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a b s t r a c t

An edge of G is singular if it does not lie on any triangle of G; otherwise, it is non-singular.
A vertex u of a graph G is called locally connected if the induced subgraph G[N(u)] by its
neighborhood is connected; otherwise, it is called locally disconnected.

In this paper, we prove that if a connected claw-free graph G of order at least three
satisfies the following two conditions: For each locally disconnected vertex v of G with
degree at least 3, there is a nonnegative integer s such that v lies on an induced cycle of
length at least 4 with at most s non-singular edges and with at least s−3 locally connected
vertices; for each locally disconnected vertex v of G with degree 2, there is a nonnegative
integer s such that v lies on an induced cycle C with atmost snon-singular edges andwith at
least s− 2 locally connected vertices and such that the subgraph induced by those vertices
of C that have degree two in G is a path or a cycle, then G is Hamiltonian, and it is best
possible in some sense.

Our result is a common extension of two known results in Bielak (2000) and in Li (2002)
; hence also of the results in Oberly and Sumner (1979) and in Ryjáček (1990).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider only finite undirected simple graphs, unless otherwise stated. For terminology and notation not defined in
this paper we refer to [9].

If H is a graph, then the line graph of H , denoted by L(H), is the graph with E(H) as its vertex set, in which two vertices
are adjacent if and only if the corresponding edges have a vertex in common. For a family F of a connected graphs, a graph
is called F -free if it contains no induced copies of any member of F . The graph K1,3 is called a claw. It is a well-known fact
that every line graph is claw-free, hence the class of the claw-free graphs can be considered as a natural generalization of
the class of line graphs.

The neighborhood of a vertex v in G is denoted by NG(v). Denote NG[v] = NG(v)∪ {v}. A vertex v of G is locally connected
if G[NG(v)] is connected; otherwise, it is locally disconnected. Let LC(G) denote the set of all locally connected vertices of G.
A graph G is called locally connected if every vertex of G is locally connected, i.e., LC(G) = V (G). Oberly and Sumner proved
the following well-known result.

Theorem 1 (Oberly and Sumner [5]). Every connected, locally connected claw-free graph on at least three vertices is Hamiltonian.
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Fig. 1. The graphs G1 , G2,G3 and G4 .

We say that a vertex v of a graph G is N2-locally connected if the subgraph of G induced by the edge set {e = xy ∈ E(G) :

v ∉ {x, y} and {x, y} ∩ N(v) ≠ ∅} is connected. A graph G is called N2-locally connected if every vertex of G is N2-locally
connected. It follows from the definitions that every locally connected graph is N2-locally connected, but the converse is not
true.

In 1990, Ryjáček [7] considered the graphswith some locally disconnected vertices in claw-free graphs and strengthened
Theorem 1 by using this concept of N2-locally connected. He showed that every connected N2-locally connected claw-free
graph G with δ(G) ≥ 2 satisfying that G has no induced subgraph H isomorphic to either G1 or G2 (in Fig. 1) such that
every vertex of degree 4 in H is locally disconnected in G is Hamiltonian. Bielak later improved this result by weakening the
condition. Their result can be restated as the following theorem, where Vi(G) = {x : dG(x) = i} and V≥i(G) = {x : dG(x)
≥ i}.

Theorem 2 (Bielak [1]). Let G be a connected, N2-locally connected claw-free graph with δ(G) ≥ 2 such that

(1) every induced subgraph H of G isomorphic to either G1 or G2 (in Fig. 1) has at least one locally connected vertex of G in
V3(H) ∪ V4(H).

Then G is Hamiltonian.

In this paper, we shall continue to extend the above result which will need some notation. We say that a vertex v of a
graph G is N2-locally connected if the subgraph of G induced by the vertices {x ∈ V (G) : 1 ≤ d(x, v) ≤ 2} is connected,
where d(x, v) denotes the distance between x and v. A graph G is called N2-locally connected if every vertex of G is N2-locally
connected. Obviously, every N2-locally connected graph is N2-locally connected, but the converse is not generally true.

Theorem 3. Let G be a connected, N2-locally connected claw-free graph with δ(G) ≥ 2 satisfying

(2) every induced subgraph isomorphic to one of {G1,G2,G3,G4} (in Fig. 1) has at least one locally connected vertex of G in
V3(H) ∪ V4(H).

Then G is Hamiltonian.

From Theorem 3, one can obtain the following known result immediately.

Corollary 4 (Li [4]). Every connected N2-locally connected {G1,G2,G3,G4, K1,3}-free graph G with δ(G) ≥ 2 is Hamiltonian.

Let G0 be the graph obtained from some graph Gi in Fig. 1 by joining all vertices of an additional complete graph of
arbitrarily larger order to some vertex of degree four or three in Gi and to its neighbors. Then G0 satisfies the conditions of
Theorem 3 but not Corollary 4. This shows that Theorem 3 is stronger than Corollary 4.

Motivated by the above observation, in this paper, we intend to generality them by avoiding using the concept of
N2-(or N2-)connected and use certain technical conditions on locally disconnected vertices instead. Here we need divide
all edges of the graphs into two kinds of edges: An edge e of G is singular if it does not lie on any triangle of G; otherwise, it
is non-singular. We have the following result that can deduce Theorem 3, as showed in Section 4.

Theorem 5. Let G be a connected claw-free graph of order at least three such that

(i) for each locally disconnected vertex v of degree at least 3 in G, there is a nonnegative integer s such that v lies on an induced
cycle of length at least four with at most s non-singular edges and with at least s − 3 locally connected vertices;

(ii) for each locally disconnected vertex v of degree 2 in G, there is a nonnegative integer s such that v lies on an induced cycle C
with at most s non-singular edges and with at least s− 2 locally connected vertices and such that G[V (C) ∩ V2(G)] is a path
or a cycle.

Then G is Hamiltonian.

In Section 2, we shall present Ryjáček’s closure concept in claw-free graphs and some auxiliary results, which are then
applied to the proof of our main result in Section 3. Section 4 is devoted to the proof of Theorem 3. In the last section, we
discuss the sharpness of our main results, point out a flaw in the original proof of Corollary 4 and show that Theorem 5 is
stronger than Theorem 3, and hence also than Corollary 4.
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2. The closure of claw-free graphs

A locally connected vertex v is said to be eligible if G[NG(v)] is not complete. For a vertex x of a graph G, the graph G∗
x with

V (G∗
x ) = V (G) and E(G∗

x ) = E(G) ∪ {uv : u, v ∈ NG(x)} is called the local completion of G at x. For a claw-free graph G, let
G1 = G. For i ≥ 1, if Gi is defined and if it has an eligible vertex xi, then let Gi+1 = (Gi)

∗
xi . If Gs = (Gs−1)

∗
xs−1

has no eligible
vertex, then let cl(G) = Gs and call it the closure of G; G1, . . . ,Gs is called a locally complete sequence of graphs that yields
cl(G). The above operation was introduced in [8] and the following theorem sums up some properties.

Theorem 6 (Ryjáček [8]). If G is a claw-free graph, then there is a closed claw-free graph cl(G) such that

(3) the closure cl(G) is well-defined;
(4) there is a triangle-free graph H such that cl(G) = L(H);
(5) G is Hamiltonian if and only if cl(G) is Hamiltonian.

In a claw-free graph G, the locally disconnected vertices can be partitioned into three classes, depending on the structure
of the graphs G[N(v)]: Let LDi(G) be the set of locally disconnected vertices v for which there are exactly i components in
G[N(v)] of order greater than one. (Note that the notations here are something different from [6].) Note that for a locally
disconnected vertex v, G[N(v)] consists of exactly two complete subgraphs of G. Pfender proved the following.

Lemma 7 (Pfender, [6]). (LD0(cl(G))∪ LD1(cl(G))) ⊆ (LD0(G)∪ LD1(G)) and LD2(cl(G)) ⊆ LD2(G) for every claw-freegraph G.

We need the following lemma, which follows from Lemma 7.

Lemma 8. For i ∈ {0, 1, 2}, LDi(cl(G)) ⊆ LDi(G) for every claw-free graph G.

Proof of Lemma 8. Suppose that x ∈ LD0(cl(G)), i.e, x is locally disconnected in cl(G) and dcl(G)(x) = 2. By Lemma 7, x is
locally disconnected in G, hence dG(x) = 2. Thus x ∈ LD0(G).

Suppose that x ∈ LD1(cl(G)). We claim that x ∉ LD0(G): otherwise, let NG(x) = {y1, y2}. Note that every edge in
E(cl(G)) \ E(G) is non-singular, so either xy1 or xy2 is singular in cl(G). Thus y1y2 ∉ E(cl(G)). Let G = G1, . . . ,Gs = cl(G)
be a locally complete sequence of graphs that yields cl(G). Then x ∈ LD0(Gi) for some i. We can deduce that x ∈ LD0(Gi+1)
by the fact that both y1 and y2 are not eligible vertices in Gi and y1y2 ∉ E(Gi+1). Hence x ∈ LD0(cl(G)), a contradiction. By
Lemma 7, x ∈ LD1(G). �

The following result is useful for proving our main result.

Lemma 9. Let G be a graph satisfying all conditions of Theorem 5. Then cl(G) is a connected claw-free graph such that

(6) every locally disconnected vertex of degree at least 3 in cl(G) lies on an induced cycle of length at least 4with at most 3 non-
singular edges;

(7) every locally disconnected vertex of degree 2 in cl(G) lies on an induced cycle C ′ with at most 2 non-singular edges such that
cl(G)[V (C ′) ∩ V2(cl(G))] is a path or a cycle.

In order to prove Lemma 9, we need the following lemmas. A branch in G is a nontrivial path with end vertices that do
not lie in V2(G) and with internal vertices of degree 2 (if existing). If a branch has length 1, then it has no internal vertices of
degree 2. We use B(G) to denote the set of branches in G.

Lemma 10. Let G be a claw-free graph. If the length of L ∈ B(G) is at least 3 in G, then L ∈ B(cl(G)).

Proof of Lemma 10. Let G = G1, . . . ,Gs = cl(G) be a locally complete sequence of graphs that yields cl(G). Then L is a
branch in Gi for some i. Since every vertex of V (L) is not eligible in Gi, xi ∈ V (G) \ V (L), where xi is the eligible vertex such
that Gi+1 = (Gi)

∗
xi . Noticing that (V (L) ∩ V2(G)) ∩ N(xi) = ∅ and |V (L) ∩ V2(G)| ≥ 2, L is a branch in Gi+1. By recursively

performing this operation, we can obtain that L is a branch of cl(G). �

Lemma 11. Let G be a claw-free graph and C be an induced cycle with at most s non-singular edges in G and with at least s − l
locally connected vertices in G. If x ∈ V (C) is locally disconnected in cl(G), then there is an induced cycle C ′ of length at least 4 in
cl(G) with x ∈ V (C ′) ⊆ V (C) and with at most l non-singular edges in cl(G), where s and l are nonnegative integers.

Proof of Lemma 11. Since x ∈ V (C) is locally disconnected in cl(G), there is an induced cycle C ′ in cl(G) such that
x ∈ V (C ′) ⊆ V (C) and |V (C ′)| ≥ 4. It remains to prove that C ′ has at most l non-singular edges in cl(G).

Note that every vertex of C ′ is locally disconnected in cl(G). By Lemma 8, V (C ′) ∩ LDi(cl(G)) ⊆ V (C) ∩ LDi(G) for
i ∈ {0, 1, 2}. Hence the number of non-singular edges in C ′ is no more than s, the number of non-singular edges in C . If
C has no locally connected vertex in G, then s = l, hence we are done. Now consider s ≠ l.

Suppose that {u1, . . . , us−l} ⊆ V (C)∩ LC(G). By Condition (3) in Theorem 6, cl(G) is uniquely determined by the graph G,
i.e., cl(G) is independent of the order of eligible vertices during the construction. Note that each ui is an eligible vertex in G
by the hypothesis that C is an induced cycle. Let G1 = G∗

u1 and NG(u1) ∩ V (C) = {v1, v2}. Then there exists an induced cycle
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C1 in G1 with V (C1) = V (C) \ {u1} and E(C1) = (E(C) \ {u1v1, u1v2}) ∪ {v1v2}. Since u1v1, u1v2, v1v2 are non-singular in G,
C1 has at most s− 1 non-singular edges in G1. Since C1 is an induced cycle, ui is an eligible vertex in G1 for i ∈ {2, . . . , s− l}.
By recursively performing the local completion on ui for i ∈ {1, . . . , s − l}, we can obtain an induced cycle Cs−l in Gs−l
such that Cs−l has at most s − (s − l) = l non-singular edges in Gs−l and V (Cs−l) = V (C) \ {u1, . . . , us−l}. By Lemma 8,
(V (C ′) ∩ LDi(cl(G))) ⊆ (V (Cs−l) ∩ LDi(Gs−l)) for i ∈ {0, 1, 2}. Hence the number of non-singular edges of C ′ in cl(G) is no
more than the number l of non-singular edges of Cs−l in cl(G). �

Now we provide the proof of Lemma 9.

Proof of Lemma 9. First suppose that x is a locally disconnected vertex of degree at least 3 in cl(G). Then either x ∈

LD1(cl(G)) or x ∈ LD2(cl(G)). By Lemma 8, either x ∈ LD1(G) or x ∈ LD2(G). This implies that x is locally disconnected
in G and dG(x) ≥ 3. By Condition (i) of Theorem 5, x lies on an induced cycle of length at least 4 with at most s non-singular
edges and with at least s − 3 locally connected vertices. By Lemma 11, x satisfies Condition (6) of Lemma 9.

Next suppose that x is a locally disconnected vertex of degree 2 in cl(G). Then x is a locally disconnected vertex of degree
2 in G. By Condition (ii) of Theorem 5, x lies on an induced cycle C of length at least 4 with at most s non-singular edges and
with at least s−2 locally connected vertices such that G[V (C)∩V2(G)] is a path or a cycle. By Lemma 11, x lies on an induced
cycle C ′ with V (C ′) ⊆ V (C) and with at most 2 non-singular edges.

If G[V (C) ∩ V2(G)] is a cycle, then since G is connected, G is a cycle. Hence cl(G) is a cycle and we are done. If
V (C) ∩ V2(G) = {x}, then since x ∈ V (C ′) ⊆ V (C) and x ∈ V2(cl(G)) ⊆ V2(G), V (C ′) ∩ V2(cl(G)) = {x} and we are
also done. Suppose that |V (C) ∩ V2(G)| ≥ 2 and L is the branch such that (V (C) ∩ V2(G)) ⊆ V (L). By Condition (ii) of
Theorem 5, L ∈ B(G) is the unique branch in C . By Lemma 10, L ∈ B(cl(G)) is the unique branch in C ′. This implies that
cl(G)[V (C ′) ∩ V2(cl(G))] is a path (of L). Now we complete the proof of Lemma 9. �

3. Proof of Theorem 5

In this section, we present the proof of themain result of this paper. A graph is Eulerian if it is connected and has no vertex
of odd degree. For a graph G with an Eulerian subgraph H , we call H a spanning Eulerian subgraph of G if V (G) = V (H); and
a dominating Eulerian subgraph of G if G − V (H) is edgeless.

Theorem 12 (Lai [3]). Let G be a 2-connected graph with δ(G) ≥ 3. If every edge of G lies on a cycle of length at most 4, then G
has a spanning Eulerian subgraph.

Note that the graphs in consideration in Theorem 12 may have multiple edges. A well-known relationship between
dominating Eulerian subgraphs in G and Hamiltonian cycles in L(G) was given by Harary and Nash-Williams.

Theorem 13 (Harary and Nash-Williams [2]). Let G be a graph with at least 3 edges. Then the line graph L(G) is Hamiltonian if
and only if G has a dominating Eulerian subgraph.

The following result is immediately from Condition (7) in Lemma 9, which is also necessary for our proof.

Lemma 14. Let G be a graph satisfying the conditions of Theorem 5. Then every branch L ∈ B(cl(G)) of length at least 2 lies on
an induced cycle C such that C has at most 2 non-singular edges and L is an unique branch of length at least 2 in C.

Before presenting the proofs of main results, we give some additional notation. LetM andM ′ be the two sets of edges of
a graph G. We useM△M ′ to denote the symmetric difference ofM andM ′, i.e,M△M ′

= (M ∪M ′) \ (M ∩ M ′). An edge e is
called a pendant edge if the degree of an end vertex of e is 1; otherwise, it is non-pendant. The graph H for which L(H) = G
will be called the preimage of G and denote H = L−1(G). Note that for subgraph G1 ⊆ G, L−1(G1) is possible not unique.
However L−1(G1) would be unique if G1 ⊆ G is an induced subgraph of order at least three. Therefore, for any induced
subgraph C of a line graph G, we let L−1(C) denote the preimage of C .

Given 2-connected block B of a simple graph H that is not a cycle, let U(B) = {u : dB(u) = 2 and dH(u) ≥ 3} and
U1(B) = {u : u ∈ U(B) and NB(u) ∩ V2(H) = ∅} and U2(B) = U(B) \ U1(B).

Now we present the proof of our main result.

Proof of Theorem 5. Suppose firstly that G is itself a cycle, then it is clearly Hamiltonian and we are done. Now suppose
that G is not a cycle. By (5) in Theorem 6, it suffices to prove that its closure cl(G) is Hamiltonian. By (4) in Theorem 6, we
may assume that cl(G) = L(H) is the line graph of a triangle-free graph H .

In order to use Theorem 13, it suffices to find a dominating Eulerian subgraph in H . For this, in the following, we use
Theorem 12 to get a dominating Eulerian subgraph in each block with some properties and then prove that the union of
these Eulerian subgraphs is the desired dominating Eulerian subgraph.
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Taking any block B of H that is not a cycle or a pendant edge, we may show the following claims.

Claim 1. Every edge e = uv ∈ E(B) lies on some cycle C such that either

(8) C has exactly 2 vertices of degree greater than 2 in H and C has exactly one branch of length at least 3 in H; or
(9) C has at most 3 vertices of degree greater than 2 in H and C has no branch of length at least 3 in H.

Proof of Claim 1. By Lemma 9, every locally disconnected vertex in cl(G) satisfies Condition (6) or (7) of Lemma 9. Note
that if e ∈ E(cl(G)) is singular, then dH(e) = 2 because G is claw-free. We first prove the following fact.

Claim 1.0. Every branch L ∈ B(H) of length at least 3 lies on a cycle C such that C has exactly 2 vertices of degree greater than
2 in H and L is the unique branch of length 3 in C.

Proof of Claim 1.0. Because G = L(H), the V (G) is identified with E(H). Thus, L′
∈ B(cl(G)) is the line graph of L. Note that

|L′
| = |L| − 1 ≥ 2. By Lemma 14, there exists an induced cycle C ′ such that C ′ has at most 2 non-singular edges and L′ is the

unique branch of length at least 2 in C ′.
By the fact that cl(G) = L(H), L−1(C ′) is a cycle in H such that L−1(C ′) has at most 2 vertices of degree greater than 2 in H

and L is the unique branch of length at least 3 in H . Moreover, since B is not a cycle, L−1(C ′) has at least 2 vertices of degree
greater than 2 in H . Thus L−1(C ′) has exactly 2 vertices of degree greater than 2 in H . �

Now we start to prove Claim 1. If e lies on a branch L ∈ B(H) of length at least 3, then e lies on a cycle satisfying (8) by
Claim 1.0. Now suppose that e lies on a branch L ∈ B(H) of length 1 or 2. Let ve ∈ V (cl(G)) be the vertex corresponding to
the edge e in H . Then dcl(G)(ve) ≥ 3. Since H is triangle free, we have NH(u) ∩ NH(v) = ∅. By the fact that B is 2-connected,
NH(u) ≠ ∅ andNH(v) ≠ ∅. Furthermore, since cl(G) is claw-free, cl(G)[Ncl(G)(ve)] is composed of two vertex-disjoint cliques,
i.e., ve is locally disconnected in cl(G).

By the hypotheses of Lemma 9, ve lies on an induced cycle Ce of length at least four with at most 3 non-singular edges.
Hence, by the fact that cl(G) = L(H), L−1(Ce) is a cycle inH such that e ∈ E(L−1(Ce)) and |V (L−1(Ce))∩V≥3(H)| ≤ 3. Since B is
not a cycle, |V (L−1(Ce))∩V≥3(H)| ≥ 2. Note that L−1(Ce)has a branch of length 1 or 2. Therefore, if |V (L−1(Ce))∩V≥3(H)| = 2,
then L−1(Ce) has at most one branch of length at least 3 which implies that L−1(Ce) satisfies (8); if |V (L−1(Ce))∩V≥3(H)| = 3
and L−1(Ce) has t branches of length at least 3, then t ≤ 2. Suppose that L1, L2 are the two possible branches of length
at least 3 in L−1(Ce) (L1 = L2 if t = 1). By Claim 1.0, Li lies on a cycle Ci satisfying (8) for i = 1, 2. Thus, either
C = H[E(L−1(Ce)△E(C1))△E(C2)] (if t = 2), or C = H[E(L−1(Ce))△E(C1)] (if t = 1), or C = Ce(if t = 0) is a cycle
such that e ∈ E(C) and such that C satisfies (9), which completes the proof of Claim 1. �

Claim 2. Every vertex u of U(B) lies on a cycle C such that C satisfies (9) of Claim 1 and |V (C) ∩ V≥3(B)| = 2 and
V (C) ∩ U(B) = {u}.

Proof of Claim 2. Let e be an edge incidentwith u in B. By Claim 1, e lies on a cycle C satisfying Condition (8) or (9) of Claim 1.
This implies that |V (C) ∩ V≥3(H)| ≤ 3. Since B is not a cycle, |V (C) ∩ V≥3(B)| ≥ 2. Note that u ∈ V (C) ∩ (V≥3(H) \ V≥3(B)),
|V (C) ∩ V≥3(H)| ≥ 3. Thus |V (C) ∩ V≥3(H)| = 3 and |V (C) ∩ V≥3(B)| = 2. This implies that C satisfies Condition (9) of
Claim 1 and V (C) ∩ U(B) = {u}. �

Claim 3. Every vertex u of U1(B) lies on a cycle C of length 4 such that |V (C) ∩ V2(B)| = 2, |V (C) ∩ V≥3(H)| = 3 and
|V (C) ∩ V2(H)| = 1.

Proof of Claim 3. By Claim 2, we may take a cycle C such that C satisfies Condition (9) of Claim 1. Note that NB[u] ⊆ V (C)
andNB[u] ⊆ V≥3(H), |V (C)∩V≥3(H)| = 3. SinceH is triangle-free and there is no branch of length at least 3 in C , |V (C)| = 4
and |V (C) ∩ V2(H)| = 1. Since u ∈ V2(B) \ V2(H), |V (C) ∩ V2(B)| = 2. �

Using the above claims, we obtain three kinds of blocks B1, B2, B3 from B by the following three steps. Note that possibly
Bi = Bi−1 for some ≤ 2, where B0 = B.

(I) Let B1 be obtained from B by replacing each branch of length 2 with an edge. Then we have the following fact.

Fact 1. If B1 has a spanning Eulerian subgraph, then B has a dominating Eulerian subgraph F such that (V3(B)∪ (V≥3(H)∩

V (B))) ⊆ V (F), i.e., (V3(B) ∪ U(B)) ⊆ V (F).

Clearly V1(H) ∩ V (F) = ∅. Furthermore, there may be some vertices in V2(B) ∩ V2(H) that are not in V (F), i.e., possibly
(V2(B) ∩ V2(H)) \ V (F) ≠ ∅. However, Fact 1 shows that (V≥3(H) ∩ V2(B)) \ V (F) = ∅.
Proof of Fact 1. Suppose B1 has a spanning Eulerian subgraph F1. By the definition of B1 in Step (I), B has a dominating
Eulerian subgraph F such that V≥3(B) ⊆ V (F1) ⊆ V (F). Note that (V≥3(H)∩V (B))\V≥3(B) = U(B). Since any u ∈ U2(B)
lies on a branch of length at least 3 in B, U2(B) ⊆ V (F) by the definition of B1 in Step (I). Now suppose u ∈ U1(B), then
u lies on a branch of length 2 in B. Furthermore, by Claim 3, u lies on a 4-cycle C with two branches of length 2 in B
with |V (C) ∩ V2(B)| = 2, |V (C) ∩ V≥3(H)| = 3 and |V (C) ∩ V2(H)| = 1 and there would exist two parallel edges
in B1 by Step (I). Note that one of the parallel edges is obtained by replacing branch containing u and the other is
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Fig. 2. The graphs G5 and G6 .

obtained by replacing the branch of length 2 containing the vertex of V (C) ∩ V2(H). Note also that F1 may be chosen
such that it contains at least one of the parallel edges. Hence wemay assume that F1 is a spanning Eulerian subgraph of
B1 such that the edge obtained by replacing the branch containing u belong to F1. This implies that U1(B) ⊆ V (F). Thus,
(V≥3(H) ∩ V (B)) ⊆ V (F). By the definition of B1, V3(B) ⊆ V (F). This completes the proof of Fact 1. �

(II) Let B2 be obtained from B1 by replacing each branch L of length at least 3 with a branch of length 3. Then

Fact 2. If B2 has a spanning Eulerian subgraph, then B1 has a spanning Eulerian subgraph.

(III) Let v, v′
∈ V (L) ∩ V2(B2) and let B3 be a graph obtained from B2 and two additional vertices wv , wv′ by adding all the

edges {wvv, wvv
′, wv′v, wv′v′, wvwv′}. Then vv′

∈ E(B2) and

Fact 3. If B3 has a spanning Eulerian subgraph, then B2 has a spanning Eulerian subgraph.

By the definition of B3, and by Claims 1 and 2, we may obtain the following fact immediately.

Fact 4. Every edge of B3 lies in a cycle of length at most 4 and δ(B3) ≥ 3.

Note that the vertex of degree greater than 2 is the dominating Eulerian subgraph of a block that is a pendant edge and
H has no block of order 2 that is not a pedant edge by Lemma 9. Hence, since B3 is 2-connected, B3 has an spanning Eulerian
subgraph by Fact 4 and by Theorem 12. Combining Facts 1–3, one may obtain the following claim.

Claim 4. Every block B of H that is not a cycle has a dominating Eulerian subgraph containing all vertices of V3(B) ∪ (V≥3(H) ∩

V (B)).

Note that every block of H that is a cycle has a spanning Eulerian subgraph which is itself the cycle. This together with
Claim 4 implies that the union of those dominating Eulerian subgraphs of these blocks is a dominating Eulerian subgraphs
of H . (Note that every cut vertex of H has degree at least three in H and then, by Claim 4, it lies on a dominating Eulerian
subgraph of the nontrivial blocks containing it. Thus, the union of these dominating Eulerian subgraphs of these blocks is
connected by its definition.) By Theorem 13, cl(G) = L(H) is Hamiltonian. The proof of Theorem 5 is complete. �

4. Proof of Theorem 3 — Theorem 5 implies Theorem 3

Before proving Theorem 3, we start with the following lemmas.

Lemma 15. Let G be a connected claw-free graph satisfying Condition (1) of Theorem 2. If G has an induced subgraph H ∼= G5
such that every edge of H is non-singular in G and such that H has a locally disconnected vertex x of G with dH(x) = 4 that does
not satisfy Condition (i) of Theorem 5, then G ∼= G6 (see Fig. 2).

Proof of Lemma 15. Let H be an induced subgraph of G isomorphic to the graph G5 in Fig. 2. If H has a locally connected
vertex in G, then every locally disconnected vertex x of H with dH(x) = 4 satisfies Condition (i) of Theorem 5, contradicting
the hypothesis. Now suppose that

(∗) every vertex of H is locally disconnected in G.

All the subscripts are taken module by 4 in the whole proof.

Claim 5. For any x ∈ V (G − H), if {xvi, xvi+2} ⊂ E(G) for some i ∈ {1, 2}, then xuj ∉ E(G) for any j ∈ {1, 2, 3, 4}.



2048 R. Tian, L. Xiong / Discrete Mathematics 338 (2015) 2042–2050

Proof of Claim 5. By contradiction.Without loss of generality, wemay assume that there exists a vertex x0 ∈ V (G−H) such
that {x0v1, x0v3} ⊂ E(G) and x0u1 ∈ E(G). Hence {v1, v3, u1} ⊆ N(x0) and G[{v1, v3, u1}] is connected but not complete by
the hypothesis that H is an induced subgraph of G. This implies that x0 is an eligible vertex of G.

Noticing that u1 is locally disconnected in G and {u2, v1, x0} belongs to a connected component of G[N(u1)], we have
that x0u2 ∈ E(G) and x0u4 ∉ E(G). Since u2 is locally disconnected, x0u3 ∉ E(G). Hence we can obtain two induced cycles
C1 = u1u4v3x0u1 and C2 = u2u3v3x0u2 such that they have exactly four non-singular edges and have a locally connected
vertex x0 of G. This implies that every locally disconnected vertex of degree 4 in H satisfies (i) of Theorem 5, contradicting
the hypothesis. �

Claim 6. Let C1 and C2 be any two triangles containing v1v3 and v2v4, respectively. Then |V (C1) ∩ V (C2)| = 1.

Proof of Claim 6. Suppose, otherwise, that C1 = w1v1v3w1 and C2 = w2v2v4w2 and w1 ≠ w2. Since H ∼= G5 is an induced
subgraph, {w1, w2} ⊆ V (G − H). Consider Sj = (V (H) \ {vj+1}) ∪ {wj} for j ∈ {1, 2}. By Claim 5, wjui ∉ E(G) for any
i ∈ {1, 2, 3, 4}. Suppose wjvj+3 ∉ E(G), then G[Sj] ∼= G2. By the hypothesis of Lemma 15, there is at least a locally connected
vertex in V (H) \ {vj+1}. This contradicts (∗). Thus wjvj+3 ∈ E(G). By symmetry, we can obtain wjvj+1 ∈ E(G).

Since {u1, u2, w1, w2} ⊂ N(v1),w1w2 ∈ E(G): otherwise G[{v1, w1, w2, u1}]would be a claw by Claim 5, a contradiction.
Hence {w2, v1, v2, v3, v4} ⊆ N(w1) and G[{w2, v1, v2, v3, v4}] is connected but not complete. This implies that w1 is an
eligible vertex. Hence we can obtain that Ci = uiviw1vi−1ui is an induced cycle with a locally connected vertex w1 that
implies ui satisfying Condition (i) of Theorem 5 for any i ∈ {1, 2, 3, 4}, contradicting the hypothesis. �

By Claim 6, we may assume that w is the common neighbor of {v1, v2, v3, v4}. Noticing that H is an induced subgraph
in G and wui ∉ E(G) by Claim 5, we can obtain that G[V (H) ∪ {w}] ∼= G6. Now suppose that x ∈ V (G) \ (V (H) ∪ {w}).
If xw ∈ E(G), then since {v1, v2, v3, v4, x} ⊆ N(w) and by the fact that G is claw-free, then xvi, xvi+2 ∈ E(G) for some
i ∈ {1, 2}, say i = 1. Hence we can obtain two triangles xv1v3x and wv2v4w. By Claim 6, x = w. However, this contradicts
that x ∈ V (G) \ (V (H) ∪ {w}). Hence xw ∉ E(G).

If xui ∈ E(G) for some i ∈ {1, 2, 3, 4}, then since {ui+1, ui−1, vi−1, vi, x} ⊂ N(ui) and by the fact that G is claw-free,
{xvi, xui+1} ⊂ E(G) or {xvi−1, xui−1} ⊂ E(G), say {xvi, xui+1} ⊂ E(G). Consider S ′

= (V (H) \ {vi}) ∪ {x}. By Claim 5,
xvi+2 ∉ E(G). Since ui, ui+1 are locally disconnected, {xui+2, xui+3, xvi−1, xvi+1} ∩ E(G) = ∅. Thus G[S ′

] ∼= G2. By the
hypothesis of Lemma 15, there is a locally connected vertex in V (H) \ {vi}, contradicting (∗). Thus xui ∉ E(G). Similarly,
we can obtain xvi ∉ E(G) for any i ∈ {1, 2, 3, 4}. Since G is connected, V (G) = V (H) ∪ {w}. Thus G ∼= G6. We have now
completed the proof of Lemma 15. �

Lemma 16. Let G be a claw-free graph satisfying Condition (1) of Theorem 2. If a locally disconnected u1 lies on an induced cycle
of length 4, then either u1 satisfies Condition (i) or (ii) of Theorem 5; or G ∼= G6.

Proof of Lemma 16. Suppose that C is an induced cycle of length 4 with u1 ∈ V (C). If either V (C) ∩ LC(G) ≠ ∅ or C has a
singular edge, then u1 satisfies Condition (i) or (ii) of Theorem 5 (Note that if d(u1) = 2, then the two edges incident with
u1 are singular edges and clearly u1 satisfies Condition (ii) of Theorem 5.) and we are done.

Now consider the case when V (C) ∩ LC(G) = ∅ and C has no singular edge. Let C = u1u2u3u4u1 and Ti = viuiui+1vi be
a triangle containing uiui+1, and let S =

i=4
i=1 V (Ti), where i ∈ {1, 2, 3, 4} and all the subscripts are taken module by 4 in

the proof. Note that vivi+1 ∉ E(G) and vi ≠ vi+1 since ui+1 is locally disconnected. Similarly, v1, v2, v3, v4 are four distinct
vertices, since, otherwise, say, v1 = v3, then u1 would be locally connected, a contraction. Since C is an induced cycle in G
and every vertex of C is locally disconnected in G, {uivi+1, uivi+2, uiui+2, vivi+1 : i ∈ {1, 2, 3, 4}} ∩ E(G) = ∅.

Suppose first that {v1v3, v2v4} ∩ E(G) = ∅, then G[S] ∼= G1. By the hypothesis of Theorem 2, some ui ≠ u1 is locally
connected in G. Hence u1 satisfies Condition (i) of Theorem 5.

Suppose next that exactly one of {v1v3, v2v4}, say v1v3, belongs to E(G), then G[S] ∼= G2. By the hypothesis of Theorem 2,
at least one of {u1, u2, u3, u4, v1, v3} is locally connected in G. Hence u1 satisfies Condition (i) of Theorem 5.

Suppose finally that {v1v3, v2v4} ⊂ E(G). Then G[S] ∼= G5. If exactly one of {v1v3, v2v4}, say v2v4, is non-singular in G,
then we can obtain an induced cycle C ′

= u1v1v3u4u1 such that u1 satisfies Condition (i) of Theorem 5. Now suppose that
both v1v3 and v2v4 ∈ E(G) are non-singular in G. If u1 satisfies Condition (i) of Theorem 5, then we are done. Otherwise by
Lemma 15, G ∼= G6 which is Hamiltonian. This completes the proof of Lemma 16. �

Now we prove Theorem 3.

Proof of Theorem 3. We shall prove that the locally disconnected vertices in G satisfy Condition (i) or (ii) of Theorem 5
with only one exceptional case when G ∼= G6. Suppose that u is a locally disconnected vertex of G. Since G is N2-locally
connected, u lies on an induced cycle C of length 4 or 5. If |V (C)| = 4, then by Lemma 16, either u satisfies Condition (i) or
(ii) of Theorem 5 or G ∼= G6 and we are done.

Now suppose |V (C)| = 5. If either |V (C)∩LC(G)| ≥ 2 or C has at most 2 non-singular edges, then u satisfies Condition (i)
or (ii) of Theorem 5 (Note that if C has a vertex of degree two, then C has atmost three non-singular edges.) andwe are done.
It remains to consider the case when |V (C) ∩ LC(G)| ≤ 1 and C has at least 3 non-singular edges. Let C = u1u2u3u4u5u1,
where u = ui for some i. All the subscripts are taken by 5 in the whole proof.
Case 1. C has a path P of length 3 such that every vertex of P is locally disconnected and every edge of P is non-singular.
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Without loss of generality, we may assume that P = u2u3u4u5. Let Ti = viui+1ui+2vi be a triangle for i = 1, 2, 3, and let
S = V (C)

 i=3
i=1 V (Ti). Since each vertex of P is locally disconnected, v1, v2, v3 are distinct vertices. Consider the induced

subgraph G[S]. Since each ui ≠ u1 is locally disconnected in G, {v1v2, v2v3, viui, viui+3 : i ∈ {1, 2, 3}} ∩ E(G) = ∅. Thus
viui−1 ∉ E(G): Otherwise, G[{ui−1, vi, ui, ui−2}] is a claw since C is an induced cycle, a contradiction. If v1v3 ∉ E(G), then
this implies that G[S] ∼= G3; this is impossible by Condition (2) of Theorem 3. Thus v1v3 ∈ E(G), implying that G[S] ∼= G4
and hence at least one of {v1, v3} is locally connected by Condition (2) of Theorem 3.

First suppose that either u1 is locally connected or at least one of {u1u5, u1u2} is singular, then u lies on either an induced
cycle C ′

= u1u2v1v3u5u1 or an induced cycle C ′′
= v1u3u4v3v1, hence u satisfies Condition (i) or (ii) of Theorem 5 and we

are done.
Next suppose that u1 is locally disconnected and both u1u5 and u1u2 are non-singular, then let Ti = viui+1ui+2vi be a

triangle for i ∈ {4, 5}, and let S ′
= V (C) ∪

i=5
i=3 V (Ti). Then v4 ≠ v5. Now consider the induced subgraph G[S ′

]. Similar to
the discussion on G[S] of the fact that v1v3 ∈ E(G), we can obtain that v3v5 ∈ E(G). But this implies that G[{v3, u4, v1, v5}]

is a claw, a contradiction.
Case 2. C has no a path P of length 3 such that every vertex of P is locally disconnected and every edge of P is non-singular.

If C has no locally connected vertex, then it suffices to consider the case when C has exactly 3 non-singular edges of G
which are not consecutive. This implies that the degree of every vertex of C is at least 3 in G. Hence u satisfies Condition (i)
of Theorem 5.

If C has a locally connected vertex, then it suffices to consider the case when C has at least one singular edge in G. If
d(u) ≥ 3, then C has at most 4 non-singular edges and a locally connected vertex. If d(u) = 2, then C has at most 3 non-
singular edges and a locally connected vertex. This implies that u satisfies Condition (i) or (ii) of Theorem 5, in either case
above. This completes the proof of Theorem 3. �

5. Concluded remarks

5.1. Sharpness

In this subsection, we discuss the sharpness and show that the conditions of Theorems 5 and 3 are all best possible in
some sense.

• Let k ≥ 2 be an integer. Let Gk be the graph obtained from K2,3 by attaching k pendant edges to each vertex of K2,3, and
then subdividing each original edge once. It is straightforward to check that the graph Hk

= L(Gk) is 2-connected claw-
free graph with δ(Hk) ≥ k+1 such that every locally disconnected vertex of G lies on an induced cycle of length 8 with 4
non-singular edges and without a locally connected vertex. However, it is not Hamiltonian: Otherwise, by Theorem 13,
Gk has a dominating Eulerian subgraph, a contradiction. This shows that ‘‘s − 3 locally connected vertices’’ in Condition
(i) of Theorem 5 cannot be replaced by ‘‘s−4 locally-connected vertices’’ even under an additional condition that a graph
has any given large minimum degree.

• We demonstrate that the condition ‘‘G[V (C) ∩ V2(G)] is a path or a cycle’’ in Theorem 5(ii) is necessary. The graph G′ in
Fig. 3 is a graph satisfying Condition (i) but not (ii) since the two locally disconnected vertices of degree two do not satisfy
Condition (ii) of Theorem 5 (although they lie on an induced cycle with only two nonsingular edges). It is straightforward
to check that G′ is not Hamiltonian. This shows that the condition ‘‘G[V (C) ∩ V2(G)] is a path or a cycle’’ in Condition (ii)
of Theorem 5 is necessary. One can obtain many such graphs with any large order by joining a clique of any large order
to any nontrivial maximal clique of G′.

• Theorem 3 is best possible in the sense that Condition (2) cannot be weakened. To see this, consider G′ depicted in Fig. 3.
The graph G′ satisfies all conditions of Theorem 3 except that every induced subgraph H of G′ isomorphic to G3 does not
have a locally connected vertex in V3(H) ∪ V4(H). Note that G′ is not Hamiltonian. This shows that ‘‘at least one locally
connected vertex’’ in Condition (2) of Theorem 3 is necessary.

5.2. A flaw in the original proof of Corollary 4

Looking at the original proof of Corollary 4, we find that the author used the assumption that if a claw-free graph satisfies
the condition that it is connected N2-locally connected {G1,G2,G3,G4}-free (where Gi is the graph in Fig. 1), then so does its
closure. However, this is not generally true: For example, the claw-free graph G′′ in Fig. 3 is connected N2-locally connected
{G1,G2,G3,G4}-free, however, cl(G′′) has an induced subgraph isomorphic to G3. This implies that cl(G′′) does not satisfy
the conditions of Corollary 4 any more. One can obtain many such graphs of any large order by joining a clique of any large
order to any nontrivial maximal clique of G′′. Our proof has conquered the flaw.

5.3. Theorem 5 is stronger than Theorem 3 and Corollary 4

We show that some graphs satisfy Theorem 5 but not Theorem 3. As we showed in Section 5.2, the closure of the graph
G′′ depicted in Fig. 3 does not satisfy the conditions of Corollary 4. In fact, it does not satisfy Theorem 3. However, it satisfies
the conditions of Theorem 5. This shows that Theorem 5 is stronger than Theorem 3.
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Fig. 3. The graph G′,G′′: u is a locally connected vertex of G′′ .
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