the degree of x; would be at least six, a contradiction.
Therefore, we conclude that C™ is a path of length five. ~

Since we proved that O’ is a complete {Ps, Ts}-decomposition of G such that (D) < (D), we have a contradiction.

e Proof of item (c).
Given an element X of D, denote by t(X) (resp. b(X)), the number of couples of D in which X is the top (resp. X is the
base). Define Q;; = {X € D:b(X) = iand t(X) = j}, for 0 < i,j < 2. Furthermore, let qij = Qi l-

Note that ) "5 o b(X) = D %eo t(X). Thus, we have the following equalities.

2 2 2 2
PIDILTED LD IIIEDPPP R

i=0 j=0 XeD XeD i=0 j=0



1854 F. Botler et al. / Discrete Mathematics 338 (2015) 1845-1855

Since there is no initial element in D (by item (b) of this lemma), we have that qoj = 0 for j = 1, 2. Since every copy of Ts
in O is the top of exactly one couple (by item (a) of this lemma), and by the definition of couples, no copy of Ps is the top of
any couple, we have that q; ; = 0 fori = 0, 1, 2. Thus,

G0 + 41,1+ 2420 + 2421 = q1,1 + 42,1

Therefore
qi,0 +2G2,0 + q2,1 =0,

from where we conclude that q10 = ¢20 = ¢2,1 = 0. Therefore, if g;; > 0, then eitheri =j =0ori =j = 1. Let X be
a copy of Ts in D. Since every copy of Ts in D is the top of exactly one couple, we have that X € Q11,18 X is the base of
exactly one couple of ©. Furthermore, let Y be a copy of Ts in D. Since every copy of Ps in D is not the top of any couple of
D, we have that Y € Qq o, i.e., Y is not the base of any couple of . O

5.1. Proof of the main theorem
We are now ready to prove the main result of this paper.

Theorem 5.2. Every triangle-free 5-regular graph containing a perfect matching admits a Ps-decomposition.

Proof. Let G be a triangle-free 5-regular graph containing a perfect matching. Applying Corollary 3.6 to G, we obtain that
G is the underlying graph of a mixed graph G such that A(G) induces a 2-factor with an Eulerian orientation, and G admits
a complete {Ps, Ts}-decomposition. Let D be a minimal complete {Ps, Ts}-decomposition of G. If (D) = 0, then D is a
Ps-decomposition of G and the theorem is proved. Thus, we assume that 7(£) > 0 (D is nontrivial) and we aim for a
contradiction. ~

The idea of the proof is to find a complete {Ps, Ts}-decomposition D’ of G such that (D) < (D), a contradiction to
the fact that O is a minimal complete {Ps, Ts}-decomposition of G.

By item (c) of Lemma 5.1, we know that there is no TP-couple in D. Thus, £ contains only TT-couples. By Lemma 5.1,
every copy of Ts is the top of exactly one couple of D (by item (a)) and the base of exactly one couple of £ (by item (c)). We
will prove that every copy of Ts is an element of a cycle of TT-couples.

Let By be a copy of Ts in . Clearly, there is a sequence B;- Y ofcouples in O such that (B, Biy1) is the only couple of D
such that B; is the top and B; 1 is the base, for 1 <i < k— 1. Let By - - - B be such a sequence with maximum number of dis-
tinct elements. Since, by item (a) of Lemma 5.1, B is the top of one couple (Bx, Bj) isa TT-couple for somej € {1, ..., K—2}
(note that (Bx, Bx_1) cannot be a TT-couple). Note that B] is the base of (Bj 1, Bj) and is also the base of (Bx, Bj) thus by
item (c) of Lemma 5.1, we conclude that j = 1, and therefore B; - - - By is a cycle of TT-couples.

We divide the proof in cases, depending on whether the cycle B; - - - By is mixed, in position 1 or in position 2.

Case 1: By - - - By is mixed.

In what follows all additions are taken modulo K. Suppose that 31 .- By is a mixed cycle. Then, there is an index h €
{1, ..., K} such that (By_1, By) is a TT- -couple in position 1 and (Bn, Bhﬂ) is a TT-couple in position 2. Let B, = XoX1X2X3X4X1
and Bh+1 = Yoy1Y2y3yay1, where cv(By) = x4 = ;. Let B = XoX1X2X3x4y1 and Bj,;1 = Yoy1yaysy2X1. By Lemma 4.4, the
elements B}, and B}, , are roofed paths and all their directed edges are internal to ', where D' = D\ {By, By11}U{B},, By, ;.
Note that D’ is a {Ps, Ts }-decomposition of G such that (D’ ) < T(D).

We have to show that D’ is complete. Since every copy X of Ts in £’ is an element of O and D is complete, we have
that X is well-oriented. Therefore, item (i) of Definition 3.4 holds. Since all directed edges of B} and Bj_, are internal, we

conclude that all directed edges of G are internal to ©’. Then, item (ii) of Definition 3.4 holds.

To verify item (iii) we have to prove that every TP-couple (X Y) of D' is solvable. We only need to prove it for TP-couples
of O’ in which B’ or B, is the base. If there is a TP-couple (X, B;) of £’, then clearly X = Bj_; and, since (By_1, By) is in po-
sition 1, we have that cv(B,_) = x1, from where we conclude that (Bj_1, Bg) is in position 1. Since (By_1, Bﬁ) is a TP-couple
of O’ in position 1, B,_; is well-oriented and 1_3;1 is a roofed path such that its roof is not in B,_;, we know, by Lemma 4.1, that
(Bp_1, E_J;q) is solvable. If there is a TP-couple (X, B;;+1) of D', then (X, By41) is a TT-couple of D. Since X € D’, we have that
X = By,. Then, (X, Byy1) is in position 1, from where we conclude that By, is the base of two couples of D, a contradiction
to item (c) of Lemma 5.1.

Case 2: B - - - By is in position 1 (resp. in position 2).

By Lemma 4.2 (resp. Lemma 4.6) applied on the cycle By - - - B¢, we obtain a Ps-decomposition # of | JX_, B; such that
all directed edges of Uf; B; are internal to #. Then, it is clear that the decomposition &' = D \ {Bi,....Bx}UPisa
{Ps, Ts}-decomposition of G such that 7 (D’) < (D). ~

Now we shall prove that D’ is complete. Since every copy X of Ts in D’ is an element of D, and D is complete, we
conclude that X is well-oriented. Thus, item (i) of Definition 3.4 holds. Furthermore, since every directed edge of Uf(: 1 B;is
internal to &, we conclude that every directed edge of G is internal to O’ Thus, item (ii) of Definition 3.4 holds.
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To verify item (iii) we have to prove that every TP-couple (X, Y) of D' is solvable. We only need to prove it for TP-couples
of D’ whose base is an element of 4. Suppose that there is a TP-couple (X,Y) of D' such that Y € #. Since X is a copy
of Ts in D', we have X #+ B; for everyiin {1, ..., K}. Let e be the directed edge leaving cv(X). Since every directed edge is
internal, the element Y must contain e, otherw1se the degree of cv(X) would be at least six. Thus, we conclude that e is an

edge of U, 1 B;. Suppose without loss of generality that B, is the element of D that contains e. Thus, (X, B,) and (B;, B,) are

two couples of D in which B, is the base, contradicting item (c) of Lemma 5.1. _
Since we proved that in both possible cases, the decomposition D’ is a complete {Ps, Ts}-decomposition of G such that
(D) < t(D), we have a contradiction. O

6. Concluding remarks

We proved that every triangle-free 5-regular graph containing a perfect matching admits a Ps-decomposition. To prove
this result, we start deleting a perfect matching and orienting a 2-factor of the remaining graph. This idea was used by
Kotzig [25] to show that a 3-regular graph containing a perfect matching admits a P;-decomposition. For a triangle-free 5-
regular graph G this idea does not give straightforwardly a Ps-decomposition of G; it gives a {Ps, Ts }-decomposition of G. The
next step, the elimination of the undesired trails Tss (if existent), is the core of this work. For that, we use the technique of
considering couples consisting of a Ps and a Ts or two Tss, and also sequences (or cycles) of Tss, satisfying certain properties,
and disentangling the undesired trails of such a decomposition. The concept of completeness of a {Ps, Ts}-decomposition
that we have introduced captures the property we need to be able to repeat the process of decreasing the number of unde-
sired trails.

To our knowledge, this technique has not been used in the literature. It is likely that it can be useful to obtain more
general results on path decompositions. Indeed, we have used a generalized version of this technique to show results on
path decompositions of graphs satisfying different properties [5,6].
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