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a b s t r a c t

We improve several results in the area of pseudorandom sequences. First, we obtain
an improved bound on the general lattice test for digital explicit inversive and digital
explicit nonlinear pseudorandom number generators. Second, we improve the bound on
the correlation measure of binary sequences generated by the quadratic character of finite
fields. Finally,we improve the bound on the correlationmeasure of digital explicit inversive
pseudorandom numbers, and the bound on their linear complexity profile.

Although we follow essentially the earlier proofs, we improved a crucial step, namely a
better estimate on the number of nonempty intersections of ‘boxes’ of a finite field is given.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let q = pr be a prime power and Fq be the finite field with q elements. We identify the finite field Fp with the set of
integers {0, 1, . . . , p − 1}. Let β1, . . . , βr ∈ Fq be a basis of Fq over Fp. We define the additive order of Fq in the following
way: for n ∈ {0, 1, . . . , q − 1} let

ξn = n1β1 + n2β2 + · · · + nrβr

if

n = n1 + n2p + · · · + nrpr−1, 0 ≤ n1, n2, . . . , nr < p.

We define ξn+q = ξn for n ∈ {0, 1, . . . , q − 1}. Let W ⊆ Fq be defined as follows:

W = {w2β2 + · · · + wrβr : w2, . . . , wr ∈ {0, 1}}.

For an element ω ∈ W and a ∈ {0, 1, . . . , q − 1} we define

Sa,ω = {ξn : 0 ≤ n < q, ξn+a = ξn + ξa + ω}.

Let d1, . . . , dk be integers with 0 ≤ d1 < · · · < dk < q. We look for an upper bound on the number of nonempty elements
in the following set of Fq

{Sd1,ω1 ∩ · · · ∩ Sdk,ωk : ω1, . . . , ωk ∈ W}. (1)
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For earlier bounds see [3,4,6,10,11]. In [3,6,10,11] the authors used the trivial upper bound 2k(r−1), and recently Gómez-
Pérez and Gómez [4] obtained the bound (6rk)r−1. The main contribution of this paper is to show that the number of
nonempty elements in (1) is bounded by (k + 1)r−1. This refinement ensures improvements of several results for r ≥ 2
on the pseudorandomness of sequences generated via the additive order in finite fields. We note that our results coincide
with the previous results for r = 1. In Section 2 we describe these improvements in detail.

Before stating the main result, we give the definition of a box and a remark on the set Sa,ω . Let Ni,1 and Ni,2 be integers
such that 0 ≤ Ni,1 < Ni,2 < p. We call a set of the form

{ℓ1β1 + · · · + ℓrβr : Ni,1 ≤ ℓi < Ni,2, i = 1, 2, . . . , r}
as a box. Letw1 = 0,ω = w1β1+· · ·+wrβr ∈ W and a = a1+a2p+· · ·+arpr−1 for some a1, a2, . . . , ar ∈ {0, 1, . . . , p−1}.
Then Sa,ω has the form

Sa,ω =


ℓ1β1 + ℓ2β2 + · · · + ℓrβr : max{0, pwi+1 − ai − wi} ≤ ℓi < min{p, pwi+1 − ai − wi + p},

i = 1, 2, . . . , r − 1, 0 ≤ ℓr < p

.

Hence, Sa,ω is a box. We now state our main theorem.

Theorem 1. Let d1, . . . , dk be integers with 0 ≤ d1 < · · · < dk < q and let ω1, . . . , ωk ∈ W . Then the set

Sd1,ω1 ∩ · · · ∩ Sdk,ωk = {ξn : 0 ≤ n < q, ξn+di = ξn + ξdi + ωi, i = 1, 2, . . . , k} (2)

is a box or an empty set. If ω1, . . . , ωk run over W , then there are at most (k + 1)r−1-many nonempty sets among them.

Using Theorem 1 one can obtain a similar result in the incomplete case.

Corollary 1. Let M ∈ {0, 1, . . . , q − 1} and E = {ξ0, ξ1, . . . , ξM−1} ⊆ Fq. Let d1, . . . , dk be integers with 0 ≤ d1 < · · · <
dk < q and let ω1, . . . , ωk ∈ W . Then, the set

Sd1,ω1 ∩ · · · ∩ Sdk,ωk ∩ E = {ξn : 0 ≤ n < M, ξn+di = ξn + ξdi + ωi, i = 1, 2, . . . , k} (3)

can be split into a union of boxes, such that if ω1, . . . , ωk run over W , then the number of boxes is O((k + 1)r−1).

Before presenting the proofs of theorem and corollary, we give some of their applications in Section 2. In particular,
we improve the results given in [4,10,11], and [3] in Sections 2.1–2.3 respectively. Next, in Section 3 we give the proofs of
Theorem 1 and Corollary 1.

2. Applications

In this section we apply Theorem 1 and Corollary 1 to obtain better results on pseudorandomness of certain sequences.

2.1. On the lattice structure of digital explicit inversive and nonlinear generators

Let

γ =


γ −1 if γ ∈ F∗

q,

0 if γ = 0.

For given α ∈ F∗
q and β ∈ Fq, a sequence γ0, γ1, . . . generated by

γn = αξn + β, n = 0, 1, . . . (4)
is called digital explicit inversive pseudorandom number generator (orNiederreiter–Winterhof generator), see [7]. The inversive
pseudorandom number generator is a special case of digital explicit nonlinear pseudorandom number generators (ηn)
defined by

ηn = f (ξn) (5)
for some polynomial f (X) ∈ Fq[X], see [8]. Note that for the inversive generator we have f (X) = (αX + β)q−2.

In this section we study the general lattice test (first introduced by Niederreiter andWinterhof [9]) for the digital explicit
inversive and nonlinear generators. Let (ηn) be a T -periodic sequence over Fq. For given integers s ≥ 1, 0 < d1 < d2 < · · · <
ds−1 < T , and N ≥ 2, we say that (ηn) passes the s-dimensional N-lattice test with lags d1, d2, . . . , ds−1 if the vectors

{η
n
− η

0
: 1 ≤ n < N}

span Fs
q, where
η
n

= (ηn, ηn+d1 , . . . , ηn+ds−1), 0 ≤ n < N.

The greatest dimension s such that (ηn) satisfies the s-dimensional N lattice test for all lags d1, . . . , ds−1 is denoted by
S(ηn,N).
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Pirsic and Winterhof [10] studied the lattice structure of inversive and nonlinear pseudorandom number generators.
They used the upper bound 2k(r−1) on the number of possible boxes (2), and obtain that

S(γn,N) ≥
log(N) − log log(N) − 1

r − 1
− 1 (6)

and

S(ηn,N) ≥
log(N/D)

r − 1
− 1

for 2 ≤ N ≤ q and r ≥ 2, where (γn) is defined by (4), and (ηn) is defined by (5) with a nonidentical zero function f (X) ∈

Fq[X] of degree D.
Later Gómez-Pérez and Gómez [4] improved the bound (6)

S(γn,N) ≥
1
6


N

r r−1

1/r

(7)

for 2 ≤ N ≤ q and r ≥ 2.
Using Theorem 1 in the proof of [10] gives the following improved bounds:

S(γn,N) ≥


N
2

1/r

− 1

and

S(ηn,N) ≥


N
D

1/(r−1)

− 1

for 2 ≤ N ≤ q and r ≥ 2. We remark that in these bounds the constant terms do not depend on r anymore.

2.2. On the correlation measure of binary sequences defined by the quadratic character

Let
EN = {e0, . . . , eN−1} ∈ {−1, +1}N

be a binary sequence of length N . The correlation measure of order k of EN is defined as

Ck(EN) = max
M,D

M−1
n=0

en+d1en+d2 . . . en+dk

 ,
where the maximum is taken over all D = (d1, . . . , dk) and M such that 0 ≤ d1 < d2 < · · · < dk ≤ N − M . This measure
was first introduced by Mauduit and Sárközy [5]. For a ‘‘good’’ pseudorandom sequence EN , Ck(EN) (for ‘‘small’’ k) is small
and is ideally greater than N1/2 only by at most a power of logN , see [1].

The linear complexity profile is an important cryptographic characteristic of pseudorandom sequences. A low linear
complexity profile has turned out to be undesirable for cryptographic applications.

We recall that the linear complexity profile L(RT ,N) of the sequence RT = (r0, r1, . . . , rT−1) is a non-decreasing sequence
where the Nth term is defined as the shortest length L of a linear recurrence relation over F2

rn+L = cL−1rn+L−1 + · · · + c0rn, 0 ≤ n ≤ N − L − 1,
which is satisfied by this sequence.

Let χ be the quadratic character of Fq. Sárközy and Winterhof [11] defined a binary sequence Lq = (l0, l1, . . . , lq−1) ∈

{−1, 1}q by

ln =


χ(f (ξn)) if f (ξn) ≠ 0,
1 if f (ξn) = 0, 0 ≤ n < q.

They proved that if f (X) ∈ Fq[X] has no multiple zero, and if either
(i) k = 2 and deg f < p

or
(ii) 4r(k+deg f ) < p,

then
Ck(Lq) = O(2(r−1)kr2rk deg fq1/2(log p)r),

By applying Corollary 1, we get in the same way as in [11] that the correlation measure satisfies
Ck(Lq) = O((k + 1)r−1k deg fq1/2(log p)r)

under the same conditions (i) and (ii).
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Moreover, if f (X) is a linear polynomial, then we get

Ck(Lq) = O((k + 1)r−1kq1/2(log p)r)

without conditions on k of type (i) or (ii). Therefore by [2, Theorem 1] we get a non-trivial lower bound on the linear
complexity profile of the sequence Sq = (s0, s1, . . . , sq−1) ∈ {0, 1}q defined by sn = (ln + 1)/2

L(Sq,N) = Ω


N1/r

p1/2 log p


, 2 ≤ N < q.

2.3. On the linear complexity profile of the threshold sequence for digital explicit inversive pseudorandom numbers

Let (γn) be a sequence of digital explicit inversive pseudorandom numbers defined by (4). If

γn = cn,1β1 + cn,2β2 + · · · + cn,rβr

with 0 ≤ cn,i < p (for all i, j), we define digital explicit inversive pseudorandom numbers of period q in the interval [0, 1) by
defining

yn =

r
j=1

cn,jp−j, n = 0, 1, . . .

We here derive a bound on the correlation measure of order k of the binary sequences Eq = (e0, e1, . . . , eq−1) defined by

en =


1 if 0 ≤ yn <

1
2
,

−1 if
1
2

≤ yn < 1,
n = 0, 1, . . . , q − 1,

and also the linear complexity profile of the associated bit sequence Rq = (r0, r1, . . . , rq−1) ∈ {0, 1}q, where rn := (en+1)/2.
Chen, Gomez, and Winterhof [3] studied the correlation measure of digital explicit inversive pseudorandom numbers

and their linear complexity profile. They use the upper bound r2r2k(r−1) on the number of possible boxes (3), and obtain
that

Ck(Eq) = O

r2r2k(r−1)kq1/2(log q)k(1 + log p)r


and

L(Rq,N) = Ω


log(Nq−1/22−r r−1(1 + log p)−r)

r + log log q


, 2 ≤ N < q.

Using Corollary 1 in the proof of [3] gives the improved bound:

Ck(Eq) = O

(k + 1)rq1/2(log q)k(1 + log p)r


and by [2, Theorem 1]:

L(Rq,N) = Ω


log

Nq−1/2(1 + log p)−r(log q1/2)−r(log log q)r


log log q


,

for 2 ≤ N < q.

3. Proofs

Proof of Theorem 1. We can assume that r ≥ 2 since otherwise the theorem is obvious. Let Li,1 and Li,2 be integers as
follows:

Li,1 = max{0, pw1,i+1 − d1,i − w1,i, . . . , pwk,i+1 − dk,i − wk,i}

and

Li,2 = min{p, pw1,i+1 − d1,i − w1,i + p, . . . , pwk,i+1 − dk,i − wk,i + p}

for i ∈ {1, 2, . . . , r − 1}, where 0 ≤ d1 < · · · < dk < q and ω1, . . . , ωk ∈ W such that dj =
r

i=1 dj,ip
i−1, 0 ≤ dj,i < p and

ωj = wj,2β2 + · · · + wj,rβr . We also define Lr,1 = 0 and Lr,2 = p.
Then clearly

Sd1,ω1 ∩ . . . ∩ Sdk,ωk = {ℓ1β1 + · · · + ℓrβr : Li,1 ≤ ℓi < Li,2, i = 1, 2, . . . , r}

is a box or empty.
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In order to prove the bound on the number of nonempty sets having the form (2), we write (2) as an intersection of
decreasing boxes, when the k-tuple (d1, . . . , dk) is fixed.

First, let ωt ∈ {0, 1}k (for t = 1, . . . , r) be a tuple of the tth coordinates of ω1, . . . , ωk: ωt = (w1,t , . . . , wk,t). In partic-
ular, ω1 is the zero vector. For a ω2 ∈ {0, 1}k we define H1(ω2) as follows:

H1(ω2) = {a ∈ Fp : L1,1 ≤ a < L1,2}.

It is clear that the sets in {H1(ω2) : ω2 ∈ {0, 1}k} split Fp:

(i) H1(ω2) ⊂ Fp,
(ii) H1(ω2) ∩ H1(ω′

2) = ∅, for ω2 ≠ ω′

2,
(iii)


ω2∈{0,1}k H

1(ω2) = Fp.

Moreover, there are at most k + 1 nonempty sets among them. Indeed, for an a ∈ Fp we have

a ≥ p − dj,1 ⇔ wj,2 = 1, for j = 1, 2, . . . , k,

which means that there is a unique vector ω2 ∈ {0, 1}k such that a ∈ H1(ω2). Let σ be a permutation of {1, . . . , k} such that

dσ(1),1 ≤ · · · ≤ dσ(k),1.

Then, the possible sets of H1(ω2) are
(i) [0, p − dσ(k),1) ∩ N,
(ii) [p − dσ(i),1, p − dσ(i−1),1) ∩ N, for i = 2, 3, . . . , k,
(iii) [p − dσ(1),1, p) ∩ N

and the empty set.
Let

C1(ω2) = H1(ω2) × Fr−1
p

= {ℓ1β1 + ℓ2β2 + · · · + ℓrβr : ℓ1 ∈ H1(ω2), ℓ2, . . . , ℓr ∈ Fp}.

By recursion we split a non-empty set C t−1 (ω2, . . . , ωt) (t = 2, 3, . . . , r − 1) as a disjoint union

C t−1 (ω2, . . . , ωt) =


ωt+1∈{0,1}k

C t (ω2, . . . , ωt , ωt+1)

such that there are at most k + 1-many non-empty sets C t (ω2, . . . , ωt , ωt+1) when ωt+1 runs in {0, 1}k.
Assume that C t−1 (ω2, . . . , ωt) is defined for 2 ≤ t < r − 1 and the k-tuples ω2, . . . , ωt are fixed. Define the sets

H t(ωt+1) as

H t(ωt+1) = {a ∈ Fp : Lt,1 ≤ a < Lt,2}.

The sets in {H t(ωt+1) : ωt+1 ∈ {0, 1}k} split Fp:
(i) H t(ωt+1) ⊂ Fp,
(ii) H t(ωt+1) ∩ H t(ω′

t+1) = ∅, for ωt+1 ≠ ω′

t+1,
(iii)


ωt+1∈{0,1}k H

t(ωt+1) = Fp.

Similar to the case t = 1, there are at most k + 1 nonempty sets among them. Indeed, for an integer a ∈ Fp we have

a ≥ p − dj,t − wj,t ⇔ wj,t+1 = 1, for j = 1, . . . , k.

Then we define C t (ω2, . . . , ωt , ωt+1) as

C t (ω2, . . . , ωt , ωt+1) = {ℓ1β1 + ℓ2β2 + · · · + ℓrβr ∈ C t−1 (ω2, . . . , ωt) : ℓt ∈ H t(ωt+1)}.

We finish the proof of Theorem 1 by observing that

Sd1,ω1 ∩ . . . ∩ Sdk,ωk = C r−1 (ω2, . . . , ωr) .

Proof of Corollary 1. Let M ∈ {0, 1, . . . , q − 1} and d1, . . . , dk < q with 0 ≤ d1 < · · · < dk < q be given integers. We
look for the intersection of Sd1,ω1 ∩ · · · ∩ Sdk,ωk and the set E = {ξ0, . . . , ξM−1} ⊆ Fq for tuples (ω1, . . . , ωk) ∈ W k. This
intersection has at most r boxes for only the tuple (ω0

1, . . . , ω
0
k) ∈ W k where ξM−1 ∈ Sd1,ω0

1
∩ · · · ∩ Sdk,ω0

k
. Moreover, there

are (k+ 1) tuples for which the intersection consists of at most (r − 1) boxes. By Theorem 1 we know that we have at most
(k + 1)r−1 tuples for which Sd1,ω1 ∩ · · · ∩ Sdk,ωk is nonempty. Therefore, in the final step there are (k + 1)r−1 tuples whose
intersection with {ξ0, ξ2, . . . , ξM−1} consists of at most one box. If we sum them up we obtain that

r−1
i=0

(r − i)(k + 1)i =
(k + 1)r+1

− (r + 1)k − 1
k2

= O((k + 1)r−1).
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