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a b s t r a c t

Lebesgue (1940) proved that every normal planemap of girth 5 has a path on three vertices
(3-path) of degree 3. A description is tight if no its parameter can be strengthened, and no
alternative dropped. Borodin et al. (2013) gave a tight description of 3-paths in arbitrary
normal plane maps.

We give seven tight descriptions of 3-paths in triangle-free normal plane maps.
Furthermore, we prove that this set of descriptions is complete, which is a result of a bit
new type in the structural theory of plane graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A normal planemap (NPM) is a plane pseudograph in which loops andmultiple edges are allowed, but the degree of each
vertex and face is at least three. Let δ be the minimum vertex degree, and wk be the minimum degree-sum of a path on k
vertices in an NPM or a graph. The degree of a vertex v or a face f , that is, the number of edges incident with v or f (loops
and cut-edges are counted twice), is denoted by d(v) or d(f ), respectively. A k-vertex is a vertex v with d(v) = k. By k+ or
k− we denote any integer not smaller or not greater than k, respectively. Hence, a k+-vertex v satisfies d(v) ≥ k, etc. An
edge uv is an (i, j)-edge if d(u) ≤ i and d(v) ≤ j. A path uvw is a path of type (i, j, k) or (i, j, k)-path if d(u) ≤ i, d(v) ≤ j, and
d(w) ≤ k.

Already in 1904, Wernicke [14] proved that every NPM M5 with δ(M5) = 5 contains a 5-vertex adjacent to a 6−-vertex,
and Franklin [7] strengthened this to the existence of at least two 6−-neighbors, which implies that M5 satisfies w3 ≤ 17.
Franklin’s bound 17 is precise, as shown by putting a vertex inside each face of the dodecahedron and joining it with the
five boundary vertices.

It follows from Lebesgue’s results in [12] that each NPM has an edge e = uw of weight w(e) = d(u) + d(w) at most
14 (more specifically, a (3, 11)-, or (4, 7)-, or (5, 6)-edge, where bounds 7 and 6 are sharp). For 3-connected plane graphs,
Kotzig [11] proved a precise result: w2 ≤ 13.

Note that δ(K2,t) = 2 andw2(K2,t) = t+2, sow2 is unbounded if δ ≤ 2. In 1972, Erdős (see [8]) conjectured that Kotzig’s
bound w2 ≤ 13 holds for all planar graphs with δ ≥ 3. Barnette (see [8]) announced to have proved this conjecture, but
the proof has never appeared in print. The first published proof of Erdős’ conjecture is due to Borodin [2]. More generally,
Borodin [3,4] proved that every NPM contains a (3, 10)-, or (4, 7)-, or (5, 6)-edge (as easy corollaries of several stronger
structural facts with applications to coloring).
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Theorem 1 (Ando, Iwasaki, Kaneko [1]). Every 3-polytope satisfies w3 ≤ 21, which is sharp.

The sharpness of the bound w3 ≤ 21 in Theorem 1 is witnessed by the Jendrol’ construction [9]. Jendrol’ [10] proves that
each 3-polytope has a 3-path uvw such that max{d(u), d(v), d(w)} ≤ 15 (the bound is precise). Jendrol’ [9] further shows
that such a 3-path must belong to one of ten types, in which d(u) + d(v) + d(w) varies from 23 to 16:

Theorem 2 (Jendrol’ [9]). Every 3-polytope has a 3-path of one of the following types: (10, 3, 10), (7, 4, 7), (6, 5, 6), (3, 4, 15),
(3, 6, 11), (3, 8, 5), (3, 10, 3), (4, 4, 11), (4, 5, 7), or (4, 7, 5).

Note that the graphs of 3-polytopes are precisely the 3-connected planar graphs due to Steinitz’s famous theorem [13].
The requirement of 3-connectedness is essential for the finiteness ofw3, as shown by a graph formed by t copies of the graph
K4 − e by identifying the 2-vertices of these copies. Indeed, Borodin [5] has proved the following refinement of Theorem 1:

Theorem 3 (Borodin [5]). Every (K4 − e)-less NPM has
(i) either w3 ≤ 18 or a vertex of degree ≤ 15 adjacent to two 3-vertices, and
(ii) either w3 ≤ 17 or w2 ≤ 7.

As mentioned above, the bounds w3 ≤ 21 and w3 ≤ 17 are tight. It was open whether the bound w3 ≤ 18 in Theorem 3
is sharp or not; its sharpness was recently confirmed by Borodin et al. [6].

In particular, precise bound w3 ≤ 21 by Ando, Iwasaki, and Kaneko’s [1] is valid for all NPMs in which no two 3-vertices
are adjacent:

Corollary 4 ([5]). Every NPM with w2 > 6 has w3 ≤ 21.

Theorem 3 immediately implies that Franklin’s precise bound w3 ≤ 17 is valid for all NPMs with δ ≥ 4:

Corollary 5 ([5]). Every NPM without 3-vertices satisfies w3 ≤ 17.

The upper bound in the following statement is also immediate:

Corollary 6 ([5]). Every 3-polytope with δ ≥ 4 has a path uvw such that max{d(u), d(v), d(w)} ≤ 9, which bound is tight.

A description of 3-paths is tight if no its parameter can be strengthened and no term dropped.
Lebesgue (1940) proved that every NPM of girth 5 has a 3-path consisting of 3-vertices. Borodin et al. [6] gave a tight

description of 3-paths in arbitrary normal plane maps:

Theorem 7 (Borodin, Ivanova, Jensen, Kostochka, Yancey [6]). Every (K4−e)-less NPM has a 3-path of one of the following types:
(3, 4, 11), (3, 7, 5), (3, 10, 4), (3, 15, 3), (4, 4, 9), (6, 4, 8), (7, 4, 7), (6, 5, 6), which description is tight.

One of the purposes of this paper is to give seven tight descriptions of 3-paths in triangle-free NPMs (see Theorems and
Corollaries 8–14 below).

Theorem 8. Every triangle-free NPM has a (5, 3, 6)-path or (4, 3, 7)-path, which description is tight.

Corollary 9. Every triangle-free NPM has a (5, 3, 7)-path, which is tight.

Theorem 10. Every triangle-free NPM has a (3, 5, 3)-path or (3, 4, 4)-path, which is tight.

Corollary 11. Every triangle-free NPM has a (3, 5, 4)-path, which description is tight.

Theorem 12. Every triangle-free NPM has a (5, 3, 6)-path or (3, 4, 3)-path, which is tight.

Corollary 13. Every triangle-free NPM has a (5, 4, 6)-path, which is tight.

Theorem 14. Every triangle-free NPM has a (3, 5, 3)-path or (4, 3, 4)-path, which description is tight.

The other purpose of this paper is to show that there are no tight descriptions other than in Theorems and Corollaries
8–14.

Theorem 15. There exist precisely seven tight descriptions of 3-paths in triangle-free NPMs:
(i) (5, 3, 6) ∨ (4, 3, 7),
(ii) (3, 5, 3) ∨ (3, 4, 4),
(iii) (5, 3, 6) ∨ (3, 4, 3),
(iv) (3, 5, 3) ∨ (4, 3, 4),
(v) (5, 3, 7),
(vi) (3, 5, 4),
(vii) (5, 4, 6).
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Fig. 1. The graph G1 without paths smaller than those of types (3, 5, 3) and (5, 3, 6).

Fig. 2. The graph G2 without paths smaller than those of types (3, 4, 3) and (4, 3, 7).

Fig. 3. The graph G3 without paths smaller than those of types (4, 3, 4) and (3, 4, 4).

2. The tightness of Theorems 8, 10, 12 and 14 and Corollaries 9, 11 and 13

In Fig. 1, we see a graph G1 formed by replacing each face of the dodecahedron by a copy of the graph from the right
side of Fig. 1. As a result, all 3-paths of G1 majorize those of types (3, 5, 3) and (5, 3, 6). In Fig. 2, a graph G2 is similarly
constructed from the octahedron and contains no 3-paths strictlymajorized by (4, 3, 7)- and (3, 4, 3)-paths. Finally, a graph
G3 (constructed from the cube) contains no 3-paths of types smaller than (4, 3, 4) and (3, 4, 4) (see Fig. 3).

For example, we now explain the tightness of the descriptions in Theorem 8 and its Corollary 9.
For the first description, we have to prove that each of the following strengthenings of Theorem 8 is wrong: ‘‘Every

triangle-free NPM has a 3-path of one of the types: (a) (4, 3, 6) ∨ (4, 3, 7), (b) (5, 3, 5) ∨ (4, 3, 7), (c) (5, 3, 6) ∨ (3, 3, 7),
and (d) (5, 3, 6) ∨ (4, 3, 6)’’. In fact, (a) is reduced to saying that there is a (4, 3, 7)-path, and (d) is equivalent to the claim
on the existence of (5, 3, 6)-paths.

Indeed, (a) fails at graph G1 because G1 has no 3-vertex adjacent to a 4−-vertex. As for (b), we see that each 3-vertex in
G1 is adjacent to a 5-vertex and two 6-vertices, a contradiction. In G2, no two 3-vertices are adjacent, and each 3-vertex has
at least two 7+-neighbors, which contradicts (c) and (d).

To confirm the tightness of Corollary 9, we must check that the type (5, 3, 7) cannot be replaced by (4, 3, 7) or (5, 3, 6).
Indeed, the first claim fails at G1, while the second fails at G2.

Checking the tightness of the other five theorems and corollaries is provided by similar arguments based on graphs G1,
G2, and G3, and is left to the reader.

3. Proving the main statements of Theorems 8, 10, 12 and 14 and Corollaries 9, 11 and 13

For example, by themain statement of Theorem 8wemean that every triangle-free NPM has a (5, 3, 6)-path or (4, 3, 7)-
path. Throughout this section we discuss only the main statements of these seven theorems and corollaries.

To deduce Corollaries 9, 11 and 13 is easy. For instance, (the main statement of) Corollary 9 claims that there exists a
(5, 3, 7)-path. However, we know by Theorem 8 that there exists either a (5, 3, 6)-path or (4, 3, 7)-path, each of which is a
(5, 3, 7)-path, and we are done.
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Now suppose thatM is a counterexample to any of Theorems 8, 10, 12 and 14.
Euler’s formula |V | − |E| + |F | = 2 forM may be written as

x∈V∪F

(d(x) − 4) = −8, (1)

where V , E, and F are the sets of vertices, edges and faces ofM , respectively.
Every x ∈ V ∪ F contributes the charge µ(x) = d(x) − 4 to (1), so only the charge of 3-vertices is negative. Using the

properties ofM as a counterexample, we define a local redistribution of µ’s, preserving their sum, such that the new charge
µ′(x) is non-negative for all x ∈ V ∪ F . This will contradict the fact that the sum of the new charges is, by (1), equal to −8,
which will complete the proof of any of the four theorems.

Throughout the paper, we denote the vertices adjacent to a vertex v in a cyclic order by v1, . . . , vd(v).

3.1. Proving Theorems 8 and 12

We apply the following rules of discharging.
R1. Every 4+-vertex v gives d(v)−4

d(v)
to each incident face if d(v) ≤ 7 or 1

2 otherwise.
Let ρ(f ) be the total donation to a face f by R1, and n3(f ) the number of 3-vertices incident with f .
R2. Every 3-vertex v receives min{

1
2 ,

µ(f )+ρ(f )
n3(f )

} from each incident face f .

Lemma 16. Every 3-vertex v receives 1
2 from each incident 5+-face f .

Proof. Suppose that d(f ) = 5. Since M has no (3, 3, 3)-paths, it follows that n3(f ) ≤ 3. If n3(f ) ≤ 2, then we are readily
done because µ(f ) = 1. So suppose n3(f ) = 3, which means that f is incident with two 7+-vertices due to the absence of
(3, 3, 6)-paths inM for each of Theorems 8 and 12. Thus µ(f ) + ρ(f ) > n3(f ) ×

1
2 , as desired.

If d(f ) ≥ 6, then µ(f ) is enough for f to give 1
2 to each incident 3-vertex. Indeed, since n3(f ) ≤

2d(f )
3 , we have

µ(f ) = d(f ) − 4 ≥
2d(f )
3 ×

1
2 . �

Now we check that the new charge µ′ is non-negative for all faces and vertices ofM .
It follows from Lemma 16 that µ′(f ) ≥ µ(f ) − n3(f ) ×

1
2 ≥ 0 whenever d(f ) ≥ 5. Suppose f is a 4-face. If n3(f ) = 0,

then µ′(f ) ≥ µ(f ) = 0. Otherwise, µ′(f ) = 0 by R2.
Suppose v ∈ V . If d(v) ≥ 8, then µ′(v) ≥ d(v) − 4 − d(v) ×

1
2 ≥ 0 by R1. If 4 ≤ d(v) ≤ 7, then µ′(v) ≥ d(v) −

4 − d(v) ×
d(v)−4
d(v)

= 0.
To complete the proof, it suffices to check that every 3-vertex v in M satisfies µ′(v) ≥ 0.
Let v be incident with faces f1 = v1vv2x . . . , f2 = v3vv2y . . . , and f3 = v1vv3 . . ..
CASE 1. d(v2) = 3. Here, d(x) ≥ 7, d(y) ≥ 7, d(v1) ≥ 7, and d(v3) ≥ 7 due to the absence of (3, 3, 6)-paths inM for each

of Theorems 8 and 12. By R1, each of the incident faces gives v at least 3
7 , which results in µ′(v) ≥ −1 + 3 ×

3
7 > 0.

CASE 2. d(v2) = 4. In this case, our proof of Theorems 8 and 12 splits.
Under the assumptions of Theorem 8, we have d(v1) ≥ 8 and d(v3) ≥ 8 due to the absence of (4, 3, 7)-paths inM . Now

v receives at least 1
4 from f2 (which bound is attained only when d(f2) = 4 and d(y) = 3). The same is true for f1. From f3,

our v receives 1
2 . So, we have µ′(v) = 0.

In Theorem 12, we have d(v1) ≥ 7 and d(v3) ≥ 7, while d(x) ≥ 4 and d(y) ≥ 4 due to the absence of (5, 3, 6)-paths and
(3, 4, 3)-paths. So v receives at least 3

7 from each incident face, and we have µ′(v) ≥ −1 + 3 ×
3
7 > 0.

CASE 3. d(v2) = 5. Now we have d(v1) ≥ 7 and d(v3) ≥ 7 due to the absence of (5, 3, 6)-paths. Each of f1 and f2 gives v
at least ( 1

5 +
3
7 ) ×

1
2 =

11
35 , while f3 gives at least 3

7 , which implies µ′(v) ≥ −1 + 2 ×
11
35 +

3
7 > 0.

CASE 4. d(vi) ≥ 6, where 1 ≤ i ≤ 3. Now each incident face gives v at least 1
3 . �

3.2. Proving Theorems 10 and 14

This time we apply the following rules of discharging.
R1. Every 3-vertex receives 1

3 from each incident face.
R2. Every 6+-vertex gives 1

3 to each incident face.
R3. Every 5-vertex gives zero to each incident 5+-face.
R4. Every 5-vertex gives to each incident 4-face f :
(a) 1

3 if f is incident with either two 3-vertices or one 3-vertex and two 4-vertices,
(b) 1

6 if f is incident with a 3-vertex and either three 5-vertices or a 4-vertex and two 5-vertices,
(c) nothing otherwise.
Suppose f ∈ F . If d(f ) ≥ 6, then µ′(f ) ≥ d(f ) − 4 − d(f ) ×

1
3 ≥ 0 by R1.
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If d(f ) = 5, then f is incident with at most three 3-vertices due to the absence of (3, 3, 3)-paths inM , which implies that
µ′(f ) ≥ 1 − 3 ×

1
3 = 0.

Finally suppose that f = v1vv2x. Note that f is incident with at most two 3-vertices.
CASE 1. f is incident with two 3-vertices. If d(v1) = d(x) = 3, then d(v2) ≥ 5 and d(v) ≥ 5 due to the absence of

(3, 3, 4)-paths. Each of v and v2 gives 1
3 to f by R2 or R4a, so that µ′(f ) ≥ 0 − 2 ×

1
3 + 2 ×

1
3 = 0 by R1.

If d(v) = d(x) = 3, then d(v1) ≥ 6 and d(v2) ≥ 6 due to the absence of (3, 5, 3)-paths, and we are done by R1 and R2.
CASE 2. f is incident with precisely one 3-vertex x. If there is a 6+-vertex incident with f , then µ′(f ) ≥ −

1
3 +

1
3 = 0 by

R1 and R2. So assume that f is not incident with 6+-vertices.
If f is incident at most one 4-vertex, then µ′(f ) ≥ −

1
3 + 2 ×

1
6 = 0 by R1 and R4b. Note that f cannot be incident with

three 4-vertices due to the absence of (3, 4, 4)-paths inM if we are in Theorem 10, and (4, 3, 4)-paths inM if we deal with
Theorem 14.

So suppose that f is incident with two 4-vertices and one 5-vertex. Note that these two 4-vertices are adjacent if we are
in Theorem 14, and not adjacent in Theorem 10. So, we are done by R1 and R4a.

CASE 3. f is not incident with 3-vertices. Since f does not participate in R1, we have µ′(f ) ≥ 0.
If v ∈ V is a 6+-vertex, then µ′(v) ≥ d(v) − 4 − d(v) ×

1
3 ≥ 0 by R2. If d(v) = 3, then µ′(v) ≥ −1 + 3 ×

1
3 = 0 by R1.

If d(v) = 4, then v does not participate in discharging, so µ′(v) = µ(v) = 0.
To complete the proof, it suffices to check that every 5-vertex v satisfies µ′(v) ≥ 0. If v gives at most 1

6 to each incident
face by R3, R4b, R4c, then µ′(v) ≥ 1 − 5 ×

1
6 > 0.

So suppose v gives 1
3 to a face f1 = vv1xv2 by R4a. Let there be faces f2 = vv2y . . . , f3 = vv3u3 . . . , f4 = vv4u4 . . . , and

f5 = v5vv1z . . ..
CASE 1. f1 is incidentwith two 3-vertices. SinceM does not contain (3, 5, 3)-paths, we can assume that d(v1) = d(x) = 3,

and d(v2) ≥ 5 due to the absence of (3, 3, 4)-paths in M for both Theorems 10 and 14. Note that d(vi) ≥ 4 with 3 ≤ i ≤ 5,
and d(u1) ≥ 5. We see that v gives at most 1

6 to each of the faces f5, f2. This means that we are done unless v gives 1
3 to one

of the faces f3 and f4 and at least 1
6 to the other by R4. In particular, f3 = vv3u3v4 and f4 = vv4u4v5. By symmetry, we can

assume that f3 receives 1
3 from v. This implies that d(u3) = d(u4) = 3 and d(v3) = d(v4) = 4. We have a (4, 3, 4)-path

v3u3v4 and a (3, 4, 3)-path u3v4u4, which is impossible forM .
CASE 2. f1 is incident with precisely one 3-vertex and two 4-vertices.
Subcase 2.1. d(v1) = d(v2) = 4, d(x) = 3. This is possible only if we deal with Theorem 10. Note that d(y) ≥ 5 and

d(z) ≥ 5 since M has no (3, 4, 4, )-paths. If both v3 and v5 are 4+-vertices, then v gives nothing to f2 and f5, which implies
that µ′(v) ≥ 1 − 3 ×

1
3 = 0.

By symmetry, suppose that d(v5) = 3. So d(v3) ≥ 4 and d(v4) ≥ 4 due to the absence of (3, 5, 3)-paths. Note that v
gives at most 1

6 to f5 and 0 to f2 by R4b and R4c. We are done unless v gives 1
3 to each of f3, f4, which means thatM contains

the (3, 4, 4)-path u3v4u4, a contradiction.
Subcase 2.2. d(v1) = 3, d(v2) = d(x) = 4. This is possible only if we are in Theorem 14. Here d(z) ≥ 5 and d(vi) ≥ 4

with 3 ≤ i ≤ 5. We see that v gives at most 1
6 to each of fi, where 2 ≤ i ≤ 4, since M has no (4, 3, 4, )-paths. The same is

true for f5 by R4b, R4c. This implies that µ′(v) ≥ 1 − 4 ×
1
6 −

1
3 = 0. �

4. Proving Theorem 15

Suppose D = x1y1z1 ∨ · · · ∨ xkykzk is a tight description of 3-paths in triangle-free NPMs. This means that
(1) every NPM has a (xi, yi, zi)-path for at least one i with 1 ≤ i ≤ k, and
(2) ifwedelete any term xiyizi fromDor decrease anyparameter inDbyonewithout changing the other 3k−1parameters,

then the new description is not satisfied by at least one NPM.
Note that, due to its tightness, the descriptionD cannot have triplets XYZ and X ′Y ′Z ′ such that X ≤ X ′, Y ≤ Y ′, and Z ≤ Z ′,

for D′
= D \ {XYZ} is equivalent to D but shorter.

CASE 1. D has a term XYZ = 3+5+3+.
Subcase 1.1. X ≥ 4 or Z ≥ 4. By Corollary 11, D is true and not stronger than the tight description 354, which implies

that D = 354.
Subcase 1.2. X = Z = 3. We note that the graph G3 (see Fig. 3) has no (3, 5+, 3)-paths. However, G3 has both (3, 4, 4)-

paths and (4, 3, 4)-paths. This implies that to be satisfied by G3, ourD should contain one of the terms 3+4+4+ and 4+3+4+.
In the first case, we deduce from Theorem 10 that D = 353 ∨ 344, because D = 3+5+3+

∨ 3+4+4+
∨ · · · , which is not

stronger than 353 ∨ 344, but D is tight by assumption. In the second case, we see from Theorem 14 that D = 353 ∨ 434.
CASE 2. D has no term XYZ = 3+5+3+. We now look at the graph G1 (see Fig. 1). Since D has no 3+5+3+, it follows that

D must contain a term 5+3+6+ to be satisfied by G1.
Subcase 2.1. D has a term 5+46+. By Corollary 13, we have D = 546.
Subcase 2.2. D has a term XYZ = 5+36+.
Subcase 2.2.1. X ≥ 7 or Z ≥ 7. By Corollary 9, we have D = 537.
Subcase 2.2.2. 5 ≤ X ≤ 6 and 5 ≤ Z ≤ 6, i.e. D = 536 ∨ · · · or D = 636 ∨ · · ·. However, G2 (see Fig. 2) has neither term

536 nor 636. This implies that to be satisfied by G2, our D should contain one of the terms 3+4+3+ and 4+3+7+.
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In the first case, we deduce from Theorem 12 that D = 536 ∨ 343. In the second case, Theorem 8 implies that
D = 536 ∨ 437.

Thus we have proved that there are precisely seven tight descriptions of 3-paths in normal triangle-free planemaps. �
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