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a b s t r a c t

Dissections of a square into smaller squares, with the smaller squares having relatively
prime sizes, are known as Mrs. Perkins’s quilts. A representation of these dissections
using graphs is presented. The edges are directed and coloured North–South orWest–East,
and the graph corresponds naturally to the dissection. This representation allowed the
exhaustive generation of all dissections up to order 18, using the plantri software. The
results were cross-checked by generating all dissections of small sizes using a direct
approach. The results confirm, extend and introduce several integer sequences.

© 2014 Published by Elsevier B.V.

1. Introduction

We are interested in dissecting squares into smaller squares; the order of a dissection is the number of smaller squares,
which are here called subsquares. We do not require that the dissection be perfect (that is, that the subsquares are all of
distinct sizes), but we do require that it is prime (that is, that the greatest divisor of their sizes is 1). Such dissections are
known asMrs. Perkins’s quilts, after the name of a puzzle [7, Problem 173].

We define the function f (n) to be the least possible order of a prime dissection of a square of side n. It is known that
log2 n < f (n) < 6 log2 n for n > 1; the lower bound is due to Conway [5] and the upper bound is due to Trustrum [17].
Determination of f (n) is problem C3 in [6], where values were supplied ‘with some slightly increasing lack of confidence’
for n ≤ 100. The values came from [5], where it was admitted: ‘Strictly speaking, these are only upper bounds for f (n).
Readers may care to accept the implied challenge’. The lack of confidence was justified: lower orders were subsequently
found for several values of n, starting with 51. The best values known to date are listed in the On-Line Encyclopedia of
Integer Sequences [16, Sequence A005670]. However, some of the uncertainty persists: in the OEIS entry, it is stated that
‘n ≤ 15 (and possibly 16) proved minimal by J. H. Conway’.1

The current article reports an exhaustive generation of prime dissections of squares with orders up to 18. This confirms
the currently conjectured values of f (n) for n ≤ 120. Several other sequences are extended.

The current approach is to define a way in which dissections can be represented by graphs, as discussed in the next
section. The representation used here can be compared to the use of graphs in similar areas — most notably, the analogy
with electrical networks. One of the inventors of that analogy (in 1940) has more recently written an entertaining account
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of that work [18]. The electrical-network analogy (here abbreviated to ENA) was successfully applied to discovery of perfect
dissections [8]. The graph in that approach is a representation of a scan in either the horizontal or the vertical direction. The
vertices correspond to boundaries between subsquares, and an edge connecting two vertices corresponds to a subsquare
that spans those boundaries. The network can be efficiently solved to give sizes of subsquares. Planar imbeddings of these
graphs give possible layouts of dissections, but these are not guaranteed to fit together in the other direction, or (if they
do fit together) to form squares. For perfect dissections, the graphs have minimum degree 3, but this simplification would
not be appropriate if they were used to investigate imperfect dissections. Reviews in this area, concentrating on perfect
dissections, are by Federico [9] and Anderson [2].

The alternative approach described here also uses planar imbeddings of graphs to represent the layout of dissections.
One difference in the graphs is that, as described in Section 2, vertices here represent subsquares, rather than boundaries
between subsquares. Another difference is that here a graph includes both horizontal and vertical connections, so a set of
sizes consistent with a graph will fit together to a full square. Considerably more computation is required for each graph,
including a search for ways to direct and colour it, but the requirements of triangulation and minimum degree 4 reduce the
number of candidate graphs. Despite the differences between the graphs, there are considerable similarities between the
equations generated; these are discussed in Section 4.

The graph representation used here is conceptually straightforward: vertices represent subsquares, and edges represent
connections. Therefore, similar graphs have been used by several authors, and applied to architectural floor plans [15], for
example. Several variations are discussed by Felsner [10]. In particular, Fusy [11] investigates irreducible triangulations
of the 4-gon with transversal structures (which are defined in very similar terms to the direction and colouring of the
edges, described in the next section). Fusy proved several properties of these graphs, and applied the results to straight-
line drawings of planar graphs. However, it has been shown [10] that the results are also relevant to square or rectangle
dissections.

In contrast to the methods developed to solve specific problems, it is interesting to note an alternative approach [14],
where the problem is stated in terms of integer linear programming. This can then be solved using general solvers. This
approach may reduce the need for ingenuity and thought; the extra expense in computer time, if any, has not yet been fully
investigated.

2. Representation of dissections by two-coloured, directed graphs

The basis for the generation of the dissections is their representation by graphs. An example is shown in Fig. 1. Let D be
a dissection, and G be a graph that represents D in the following way:

• Each subsquare in D corresponds to a vertex in G.
• In addition, there are four cardinal vertices, so called because they can be labelledNorth, East, South andWest in a suitable

cyclic order. Thesewill be referred to as VN , VE , VS and VW respectively, and lower-case v will always refer to non-cardinal
vertices.

• Where two subsquares in D are contiguous, the corresponding vertices are connected. Each edge is directed and has one
of two colours, North–South and West–East, depending on the relative placement of the subsquares.

• Subsquares on the four extremes of the dissected square are connected to the corresponding cardinal vertices, againwith
edges directed and coloured in the natural way.

• Where four subsquares meet at a cross (that is, where four subsquares have a point in common), exactly one of the two
diagonal pairs of subsquares is connected.
– This feature ensures that G is planar and triangulated. However, it implies that dissections with crosses can be

represented by more than one graph: for each cross, there is a choice of which pair to connect, and which colour
the edge should have. There is one cross in Fig. 1, involving three unit subsquares and one 2 × 2 subsquare. The latter
has been connected to its diagonal partner with a North–South edge, but aWest–East edge with the opposite direction
is an alternative, and so are two directions in the other diagonal connection.

• Each cardinal vertex is connected to the two neighbouring cardinals in the cycle. The direction and colour of these edges
is arbitrary; to be consistent with the properties discussed below, they can be North–South edges, directed away from
North or towards South.
– These edges ensure that all vertices have degree at least 4 (as discussed below).

Properties of G can be deduced:

• If D has order N , then G has order N + 4.
• G is planar, and the imbedding follows the same layout as D.
• Every face of G is a triangle, except the infinite outer face; this face has four edges which connect the cardinal vertices.

The faces are triangles because in the dissection there is no gap between two adjacent subsquares that both touch a third
subsquare. No triangle contains other vertices.
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Fig. 1. An example of a dissection (dotted lines) overlaid with the corresponding graph. The four circles are cardinal vertices, referred to as VN , etc. in the
text. North–South edges are dashed. The lowercase labels for subsquares are used in Section 4.

• In every triangle, two edges have the opposite colour from the third, and those two edges either both point towards their
shared vertex or both point away from it.

• Every v has the following edges, in clockwise order: at least one North–South edge, pointing to the vertex; at least one
West–East edge, pointing away; at least one North–South edge, pointing away; and then at least one West–East edge,
pointing to the vertex. This is because each subsquare in the dissection has at least one neighbour on each face, if we
include the cardinal vertices for subsquares on the extremes. It follows that every non-cardinal vertex has degree at least
4.

• No v is connected to both VN and VS , or to both VW and VE . Such a subsquare would need to have length equal to that
of the dissected square; the search does not include the trivial prime dissection of a unit square dissected into a single
unit subsquare. It follows that at least two non-cardinal vertices are connected to each V , and that every V has degree at
least 4. These properties would not apply in general if this method were applied to dissections of rectangles into smaller
rectangles.

• Exactly one v is connected to each other pair of cardinal vertices; this is called a corner vertex.
• No edge connects VN to VS , nor VW to VE .
• Edges from VN to non-cardinal vertices are coloured and directed in the natural way: North–South, pointing away from

VN . These vertices are linked by West–East edges in a chain from the North-West corner to the North-East corner, in
anticlockwise order of their connection to VN . There are no other connections between these vertices. Similar situations
apply for the other cardinal vertices.

The current work used the plantri software [3] to generate an exhaustive set of candidate graphs; in the terminology of this
software, we must consider one member of each isomorphism class of imbedded triangulations of a 4-sided disk. Plantri
is well suited to this task. The plantri software was adapted to restrict the search to graphs with minimum degree 4;
this restriction was not available by default for imbeddings of a disk. Some candidates could be rejected on the basis of
the required properties, discussed above. For all other candidates, all possible directions and colourings were considered,
using an exhaustive backtracking search. Each new direction and colouring was tested for conformance with the required
properties discussed above; unsuitable choices were rejected. The remaining directed and coloured graphs were analysed
to deduce, if possible, lengths of subsquares that would produce a corresponding dissection of the square. This analysis is
described in the next section; each graph considered was shown to correspond to a single prime dissection of a square,
or shown not to correspond to any. Thus, an exhaustive search was conducted for dissections of small orders; results are
presented in Section 6.

3. Deducing sizes

From now on, we will consider only coloured, directed graphs, in specified imbeddings, that satisfy the properties
mentioned in the previous section. For a dissection of order N , the lengths of the subsquares, L1, . . . , LN , can be regarded
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as unknowns, and any such graph can be used to deduce equations that these lengths obey. For example, define a traverse
to be a path of North–South edges from VN to VS , or an equivalent West–East path. The sum of the lengths associated with
the non-cardinal vertices in a traverse equals the length n of the dissected square, so each traverse provides an equation.
Kurz [14] gives an example of these equations (not using the graph representation).

At this stage, n is also unknown. Instead of equating sums of lengths to n, we may define a subsquare’s normalised length
to be its length divided by n. Each sum of these normalised lengths is then equated to 1. In a successful solution, the resulting
normalised lengthswill then be rational numbers (since all the equations have integer, indeed unity, coefficients); theymust
also satisfy 0 < Li < 1. If all normalised lengths are multiplied by the least common multiple of all their denominators,
the result will be a prime dissection with integer lengths. For some graphs, the equations have a solution with normalised
lengths not satisfying 0 < Li < 1; this indicates that the graph does not correspond to a dissection of the square. Whether
a solution uses lengths or normalised lengths, a multiplicative constant can be found to give a prime dissection; therefore,
it is not always necessary to distinguish between lengths and normalised lengths. It has been noted previously [4] that
solutions to dissections typically provide lengths fixed to within a multiplicative constant. As discussed in Section 4, none
of the systems of linear equations had more than one solution in the current work.

The number of traverses, and hence the number of equations, will depend on the graph. However, in the electrical-
network analogy (ENA), even the horizontal or vertical constraints are sufficient to define a minimal integer solution. (This
is noted by Kurz [14]. Acton [1] discusses the solution of similar sets of equations.) The current equations contain both
horizontal and vertical constraints. Section 4 gives an example of the specific equations used and shows that the different
approaches are closely related.

Some dissections (specifically, those containing crosses) have several graphs. All graphs were generated, and duplicate
solutions were removed.

Some solutions were generated that satisfied the equations, but did not match the graph that defined the equations:
for example, solutions contained pairs of subsquares that were connected in the graph and were correctly aligned in the
deduced dissection (for example, in that the lower edge of one had the same vertical coordinate as the top edge of the other)
but did not actually touch, even at a cross. These solutions were discarded; if the dissections were valid, they would also be
generated from their correct graphs.

In fact, the search did not use the approach of building up equations from traverses, because the full collection of traverses
is not available until the graph has been fully coloured and directed. Instead, a greater number of unknowns was used, so
that each new direction and colouring of an edge would generate a new equation. We refer to this as the local equation
approach. Each new local equation could then be tested for compatibility with the existing set of equations, and impossible
graphs could be rejected at a higher level of the search tree. This approach used 3N unknowns in total: the N lengths of the
subsquares, and also the x and y coordinates of the subsquares’ North-West corners. Some of the unknowns were known
immediately: for example, with x pointing East, x = 0 for all subsquares on the Western extreme; these subsquares were
known from their connection to VW . Solving for fractional dissections of a unit square (in other words, using normalised
sizes), then a subsquare i on the Eastern extreme satisfied (xi+Li) = 1. During the direction/colouring search, the assignment
of a direction and a colour to an edge produced a new equation immediately. For example, if aWest–East edge pointed from
subsquare i to subsquare j, then (xi + Li) = xj. The additional complication of 3N unknowns was found to be justified by the
earlier detection of graphs without solutions as dissections.

Equations were combined by forming them into an upper-triangular matrix, for a specified ordering of the unknowns.
This was effectively an incremental process of Gaussian elimination. Each new equation was considered in terms of its
earliest unknown. If no equation had previously been noted with that unknown as the earliest, then the new equation
contributed new information and could not be inconsistent with the previous equations; the new equation would be duly
noted. Alternatively, if a previous equation already had that unknown as its earliest, then the two equations would be
combined to eliminate that unknown. If the combined equation contained no unknowns, then there were two possible
conclusions: if the combined equation contained a non-zero constant term, then the new equation was not consistent
with the existing equations; alternatively, if the combined equation effectively stated 0 = 0, then the new equation was
redundant, since it was a linear combination of previous equations. If the combined equation had non-zero coefficients of
unknowns, then the process would be repeated in terms of the new earliest unknown.

Integer arithmetic was used to combine equations. It was verified that overflow did not occur. The magnitudes of
coefficients often increased when equations were combined; to keep the coefficients within manageable magnitudes, it
was necessary to divide every newly-combined equation by the greatest common divisor of its coefficients. For order
N ≤ 18, all terms had magnitudes less than 243, and so 64-bit ‘long long’ integers in the C programming language were
adequate.

4. Relationship between different approaches

This section presents the equations that apply to the dissection of Fig. 1 using three approaches: the electrical-network
analogy (ENA) of [18]; the new approach using traverses; and the new approach using local equations. By reference to the
example, it is shown that the approaches are closely related.
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Fig. 2. The dissection of Fig. 1,with the graph from the vertical scan in the electrical-networks analogy. The dissection is shownwithout square proportions,
reflecting the uncertainty still present before the equations are solved. As before, the cross between subsquares e, c, f and g has been broken by selecting
a vertical connection from c to f.

4.1. Electrical-network analogy (ENA)

We start with the ENA and consider only the vertical (North–South) scan, whose graph is shown in Fig. 2. In a formulation
by the ENA’s original authors [4], a matrix i is defined as follows:

ihr =

1 if node Nh is at the top of edge Er
−1 if node Nh is at the base of edge Er
0 otherwise.

(1)

In general let the number of nodes bem. For the graph in Fig. 2, with 5 nodes and 8 edges, the matrix is

i =


1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0

−1 0 0 1 1 0 0 0
0 0 −1 0 −1 1 1 1
0 0 0 −1 0 −1 −1 −1

 . (2)

A matrix j is defined:

j = iiᵀ. (3)

The equations to be solved are then:
m

k=1

jhkpk = 0 (4)

for all rows of j except the top and bottom rows: h ≠ 1,m (using the original formulation where indices start at 1).
The original formulation refers to the unknowns p as ‘potentials’, but here we will explore the geometric basis for the

equations, so we note that pk is the vertical coordinate of node Nk; for example p1 = ya = yb. It is observed [4] that one of
the coordinates, such as p1, can be fixed to be 0 without loss of generality. Therefore (4) represents m − 2 equations in the
remainingm− 1 unknowns. It has been shown [4] that these equations are linearly independent, and therefore they fix the
remaining coordinates to within a multiplicative constant.

In the example, we will take several steps: form j from i; remove the top and bottom rows; ignore p1 since it is fixed to
be 0; take p5 to the right of the equation; and divide through by p5. The result is: 2 0 −1

0 3 −1
−1 −1 5

p2/p5
p3/p5
p4/p5


=

0
1
3


. (5)

Noting that p5 equals n, the length of the square, we have m − 2 linearly independent equations in m − 2 normalised
coordinates, giving the solutions 2/5, 3/5 and 4/5. Fig. 1 confirms that these are correct.

For geometrical insight, itmay be preferable to expand j in terms of i. Each edge in the ENA’s graph represents a subsquare
of the dissection, and is represented by a column of i. This column contains a 1 and a −1 for the starting and ending nodes.
Therefore, iᵀp equals −L, where L is the vector of subsquares’ lengths, possibly normalised. For example,

− La = p1 − p3. (6)
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Fig. 3. Parts of (left to right) the dissection of Fig. 1, the vertical ENA graph of Fig. 2 and the graph of Fig. 1. These contain the same information about sums
of subsquares’ widths: Le + Lc = Lf + Lg + Lh . (The dissection and the graph on the right contain the additional information that Lc ≥ Lg + Lh , because part
of subsquare c is vertically above f.)

Applying the expansion of j to Eq. (4) in our example, we obtain:

−Lb + Lc = 0
−La + Ld + Le = 0
−Lc − Le + Lf + Lg + Lh = 0.

(7)

The geometric origin of these equations can be found, perhaps surprisingly, from the horizontal traverses in the new
approach. This is discussed in the next section.

4.2. Traverse equations

By reference to Fig. 1, the traverses in the example can be found. From North–South traverses, the equations are:

La + Ld = n
La + Le + Lf = n
Lb + Lc + Lf = n
Lb + Lc + Lg = n
Lb + Lc + Lh = n.

(8)

FromWest–East traverses, the equations are:

La + Lb = n
La + Lc = n
Ld + Le + Lc = n
Ld + Lf + Lg + Lh = n.

(9)

Since the right sides of these equations are all n, the same left sides can be expressed in terms of normalised lengths and
equated to 1. This is computationally much more convenient, because n is not known at the start. In fact, n is fixed by the
specification of a prime dissection rather than by the geometrical constraints.

The connection with the ENA can be observed by taking the differences of successive equations in (9): the resulting
equations are identical to (7). This is despite the fact that (7) was generated by the vertical scan in the ENA, and (9) from
horizontal traverses. The reason is that both these equations represent constraints on horizontal distances, in equivalent
situations, as will now be discussed.

An example of the correspondence is shown in Fig. 3. In the ENA’s graph, only edges e and c enter the node, and only
edges f , g and h leave the node. It can be deduced that this part of the dissection must be similar to the part shown in the
figure: the West edges of e and f are aligned, and so are the East edges of c and h. We deduce that

Lc + Le = Lf + Lg + Lh (10)

which is identical to the last equation in (7). Thus we have a geometric interpretation of the nodes in the ENA’s graph: each
node corresponds to a horizontal line in the dissection, extending as far as possible toWest and East. (This interpretation is,
of course, not novel, being consistentwith the original expositions of thismethod.) The equations in (4) follow: j is expanded
using (3); iᵀp equals −L; and then each inner row of i contains −1 for each subsquare entering that vertex, and +1 for each
subsquare leaving that vertex.

In the current work’s graph, the corresponding feature to an ENA node is a horizontal pocket: two West–East paths that
have the same starting vertex and ending vertex as each other, and that enclose no other West–East edges. An example
is shown in Fig. 3. There is at least one West–East path from the West cardinal vertex to the starting vertex, and at least
one West–East path from the ending vertex to the East cardinal vertex. Therefore there are two traverses that differ only in
the vertices in the horizontal pocket. Eq. (10) is then the difference between the corresponding traverse equations. For the
example, the relevant traverse equations are the last two in (9).
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The four linear equations in (9) are not sufficient to fix all lengths. For a full square dissection, the equations in (8) also
apply. We offer no proof that the combined traverse equations are sufficient for all graphs, where sufficient means either
fixing all lengths to values consistent with all equations and with a dissection, or forming an inconsistent set of equations.
For all cases where solution has been attempted for a set of traverse equations, they have been found to be sufficient.

4.3. Local equations

Here we consider the local equations, which use coordinates xi and yi as well as lengths Li. Whenever a West–East edge
connects subsquare a to subsquare b, there is a local equation: xa + La = xb. Similarly, a North–South edge connecting a to
e gives ya + La = ye.

Here we show that the local equations are equivalent to the ENA’s equations, as conventionally stated in terms of p.
We have shown that the analogy’s equations can be expressed in terms of subsquare lengths, and that these equations can
also be deduced from the traverse equations. The analogy’s equations have a single solution for a valid dissection, but this
demonstration relies on the equations being stated in terms of p as in (4). This ensures that there are onlym− 1 unknowns
in them − 2 equations. This can be regarded as starting from the length-based equations and substituting (6), etc.

The local equations can clearly be combined to form the traverse equations: for example, theWest–East traverse through
a and b can be assembled from xa + La = xb and xb + Lb = xE . (Again we note that uppercase E and lowercase e represent
cardinal and subsquare vertices respectively.) In the ENA, p1 was arbitrarily set to 0 and pm was set to either n or 1. Similarly,
all subsquares connected to the West cardinal vertex have zero x-coordinate, and xE is n. Thus we can combine these local
equations to give the first traverse equation in (9): La + Lb = n. In practice, it was easier to produce equations in terms of
normalised variables.

When the local equations from North–South edges inside a horizontal pocket are combined, it is clear that there is a
single y-coordinate that applies to all the lower subsquares. In the example of Fig. 3, yf , yg and yh are each equated to yc +Lc ,
so they must equal each other. This is implicit in the ENA, where edges leaving the corresponding vertex are all associated
with the same p4. Finally, the expansion of lengths into y- or p-coordinates, as in (6), is enforced by the North–South local
equations. Therefore, we put forward the proposition that the local equations can be rearranged to imply the equations from
the vertical scan of the ENA, and similarly the horizontal scan. It has been shown [4] that the ENA equations, from either
a horizontal or a vertical scan alone, are sufficient. Therefore, it is conjectured that the local equations are sufficient. More
concretely, the solution procedure described in Section 3 can detect whether a set of local equations is underdetermined,
and no such sets were found in the current work.

5. Cross-check

As a check on the results, an entirely different method was used to generate all dissections for small lengths. This simply
considered all possible ways of dissecting squares of length n. This was tackled as an exact cover problem: covering each
of the n2 unit subsquares by selecting from all possible smaller subsquares without overlap, using Knuth’s Dancing Links X
algorithm [13].

This alternative generation was used to give a complete generation of solutions of all orders, for sizes n ≤ 9. This itself
enabled a cross-check, because the results agreedwith sequences in theOEIS: A045846, A221845 andA224239. These results
also agreed with the five terms of A221844 given in the OEIS, and added four new terms; details are in the Appendix.

The alternative generation was also used to give all solutions with both n ≤ 18 and N ≤ 18, and its results agreed with
the main method’s. The numbers of solutions are shown in Table 1.

The alternativemethodwas not intensively optimised. The complete generation for n = 9 required 8.5 h on an Intel Core
i7-3770 machine, as a single process. The equivalent time for n = 8 was 4 min, which suggested that optimisation would
be justified before trying n = 10.

An efficient way to extend A224239 (‘Number of inequivalent ways to cut an n × n square into squares with integer
sides’) was to count symmetric solutions. This was similarly regarded as an exact cover problem, selecting from symmetric
collections of smaller subsquares. These counts were combined with the published values of A045846 (‘Number of distinct
ways to cut an n × n square into squares with integer sides’) to deduce the number of asymmetric dissections. Each
asymmetric dissection in A224239 corresponds to 8 dissections in A045846; symmetric dissections correspond to only 4, 2
or 1 dissections, depending on the symmetries. In this method, the counts for only the symmetric solutions took less than
10 seconds for n = 10, 1 min for n = 11, and 2 h for n = 12. Results are given in the Appendix.

6. Results

The exhaustive generation was conducted for orders up to 18. The computer time increased by a factor close to 10 for
each successive order. For example, orders 15, 16 and 17 required 0.8, 8.0 and 77 h respectively on a four-core Intel Core
i7-3770machine, running eight processes simultaneously. Order 18 required 18.4 days on an eight-core Intel Xeon E5-2680
machine, running sixteen processes simultaneously.
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Table 1
Number of prime dissections of order N of a square of length n up to symmetry. Blanks indicate zero.
These values were found by both methods. As well as the trivial prime dissection at (1, 1), single
dissections exist at smaller n for (n,N) pairs (2, 4), (3, 6) and (3, 9). An aside: those are island non-
zero values, surrounded by zeros on all four sides. Another non-zero island is at (6, 36), with a zero
island (surrounded by non-zeros) next to it at (7, 36). These, with (6, 10) and (7, 11) seen above, are
the only known islands.

n Order N
7 8 9 10 11 12 13 14 15 16 17 18

4 2 1 4 3 1
5 5 1 10 14 6 20 3
6 11 9 28 12 47 58 85 27 151
7 4 14 42 40 83 175 103 509 620
8 28 17 13 99 156 325 492 1291 1135
9 9 28 25 129 142 336 1357 1254 3256

10 75 13 86 474 371 1910 2701 7150
11 34 67 30 342 709 1341 4377 9712
12 9 176 97 327 1617 1850 6622 15402
13 1 162 24 219 1134 1759 7600 13377
14 93 244 260 1634 2926 9271 21419
15 27 432 244 781 4853 7558 21220
16 9 493 393 852 5608 9943 32117
17 2 216 309 594 4101 6076 27442
18 187 1135 1045 5757 14362 36856

Table 2
Results for quilt order N . ‘Graphs considered’ is the number of planar imbeddings of
triangulations of a square with (N + 4) vertices of minimum degree 4, unique up to
isomorphism. ‘Graphs solved’ is the number of these graphs that have at least one direction
and colouring that leads to a solution in the sizes of a square dissection; ‘Solutions’ is
the number of these solutions. ‘Dissections’ is the number of prime dissections up to
symmetry (A221841). Different graphs can correspond to the same dissection, because of
the alternative ways to deal with crosses. For the same reason, a graph can have many valid
ways to be directed and coloured. For all results in the current work, all solutions from a
graph correspond to the same dissection.

N Graphs considered Graphs solved Solutions Dissections

4 1 1 2 1
5 4 0 0 0
6 17 2 4 1
7 89 5 17 2
8 491 11 21 6
9 2806 43 219 16

10 16534 127 543 56
11 98587 446 1711 183
12 594236 1584 8637 657
13 3607916 5761 32482 2277
14 22046012 22245 129231 8813
15 135456226 86138 571817 34178
16 836535543 345792 2544446 137578
17 5190532666 1407792 10677363 558734
18 32348310237 5767035 47665680 2285694

Up to symmetry, the numbers of prime dissections of order N = 1, . . . , 18 are 1, 0, 0, 1, 0, 1, 2, 6, 16, 56, 183, 657, 2277,
8813, 34178, 137578, 558734, 2285694. This sequence (A221841) and others are listed in the Appendix. The numbers of
graphs and solutions are given in Table 2.

The results confirm that the known dissections for orders up to 18 (available at, for example, [12]) include the largest
possible. Table 3 shows that, for example, the single known solution for N = 18, n = 91 is uniquely, up to symmetry, the
largest possible at that order. The largest size, defined as g(N) in Table 3, is Sequence A089047. Since dissections of order
19 are known [12] up to n = 120, then the uncertain, incorrect list in [6] can be definitely replaced by the one in Table 4.
Thus the uncertainty in Sequence A005670 has been removed—or in fact, of course, displaced to higher n.
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Table 3
Numbers of prime dissections of order N , up to symmetry, for sizes close to and equal to the
largest possible, g(N). The results for N ≤ 12 can be seen in the transpose of Table 1.

N g(N) Number of dissections of order N , size (g(N) − i)
i = 9 8 7 6 5 4 3 2 1 0

12 17 13 25 13 67 176 162 93 27 9 2
13 23 244 432 493 216 187 113 44 11 1 2
14 29 1231 798 696 561 288 152 53 35 17 4
15 41 386 210 104 65 35 17 2 5 0 1
16 53 231 127 81 62 27 16 6 3 1 1
17 70 131 57 42 26 11 10 4 4 1 3
18 91 71 35 33 16 14 12 1 3 3 1

Table 4
The smallest possible order, f (n), of a prime dissection of a square of size n.

f (n) = 1 4 6 7 8 9 10 11 12 13 14
n = 1 2 3 4 5 6, 7 8, 9 10–13 14–17 18–23 24–29

f (n) = 15 16 17 18 19
n = 30–39, 41 40, 42–53 54–70 71–91 92–120, 122, 126, . . .?

Appendix. Confirmed and extended sequences in OEIS

This appendix lists values fromseveral sequences in theOEIS [16]with previously knownvalues that have been confirmed
in the current work (or, conversely, have been used to check the current work). Also, new (or newly definite) values are shown
in italics.

These sequences, as quoted in [16], include the trivial dissection of a square into itself (exceptwhere ‘smaller’ is specified,
in A018835 and A211302).

Sequences A045846 and A221845 have known values beyond those listed here. In particular, the values of A045846 (n)
for n ∈ {10, 11, 12} (1500957422222, 790347882174804 and 781621363452405930) were used to confirm and extend
A224239, as described in Section 5.

• A005670 (Mrs. Perkins’s quilt: smallest coprime dissection of n × n square) for n = 1, . . . , 120: 1, 4, 6, 7, 8, 9, 9, 10, 10,
11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 15, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19.

• A045846 (Number of distinct ways to cut an n × n square into squares with integer sides) for n = 1, . . . , 9: 1, 2, 6, 40,
472, 10668, 450924, 35863972, 5353011036.

• A089046 (Least edge-length of a square dissectable into at least N squares in the Mrs. Perkins’s quilt problem) for
N = 1, . . . , 19: 1, 2, 2, 2, 3, 3, 4, 5, 6, 8, 10, 14, 18, 24, 30, 40, 54, 71, 92.

• A089047 (Greatest edge-length of a square dissectable into up to N squares in Mrs. Perkins’s quilt problem) for N =

1, . . . , 18: 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 13, 17, 23, 29, 41, 53, 70, 91.
• A018835 (Minimal number of smaller integer-sided squares that tile an n × n square) for n = 2, . . . , 126: 4, 6, 4, 8, 4, 9,

4, 6, 4, 11, 4, 11, 4, 6, 4, 12, 4, 13, 4, 6, 4, 13, 4, 8, 4, 6, 4, 14, 4, 15, 4, 6, 4, 8, 4, 15, 4, 6, 4, 15, 4, 16, 4, 6, 4, 16, 4, 9, 4, 6, 4,
16, 4, 8, 4, 6, 4, 17, 4, 17, 4, 6, 4, 8, 4, 17, 4, 6, 4, 18, 4, 18, 4, 6, 4, 9, 4, 18, 4, 6, 4, 18, 4, 8, 4, 6, 4, 18, 4, 9, 4, 6, 4, 8, 4, 19, 4, 6, 4,
19, 4, 19, 4, 6, 4, 19, 4, 19, 4, 6, 4, 19, 4, 8, 4, 6, 4, 9, 4, 11, 4, 6, 4, 8, 4.

• A211302 (Minimal number of smaller integer-sided squares that tile a p × p square, where p = ith prime) for i =

1, . . . , 30: 4, 6, 8, 9, 11, 11, 12, 13, 13, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19.
• A221841 (Number of ways to dissect a square into N squares up to symmetry) for N = 1, . . . , 18: 1, 0, 0, 1, 0, 1, 2, 6, 16,

56, 183, 657, 2277, 8813, 34178, 137578, 558734, 2285694.
• A221842 (Number of ways to dissect a square into N squares) for N = 1, . . . , 18: 1, 0, 0, 1, 0, 4, 8, 36, 105, 384, 1340,

4975, 17676, 69052, 270716, 1093218, 4455047, 18246018.
• A221844 (Number of prime dissections of an n× n square into integer-sided squares up to symmetry) for n = 1, . . . , 9:

1, 1, 2, 11, 76, 1490, 56977, 4495010, 669203525.
• A221845 (Number of prime dissections of an n × n square into integer-sided squares) for n = 1, . . . , 9: 1, 1, 5, 38, 471,

10661, 450923, 35863932, 5353011030.
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• A224239 (Number of inequivalent ways to cut an n × n square into squares with integer sides) for n = 1, . . . , 12: 1, 2,
3, 13, 77, 1494, 56978, 4495023, 669203528, 187623057932, 98793520541768, 97702673827558670.

• A226978 (Number of ways to cut an n×n square into squares with integer sides, reduced for symmetry, where the orbits
under the symmetry group of the square, D4, have 1 element) for n = 1, . . . , 12: 1, 2, 2, 4, 4, 12, 8, 44, 32, 228, 148, 1632.

• A226979 (Number of ways to cut an n × n square into squares with integer sides, reduced for symmetry, where the
orbits under the symmetry group of the square, D4, have 2 elements) for n = 1, . . . , 12: 0, 0, 0, 2, 2, 24, 36, 344, 504,
7657, 11978, 289829.

• A226980 (Number of ways to cut an n×n square into squares with integer sides, reduced for symmetry, where the orbits
under the symmetry group of the square, D4, have 4 elements) for n = 1, . . . , 12: 0, 0, 1, 6, 26, 264, 1157, 23460, 153485,
6748424, 70521609, 6791578258.

• A226981 (Number of ways to cut an n×n square into squares with integer sides, reduced for symmetry, where the orbits
under the symmetry group of the square, D4, have 8 elements) for n = 1, . . . , 12: 0, 0, 0, 1, 45, 1194, 55777, 4471175,
669049507, 187616301623, 98793450008033, 97702667035688951.

The following new sequences have been added to the OEIS as results of the current work:

• A232484 (Number of size collections in prime ‘Mrs. Perkins’s Quilt’ dissections of integer-sided squares into N squares)
for N = 1, . . . , 18: 1, 0, 0, 1, 0, 1, 1, 2, 4, 7, 18, 40, 119, 323, 1100, 3594, 13068, 47444.

• A240120 (Number of inequivalent ways to cut an n × n square into squares with integer sides, such that the dissection
has reflective symmetry in both diagonals and no other reflective symmetries) for n = 1, . . . , 12: 0, 0, 0, 1, 1, 9, 19, 121,
275, 2489, 7217, 86775.

• A240121 (Number of inequivalent ways to cut an n × n square into squares with integer sides, such that the dissection
has two reflective symmetries in axes parallel to the sides, and no other reflective symmetries) for n = 1, . . . , 12: 0, 0,
0, 1, 0, 13, 5, 183, 75, 4408, 1501, 180324.

• A240122 (Number of inequivalent ways to cut an n × n square into squares with integer sides, such that the dissection
has 90-degree rotational symmetry and no reflective symmetry) for n = 1, . . . , 12: 0, 0, 0, 0, 1, 2, 12, 40, 154, 760, 3260,
22730.

• A240123 (Number of inequivalent ways to cut an n × n square into squares with integer sides, such that the dissection
has a reflective symmetry in one diagonal, but no other symmetries) for n = 1, . . . , 12: 0, 0, 1, 3, 19, 107, 847, 8647,
119835, 2255123, 58125783, 2050662011.

• A240124 (Number of inequivalentways to cut an n×n square into squareswith integer sides, such that the dissection has
180-degree rotational symmetry, but no other symmetries) for n = 1, . . . , 12: 0, 0, 0, 0, 2, 19, 109, 1781, 13660, 397689,
5368943, 289864745.

• A240125 (Number of inequivalent ways to cut an n × n square into squares with integer sides, such that the dissection
has one reflective symmetry in an axis parallel to a side, but no other symmetries) for n = 1, . . . , 12: 0, 0, 0, 3, 5, 138,
201, 13032, 19990, 4095612, 7026883, 4451051502.
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